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Paul McKeigue

Abstract
Although the C-statistic is widely used for evaluating the performance of diagnostic
tests, its limitations for evaluating the predictive performance of biomarker panels have
been widely discussed. The increment in C obtained by adding a new biomarker to a
predictive model has no direct interpretation, and the relevance of the C-statistic to risk
stratification is not obvious. This paper proposes that the C-statistic should be replaced
by the expected information for discriminating between cases and noncases (expected
weight of evidence, denoted as Λ), and that the strength of evidence favouring one
model over another should be evaluated by cross-validation as the difference in test
log-likelihoods. Contributions of independent variables to predictive performance are
additive on the scale of Λ. Where the effective number of independent predictors is
large, the value of Λ is sufficient to characterize fully how the predictor will stratify
risk in a population with given prior probability of disease, and the C-statistic can
be interpreted as a mapping of Λ to the interval from 0.5 to 1. Even where this
asymptotic relationship does not hold, there is a one-to-one mapping between the
distributions in cases and noncases of the weight of evidence favouring case over
noncase status, and the quantiles of these distributions can be used to calculate how the
predictor will stratify risk. This proposed approach to reporting predictive performance
is demonstrated by analysis of a dataset on the contribution of microbiome profile to
diagnosis of colorectal cancer.

Keywords
diagnostic test, biomarkers, risk stratification, precision medicine, weight of evidence,
cross-validation, C-statistic, Kullback-Leibler divergence, relative entropy, Bayesian
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Introduction 1

The advent of platforms that can measure panels of hundreds or thousands of 2

biomarkers presents new opportunities for developing diagnostic tests not only to 3

detect disease, but to stratify people by risk and to predict response to therapy. It 4

is widely expected that this will lead to a new era of “precision medicine” (1). 5

The growth of research in this field has highlighted the limitations of current 6

methods for evaluating the predictive performance of biomarker panels. There is 7

no consensus on how to evaluate the incremental contribution of a biomarker 8

panel to predictions based on clinical variables, and it is not clear how to use 9

summary measures of predictive performance to evaluate the usefulness of a 10

biomarker panel as a risk stratifier. 11

This paper is organized as follows. First, the limitations of current methods for 12

quantifying performance of a diagnostic test are briefly reviewed. Next, the 13

rationale for an alternative approach based on information theory and Bayesian 14

inference is presented, and methods for calculating it are described. The proposed 15

approach is demonstrated by applying it to a study that used a high-dimensional 16

biomarker panel to distinguish cases and controls. The discussion section 17

examines the relevance of other approaches to quantifying the information 18

conveyed by an experiment or test, and recent guidelines for reporting predictive 19

performance of diagnostic tests. 20

Limitations of current methods for quantifying performance of a 21

classifier 22

The area under the receiver operating characteristic (ROC) curve or C-statistic is 23

the most widely-used measure for evaluating the performance of a score in 24

predicting a binary outcome. For simplicity, I denote the outcome as “disease”, 25

and the outcome categories as “case” and “control” though the argument applies 26

more generally. Among the advantages of the C-statistic are that it does not 27

require calibration and that it does not depend on the prevalence of disease, so 28

that in principle an estimate obtained in a case-control study can be generalized 29

to a clinical setting. With some additional assumptions, use of the C-statistic to 30
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McKeigue 3

evaluate the ranking of cases and controls is a proper scoring rule (2). This means 31

that the assessed predictive performance is maximized by reporting the 32

probabilities (or ranks) assigned by the forecaster. However the C-statistic also 33

has serious limitations that have been widely discussed. 34

• It is not obvious what the C-statistic, defined as the probability of correctly 35

classifying a case-control pair, tells us about the usefulness of a score for 36

risk stratification in the population. 37

• The increment in the C-statistic obtained by adding new variables has no 38

obvious interpretation. When a new predictor such as a biomarker is added 39

to a baseline predictive model, the increment in C-statistic will depend 40

upon what covariates have been included in the baseline model and on the 41

extent to which these covariates have been matched between cases and 42

controls (3; 4), even if the new predictor is uncorrelated with these 43

covariates (5). The most efficient design in which to discover new 44

biomarkers is a nested case-control study in which stored samples from 45

cases are compared with controls matched for clinical covariates. When the 46

predictive performance of a biomarker discovered in such a study is 47

evaluated in a cohort study without matching for covariates, the increment 48

in C-statistic obtained by adding the biomarker to this baseline model will 49

be lower for reasons explained below. It is possible to work around this by 50

standardizing the calculation of the ROC curve for covariates (6; 7), but 51

this further complicates analysis and interpretation. 52

• The small increments in C-statistic that can be achieved by adding new 53

variables to an baseline model that has a C-statistic of 0.9 or above have led 54

to a mistaken belief that no useful increment in predictive performance can 55

be obtained. “Researchers have observed that ∆AUC depends on the 56

performance of the underlying clinical model. For example, good clinical 57

models are harder to improve on, even with markers that have shown strong 58

association” (8). Others have suggested that the problem lies in the 59

interpretability of the C-statistic: “for models containing standard risk 60

factors and possessing reasonably good discrimination, very large 61

‘independent’ associations of the new marker with the outcome are required 62

to result in a meaningfully larger AUC” (9) 63

To supplement reporting of the C-statistic and the ROC curve, additional 64

descriptors have been suggested. The cumulative distribution function F of the 65

score values in controls can be estimated, and the distribution of the values 66

returned by applying F to the score values in cases can be plotted as density of 67

“percentile values” (10). The average of these values is equivalent to the 68

C-statistic. To assess how the score will perform in a target population, the 69

quantiles of predictive probability in that population can be plotted as a 70

“predictiveness curve” (11); this however does not quantify predictive performance 71

independently of the population in which the classifier is used. 72
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To evaluate the incremental contribution of a new biomarker to prediction, 73

alternative indices have been proposed, based on the proportion of individuals 74

who are reclassified when the biomarker is added to the model: these include 75

“integrated discrimination improvement” and “net reclassification index” (9). 76

However these indices are not proper scoring rules (12); this means that adding a 77

biomarker to the predictive model can apparently “improve” such an index even 78

when that biomarker contains no predictive information (13; 14). The authors of 79

a widely-quoted set of guidelines on reporting of multivariate models for diagnosis 80

noted that “Identifying suitable measures for quantifying the incremental value of 81

adding a predictor to an existing prediction model remains an active research 82

area” (15). 83

Relation of C-statistic to expected information for 84

discrimination 85

In a Bayesian framework, the weight of evidence favouring one hypothesis over 86

another is the logarithm of the ratio of the likelihoods of the hypotheses given the 87

data (16). This ratio of likelihoods of hypotheses is sometimes called the Bayes 88

factor to distinguish it from the likelihood ratio tests used in classical statistics, 89

which compare likelihoods at different values of a model parameter. The weight of 90

evidence is not a scoring rule for comparison of classifiers: rather it is the 91

difference between the logarithmic scores for the two hypotheses being compared 92

(17). The C-statistic, defined as the probability of correctly classifying a 93

case-control pair, is the probability that the weight of evidence in favour of the 94

correct assignment of case-control status to this pair is greater than zero. We can 95

calculate C, and also characterize the usefulness of the predictor for risk 96

stratification, if we know the sampling distributions of the weight of evidence 97

favouring case over control status in cases and controls. 98

Good and Toulmin (1968) (18) showed that for two alternative hypotheses H1 99

and H0 the characteristic functions ϕ1 (t), ϕ0 (t) of the distributions of the weight 100

of evidence W1/0 favouring H1 over H0 when H1 is true and when H0 is true are 101

related by the identity ϕ1 (t+ i) = ϕ0 (t), where i is the imaginary unit. This 102

identity can be stated in an alternative form as 103

exp
(
−W1/0

)
p1
(
W1/0

)
= p0

(
W1/0

)
, where p1

(
W1/0

)
and p0

(
W1/0

)
are the 104

densities of W1/0 when H1 is true and when H0 is true respectively. This result 105

can be obtained simply by noting that at any value of W the ratio 106

p1
(
W1/0

)
/p0

(
W1/0

)
is the Bayes factor exp

(
W1/0

)
favouring H1 over H0. This 107

identity generalizes two results attributed to Turing (16):- 108

1. If the sampling distribution of the weight of evidence favouring a hypothesis 109

H1 over a hypothesis H0 is Gaussian with mean Λ when H1 is true, its 110

sampling distribution when H0 is true is Gaussian with mean −Λ, and both 111

distributions have variance 2Λ (when natural logarithms are used). 112

Prepared using sagej.cls



McKeigue 5

2. The expected Bayes factor in favour of a wrong hypothesis is 1 (because 113

exp
(
−W1/0

)
p1
(
W1/0

)
integrates to 1). The practical implications of this 114

result are examined in the Discussion section. 115

The sampling distribution of the weight of evidence is asymptotically Gaussian if 116

there are many explanatory variables and their independent contributions are 117

small (18). If this asymptotic distribution holds, the relation between the 118

C-statistic and the expected weight of evidence Λ favouring true over false status 119

is given by C = 1− Φ
(
−
√

Λ
)
or Λ =

[
Φ−1 (C)

]2 where Φ (·) is the standard 120

Gaussian cumulative distribution function (19). In this situation the C-statistic 121

can be interpreted as a mapping of Λ (which can take values from 0 to infinity), 122

to the interval from 0.5 to 1 as shown in Figure 1. A special case of this relation 123

has been noted previously (20): with a single explanatory variable for which the 124

class-conditional distributions in cases and controls are Gaussian with the same 125

variance, Λ = 1
2β

2 and C = 1− Φ
(
−|β|/

√
2
)
, where β is the standardized logistic 126

regression coefficient of the outcome on the explanatory variable. More generally 127

if the class-conditional distributions of the explanatory variables in cases and 128

controls are Gaussian with the same covariance matrix, the sampling distribution 129

of the weight of evidence favouring true over false status is Gaussian and the 130

relation between C and Λ holds exactly (19). 131

The asymptotic relation between C and the expected weight of evidence Λ 132

suggests that we might use Λ to report predictive performance. The statistic Λ 133

has various alternative names: the expected information for discriminating 134

between cases and controls; the Kullback-Leibler (KL) divergence from the 135

class-conditional distribution Q of the predictors under incorrect case-control 136

assignment to their distribution P under correct assignment; or the relative 137

entropy of P with respect to Q. As Λ is a KL divergence, it can take only 138

non-negative values. The expected information for discrimination has a more 139

intuitive interpretation than the C-statistic, because the mathematical definition 140

of information as reduction in entropy corresponds closely to intuitive ideas of 141

information (21). Improbable or surprising observations convey more information 142

than unexceptional observations. 143

To facilitate intuitive interpretation of Λ, we can use logarithms to base 2, so that 144

the expected information is expressed in bits. Figure 1 shows that a C-statistic of 145

0.7, sometimes cited as the threshold for “modest” predictive performance(22), is 146

asymptotically equivalent to only 0.4 bits on the scale of Λ. More appropriate 147

cutoffs for moderate and good prediction would be one bit and three bits, for 148

which the asymptotically equivalent C values are respectively 0.8 and 0.925. 149

Using Figure 1 we can explain how increments in the C-statistic may be 150

misleading when used to evaluate the incremental contribution of a biomarker 151

panel to predictive performance. For instance, in a case-control study where cases 152

and controls have been matched for covariates so that the baseline model has a 153
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C-statistic of 0.5, adding a biomarker that contributes one bit of information for 154

discrimination would increase the asymptotically equivalent C-statistic from 0.5 155

to 0.8. When the same biomarker is evaluated in an unmatched cohort study in 156

which the covariates contribute two bits of information, the baseline model will 157

have a C-statistic of 0.88 and adding the biomarker will increase this only to 158

0.925. Whether or not the asymptotic relation between C and the expected 159

weight of evidence Λ holds, contributions of independent predictors are additive 160

on the scale of Λ; this supports using Λ instead of C to quantify predictive 161

performance and the incremental contribution of additional biomarkers. In human 162

genetics, the strength of the genetic effect on a disease is often quantified as the 163

sibling recurrence risk ratio λS , defined as the ratio of disease risk in a sibling of 164

an affected individual to average risk in the population. Under a polygenic model 165

in which effects are additive on a logistic scale, Λ = log λS (23). 166

Evaluating the distributions of weight of evidence 167

To evaluate the performance of a predictive model, and the strength of evidence 168

favouring one model over another over another, we require a test dataset with the 169

observed case-control status yi (coded as control = 0, case = 1) of the ith 170

individual, the predicted probability pi of disease in this individual generated by 171

the model, and the prior probability of disease P given by the observed frequency 172

of disease in the training dataset. This test dataset can be formed either by a 173

single test/training split or by concatenating the N disjoint test folds used for 174

N -fold cross-validation. Although the asymptotic properties discussed below are 175

for leave-one-out cross-validation, it is not usually necessary in large datasets to 176

proceed to the limit of leave-one-out; it is sufficient to start with N = 10 for 177

N -fold cross-validation and to double N until the results do not change 178

appreciably. For survival modelling where failure times are directly observed, the 179

dataset can be rearranged with one observation per person-time interval, and the 180

average taken over person-time intervals. 181

The weight of evidence wi favouring correct over incorrect case-control assignment 182

in the ith individual is calculated using Bayes theorem, by subtracting the log 183

prior odds from the log posterior odds 184

wi = (2yi − 1)
(

log pi

1−pi
− log P

1−P

)
185

Λ is estimated as the average of wi over all cases and controls in the test dataset. 186

The distributions of weight of evidence in cases and controls can then be 187

examined. If these distributions have the asymptotic form derived by Turing, the 188

expectation Λ contains all the information we need to compute quantiles of weight 189

of evidence favouring case over control status in cases and controls. Otherwise to 190

compute these quantiles we have to estimate these distributions from the data. 191

For these estimated distributions to be consistent, they should be constrained so 192
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that at each value of W the ratio of density in cases to density in controls is 193

exp (W ). The densities in cases and controls can be obtained by multiplying the 194

geometric mean of these densities (as a function of W ) by exp
( 1

2W
)
and 195

exp
(
− 1

2W
)
respectively. The problem of estimating a consistent pair of densities 196

can thus be reduced to the problem of estimating this geometric mean function. A 197

workable procedure for this is described below, where f0 (W ) and f1 (W ) denote 198

estimated densities of the weight of evidence W favouring case over control status 199

in cases and controls respectively. 200

1. Fit smoothed kernel densities f1 (W ), f0 (W ) to the values of W in the case 201

and control samples respectively over a grid of values of W . 202

2. Estimate the geometric mean of the densities in cases and controls as a 203

function of W as a weighted average of f1 (W ) exp
(
− 1

2W
)
and 204

f0 (W ) exp
( 1

2W
)
. Weights for cases and controls are proportional to the 205

expected numbers of cases and controls at each value of W : number of cases 206

× exp
( 1

2W
)
, number of controls × exp

(
− 1

2W
)
respectively. This reduces to 207

evaluating the arithmetic mean of the case and control densities as a 208

function of W . 209

3. Calculate the adjusted densities g1 (W ), g0 (W ) in cases and controls by 210

multiplying this estimated geometric mean function by exp
( 1

2W
)
and 211

exp
( 1

2W
)
respectively. 212

For the ratio g1 (W ) /g0 (W ) to be exactly exp (W ), these adjusted densities 213

must have the same normalizing constant. This requires a slight reweighting 214

of the unadjusted densities f1 (W ) and f0 (W ). The weighting function is 215

exp
(
±θ (wi − w̄)2

)
where w̄ is the sample mean of the weight of evidence 216

and the sign before θ is positive in cases and negative in controls. The 217

optimal value of θ is determined by using an optimization algorithm such as 218

the optim function in the R package to minimize an objective function 219

defined as the absolute value of the logarithm of the ratio of the two 220

normalizing constants. The optimal value of θ is usually very close to zero - 221

in other words, only very slight reweighting is required to ensure that the 222

adjusted densities have the same normalizing constant. 223

Relation of the distributions of weight of evidence to the 224

receiver operating characteristic curve 225

Johnson (24) noted a simple relationship between the distributions of weight of 226

evidence W favouring case over control status in cases and controls and the ROC 227

curve generated from these distributions. If the quantiles of W in controls and 228

cases are q0 and q1 respectively, the sensitivity is (1− q1) and the specificity is q0 229

and the ROC is the curve obtained by plotting (1− q1) as a function of (1− q0). 230

The gradient of this function is 231
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dq1

dq0
= dq1/dW

dq0/dW
= g1 (W )
g0 (W ) = exp (W )

As q0 (W ) increases with W , it follows that the gradient of this model-based ROC 232

curve is a monotonic decreasing function of (1− q0), unlike the crude ROC curve 233

calculated from ranking the scores of cases and controls. This model-based ROC 234

curve generated from the adjusted distributions of W in cases and controls 235

contains the same information as a plot of the distributions, but is more difficult 236

to use to quantify how the score will behave as a risk stratifier because the 237

likelihood ratio cannot be read off a logarithmic scale on the axis but instead is 238

represented as the gradient of the curve. A plot of the adjusted cumulative 239

distributions of W in cases and controls is the most useful graphical 240

representation of how the classifier can be used as a risk stratifier. 241

Evaluating the strength of evidence that adding one or more 242

biomarkers improves prediction 243

To evaluate the strength of evidence that adding a biomarker or a panel of 244

biomarkers improves prediction, we can evaluate the difference in log-likelihoods 245

of the corresponding models given the test data. The log-likelihood of the model 246

given test data on the ith individual is 247

logL =
∑

i [yi log pi + (1− yi) log (1− pi)] 248

Model comparison based on the test log-likelihood is equivalent to using the 249

logarithmic scoring rule, which is strictly proper. In a Bayesian framework, the 250

difference in log-likelihoods of models can be interpreted directly as the weight of 251

evidence favouring one model over another, without having to evaluate its 252

sampling distribution. It is possible to construct a test based on the distribution 253

of the C-statistic over hypothetical repeated sampling of test datasets (25), but 254

this is not the same as a classical p-value based on the distribution of the test 255

statistic over hypothetical repeated sampling of training datasets (26). It is of 256

interest to compare the relationship of these classical tests to inference based on 257

test log-likelihoods. For leave-one-out cross-validation, the difference in test 258

log-likelihoods of models is asymptotically equivalent to the difference in the 259

values of the Akaike Information Criterion (27) (evaluated in natural log units 260

rather than deviance units) on the training data, and 2 (∆ logL+ k) has 261

asymptotically a chi-square distribution with k degrees of freedom. where ∆ logL 262

is the difference in test log-likelihoods (in natural log units) of models with and 263

without the extra biomarkers, and k is the effective number of extra parameters. 264

Thus for a single extra variable, a test log-likelihood ratio of 20, which might be 265

considered moderately strong evidence that a biomarker improves prediction, is 266

asymptotically equivalent to a p-value of 0.0047 on the training dataset. 267
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Example: incremental contribution of microbiome profile to 268

detection of colorectal cancer 269

To demonstrate this approach to reporting the incremental contribution of a 270

biomarker panel to prediction, these methods were applied to analysis of a 271

publicly available dataset from a study of detection of colorectal cancer in 272

symptomatic individuals, using fecal microbiome profile in addition to the 273

standard fecal immunochemical test (FIT) for blood (28). The dataset consisted 274

of quantitative FIT results and microbiome profiles on 101 cases of cancer and 141 275

controls (after excluding those with adenoma). For the predictive modelling, the 276

number of variables in the microbiome profiles was restricted to 201 operational 277

taxonomic units (OTUs) that had nonzero values in at least 20% of individuals. 278

The Bayesian program Stan (29) was used to generate the posterior distribution 279

of predictive probabilities from two alternative logistic regression models: a 280

baseline model with FIT only and an uninformative prior on the effect parameter, 281

and a model with FIT plus the microbiome markers, with a hierarchical shrinkage 282

prior on the microbiome variables that allows the algorithm to learn that most 283

effect sizes are near zero (30). The prediction of colorectal cancer in test data was 284

evaluated by 40-fold cross-validation, with predictive probabilities evaluated as 285

the average of 2000 posterior samples on each test fold. The densities were 286

adjusted as described above to make them consistent, with reweighting parameter 287

θ = 0.00018. 288

Table 1 compares the model with FIT + microbiome profile to the model with 289

FIT only. Including the microbiome profile increases the C-statistic from 0.892 to 290

0.932. This result might be misinterpreted as showing that the microbiome profile 291

makes only a small incremental contribution to prediction when compared with a 292

baseline model using FIT only. However the expected information for 293

discrimination is approximately doubled from 3 to 6.5 bits when the microbiome 294

profile is added to the model. The strength of evidence that this improves 295

prediction can be evaluated as the difference in test log-likelihood, which is 60.2 296

bits. 297

In this example where one variable(FIT) accounts for half the expected 298

information and the class-conditional distributions of this variable are far from 299

Gaussian (most FIT values in controls are zero), we would not necessarily expect 300

the weight of evidence to follow its asymptotic Gaussian distribution. Figure 2 301

shows the unadjusted estimates of the densities in cases and controls of the weight 302

of evidence favouring case over control status are skewed, together with the 303

densities adjusted as described above to make them consistent. The main effect of 304

this adjustment is to shrink the left tail of the density in cases and the right tail 305

of the density in cases. Thus, for instance at W = −6 bits where the true 306

case/control density ratio is 1:64 and the unadjusted ratio is about 1:7, 307

adjustment shrinks the density in cases and increases the density in controls 308
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slightly. The model-based estimates of Λ and C, based on the adjusted densities, 309

are higher than the crude estimates. 310

Figure 3 shows the adjusted cumulative frequency distributions. These can be 311

used to evaluate how a combined test based on FIT and microbiome profile could 312

be used for risk stratification in a clinical setting (for illustrative purposes only, 313

not as a policy recommendation). For instance suppose that in a setting in which 314

the prior probability of colorectal cancer in symptomatic individuals referred from 315

primary care is 5% (prior odds 1:19), a threshold of at least 1% risk of cancer 316

(posterior odds 1:99) has been set as the criterion for further investigation by 317

colonoscopy. From the adjusted cumulative frequency distributions we can 318

estimate that using this risk threshold (weight of evidence favouring case over 319

noncase status log2 19/99 = -2.38 bits) with a combined test based on FIT and 320

microbiome profile would exclude 2% of cancer cases and 88% of noncases as 321

having posterior probability of cancer less than 1%. 322

This study illustrates also how the the projection predictive method (31; 32) can 323

be used to select the most predictive variables. After evaluating predictive 324

performance by cross-validation, 2000 posterior samples of the fitted values of the 325

linear predictor were generated from a model with FIT + microbiome profile 326

fitted to the full data and forward selection was performed using the projection 327

predictive method. The increment in predictive information contributed by each 328

additional biomarker was evaluated as the reduction in KL divergence of 329

full-model fitted values from their projection on to the subspace of microbiome 330

variables selected. Figure 4 shows that the predictive information in the 331

microbiome profile is contributed by many variables of small effect. 332

Discussion 333

Although the expected information for discrimination (expected weight of 334

evidence) is a natural measure of the information content of a test or 335

experimental design that contrasts two alternative hypotheses, it has not been 336

widely used for this purpose in biostatistics, except in genetic linkage analysis 337

during the pre-genome era where the weight of evidence (lod score) was used to 338

quantify support for linkage, and the expectation of the lod score (ELOD) was the 339

accepted measure of the information content of a study design (33). Lee (1999) 340

(34) suggested reporting the expected information for discrimination in cases and 341

controls separately to quantify the performance of a test score, but assumed that 342

likelihood ratios would be evaluated by tabulating frequencies of scores grouped 343

into ordinal categories, rather than by using the predictive probabilities output by 344

the classifier to evaluate the likelihood ratio as the ratio of posterior odds to prior 345

odds. In practice, estimates of probability ratios based on grouping scores into 346

bins would be unstable: if only an uncalibrated test score were available, it would 347
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be better to fit a model (such as a logistic regression) that outputs predictive 348

probabilities before computing the expected weight of evidence. 349

An alternative approach to quantifying the information content of an experiment 350

or test is to calculate the expected gain of information on the outcome (35). In 351

the context of a diagnostic test, this would be the KL divergence from the prior 352

to the posterior distribution of case-control status, rather than the expected 353

information for discrimination which is the KL divergence from the distribution of 354

the predictors given incorrect assignment to their distribution given correct 355

assignment of case-control status(36). Unlike the expected information for 356

discrimination, the expected gain of information about the outcome is not 357

additive for independent biomarkers, and depends on the prevalence of disease so 358

cannot be generalized from one setting to another. 359

A key requirement for quantifying predictive performance is that it should be 360

evaluated not on the training data used to learn the model but on test data not 361

seen before. Unless a very large dataset is available in which a single test / 362

training split provides both a training dataset adequate to learn an optimal 363

predictive model and a test dataset large enough to estimate predictive 364

performance accurately, the most efficient way to evaluate performance will be 365

through cross-validation. Without internal validation (through cross-validation or 366

a single test/train split), it is not possible to evaluate whether poor performance 367

on a test dataset is attributable to lack of generalizability or to lack of predictive 368

information in the original dataset. Several groups have recently produced 369

guidelines for reporting the evaluation of risk predictors or diagnostics using 370

biomarkers: REMARK (37), GRIPS (38), STARD (39), and TRIPOD (15), 371

Although evaluation of predictive performance by cross-validation is mentioned in 372

supplementary materials, the summary recommendations and checklists do not 373

emphasize this critical point. Even where studies report using cross-validation to 374

evaluate predictive performance, it is not always clear that the test data have not 375

been used at some earlier stage to learn the model. A common malpractice is to 376

use the full dataset for variable selection, before the split into test/training folds 377

(40). The wider adoption of reproducible research requirements (41), may make it 378

easier for readers to determine whether correct practice was followed. 379

As long as the learning algorithm generates predictive probabilities, the expected 380

information for discrimination can be evaluated just as easily on “black-box” 381

predictors such as kernel-based learning algorithms as on simple logistic regression 382

models. However unlike the C-statistic which depends only upon how the 383

predictor ranks cases and controls, the expected information for discrimination 384

depends on calibrating the predictor so that the predictive probabilities equate to 385

the observed frequencies of cases at each level of the predictors in the test dataset. 386

For a linear model with likelihood in the exponential family, maximizing the 387

likelihood guarantees that the model is correctly calibrated to the training data 388

(21). Thus where the test and test and training datasets are random subsamples 389
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of the original dataset, formed either by a single test/training split or by 390

cross-validation, calibration is unlikely to be a problem. If a predictor is to be 391

evaluated in a different setting to that in which it was developed, it will usually 392

be necessary to recalibrate it by adding an intercept term on the scale of log odds 393

so as to equate the observed and predicted number of cases. 394

The expected weight of evidence can be given an intuitive interpretation: for 395

instance an expected weight of evidence of 3 bits implies that a “typical” result 396

would be for the posterior odds in favour of the true case-control status to be 397

eight times the prior odds. For a predictor that is based on a large number of 398

independent biomarkers of small effect, the asymptotic distribution derived by 399

Turing will hold and the expected information for discrimination will be enough 400

to characterize fully the distributions of the weight of evidence in cases and 401

controls. Means and variances of the estimated distributions of the weight of 402

evidence in cases and controls, together with a plot of these distributions, should 403

be reported to allow the reader to determine whether this asymptotic distribution 404

holds. Even where it does not hold, the other advantages of using the expected 405

weight of evidence - additivity of effects of independent predictors, and its 406

intuitive interpretation - support its use as a summary measure of predictive 407

performance. However to evaluate how the predictor will perform as a risk 408

stratifier, the reader will need the distributions in cases and controls if these 409

distributions do not have their asymptotic form. A plot of these distributions is 410

thus more useful than a conventional plot of the ROC curve. 411

Visualizing these distributions shows something not widely appreciated: that 412

however good the classifier, the distribution of the weight of evidence in favour of 413

the wrong hypothesis has a tail that extends well to the right of zero. This is a 414

corollary of Turing’s result that the expectation of the Bayes factor in favour of 415

the wrong hypothesis is 1: the distribution of this Bayes factor becomes more 416

right-skewed as the expectation of the log Bayes factor (weight of evidence) 417

becomes more negative (16). A practical and disconcerting consequence is that if 418

a classifier has high performance, it will not often be wrong but when it is wrong 419

it may be wildly wrong, giving a high likelihood ratio in favour of the wrong 420

hypothesis. Thus if the weight of evidence has its asymptotic distribution, a 421

diagnostic test that has an expected weight of evidence of 4 bits (equivalent to 422

C-statistic of 0.95) will generate a likelihood ratio more than 8 to 1 in favour of 423

the wrong assignment of disease status in 2% of individuals tested. While this 424

may be acceptable for risk stratification, failure to appreciate the fallibility of the 425

multivariate in vitro diagnostic tests now coming into use could have serious 426

consequences in clinical practice. 427

Online resources 428

An R script to estimate the procedure described for estimating the distribution of 429

weights of evidence is available at http://www.homepages.ed.ac.uk/pmckeigu/ 430
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Figure 1. Asymptotic relationship of C-statistic to expected information for discrimination Λ
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Figure 2. Distributions in cases and controls of weights of evidence favouring case over
control status, from model combining FIT test with microbiome profile. Weights of evidence
were computed on test folds by 40-fold cross-validation. Unadjusted densities were smoothed
with a Gaussian kernel using bandwidth chosen by the Sheather-Jones algorithm. Adjusted
densities were calculated from the mean of the unadjusted case and control densities as
described in the text.
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Figure 3. Adjusted cumulative distributions in cases and controls of weight of evidence.
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Figure 4. Proportion of total predictive information in microbiome profile obtained by
forward selection of variables, using projective predictive method with posterior samples
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Model Crude C-
statistic

Crude Λ
(bits)

Adjusted
C-
statistic

Adjusted
Λ (bits)

∆ logL
(bits)

FIT only 0.892 3.0 0.930 3.0 0
FIT + micro-
biome

0.932 6.5 0.990 7.3 60.2

Table 1. Incremental contribution of microbiome profile to detection of colorectal cancer,
compared with baseline model using faecal immunochemical test (FIT) only
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