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Abstract

We show that the general problem of string transduction can be reduced to the problem of sequence
labeling. While character deletions and insertions are allowed in string transduction, they do not
exist in sequence labeling. We show how to overcome this difference. Our approach can be used
with any sequence labeling algorithm and it works best for problems in which string transduction
imposes a strong notion of locality (no long range dependencies). We experiment with spelling
correction for social media, OCR correction, and morphological inflection, and we see that it
behaves better than seq2seq models and yields state-of-the-art results in several cases.

1 Introduction

String transduction (mapping one string to another) is an essential ingredient in the natural language
processing (NLP) toolkit that helps solve problems ranging from morphological inflection (Dreyer et
al., 2008) and lemmatization to spelling correction (Cotterell et al., 2014), text normalization (Porta and
Sancho, 2013) and machine translation (Kumar et al., 2006).

Finite-state technology is often used with string transduction (Allauzen et al., 2007), especially when
there is a strong notion of locality in the transduction problem, i.e., when there are no long range
dependencies between the predicted characters. More recently, neural network methods have become
more common for such problems using the seq2seq models that were introduced for machine translation
(Bahdanau et al., 2015).

Similarly, sequence labeling algorithms have been the mainstay for an array of problems in NLP,
including part-of-speech tagging, named entity recognition and semantic role labeling. Various models
have been proposed to do sequence labeling, including conditional random fields, hidden Markov models
and neural networks.

String transduction and sequence labeling are often treated as two separate entities, and indeed, usually
give treatment to different problems in NLP. We claim and show that there is a great similarity between
them, and that one can be reduced to the other.

Sequence labeling is often associated with a set of problems in which the set of labels is small compared
to the vocabulary. Still, this labeling essentially associates each symbol (usually a word) in a sequence
(usually a sentence) with a label. As such, it can be seen as a specific case of string transduction that
imposes a one-to-one correspondence between input and output symbols. This is the easier side of the
reduction between sequence labeling and string transduction, and it has been exploited in the deep learning
literature with seq2seq models.

In this paper, we come to address the reduction in the reverse direction – i.e. we show how to frame
string transduction as sequence labeling. We do this by decomposing the transduction process into two
parts: first, we induce an alignment between the characters of the input and output strings and then we use
a sequence labeling model to predict the final output of the string.

The main difficulty here is not in the size of the vocabulary compared to the label set, but the fact that
string transduction can yield to arbitrary output string length compared to the input string. In machine
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translation, for example, a classic example of string transduction, the sentence in the target language can
be shorter, longer, and contain a significant amount of re-ordering. Indeed, re-ordering is a challenge with
string transduction. A sequence labeling model usually maintains higher order of monotonicity (such
as with Markovian models), while for general string transduction problems, one needs models such as
encoder-decoders or grammatical models. Such expressive models, on the other hand, are not a good
fit for string transduction problems with a strong notion of locality, as they are too complex and lead to
weaker generalization power for such problems (Rastogi et al., 2016). We show this weakness in our
experiments with seq2seq models supporting similar conclusions in previous work such as by Schnober et
al. (2016). Our experiments show that even when seq2seq models are incorporated with hard monotonic
attention (Aharoni and Goldberg, 2017), our reduction to sequence labeling outperforms such models on
certain problems with a strong notion of locality.

Our approach to reduce string transduction to sequence labeling relies on a simple observation: in most
cases in transduction, it is easier to delete a symbol than to insert a symbol. This is true because insertion
requires identifying both the point of insertion and the character that needs to be inserted, while deletion is
a “binary” decision – either the decoding algorithm chooses to delete a specific symbol or not to. A similar
observation was made by Schnober et al. (2016), Rosca and Breuel (2016) and Chandlee (2014) and is also
present in much earlier work by Koskenniemi (1983) and later in Chandlee (2014). String transduction
is treated by Koskenniemi (1983) as a two-layer problem: two strings (a surface representation and a
lexical representation) were aligned according to a set of “two-layer” handwritten rules. In this paper,
we propose a similar setup to Koskenniemi’s but instead, we use various sequence labeling methods to
automatically create these alignments (instead of hand-engineer them). This is possible by considering
the three character operations used in string transduction – deletions, insertions and substitutions – as
tagging operations. While Koskenniemi’s work was done only in the context of morphology, we extend
the idea further and apply it to a wider set of problems. However, our approach, like Koskenniemi’s, is for
now limited to character level tasks.

Our observation leads to an approach which is simple, yet powerful. We explain it in §3 and then
perform an extensive experimentation with it in various scenarios, comparing it to models such as seq2seq.
We test our approach thoroughly on three string transduction problems with a strong notion of locality:
social media spelling correction, optical character recognition and morphological inflection. Each problem
is tested with several sequence labeling algorithms. In all cases, we find that our approach is competitive
with strong baselines and in some cases outperforms them. Our approach is independent of the sequence
labeling algorithm that is used, and indeed we experiment with it in conjunction with four different
sequence labeling learning algorithms.

2 Problem Formulation

We give a treatment to the problem of string transduction. Given an input alphabet, Σ, an output alphabet
Λ, and training data, we aim to learn a function f : Σ∗ → Λ∗ that maps input strings to output strings.
The training data comes in the form of pairs of strings (x(i), y(i)) for i ∈ {1, . . . ,M}. Note that the input
string and output string can be of different length.

We reduce the problem of learning f to sequence labeling. With sequence labeling, we aim to learn a
function g : Σ∗ → Λ∗ such that the length of y = g(x) is the same as of x. This means that the training
data we receive to learn g has input and output strings of the same length. With sequence labeling, g(x) is
referred to as the “labels” of x, as each element in x is mapped to a single element in g(x) (elements from
the input string are not deleted and new ones are not inserted).

Clearly, the problem of string transduction subsumes the problem of sequence labeling, as one can
always try to learn a mapping f from a given training data of strings of identical length. However, there is
a significant distinction that is usually made between the two, as string transduction can re-write a string
into a completely different string, while sequence labeling has a stronger notion of locality.

As such, sequence labeling is considered an easier problem than general string transduction. Yet, we
show in this paper how to exploit sequence labeling algorithms, with their flexibility and efficiency, to do
general string transduction.



3 Transduction as Insertion and Labeling

Most approaches to string transduction involve inducing an alignment between symbols in the input and
output strings (Knight and Graehl, 1998; Clark, 2001; Eisner, 2002; Azawi et al., 2013; Bailly et al.,
2013). In an alignment, unaligned input symbols are called deletions, while unaligned output symbols are
called insertions.

It is challenging to jointly induce alignments and learn a transduction model.
A second challenge is that, at prediction time, it is difficult to predict the insertions, as there can be an

arbitrary number of them between any two input symbols. The prediction problem would be much simpler
if the insertion positions were in place, because the model would only need to decide which symbol goes
in each position.

Our approach is based on this idea. We decompose the transduction process into first predicting
insertion positions in the input string, and then labeling the modified input string to produce the final
output string. The insertion function might predict insertion positions that should not be there —we
call these spurious insertions. In this case we rely on the labeling function to eliminate these spurious
insertions. It is an easier task to delete a symbol than to insert one for string transduction. Therefore,
marking the potential insertions in the string and then deleting them if necessary during decoding reduces
the problem of string transduction to sequence labeling and as such allows using the Viterbi algorithm for
decoding.1 In addition, to avoid the challenge of inducing alignments, our approach relies on existing ones
— for our experiments, we use the edit distance algorithm. From these initial alignments, our approach
learns an insertion function and a sequence labeler, which perform string transduction when composed.
This simple approach is also very flexible, because potential insertions can later be deleted. We found this
approach to yield quite good alignments, as the accuracy of our algorithm when the alignment is known is
quite high and supersedes state-of-the-art results in several cases. We now explain this technique more in
detail.

3.1 Insertion Algorithm

We learn an “insertion context function” σ : N× Σ∗ → N. Given a string x = x1 · · ·xk over Σ and an
index in that string (between 0 and k),2 this function tells how many potential insertions could happen in
that position.

For example, say we would like to transduce the string say from its base form to its past form
said. The insertion context function might learn that there needs to be an insertion following the y that
corresponds to the d. Therefore, the insertion function values for say would be:

σ(i,say) = 0 ∀i ∈ {0, 1, 2}
σ(3,say) = 1.

and therefore the string we would try to transduce to said would be the string sayε, where ε is a special
symbol marking potential insertion.

Learning σ To learn σ, we use the following procedure. We first align each pair of strings in the
training set using an algorithm such as edit distance (see §4.1). We then check for all contexts in which an
insertion, or a sequence of insertions happen. A context is defined to be the preceding character before
the sequence of insertions and the character that follows the sequence of insertions – for instance, in the
previous example say, the context for the letter a would be the letters s and y. All of these contexts
are added to a dictionary of insertion contexts, always keeping the maximal number of insertions for
each specific context. Then the function σ adds a sequence of insertions any time a specific context fires.
For the example above, the context we learn is yε$ where $ denotes the end of a string. Therefore, for a

1Finite state transducers that allow insertions or deletions, in practice, need to bound the number of insertions at any specific
point, similarly to our insertion context function. This is done by operating on a lattice, where a path in that lattice corresponds
to a string transduction with a specific alignment. Decoding using a lattice is equivalent to using the Viterbi algorithm. See, for
example, Rastogi et al. (2016).

2The index really marks a space between two characters in the string, with 0 denoting the beginning of the string.
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Figure 1: Graphical depictions of BiLSTMs (left), conditional random fields (middle) and refinement
hidden Markov models (right). In practice, for the R-HMMs and CRFs we use a trigram model and not a
bigram model as depicted.

decoded string that has the same context as the one found before, for instance, the string slay we would
have σ(4,slay) = 1.

For all contexts, we calculate (based on the training data) a frequency table, that gives the probability of
an insertion given the specific context. In some cases, we then tune a threshold (based on a development
set) so that we add insertions only in cases where the frequency is larger than that threshold. We found out
that while it perhaps prevents insertions in legitimate positions, if the frequency threshold is low enough,
it does not have an adverse effect. On the contrary, it prevents adding spurious insertions that cannot be
correctly recovered as deletions. For more details, see §4.

In the morphology tasks we experiment with, insertions tend to happen as suffixes or prefixes. To
capture this, we also learn a pair of thresholds τ0 and τ1 (by grid search on the training set) such that

σ(i, x) is set to 0 if τ0 ≤
i

|x|
≤ τ1.

Learning the Labeling Model with σ Once we have the σ function applied to all aligned training data,
we mark in the output sequences in the training data the spurious insertions that should not be in the input
sequence with a special symbol D (for deletion). Therefore, the learning algorithm is now also required
to learn where to delete these extra insertions that σ elicits. For example, if we consider the previously
mentioned example of say and said, the input sequence in this case would be sayε and the output
sequence would be said. However, it is not always the case that the past tense of a verb with a ay ending
is the same word root with the suffix -d (and the transformation of the final y to i to accommodate the new
suffix). For example, the past tense of may is also may, and in this case, if the string may was also in the
training set, may should retain its form and be transduced to may. With the context function mentioned
above we would have the pair mayε (input sequence), mayD (output sequence) to learn from. During
decoding, we apply the σ function on the input string and then remove the D symbols from the string.

3.2 Sequence Labeling Models

We experiment with three models for sequence labeling: refinement hidden Markov models (R-HMMs;
Stratos et al., 2013), conditional random fields (CRFs; Lafferty et al., 2001) and bidirectional Long Short
Term Memory neural networks (biLSTMs; Graves and Schmidhuber, 2005). A graphical depiction of the
models that we experiment with is given in Figure 1. For R-HMMs, we experiment with two learning
algorithms, the expectation-maximization algorithm (EM; Dempster et al., 1977) and an L-PCFG spectral
learning algorithm (Cohen et al., 2012; Cohen et al., 2013).3

4 Experiments

We describe in this section a set of experiments on datasets from three problems: social media spelling
correction, optical character recognition (OCR) correction and morphological inflection. We believe
that this array of datasets represents a broad set of problems in which string transduction as sequence

3We use the code from https://github.com/shashiongithub/Rainbow-Parser.



labeling can be tested. We apply the insertion technique to a set of sequence labelers: conditional random
fields, refinement HMMs with expectation-maximization, spectral algorithms, and neural networks with
biLSTM. All the results reported are at word level.

Our experiments require hyperparameter tuning of all algorithms, which we do over a fixed set of
hyperparameters in the development set. For the latent-variable models, we vary the number of latent
states between 1 and 48. For the biLSTM, we try a number of layers between 1 and 4 and a number of
neurons ranging between 100 and 500.

The CRF is used with trigram modeling, and as such, the features it uses are very similar to the features
used by the spectral algorithm. The main difference is that the spectral algorithm uses these features only
during training, while the CRF uses them both during training and decoding.

In addition, we compare all our models to a seq2seq model implementation (Bahdanau et al., 2015). The
model includes an attention mechanism, and we optimize the number of latent units over the development
sets, ranging it from 10 to 100. We also include a comparison to seq2seq models with a “hard” attention
mechanism (Aharoni and Goldberg, 2017), designed for string transduction with monotonic alignments.

4.1 Twitter Spelling Correction

In our first set of experiments, we use a corpus of spelling corrections for Twitter (Aramaki, 2010). The
corpus includes 39,172 words in their original form and their correct form. We split this dataset into three
parts (consecutively): 31,172 entries for a training set, 4,000 entries for a development set and another
4,000 entries for a test set.

Further Tuning In our experiments with EM and the spectral algorithm, we also tried to tune the σ
context function on the development set. We discovered that the best context function is the one that adds
ε slots for every context a− b that appears in the data, if the relative frequency of a− b to a ? b is larger
than p = 0.0001 (where ? stands for a wildcard; the interpretation of this relative frequency division is
that we check whether the conditional probability of having an ε given the context a ? b is larger than p).
This is not particularly surprising given the fact that the Twitter dataset is composed of single words, each
having a single typo. Therefore, each pair of misspelled and correctly spelled words often needs at most
one insertion to be aligned. Even though this threshold may seem small, it was enough to remove all the
isolated, non-representative context cases.

We try both a bigram and a trigram model. The trigram model greatly outperforms the bigram model,
so we focus on it. We also did some preliminary experiments with a 4-gram model, but this model did not
seem to do better than the trigram model. For the biLSTM architecture, we find on the development set
that the smallest error is with 2 layers and 350 neurons.

In our experiments, we compare two latent-variable learning methods: the EM algorithm and the
spectral algorithm described by Stratos et al. (2013). EM was run for 8 iterations – in some preliminary
experiments where we ran EM for much longer, we noticed it converges after very few iterations. We then
choose the iteration that gave the best result on the development set. We range the number of latent states,
m, between 2 and 48.

The Dictionary Layer We also experiment with an additional layer that we add to our transduction
algorithm. In this layer, we use a dictionary (a fixed set of words) for which we find the closest entry (in
edit distance) to the output of our algorithm. In that case, our transduction algorithm can be thought of as
producing an intermediate string, i.e., a string that may or may not already be a correct word but that is
closer to the correct word in terms of edit distance. The intermediate string representation is intended to
correct mistakes while actually relying on the type of substitutions, deletions and insertions done by users
of social media. However, it is still prone to character-based mistakes, since it is a learned component.
This is the reason why we also include the second edit distance layer.

We use two types of dictionaries. The first dictionary is the set of all correctly spelled words in the
training data. The second dictionary is the English dictionary extracted from the GNU aspell software.4

In our results, we report four types of accuracy levels: the accuracy for the whole test set (where accuracy
4ftp://ftp.gnu.org/gnu/aspell/dict/0index.html.



method acc acc4+ acc6+ acc10+
aspell 30.1 41.1 56.6 82.6
train 40.1 59.6 71.6 71.9
GNU aspell 29.0 46.2 58.8 80.2
seq2seq 46.3 44.8 45.3 33.8
seq2seq+train 55.7 59.5 65.1 86.2
seq2seq+aspell 47.6 48.5 45.0 65.4
seq2seq (hard) 52.2 49.1 31.6 13.4
seq2seq+train (hard) 62.2 63.6 59.6 63.8
seq2seq+aspell (hard) 54.9 53.3 47.1 63.8
Spectral 54.3 52.6 44.0 28.1
Spectral+train 63.3 68.4 70.1 69.4
Spectral+aspell 56.6 59.4 58.6 70.2
biLSTM 54.1 54.1 55.4 49.3
biLSTM+train 64.6 64.6 68.7 72.1
biLSTM+aspell 56.9 57.0 59.1 63.0
CRF 34.2 34.2 32.2 19.0
CRF+train 55.9 55.9 59.5 67.8
CRF+aspell 45.2 45.2 46.4 50.8
EM 28.3 22.0 14.5 9.9
EM+train 52.8 64.0 70.8 72.7
EM+aspell 41.7 48.7 55.7 82.6

Table 1: Final results on the test set for the Twitter dataset. “aspell” stands for edit distance minimization
using the aspell dictionary. “train” stands for the same with the dictionary extracted from the training set.
“GNU aspell” stands for the results of running the GNU aspell software. “acc” denotes the accuracy over
the whole dev/test set, “accn+” for words of length ≥ n. For each method the best model was chosen as
follows: for CRF, over the dictionary; for EM, over iterations, number of latent states, and dictionary;
and for spectral, over the hyperparameters, number of latent states and dictionary. The best model was
chosen for each accuracy length criterion separately. The best result in each column is in bold. Top part
are baselines. Bottom part uses our reduction to sequence labeling.

is measured as the number of words we fixed to the correct form), and also accuracy only for (correct)
words which are longer than 4 characters, 6 characters and 10 characters.

We experimented with two types of edit distance algorithms. The first one allows only deletions,
insertions and substitutions, and the other also allows transpositions. We discovered that edit distance
with transposition behaves better, so we focus on it.

Results Table 1 gives the final result on the test set for the Twitter data (for different word lengths). The
first thing to note is that there are some models that perform well on words longer than 10 characters. In
general, it is easier to correct the spelling of longer words with the aspell dictionary because: (a) longer
words are more likely to originate in words that appear in the dictionary; (b) there is more evidence in a
long string for the misspelled string than in a short string.

Still, high accuracy on long words does not necessarily indicate the total accuracy is higher. We see
that the spectral algorithm and the biLSTM model tend to give higher results on all words lengths overall
than both the conditional random field and the EM algorithm. The GNU aspell software itself does not
perform well on this dataset. This perhaps should not come as a surprise, as the GNU aspell software is
designed for less informal text.

In addition, we see that sequence labeling performs consistently better than seq2seq models with
attention. This should not come as a surprise, as seq2seq models encode the whole string before decoding
it, even when the attention mechanism is used. This finding is also supported by (Schnober et al., 2016).
The seq2seq method of Aharoni and Goldberg (2017) behaves even worse without using a dictionary,



context dictionary average std
left none 42.2 0.67
right none 42.1 0.63
both none 42.3 0.61
left aspell 48.6 0.52
right aspell 48.6 0.54
both aspell 48.8 0.56
left train 58.3 0.49
right train 58.3 0.27
both train 58.6 0.46

Table 2: Sensitivity analysis of the different context functions as a function of the probability threshold
for insertion in a context. The contexts vary over left character (“left”), right character, or characters both
on the left and the right (“both”). In addition, we use dictionaries (the aspell dictionary or the training
data as dictionary). “average” gives the average result over the different thresholds, and “std” gives the
standard deviation of that average.

especially for long words.

The Role of the Context Function We note that the choice of the context function is important, and
extra ε symbols have to be added based on data-oriented choices. For example, when we experimented
with a constant context function that adds an additional ε symbol after every character during training
and decoding, the accuracy on the test set was much lower, whether we used a dictionary or not. To be
more precise, the accuracy without using a dictionary was 33%, with the “train” dictionary mitigating the
low performance to an accuracy of 61.1% (which is significantly lower than the biLSTM result and the
spectral result) and 54.0% for the “aspell” dictionary.

To test the role of the context function, we further evaluated it more thoroughly. We created three types
of context functions: one that looks at context only to the left of the current character, one that looks
at context only on the right, and finally one that looks on context both on the left and on the right (as
originally defined). In addition, we varied the threshold that activates an insertion in a specific context (see
§3). The threshold was varied over the values in the set {0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.05,
0.1, 0.15, 0.2}. The higher the threshold is, the less spurious insertions happen (or insertions in general).

We experimented with a single learning algorithm: the biLSTM neural network. Table 2 summarizes
this sensitivity analysis. The “average” results give the performance on the development set, averaging
over the different thresholds. The “std” result gives the corresponding standard deviation. As can be seen,
on average, right context functions have smaller standard deviation than other contexts, while the accuracy
levels are similar for all contexts. In addition, there is relatively not a very large sensitivity to the actual
threshold use.

The same dataset was also used by Cotterell et al. (2014) and by Silfverberg et al. (2016) though in
both cases the results are not comparable as the experimental setup and the errors reported are different
than the one used in this paper. For example, Cotterell et al. do not report accuracy at all, but instead plot
mean edit distance as a function of the number of training examples.

4.2 Optical Character Recognition Correction

In our second set of experiments we used the Finnish OCR dataset used by Silfverberg et al. (2016).
This corpus consists of 36,470 word pairs and it was generated from processing Early Modern Finnish
texts through an OCR engine. According to Silfverberg et al. (2016) this corpus is a subset of a larger
corpus comprising historical newspapers and magazines digitized by the National Library of Finland.
This dataset has been both manually edited by the Institute of Languages of Finland as well as through
crowdsourcing. In order to run our experiments we used the same setup and the same 10 non-overlapping
parts described in Silfverberg et al. (2016).



Method acc acc4+ acc6+ acc10+
Unstructured 20.0 - - -

+ Lexicon 21.6 - - -
Perceptron 32.1 - - -

+ Lexicon 35.1 - - -
seq2seq 79.9 80.0 78.8 78.6
seq2seq (hard) 58.4 55.4 55.3 53.7
Spectral 77.3 77.9 76.3 73.8
CRF 81.8 81.9 80.7 78.8
EM 79.9 80.5 79.3 77.4
biLSTM 81.7 81.7 80.3 78.3

Table 3: Finnish OCR results. The first set of baselines (upper part) are reported by Silfverberg et al.
(2016), and as such, the numbers are not available for all columns. Bottom part is our method.

Further Tuning In our experiments, we use 10-fold cross validation. The results are averaged over
these ten folds. The hyperparameters for the spectral algorithm were tuned on the development set of the
first fold, and then we used the hyperparameters identified at that phase for the rest of the folds.

We tuned the neural network architecture parameters on the development set of the first fold. We found
out that the biLSTM model works best with 1 layer with 200 neurons.

We tuned the context function on development data again (for fold 1). We discovered that the best
context function includes a pair of ε in any context of the form a− − b that it appeared in the training
data, and a single ε in any context with conditional probability larger than 0.0001. See more in §4.1. The
OCR dataset is quite different in its structure from the Twitter dataset. It has both words that do not need
any correction, and words in which more than one character was not labeled with the correct character.
Another important difference is the fact the “typos” were often grammatical in the Twitter dataset (as
they were human misspellings), while that is not the case in the OCR dataset. It is also worth noting that
Finnish relies heavily on double letters in its spelling, which could explain why this choice of σ function
works best in this case but not in the Twitter one.

Silfverberg et al. (2016) present two approaches for this problem, both relying on finite-state technology.
In one approach, “unstructured,” they extract finite-state rules from pairs of strings and then apply them
during decoding. In the “structured” case there is an additional Perceptron layer which is trained based on
features extracted from the unstructured classifier. In addition, they have an additional layer which relies
on a lexicon to find the best correction for a given input string.

Results Table 3 gives the results. We see that all uses of sequence labeling significantly outperform
the results of Silfverberg et al. (2016). Even with an external lexicon, the results of the unstructured and
structured classifiers of Silfverberg et al. significantly lag behind our results. Our results are also relatively
stable with regards to word length. While the results are slightly lower for words of length 10 or more,
the accuracy level is rather stable for other lengths. This is actually a different finding than the one we
found with the Twitter spelling correction experiment. We see yet again that seq2seq modeling performs
worse than our approach with biLSTM. seq2seq do not perform well with the hard monotonic attention
model. This is on par with the results for the Twitter spelling dataset, on which we see bad behavior on
long words. The OCR dataset indeed includes relatively long words.

4.3 Morphological Inflection

We also run experiments on the morphological inflection dataset used by Rastogi et al. (2016).5 This
dataset was first processed by Dreyer (2011) and we use the same setup in our experiments, i.e., in each
experiment we use the same 2,500 example dataset sampled from the CELEX database (Baayen et al.,
1993) divided into three sets, 500 examples for training, and 1,000 for both development and testing. This

5https://github.com/se4u/neural_wfst/.



Model 13SIA 2PIE 2PKE rP
biLSTM-WFST 85.1 94.4 85.5 83.0
biLSTM (ensemble) 85.8 94.6 86.0 83.8
Moses15 85.3 94.0 82.8 70.8
Dreyer (Backoff) 82.8 88.7 74.7 69.9
Dreyer (Lat-Class) 84.8 93.6 75.7 81.8
Dreyer (Lat-Region) 87.5 93.4 87.4 84.9
Kann (MED) 82.3 94.4 86.8 83.9
Kann (MED+POET) 83.9 95.0 87.6 84.0
seq2seq 83.1 93.8 88 83.2
seq2seq (hard) 85.8 95.1 89.5 87.2
EM 68.5 93.5 77.2 75.8
biLSTM (ours) 80.2 93.8 84.2 83.0
CRF 79.2 88.1 72.4 84.7
Spectral 81.9 94.0 83.2 83.8
Spectral (ensemble) 84.0 93.8 83.7 83.5
Spectral (oracle) 85.8 99.6 92.4 87.5

Table 4: Results on the morphological inflection datasets. Baselines (upper part of the table) are reported
by Rastogi et al. (2016) and Dreyer (2011). The best result in each column is in bold. Results for seq2seq
are reported by Aharoni and Goldberg (2017). Kann results are reported by Kann and Schütze (2016).

corpus is divided in four subsets, each defining an inflection task between different verb tenses in German.
These are labeled as follows:

• 13SIA→13SKE - 1st/3rd persons singular of the indicative past to 1st/3rd persons singular of the
subjunctive present.
• 2PIE→13PKE - 2nd person plural of the indicative present to 1st/3rd person plural of the subjunctive

present.
• 2PKE→z - 2nd person plural of the subjunctive present to the infinitive.
• rP→pA - imperative plural to the past participle.

Further Tuning For the 13SIA dataset, we discovered on development data (fold 1) that the best context
function is one that adds a single ε any time it appeared in the training data with a context aεb. For 2PIE,
we discovered similarly that adding a single ε is best in all cases it appears in the end of the word in the
training set. Finally, for 2PKE and rP, we discovered the best context function is such that it adds a single
ε or a pair of ε in any context it appears in the training data (with a character to the left and a character to
the right).

The morphological inflection dataset is the most different of the three datasets mostly because it allows
for the insertion or deletion of full suffixes. We speculate it is the main factor as to why the best context
functions for the morphological datasets are different than for the previous two datasets (Twitter and
OCR).

With the biLSTM model we discovered on the development set of the first fold of each dataset that:
13SIA works best with 2 layers of size 300; 2PIE works best with 1 layer of size 150; 2PKE works best
with 1 layer of size 250; and rP-pA works best with 2 layers of size 250.

Results The results are in Table 4. The biLSTM results reported in the upper part of the table do not use
our sequence labeling technique, and are re-iterated as reported by Rastogi et al. (2016).

In general, the spectral algorithm does not perform as well as the LSTM baseline with finite state
transducers, but does better than it on the rP-pA dataset. The spectral algorithm performs significantly
better than some of the other baselines, such as Moses or the baselines from Dreyer (2011). This is
especially true for the 2PKE and the rP-pA datasets.



An additional observation is that the way we handle insertions has a significant impact on the perfor-
mance. In oracle mode (meaning, when the two strings are aligned using edit distance even at decoding
time, and the spurious insertions are not used), the spectral algorithm performs significantly better. This
should not come as a surprise, but does point to a direction on how to improve the use of our sequence
labeling technique – better handling of insertions and the addition of less spurious insertion placeholders
that are deleted during decoding.

In contrast to the other datasets, where perhaps the assumption of monotonicity is too strong, seq2seq
models with an attention mechanism designed to handle monotonic alignments (Aharoni and Goldberg,
2017) perform quite well on this task, even better than the vanilla seq2seq models.

Finally, we also consider the case in which we use an ensemble method, combining several spectral
models together (the top 50 performing models on the development set from the hyperparameter sweep).
We combine the models using a MaxEnt reranker such as described by Charniak and Johnson (2005) and
Narayan and Cohen (2015). We find that the ensemble approach does improve the results significantly for
the 13SIA dataset, and also for the 2PKE-z dataset.

5 Conclusion

We presented a technique to frame general string transduction problems as sequence labeling. Our
technique works by adding to the string to be transduced additional insertion markers, which are later
potentially deleted during the sequence labeling process. Our approach is general and works with any
sequence labeling algorithm. We developed our technique with conditional random fields, refinement
hidden Markov models and neural networks. We tested our approach on problems from three challenging
domains: spelling correction for social media, optical character recognition correction and morphological
inflection. We demonstrated that our approach performs comparably to strong baselines and state of the
art.

While the idea of using redundant epsilons in string transduction problems has been used in the past
(Azawi et al., 2013; Schnober et al., 2016), it has traditionally been treated in an ad-hoc narrow manner, for
example by adding a fixed number of epsilons after every character. To the best of our knowledge, we are
the first to rigorously define this idea as a learning problem while performing a comprehensive empirical
evaluation for it, both with respect to the type of datasets used and the sequence labeling algorithms
covered.
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