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We introduce a model of quantum computation intermediate between the gate-based and measurement-based
models. A quantum register is manipulated remotely with the help of a single ancilla that “drives” the evolution
of the register. The fully controlled ancilla qubit is coupled to the computational register only via a fixed unitary
two-qubit interaction and then measured in suitable bases, driving both single- and two-qubit operations on
the register. Arbitrary single-qubit operations directly on register qubits are not needed. We characterize all
interactions E that induce a unitary, stepwise deterministic measurement back-action on the register sufficient to
implement any quantum channel. Our scheme offers experimental advantages for computation, state preparation,
and generalized measurements, since no tunable control of the register is required.
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The two best-known strategies for quantum computation
are the gate-based and measurement-based (MBQC) models.
In the former, a computation is performed by actively ma-
nipulating individual register qubits by a network of logical
gates. The required control of the register is very challenging
to realize experimentally. MBQC is an alternative strategy that
relies on the effect of measurements on entangled quantum
systems [1,2]. A computation is implemented passively, as a
sequence of adaptive single-qubit measurements on an entan-
gled multipartite resource state and realized in experiments [3]
were single qubit measurements are “cheap.”

In this Rapid Communication we introduce a hybrid model
that fits many experimental settings. The scheme uses a single
fully controlled ancilla qubit, which is coupled sequentially to
one or at most two qubits of a register via a fixed entangling
operation, E. After each coupling the ancilla is measured in
a suitable basis, providing a back-action onto the register.
This implements both single- and two-qubit operations on
the register qubits. No other operations on the register qubits
are necessary, in particular, arbitrary single-qubit operations
directly on the register qubits are not required. Moreover, using
a single additional qubit appended to a state in the register, any
positive operator valued measurement (POVM), and thus any
quantum channel, can be realized. The computation requires
no direct control of the register nor the preparation of a large
entangled state. The processing of information is driven by
active manipulation of the ancilla alone and we shall call the
model ancilla-driven quantum computation (ADQC).

Implementing operations on a static register is similar
to gate-based quantum computing. The fixed ancilla-register
interaction and measurement driven computation resembles
MBQC. For MBCQ, no characterization currently exists of
exactly what classes of entangled states lead to universal
computation. For ADQC, we are able to characterize the
necessary and sufficient entangling interactions.

Previous attempts to construct programmable, determinis-
tic and universal quantum operations have concluded this to
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be impossible [4,5]. These schemes also use “program qubits,”
i.e., ancillas, that are coupled to a register with a fixed inter-
action. The difficulty lies not in the entangling operation but
in implementing an arbitrary (single-qubit) operation using a
fixed interaction. Our results bypass existing no-go theorems
as we allow feedback within the programmable part and a final
local redefinition of the computational basis of the register.

Many existing schemes use “flying” qubits for mediating
interactions between register qubits, e.g., Refs. [6,7]. The key
difference of ADQC is that register qubits are addressed only
with a fixed coupling operation; no other register operation,
neither unitary nor measurements, is required. This is advan-
tageous in many experimental situations as the computational
register not only can be separated from state preparation
and measurement but also does not require bespoke control.
Long-lived but static qubits are addressed by mobile ancilla
qubits using a fixed entangling interaction. Realizations of
interest include neutral atoms in optical lattices [8], micro
ion trap arrays [9], nuclear-electron spin systems [10], and
cavity QED superconducting qubits [7]. In cavity QED, for
example, it is desirable to be able to fix the interaction time
as done in Ref. [11]. ADQC is also useful in systems where
measurements are destructive, i.e., experiments with photons,

FIG. 1. (Color online) Illustration of an ancilla-driven computa-
tion on a register consisting of several qubits. A single ancilla, A, is
sequentially coupled to one, or at most two, register qubits, R and
R′, etc., and measured. The coupling, EAR , is fixed throughout the
computation while the measurements on the ancilla, indicated by the
arrows, can differ.
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FIG. 2. Ancilla-driven implementation of a single qubit rotation,
JR(β), on a register qubit R. The initial state of the register can be
a pure state, |ψ〉, or a mixed state. The ancilla and register qubits
are first coupled with EAR = HA HR CZAR . The rotation J (β) is then
implemented on the ancilla and transferred to the register qubit by
measuring the ancilla in the z basis. The result of the measurement,
j = 0,1, determines if an X correction appears on the register qubit.

as the measurement never acts directly on the register but
leaves it intact for further manipulation.

The idea behind ADQC is simple yet surprisingly powerful;
see Fig. 1. The ancilla, A, is prepared, then entangled with
a register qubit R using a fixed interaction EAR and then
measured. The induced back-action onto the register is what
“steers” the register to the desired state [12]. An example
of a universal interaction between register and ancilla is the
controlled-Z (CZ) interaction followed by local Hadamards,
H = (X + Z)/

√
2 with X,Y,Z the Pauli matrices,

EAR = HA HR CZAR, (1)

where CZ = 1 − 2 |11〉〈11|. This is reminiscent of MBQC
where resource states are constructed using the CZ operation
[1,2]. For ADQC, however, local Hadamards are necessary,
since otherwise one cannot implement arbitrary single-qubit
operations on register qubits.

An arbitrary single qubit unitary can be decomposed,
using J (β) = H ei

β

2 Z , as U = eiα J (0) J (β) J (γ ) J (δ) with
parameters β, γ , δ (Euler angles), and α (global phase) in
R [13]. To implement JR(β) on the register in the ancilla-
driven model, the ancilla is first prepared in the state |+〉A =
(|0〉 + |1〉)/√2 and then coupled to the qubit R via EAR; see
Fig. 2. Instead of acting on the register qubit the rotation JA(β)
is applied to the ancilla and transferred to the register qubit by
measuring the ancilla in the computational z basis |j 〉 with
j = 0,1. Alternatively, the ancilla can be measured immedi-
ately in the rotated basis |β+〉A = cos β

2 |0〉A + i sin β

2 |1〉A and
|β−〉A = cos β

2 |1〉A + i sin β

2 |0〉A. The implemented operation
on the register qubit is

A〈j |JA(β) EAR |+〉A = UR(j ) JR(β), (2)

with (fixed) Pauli correction UR(j ) = (XR)j that depends on
the measurement outcome j of the ancilla. (We neglect global
phases.) The correction can be removed by changing the ancilla
measurement bases of future computational operations, cf.
Refs. [1,2,14].

Arbitrary single qubit unitaries together with an entangling
operation, such as the CZ gate, form a universal set of gates.
To entangle two register qubits R and R′, they each interact
with the ancilla via the same operation E; see Fig. 3. A
y measurement of the ancilla then mediates the entangling
operation between R and R′,

A〈yj |EAR EAR′ |+〉A = UR(j ) ⊗ UR′(j ) CZRR′ . (3)

|ψ〉

|+〉A
y measurement

UR(j) ⊗ UR′(j)CZRR′ |ψ〉

CZAR′
HA

HR′

CZAR
HA

HR

j = 0, 1

FIG. 3. Ancilla-driven implementation of a controlled-Z gate,
CZRR′ , on two register qubits R and R′. Both register qubits are
coupled with EAR(AR′) = HA HR(R′) CZAR(AR′) to the ancilla which is
then measured in the y basis. The corrections UR(j ) and UR′ (j ) are
local and can be applied through ancilla-driven single-qubit rotations.

This is a CZ operation up to local corrections UR(j ) =
HR[(1R + iZR)/

√
2] (ZR)j , and similarly for R′, that again

depend on the outcome j of the ancilla measurement. UR(j )
and UR′ (j ) can be applied as single-qubit operations as
described above. Thus ADQC with a fixed interaction EAR =
HA HR CZAR allows implementation of any computation or
universal state preparation [15].

A fundamental question in the context of new models
for quantum computation is to specify all entangling oper-
ations, E, that lead to universality [16,17]. To add structure
to this question one can restrict to computations with a
number of desirable properties. An important requirement
for ADQC is that no operation, including any corrections,
ever needs direct implementation on the register. We therefore
consider unitary, stepwise deterministic, “tensor-commuting”
(as defined below) computations; i.e., by adapting ancilla
measurement bases alone, corrections on the register can be
absorbed and the computation remains deterministic at every
step [18,19].

While in cluster state MBQC only standard X, Y , and Z

corrections occur, here we allow a broader class which we
entitle generalized Pauli corrections (other generalizations of
the Pauli group have been studied in Ref. [20]). We consider
all single-qubit Hermitian unitaries P which satisfy tr(P ) = 0,
parametrized as P (a,b,c) = aX + bY + cZ with a,b,c ∈ R
and a2 + b2 + c2 = 1. The canonical decomposition [21,22]
for two-qubit unitaries, EAR = (W ′

A ⊗ WR) DAR (V ′
A ⊗ VR),

separates the nonlocal part

DAR(αx,αy,αz) = e−i(αxXA⊗XR+αyYA⊗YR+αzZA⊗ZR) (4)

with 0 � αx,y,z � π/4 from local single-qubit unitaries on the
register, VR,WR , and the ancilla, V ′

A,W ′
A. To allow composition

of operations to arbitrarily large computations, all corrections
on register qubits need to interchange with future entangling
operations, DAR , in such a way that they remain localized,
i.e., the resulting correction is a tensor product between
the register and ancilla. This allows the corrections on each
register qubit to shift through the computational pattern and
accumulate at the final step where they can be removed
by a local redefinition of the computational basis [23]. If
there exist such corrections, we say that the entangling
operation, DAR , tensor-commutes with the corrections [24],
i.e., DAR PR(a,b,c) D

†
AR = PA(ã,b̃,c̃) ⊗ PR(a′,b′,c′), where

P̃A and P ′
R are also generalized Pauli transformations (or the

identity, see Ref. [25]). A key result of this article is that only
two classes of couplings are universal.
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Theorem. The interactions EAR between any register qubit
R and the ancilla A that result in a (i) unitary, stepwise
deterministic evolution of the register, that (ii) tensor-commute
with corrections, and that (iii) admit universal state preparation
of the register using ADQC, are locally equivalent to (i.e.,
DAR is of the form of) the Ising model or the Heisenberg
XX model with maximal coupling strength α = π/4 or
αx = αy = π/4.

The theorem states not only what interactions are sufficient
but also which are necessary. Interactions must be locally
equivalent either to the CZ gate, as shown constructively in the
example above, or the CZ + SWAP gate, where CZ + SWAP =
|00〉〈00| + |01〉〈10| + |10〉〈01| − |11〉〈11|. Both of these are
maximally entangling [22,26] and Clifford operations [27].
It is, however, important to note that the local operations
play a crucial role. The CZ gate on its own is not enough
but needs to be accompanied by Hadamard operations as in
Eq. (1).

Moreover, any generalized measurement, or POVM, on
the register can be performed with the (repeated) help of
an additional register qubit which introduces extra degrees
of freedom to form a Neumark extension of the system’s
state [28,29]. This is of interest especially when measurements
on the system would remove the physical qubit, such as photon
measurements. In ADQC, any destructive measurement is
instead made on the ancilla and the register qubits remain
for future operations.

The proof of the theorem is involved and technical details
can be found in Ref. [25]. An outline is given here. When
the ancilla with initial state |+〉A and a single register qubit
are coupled, and the ancilla is subsequently measured in |±〉A
then the state |ψ〉 of the register (and similarly for mixed states)
becomes

|ψ〉 �→ K±
R /

√
p± |ψ〉, (5)

where the Kraus operators K±
R are given by

K±
R = A〈±| EAR |+〉A =A 〈±θ,φ | WR DAR VR |+γ,δ〉A, (6)

and p± = tr(K± †
R K±

R ) are the probabilities of measurement
outcome + or −. Also, |+γ,δ〉A = cos γ

2 |0〉A + eiδ sin γ

2 |1〉A =
V ′

A|+〉A and |±θ,φ〉A = W
′†
A |±〉A, where γ , δ, θ , and φ denote

ancilla parameters in V ′
A and W ′

A.
In a stepwise deterministic computation the Kraus operators

must be proportional to unitaries. This implies that one of
the α’s, say αz, must vanish. Additionally, the two Kraus
operations shall relate to another via a generalized Pauli
operation, K−

R /
√

p− = ei	 PR K+
R /

√
p+, where 	 is a global

phase. Moreover, the nonlocal part of the interaction, DAR ,
must tensor-commute with this correction PR . These require-
ments restrict the interaction to four classes, DAR(π/4,π/4,0),
DAR(0 < αx < π/4,π/4,0), DAR(π/4,0,0), and DAR(0 <

α < π/4,0,0), each with their individual sets of acceptable
ancilla parameters γ , θ , δ, φ, and sets P (a,b,c) with a,b,c of
tensor-commuting corrections.

Two of these classes, however, are not sufficient for uni-
versal state preparation. Ising interactions with nonmaximal
interaction strength, DAR(0 < α < π/4,0,0), can be used to
steer unitary, stepwise deterministic evolutions of a register
qubit. Yet all the implementable single qubit unitaries lie in a

plane of the Bloch sphere; DAR(0 < α < π/4,0,0) (plus fixed
local unitaries) is not universal. For Heisenberg models with
nonmaximal coupling strength, DAR(0 < αx < π/4,π/4,0), it
is impossible to compose several single-qubit operations while
preserving stepwise determinism, see Ref. [25] for details.
This leaves only two universal classes, DAR(π/4,0,0) and
DAR(π/4,π/4,0). These are locally equivalent to CZAR and
CZAR + SWAPAR , leading to the theorem.

We note that the choice of local unitaries in EAR is not
trivial—CZ alone cannot steer all register evolution as no
basis change can be achieved at the register qubit. However,
the example above shows that together with local Hadamards
enabling basis changes, the CZ interaction is universal. For
the CZ + SWAP interaction it is easy to verify that ADQC is
identical to the one-way model [1] and hence allows universal
state preparation, as the role of ancilla and register qubits are
simply swapped.

ADQC is suited to many physical realizations, e.g., a
register of atoms trapped in an optical lattice addressed by
ancilla marker atoms [6], which interact via cold collisions
to generate CZ gates [8], or an array of ions in microtraps
and an ancilla read-write ion that interacts by laser-induced
state-dependent pushing forces [9]. Using optimized control
pulses [30] it may be possible to generate the EAR operation
efficiently and robustly in a single step. We can also consider
different systems for register and ancilla, e.g., a cavity QED
[11] register, and Rydberg atoms traversing them as ancillas
[31]. While “static” qubit field states are hard to manipulate
directly, “flying” Rydberg atoms are easily controlled by lasers
and measured by field ionization. We note that Ref. [31]
suggests entangling two cavity qubits by sequential interaction
with an ancilla Rydberg atom which is then measured [cf.
Eq. (3)]. Different cavity qubit rotations are achieved by
varying the register-ancilla control pulse. In contrast, ADQC
requires only a single fixed register-ancilla operation.

Another hetero qubit scheme uses nuclear and electron
spins, e.g., an array of long-lived phosphorus donor nuclear
spins in silicon as the register [10], and electron ancillas
move around the array by charge transport by adiabatic
passage (CTAP) [32]. Control and characterization of the
nuclear-electron interaction is reduced to optimization of a
single two-qubit unitary, simplifying the task considerably,
especially for qubits subject to manufacturing variation and
tolerances [33]. We can exploit spin-orbit effects to introduce
anisotropies into the Heisenberg interaction [34,35] which
allow Ising-type entangling unitaries to be generated [36].
Finally, superconducting qubits coupled with an effective
Hamiltonian of the XX + YY type via a superconduct-
ing microwave stripline [7] are also good candidates for
ADQC.

Imperfections could arise in a number of ways, for example,
in decoherence or in the timing and finite duration of the
measurements. Future work will investigate how quantum
error correction techniques can be employed to deliver fault
tolerance in the ADQC model and allow implementation in a
yet broader class of physical systems.

In summary, ADQC is a method of implementing any
quantum channel on a quantum register driven by operations
on an ancilla using only a fixed entangling operation EAR .
ADQC is a valuable model that shifts the question of
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universal resources away from MBQC resource states and their
structure and focuses instead on basic building blocks of such
states. These can be characterized systematically by requiring
properties necessary and sufficient for universal computation.
This approach can be adapted to investigate computations with
relaxed properties, e.g., we might not require the computation
to be stepwise deterministic, similar to computation using
computational tensor network states [17]. We expect that these
correspond to unitary Kraus operators, i.e., one of the α’s must
vanish; however, the branching relation could be non-Pauli but

instead any finite root of 1. This would lead to schemes based
on Ising or Heisenberg interactions with smaller coupling
strength, α < π/4.
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