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Abstract 14 

Carbon (δ
13

C) and nitrogen (δ
15

N) stable isotope analysis of human bone collagen from 38 15 

individuals was undertaken to assess diet at the Late Roman-Early Byzantine (AD 300-700) 16 

cemetery site, Joan Planells, in Ibiza, Spain. The results (δ
13

C=-18.7±0.5‰ and 17 

δ
15

N=10.1±1.3‰) that the diet of this population was derived predominantly from C3 terrestrial 18 

resources; plant foods were likely dietary staples along with meat and/or dairy produce 19 

comprising an important component of diet. Variation in stable isotope ratio values suggest 20 

individual differences in diet. Two individuals, both males, are statistical outliers with distinctive 21 

δ
15

N values (14.4‰ and 14.8‰) that point to significant consumption of marine resources. 22 

Females, on average, have higher δ
13

C values than males. The parsimonious explanation for this 23 

observation is the greater inclusion of C4 resources such as millet in the diets of females. 24 

Comparison of the diet of the Joan Planells population with other Late Roman period sites on the 25 

Hispanic mainland and other parts of the Mediterranean region suggests that populations may 26 

have been responding to a combination of socio-political and environmental factors that could 27 

have included Roman influence of food consumptive practices in some of these distant locales. 28 

  29 

 30 

 31 
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1. Introduction 32 

Ibiza, one of the westernmost of the Balearic Islands, is located near the confluence of the 33 

Mediterranean and Atlantic Seas. Colonized by the 3
rd

 millennium BC, the occupation history of 34 

Ibiza has been marked by successive waves of invasion and migration (Pomeroy 1976; Curchin 35 

1991; Márquez-Grant 2005).  36 

From the late 1
st
 century BC until at least the late 3rd century AD, the social, economic and 37 

political structures throughout Europe, Asia and North Africa were influenced and altered, to a 38 

greater or lesser extent, by the expansion of the Roman Empire (Pericot Garcia 1972; Woolf and 39 

Gosden 1997). Ibiza came into the sphere of Roman influence in the mid-2
nd

 century BC 40 

following the collapse of Carthage in 146 BC. Remaining largely politically and economically 41 

autonomous for much of the following century it became a municipality of Rome in AD 70 42 

(Curchin 1991). While Ibiza became more strongly connected to Roman exchange networks, the 43 

evidence at Joan Planells dates to the 3
rd

 to 7
th

 centuries. These political and economic 44 

transformations were happened at a time called the Roman Warm Period, which saw the 45 

development of Roman civilization across the Western Mediterranean during a period of quiet 46 

storm activity. This period was succeeded by a period of the highest storm activity witnessed in 47 

this part of the Western Mediterranean in over 3 millennia (Degei et al. 2015). It is important to 48 

emphasize that climate and paleoecological studies have corroborated that the North Atlantic 49 

Oscillation (NAO) was a regional mechanism driving natural in the environmental fluctuation of 50 

the western Mediterranean during the Late Holocene (Lamb 1995; Nieto-Moreno et al. 2011, 51 

2013). With these dramatic shifts happening, this paper contextualizes how the Roman influence 52 

in the region during the 3
rd

 to 5
th

 centuries (and continuing into the 7
th

 century) was impacting 53 

the island of Ibiza, while other socio-political and environmental transformations were occurring. 54 

As diet and food consumption are important interlocutors for political, cultural and social 55 

exchange, this isotopic dataset provides ideal evidence to consider how the population in the 56 

Late Roman period were mitigating change.  57 

Carbon and nitrogen stable isotope analysis of human bone collagen, an established method of 58 

investigating diet in past populations, was used to determine food consumption patterns in a Late 59 

Roman-Early Byzantine cemetery population at Joan Planells, Ibiza. In Late Roman times, the 60 

Iberian Peninsula is considered an essential region in the Imperial economy, which makes this 61 
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study an essential contribution of data to the growing corpus of information on diet and dietary 62 

change in prehistoric and early historic Ibiza (Kulikowski 2004).  63 

 64 

2. Joan Planells – Historical, Environmental and Archaeological Background 65 

Joan Planells is a large cemetery site in Eivissa, Ibiza (Figure 1). As mentioned above, the island 66 

was first impacted by Roman expansion in the 2
nd

 and 3
rd

 centuries. During the time that this 67 

island was in the sphere of Roman influence, there was relative economic stability, but from the 68 

4
th

 century onward the Roman presence in the Iberian Peninsula experienced economic crisis and 69 

political break down ensued (Kulikowski 2004). With this economic crisis, the Atlantic 70 

commerce deteriorated rapidly. 71 

During the 3
rd

 to 5
th

 centuries and into the 7
th

 century, the Iberian Peninsula experienced 72 

important environmental changes. In Galicia, from the 2
nd

 to 4
th

 centuries, temperature and 73 

humidity conditions were optimal for agriculture, providing good growing seasons for most of 74 

the crops (Lopez Costas and Muldner 2016). When there were crop failures, millet and 75 

fish/shellfish were alternative foods sources. The marine resources exploited are an important 76 

contribution to Late Roman/post-Roman diet and may have been specific to the local perspective 77 

(Lopez Costas and Muldner 2016). 78 

Prior to its use as a cemetery the site was an urban area used for pottery production (Esquembre 79 

Bebia et al. 2005; Martinez 2011; Girdwood 2012). The site is 36 m by 14 m in size and only a 80 

portion was excavated. The remains of 74 individuals were recovered in both single cist and 81 

multiple burials, some with comingled remains, and from a small number of simple pit burials 82 

(Martinez 2011). Individuals were placed in supine position and accompanied by few graves 83 

goods (Martinez 2011; Graziani Echávarri 2013). The small number of artifacts that were found 84 

in association with the skeletal remains indicate that this necropolis was in use from the Late 85 

Roman period, c. 3
th

–5
th

 century AD, and continued to be used until the end of the Byzantine 86 

period, in the 7
th

 century AD.  87 

 88 

FIGURE 1 HERE 89 

 90 
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Sex and age were assessed and recorded under the supervision of one of the authors (EK). 91 

Standard methods for sex estimation utilizing the morphological features of the pelvis and 92 

cranium were employed wherever possible with the inclusion of metric techniques (Buikstra and 93 

Ubelaker 1994). Discriminant functions based on cranial and postcranial measurements were 94 

also employed to classify individuals when the pelvis was not available. The discriminant 95 

functions used for sex estimation was derived from a pooled sample from Ibiza of the same 96 

period and not from the American Standards. At first, sex was estimated using pelvic 97 

morphology and from these estimates discriminant functions were developed for long bones (e.g. 98 

femur) and teeth using bootstrapping to account for sample size bias. The individuals with over 99 

80% posterior probability of correct classification were considered reliable while anything under 100 

80% was considered unknown. This information provided the demographic information 101 

necessary to sample the 38 individuals that were analyzed for isotopes, in which males, females 102 

and children were considered for the study. Of the 74 individuals recovered from Joan Planells, 103 

43 were adults, 7 were juveniles and 24 were of unknown age at death (García-Donas et al. 104 

2014). Sex estimation was possible for 25 individuals with 11 males and 14 females (García-105 

Donas et al. 2014). Indicators of degenerative joint disease, including Schmorl’s nodes, were 106 

found to be more common in females than among the males, whereas trauma and metabolic 107 

ailments were more prevalent in males (see García-Donas et al. 2014 for more details). The 108 

preservation of the Joan Planells assemblage was poor, and the remains were highly fragmented. 109 

Many of the burials were weathered and the bone was cracked, which made the collection of 110 

samples for isotope analysis difficult. The population of Joan Planells appears to be from a local 111 

area, as the community buried in the cemetery includes men, women and children. Most 112 

evidence from ceramic remains and from textual records suggest that this site was urban, but this 113 

is not completely corroborated. The dietary evidence that is present below sheds some light on 114 

the kinds of patterns related to status and identity in relation to food consumption. 115 

 116 

3. Reconstructing Diet  117 

3.1 Historical Sources  118 

Documentary sources indicate that in the Mediterranean region in the 2
nd

 to 7
th

 centuries AD diet 119 

was based largely on cereals (principally wheat and barley as well as millet, rye and oats), olive 120 

oil and wine, as well as legumes, such as lentils and chickpeas (Garnsey 1999). As the principal 121 
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staple in the Mediterranean diet, wheat was often imported/exported throughout the Roman and 122 

Byzantine empires (e.g. Curchin 1991). Resources were not equally available to all. Meat did not 123 

figure prominently in the diets of many individuals, although it was an important component of 124 

the diets of the Roman upper classes (Garnsey 1999). Large herds of sheep and goat were 125 

reportedly kept predominantly for secondary products, such as wool and milk to produce cheese 126 

(Dalby and Grainger 2012; Garnsey 1999). Archaeologically, sheep, goat and pig appear to have 127 

been the primary sources of meat (Prowse et al. 2005). Cattle may have been reared primarily for 128 

use in traction (Garnsey 1999).  129 

Salt fish and fish sauces and pastes were produced in quantity in the Roman provinces of Spain 130 

and continued to be economically important into the Byzantine period (Ponsich and Tarradell 131 

1965; Garnsey 1999; Shepard 2004). In AD 301 the Edict of Diocletian V. 1-5 likely led to the 132 

reduced cost of freshwater fish across the Roman Empire (Rutgers et al. 2009) and this may in 133 

turn have resulted in social widening of access to fish and fish products. However, consumption 134 

of fish in Roman society was often related to status. Fish products, such as garum made from 135 

tuna fish, were luxury foods with many elites having access. For members of the lower echelons 136 

of Roman society, fish products were a difficult resource to obtain (Corcoran 1963; Garnsey 137 

1998). In northwestern Spain, evidence of salting facilities has been uncovered for processing 138 

and preserving seafood dating back to the Iron Age. Historical sources during the Late Roman 139 

and Medieval periods suggest that a local marshland was exploited heavily for salt production 140 

(Lopez Costas and Muldner 2016). Local salting facilities on the Balaeric islands have not been 141 

extensively studied. There may have been more localized fish consuming practices on the islands 142 

and therefore large-scale salting activities may not have been a priority during the Late Roman 143 

period. From the work conducted by Ramon Torres et al. (2012) it appears that at the site of Sa 144 

Caleta, Phoenicians were actively extracting salt, which turned into a prosperous industry by 145 

around 650BC. Therefore, Ibiza has strong ties to trade within the Mediterranean, carrying over 146 

to Roman and Early Byzantine exchange networks.  147 

 148 

3.2 Stable Isotope Analysis 149 

Carbon and nitrogen stable isotope ratios of bone collagen have been demonstrated to be reliable 150 

indicators of long-term dietary protein intake (Sealy 2001, Schoeninger 2010). δ
13

C and δ
15

N 151 

isotope values of different categories of foods (e.g. marine and freshwater foods, and terrestrial 152 
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resources from C3 and C4 plant foodwebs) are generally distinctive. Plants in different 153 

environments (terrestrial, marine and freshwater) fix/acquire carbon during photosynthesis in 154 

different ways. Plants utilized as dietary staples fix carbon by one of two pathways, either the C3 155 

or C4 pathway. C3 plants comprise most grasses and plants native to temperate regions, including 156 

oats, barley, wheat, and rice. C4 plants include important cereal staples such as maize and millet. 157 

C3 plants generally have lower δ
13

C values than C4 plants. For example, a typical consumer of 158 

foods drawn from the terrestrial C3 foodweb might have δ
13

C values between approximately -159 

20‰ and -18‰, while a consumer entirely dependent on resources from the C4 foodweb would 160 

be anticipated to have δ
13

C around -7.5‰ (cf. van der Merwe and Vogel 1978; Tykot 2004). 161 

Marine plants also fix carbon by the C3 pathway. However, the δ
13

C values of marine plants are 162 

distinctive from terrestrial C3 plants because marine carbon isotope ratios are enriched relative to 163 

atmospheric carbon isotope ratios (Tykot 2004). A typical consumer of predominantly marine 164 

resources might have isotope values of δ
13

C = -12‰. Although this overlaps with the carbon 165 

isotope values of C4 consumers, the two dietary components can often be distinguished by δ
15

N 166 

analysis. 167 

Nitrogen stable isotopes are enriched with each trophic level by at least c. 3-5‰ (Bocherens and 168 

Drucker 2003) and potentially up to 6‰ (O’Connell et al. 2012). Human consumers of terrestrial 169 

resources will typically have δ
15

N values c. 6-10‰ (Tykot 2004). Marine/freshwater food-chains 170 

are generally longer than terrestrial food-chains so consumers of aquatic resources tend to have 171 

higher δ
15

N values than consumers of terrestrial resources (although see Hedges and Reynard 172 

[2007] for discussion of uncertainties in δ
15

N trophic shift variation). This δ
15

N difference 173 

between terrestrial and aquatic food-chains generally allows diets based on marine resources to 174 

be distinguished from those derived from the C4 foodweb. 175 

Co-analysis of δ
13

C and δ
15

N signals of humans and fauna may distinguish between diets based 176 

on terrestrial C3 and C4 plant foodwebs, freshwater and marine resources, and identify the trophic 177 

level of the consumer (e.g. Chisholm et al. 1982; Schoeninger and DeNiro 1984; Tykot 2004). 178 

 179 

4. Materials and Method 180 

Bone samples for stable isotope analysis were obtained from the individuals that were relatively 181 

well preserved in comparison to most the human bone material recovered. In the case of co-182 
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mingled remains only one sample was taken to ensure that there was no duplication in sampling. 183 

A total of 38 individuals were sampled (see Table 1), comprising 12 males, 8 females and 18 184 

individuals of unknown sex. Twenty-two of these individuals are adults; one is a juvenile and 15 185 

are of unknown age.  186 

A sample of approximately 1 g of bone was taken from each specimen. Pre-treatment consisted 187 

of cleaning each sample with the removal of 1-2 mm of surface bone. This was done to eliminate 188 

remnant external contaminants accumulated while buried (van Klinken and Hedges 1995). 189 

Cancellous bone was removed from samples taken from the long bones. Collagen was extracted 190 

from all samples using a modified version of the Longin (1971) method (Brown et al. 1988).  191 

Each sample was demineralized in 1 N HCl at 20°C for a minimum of 24 hours, and gelatinized 192 

in 0.03 N HCl at 80°C for approximately 16 hours. The resulting solution was then lyophilized. 193 

Well-preserved collagen samples, i.e. those with %wt yield of >1.00% (van Klinken 1999), were 194 

measured for δ
13

C and δ
15

N by the SUERC Radiocarbon Laboratory in East Kilbride, UK, using 195 

a Costech ECS 4010 combustion elemental analyzer coupled to a Thermofisher Delta V 196 

Advantage gas source isotope ratio mass spectrometer. In-house gelatine standards, which are 197 

calibrated to the International Atomic Energy Agency (IAEA) reference materials USGS40 (L-198 

glutamic acid, δ
13

CV-PDB = –26.39‰), USGS41 (L-glutamic acid, δ
13

CV-PDB = +37.63‰), IAEA-199 

CH-6 (sucrose, δ
13

CV-PDB = –10.45‰), USGS25 (ammonium sulphate, δ
15

NAIR = –30.41‰), 200 

IAEA-N-1 (ammonium sulphate, δ
15

NAIR = +0.43‰) and IAEA-N-2 (ammonium sulphate, 201 

δ
15

NAIR = +20.41‰), are run in duplicate for every ten unknown samples. Results are corrected 202 

for linearity and instrumental drift, and are reported as per mil (‰) relative to the internationally 203 

accepted standards V-PDB and AIR, with 1σ precisions of ± 0.2‰ and ± 0.3‰ for δ
13

C and 204 

δ
15

N, respectively.  205 

Collagen integrity was assessed by the following criteria: (i) atomic C:N ratio in the range 2.9 to 206 

3.6 (DeNiro 1985), and (ii) minimum %C = 13% and %N = 5% (Ambrose 1990). All the 207 

samples discussed below met these criteria. 208 

Comparison of human stable isotope values with those of potential food sources improves the 209 

accuracy of dietary models. However, no faunal remains were recovered from the Joan Planells 210 

cemetery. The Joan Planells data were therefore compared to published archaeological faunal 211 
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stable isotope values from the near-contemporary site of S’Hort des Llimoners also located at 212 

Eivissa, Ibiza (see Table 2, data from Fuller et al. 2010).  213 

 214 

5. Results and Discussion 215 

The δ
13

C and δ
15

N isotope values of the Joan Planells human bone samples are presented in 216 

Table 1 and in Figures 2 and 3. Mean±standard deviation (1σ) δ
13

C and δ
15

N values of the 217 

sampled population (n=38) are -18.7±0.5‰ and 10.1±1.3‰, respectively. In a Mediterranean 218 

population, these values are consistent with a diet based largely, but not necessarily exclusively, 219 

on terrestrial C3 resources including meat and dairy produce (e.g. Richards et al. 1998; Tykot 220 

2004). Comparison with Late Antiquity–Early Byzantine (LA-EB) animal isotope data (from 221 

Fuller et al. 2010) to set baseline values for the local foodweb suggests that animal protein was a 222 

noteworthy component of average diet but that additional resources, such as cereals, were likely 223 

to have been important dietary staples – see Table 2 and Figure 3. The average δ
15

N value of the 224 

Joan Planells individuals is 4.6‰ above the caprine mean δ
15

N value (of 5.5‰, n=8), 4.3‰ 225 

above the pig mean δ
15

N value (of 5.8‰, n=2) and 2.6‰ above the cattle mean δ
15

N value (of 226 

7.5‰, n=2). Caprine and porcine products may therefore have played a more important role in 227 

human diet than those of cattle. This corresponds not only to the reported dominance of goat in 228 

the animal remains recovered from Late Antiquity-Early Byzantine sites in Ibiza but also to 229 

accounts of Roman period diet, which point to greater dependence on pork (Fuller et al. 2010).  230 

The higher mean δ
13

C value of humans compared to animal food-species (-18.7‰ in humans in 231 

comparison to -20.1‰ in cattle, pigs and caprines) is statistically significant (Mann-Whitney U 232 

Test δ
13

C, U=32.5, p<0.05 – see Table 3 for all p-values and U statistics). This may reflect 233 

additional or distinctive protein sources in human diet (e.g. a small component of C4 resources) 234 

or, alternatively, may be the result of a δ
13

C food-consumer offset. Bocherens and Drucker 235 

(2003) argued that the δ
13

C trophic level shift between ‘predator’ and ‘prey’ could be up to 236 

2.0‰. Notably, the food species dataset from S’Hort des Llimoners is limited, comprising a total 237 

of 12 specimens from three taxa. It is therefore possible that the observed difference in human 238 

and domesticate δ
13

C values is an artefact of sample size.     239 

TABLE 1 HERE 240 
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FIGURE 2 HERE 241 

FIGURE 3 HERE 242 

TABLE 2 HERE 243 

TABLE 3 HERE 244 

5.1 Limitations of Study 245 

This study serves to add to the growing body of research on dietary trends during the Late 246 

Roman period of the Balearic Islands. Fuller et al (2010) provide an extensive diachronic 247 

perspective from various sites on Ibiza and Formentera, with human and animal isotopic 248 

signatures being gathered. Within the scope of our project, and with the resources available to 249 

the authors on site context information as well as historical correlates, the project does suffer 250 

from a lack of local animal signatures to tease apart the human signatures and the sources of 251 

dietary consumption as well as provide a stronger connection to the kinds of biocultural and 252 

historical processes that may have been impacting diets between men, women and children. In 253 

addition to this, the burials available to analyze for isotopic signatures were limited to 38 254 

individuals, as there was some poorly preserved remains from the cemetery of Joan Planells. 255 

Furthermore, due to the limited contact with the original excavators there is not as much in-depth 256 

contextual information that could be added to the background and interpretations of dietary 257 

practice at this site. This limitation is a testament to the necessity of osteological specialists to be 258 

present during excavations and for more conversations to occur during and after the recovery of 259 

the material from the field. 260 

Despite these limitations, the study allows for comparisons to be made more closely among men 261 

and women from Joan Planells, which is a greater step towards discussing gendered dietary 262 

trends in the past. This kind of conversation allows for more nuanced interpretations to be made 263 

about the ways that Romanization were influencing frontier sites at the confluence of the Roman 264 

and non-Roman world.  265 

5.2 Differences in individual diets 266 

At Joan Planells stable carbon isotope ratios have a relatively narrow range of values from -267 

17.7‰ to -19.7‰ (within ±1‰, which DeNiro and Schoeninger [1983] identified as the typical 268 

range for populations consuming uniform diet). The range of the δ
13

C values is consistent with a 269 
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predominantly C3 foodweb-derived diet for this region. C3 plants are reported to have mean δ
13

C 270 

of -26.5‰ (e.g. Tykot 2004): assuming a diet-bone collagen offset of +5‰, consumers of an 271 

exclusively C3 derived diets would be anticipated to have δ
13

C values of c. -21.5‰. However, C3 272 

cereals from the West-Mediterranean region of Spain have been demonstrated to be relatively 273 

13
C-enriched. Archaeological specimens of Triticum durum, Hordeum vulgare and Hordeum 274 

vulgare nudum recovered from Neolithic to Iron Age contexts have mean δ
13

C values of -22.6‰, 275 

-22.8‰  and -22.6‰, respectively  (see table 1, Araus et al. 1997).  Consumers of these C3 276 

resources would have δ
13

C values of c. -17.7‰. 277 

The nitrogen isotope (δ
15

N) values exhibit a wide range from 9.0‰ to 14.8‰ spanning 278 

approximately one trophic level (O’Connell et al. 2012), suggestive of individual differences in 279 

dietary intake. It should be noted, however, that most of the sampled population have δ
15

N 280 

values of ≤12.7‰. Two males, UE303 and UE301, are statistical outliers with especially high 281 

δ
15

N values of 14.4‰ and 14.8‰, but typical δ
13

C values of -18.6‰ and -19.1‰, respectively. 282 

This suggests that the diet of these individuals was distinctive from other members of this group. 283 

Increased δ
15

N values are typical of diets that include aquatic resources such as fish and sea 284 

mammals. Generally, consumption of marine resources is associated with the co-linear increase 285 

of both δ
13

C and δ
15

N values (Schoeninger et al. 1990). Spearman’s Rank Order Correlation test 286 

indicated a moderate positive correlation (rs=0.37) between the δ
13

C and δ
15

N values in the Joan 287 

Planells population (see also Figure 2). Arguably, however, δ
15

N values are a more reliable 288 

indicator of marine resource consumption than δ
13

C in Mediterranean populations where diets 289 

may be relatively high in carbohydrate and low in protein (Prowse et al. 2005; Craig et al. 2013). 290 

In individuals with relatively low protein diets nutrient scrambling (Prowse et al. 2004; Craig et 291 

al. 2013) may result in carbon and nitrogen being drawn from different dietary constituents – 292 

carbon may be assimilated from dietary proteins, carbohydrates and/or lipids in protein 293 

inadequate diets (Hedges 2004). It is likely therefore that the 
15

N-enriched values of individuals 294 

UE301 and UE303 are the result of increased access to aquatic/marine resources, which may be 295 

status- or activity-related. This interpretation is offered cautiously – in the Mediterranean region 296 

identifying the consumption of marine foods is non-trivial. Among the men of Joan Planells, 297 

there is a stepwise, linear pattern that shows there is incremental differences in δ
15

N values, 298 

while δ
13

C values are almost the same (Figure 2) (positive linear trend is highlighted by a  299 

vertical dashed red line). This pattern may be suggestive of differential access to fish resources 300 
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among the men of this population and that possibly there were men of highly distinct statuses 301 

being buried in the same cemetery. The δ
13

C and δ
15

N values of fish from the Mediterranean Sea 302 

vary widely (see Pinnegar and Polunin 2000; Garvie-Lok 2001; Polunin et al. 2001; Badalamenti 303 

et al. 2002; Prowse et al. 2004; Keenleyside et al. 2009). Polunin et al. (2001) reported that the 304 

mean δ
13

C and δ
15

N values of modern fish specimens captured off the southeast coast of Ibiza 305 

were -17.8‰, much lower than the δ
13

C range (-8.3‰ to -14.1‰) for modern and archaeological 306 

Mediterranean fish published by Garcia-Guixé et al. (2010). 307 

The mean±s.d. (1σ) δ
13

C and δ
15

N values of the females (n=8) at Joan Planells are -18.3±0.5‰ 308 

and 11.5±0.8‰, respectively, while those of the males (n=12) are -18.9±0.3‰ and 11.3±1.7‰, 309 

respectively. There is a statistically significant difference between male and female δ
13

C values, 310 

but not in δ
15

N values, even with the statistical outliers included (Mann-Whitney U Test δ
13

C, 311 

U=19.5, p<0.05; δ
15

N, U=64.5, p>0.05). This difference along with isotopic signatures for an 312 

increased preponderance of degenerative conditions may point to activity and/or sex-based 313 

differences in access to food. The parsimonious explanation for relative 
13

C-enrichment in 314 

females with no associated increase in δ
15

N values is a greater contribution of C4 plant resources 315 

to diet (cf. Müldner et al. 2011 and Pickard et al. 2017). Millet, a C4 cereal, may have contributed 316 

to the diets of Late Roman-Early Byzantine interred on Ibiza (e.g. Fuller et al. 2010). An 317 

alternative possibility is the consumption of low trophic level aquatic/marine resources such as 318 

shellfish and garum made from low trophic level fish. For example, stable isotope values of 319 

samples of garum from Roman Pompeii have high δ
13

C values (-12.2‰) and relatively low δ
15

N 320 

values (4.9‰) (Pate 2016). Similar mean values are quoted by Prowse et al. (2004) for five 321 

ancient garum samples, with δ
13

C=-14.7±0.6‰ and δ
15

N=6.5±1.7‰. Hedges (2004) indicated 322 

that as much as 20% of dietary protein would need to be drawn from marine resources for this 323 

component of diet to be isotopically visible. Given an average daily requirement of c. 50 g of 324 

protein in females and traditional Southeast Asian fish sauces, which are considered to “parallel 325 

almost exactly” garum, have a protein content of 100g/L (see Curtis 2009), consumption of 100 326 

ml of garum per day should be isotopically visible. Additionally, in carbohydrate rich diets that 327 

are relatively low in protein, protein-rich foods can make a disproportionate contribution to 328 

collagen isotope signals reflecting amino acid routing as opposed to biosysnthesis (Webb et al. 329 

2016).  330 

 331 
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5.3 Demographics and diet  332 

A further consideration in isotope-based dietary reconstruction is the structure and ‘isotope age’ 333 

of the population sampled. The Joan Planells bone collagen samples were obtained from 334 

individuals of varying age as well as from different skeletal elements (including long bones, 335 

digits and ribs) The isotope signatures of these individuals therefore potentially reflect diet at 336 

different stages of life and over varying timespans. The timespan reflected in bone collagen 337 

stable isotope values depends on (i) the age of the individual at death, and (ii) the type of bone 338 

sampled, i.e. whether it is trabecular or cortical tissue. In infants and young children there is 339 

rapid bone development and sampled bone collagen may reflect diet only during the year prior to 340 

death (Tsutaya and Yoneda 2013). During adolescence, another key period of substantial bone 341 

growth, complete collagen turnover may occur in both trabecular and cortical bone in as little as 342 

one to two years (Ubelaker and Parra 2011; Tsutaya and Yoneda 2013).  In adulthood, with 343 

cessation of bone growth, collagen turnover reduces significantly – it is estimated to take, on 344 

average, between 10 and 30 years for collagen to turnover completely (Libby et al. 1964; 345 

Stenhouse and Baxter 1979; Hedges et al. 2007). Consequently, in young to middle aged adults 346 

there is disproportionate representation of dietary intake during adolescence in bone collagen 347 

isotope signatures depending on skeletal element sampled (Hedges et al. 2007; Ubelaker and 348 

Parra 2011). Collagen turnover in cancellous elements is generally more rapid than that in 349 

cortical tissues. Collagen in adult ribs may turnover completely in as little as c. 2 years and in 350 

vertebrae in 1-3 years, while turnover in the mid-shaft of an adult femur may take over 20 years 351 

(Bryant & Loutit 1964; Hedges et al. 2007).  352 

The majority of the aged individuals sampled at Joan Planells fall into the young to middle adult  353 

categories. In these individuals analysis of cortical bone would be anticipated to mainly reflect 354 

dietary intake during adolescence, while analysis of largely cancellous bone tissue should reflect 355 

diet in the last 2-5 years before death. Comparison of cortical vs cancellous elements indicated 356 

no significant difference in δ
13

C nor in δ
15

N values (Mann-Whitney U Test δ
13

C, U=227.5, 357 

p>0.05; δ
15

N, U=170.5, p>0.05) suggesting that dietary intake did not change significantly 358 

between adolescence and adulthood.  359 

Notably, 88% of the females analyzed were of reproductive age. A range of factors, including 360 

pregnancy as well as nutritional stress and pathological conditions can result in non-dietary 361 
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related variation in individual δ
13

C and δ
15

N values (e.g. Fuller et al. 2005; Nitsch et al. 2010; 362 

Olsen et al. 2014). 363 

 364 

5.4 Diet in the Late Antiquity-Early Byzantine period – a stable isotope perspective 365 

Diet of the Late Antiquity-Early Byzantine cemetery population at S’Horts des Llimoners is 366 

broadly like that of the Joan Planells population, with primary dependence on C3 resources and 367 

potentially with a small component of C4 or marine resources (Table 4; Fuller et al. 2010). Given 368 

the proximity contemporaneity of the two sites the similarity in diets is perhaps not unexpected. 369 

However, differences in minor components of diet are evident. While the δ
15

N values of the adult 370 

populations at Joan Planells (n=23) and S’Horts des Llimoners (n=34) are statistically 371 

indistinguishable, there is a significant difference in the δ
13

C values (Mann-Whitney U-test, 372 

δ
13

C, U=525.5, p<0.05: δ
15

N, U=402, p>0.05). The relative 
13

C-enrichment of the Joan Planells 373 

adult population compared to that of S’Horts des Llimoners lends support to the suggestion that a 374 

C4 resource, such as millet, may have contributed to diet at Joan Planells, and possibly more 375 

among women of this population. Alternatively, this difference may reflect more complex 376 

patterns of dietary difference resulting from macronutrient scrambling in carbohydrate rich diets 377 

that include marine protein (e.g. Prowse et al. 2005; Craig et al. 2013).  378 

TABLE 4 HERE 379 

It is apparent that there was no one ‘Roman’ diet in both Italy, mainland Spain and the Balearic 380 

Islands (Killgrove and Montgomery 2016). Direct comparison of stable isotope values and diets 381 

at Late Roman sites in other regions is limited by the demonstrably different baseline isotope 382 

values of domesticates across these regions (e.g. Prowse et al. 2004; Keenleyside et al. 2009; 383 

Craig et al. 2009; Rissech et al. 2016). However, some general observations can be drawn.  384 

Dependence on C3 plants, with an important but variable contribution from meat and/or dairy 385 

products, is characteristic of many Late Roman sites in the sphere of Roman influence and on 386 

mainland Spain and throughout the Mediterranean Basin (e.g. Killgrove and Tykot 2013; Rissech 387 

et al. 2016; Salazar-García et al. 2016; Saragoça et al. 2016). The range and relative importance 388 

of the foods consumed at S’Horts des Llimoners and Joan Planells are remarkably like the diets 389 

inferred for individuals interred at the Late Roman cemeteries of Casal Bertone and Castellaccio 390 
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Europarco, Rome, Italy (see Killgrove and Tykot 2013). At each of these sites diet was based 391 

principally on C3 plants with meat/other animal products, while C4 and/or aquatic resources 392 

minor contributors to diet. However, interestingly this pattern is reverse for mainland NW Spain, 393 

which shows high consumption of fish and C4 resources (Lopez-Costas and Muldner 2016). 394 

As at Joan Planells, caprines and pigs were likely the primary sources of animal protein at the 395 

late Roman necropolis at Carrer Ample 1, Barcelona, Spain. Rissech et al. (2016) highlighted the 396 

distinctive nature of diet at Carrer Ample 1 in comparison to other Late Roman sites in the 397 

Mediterranean owing to the slight or absent contribution of fish at this coastally located site. The 398 

Δ
15

N spacing of 6.4‰ between humans and domesticates is relatively high at Carrer Ample 1, 399 

larger than one trophic level (O’Connell 2012) – see Table 5. The likely contribution of fish to 400 

diet at Carrer Ample 1 thus appears to be greater than that at Joan Planells or Casal Bertone and 401 

Castellaccio Europarco. This interpretation is complicated by the single chicken bone analyzed 402 

from Carrer Ample 1, which has a δ
15

N value of 10.8‰. However, broadly Carrer Ample 1 fits 403 

the C3-dominated dietary pattern evident at many other sites.  404 

Although discerning the role of marine resources in Mediterranean diet in Antiquity is complex, 405 

the stable isotope evidence, at least at the population level, points to little contribution of fish to 406 

diet at many sites (e.g. Fuller et al. 2010; Killgrove and Tykot 2013; Rissech et al. 2016; and see 407 

Table 5). These patterns differ from those seen in Late Roman contexts at A Lanzada in Galicia, 408 

where there is frequent consumption of local fish species (Lopez-Costas and Muldner 2016). A 409 

Lanzada has some of the most C
13

-enriched values observed in any Iberian population. There is 410 

furthermore a significant shift in diet between the Roman and post-Roman period during the 2
nd

 411 

and 4
th

 centuries AD where there is economic and environmental transformation. Archaeological 412 

and/or osteological indicators at sites such as Carrer Ample 1, Castellaccio Europarco, as well as 413 

Joan Planells, suggest that the interred populations were generally of low socio-economic 414 

standing (Killgrove and Tykot 2013; Rissech et al. 2016). However, some of the individuals 415 

interred at these sites do have 
15

N-enrichment consistent with a greater, and in some instances, a 416 

sizeable proportion of fish in diet (e.g. UE 301 and UE303 at Joan Planells) These two male 417 

individuals are both in their 20s or 30s and their graves were single cist burials with 418 

undifferentiated artifacts. Perhaps these were individuals who had direct connections with the 419 

fishing industry?  420 
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TABLE 5 HERE 421 

An alternative hypothesis is that individuals of higher status had greater access to prestige foods. 422 

Prowse and colleagues (2004) demonstrated that the affluent population of Portus Romae, 423 

interred at Isola Sacra, consumed a significant proportion of fish, with up to 40% of dietary 424 

protein derived from marine resources. In contrast to this, the rural, inland, farming population 425 

from the cemetery at an ANAS excavated site in Rome’s suburbs had relatively low 
13

C and 
15

N 426 

reflecting the minor importance of fish to diet (Prowse et al. 2004). However, this correlation 427 

between status and fish consumption if far from universal. At the contemporary trading port of 428 

Velia, in southern Italy, Craig and colleagues (2009) identified variation in access to marine 429 

resources: this could not be clearly linked to status inferred from burial style. As Craig et al. 430 

(2009) pointed out there is no evidence to support the notion that the individuals interred at Isola 431 

Sacra were of higher status than the population at Velia. Craig et al. (2009) therefore concluded 432 

that the increased consumption of fish evident at Isola Sacra did not directly reflect status but 433 

was specific to the economy, occupations and access to traded foods of those employed at one of 434 

the largest trading ports in the Roman world.   435 

Differences in the diets of males and females are suggested by stable isotope ratios at Isola 436 

Sacra, Velia and Joan Planells (Prowse et al. 2005; Craig et al. 2009). At each of these sites 437 

females appear to consume more plants, while males have greater access to either meat or fish. 438 

This trend is evident also in the pre-Roman, Celtic population from the necropolis of Seminario 439 

Vescovile in Verona, dating from the 3
rd

 to 1
st
 century BC, which indicates that women 440 

consumed higher amounts of C4 plants (and cereals in general), while men had greater access to 441 

meat (Laffranchi et al. 2016). For cultural and practical reason men in Roman society generally 442 

had greater access to higher prestige food such as meat and fish. Socio-economic status may 443 

have influenced the manifestation of dietary differences. The effects of sex-based dietary 444 

restrictions would have been more pronounced in wealthier households. All members of lower 445 

status households, male and female would have had limited access to meat (Garnsey 1999). The 446 

cultural restriction of certain foods based on the perceived negative effects on health in females 447 

may have permeated the social makeup of the colonies.  448 

Dietary differences between males and females at Joan Planells hint at greater consumption of a 449 

C4 resource. The stable isotope values of the domesticates from S’Horts des Llimoners show no 450 
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evidence for a C4 component in animal feed. Thus, if sex-based dietary differences at Joan 451 

Planells reflect C4 input, it is likely that this was in the form of the C4 cereal millet. Stable 452 

isotope analyses have indicated that the consumption of millet was widespread in later 453 

prehistoric and Roman Europe and that it correlated with socio-economic status (e.g. Murray and 454 

Schoeninger 1988; Bonsall et al. 2004; Le Huray and Schutkowski 2005). In Roman society 455 

millet was viewed as a poor-quality cereal (Iacumin et al. 2014; Kulikowski 2004), not used in 456 

the kitchens of the elite, and often grown for animal fodder (Adamson 2004). Millet flour was 457 

also used to produce bread and a sort of porridge cooked in water and salt. Often, these kinds of 458 

foods were accompanied by vegetables and cheese and very rarely with meat (Columella, De Re 459 

Rustica, 2, 9, 14-16; Pliny the Elder, Naturalis Historiae XVIII, 83-84; Lafrranchi et al. 2016). 460 

Cemetery sites in the locus of Rome confirm the correlation between millet intake and socio-461 

economic status. At the more rural, suburban cemetery of Castellaccio Europarco consumption 462 

of millet was greater than at the urban cemetery of Casal Bertone – this is reflected in relative 463 

13
C at the former site (Castellaccio Europarco adult δ

13
C= -17.8±2.6‰ and δ

15
N=9.4±1.4‰; 464 

Casal Bertone adult δ
13

C=-18.2±0.6 and δ
15

N=10.0±1.5‰).  465 

The evidence from Joan Planells spans the 3
rd

 to 7
th

 centuries AD and the isotopic signatures are 466 

evaluated at the site level. This means that the population average for δ
13

C and δ
15

N values 467 

account for the entire spread of this timeframe. While most the burials are from the 3
rd

 to 5
th

 468 

centuries, the later 7
th

 century evidence may present some variability among the trends for this 469 

Late Roman period. Nevertheless, the dataset is an important contribution to discuss how diet 470 

can differ not only between geographically closer locales, such as Joan Planells and A Lanzada 471 

in mainland Spain, but also how diet can vary within a population, in which two men have 472 

significantly higher δ
15

N values than the rest of the population.  473 

The discussion above highlights the clear similarities between the diet, and potentially cultural 474 

restrictions that limit access to foods, at Joan Planells and other sites both in Italy and in the 475 

sphere of Roman influence on mainland Spain and the Balearic Islands. However, to determine if 476 

these similarities are the result of Roman influence comparisons must be made with pre-Roman 477 

diet on Ibiza. The diet of the Joan Planells adult population is distinctive from that of the earlier 478 

Punic (5
th

-2
nd

/1
st
 centuries BC) population from the rural necropolis Ses Païsses de Cala d’Hort 479 

(δ
13

C=-18.7±0.3‰ and δ
15

N=12.5±0.5‰, n = 38), situated in southwest Ibiza: Fuller et al. 2010). 480 

Relative 
15

N-enrichment is evident at the latter site (Mann-Whitney U test δ
13

C, U=354, p>0.05; 481 
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δ
15

N, U=135, p<0.05) suggesting increased consumption of higher trophic level foods, such as 482 

meat and potentially fish or fish products. While it is tempting to attribute this apparent shift in 483 

dietary pattern to Roman influence, it is important to acknowledge that there is no difference 484 

(Mann-Whitney U test δ
13

C, U=61.5 p>0.05; δ
15

N, U=71, p>0.05) in the isotope values of the 485 

Joan Planells population and that of an urban Punic population at Puig des Molins (δ
13

C=-486 

18.8±0.3 and δ
15

N=-11.3±0.8, n=6: Fuller et al. 2010). This suggests the diet of urban 487 

populations remained largely unchanged in Ibiza through the Punic period and into the Roman 488 

period. However, the number of adults sampled for Puig des Molins is very small. Additionally, 489 

there was no demographic information available for either the Puig des Molins or Ses Païsses de 490 

Cala d’Hort populations so it was not possible to investigate sex-based variability in Punic diet. 491 

Further research into dietary variability at Punic and Roman period sites on Ibiza would assist in 492 

clarifying the impact of external spheres of influence on local cultural practices. 493 

It is apparent then that the dietary patterns of population at Joan Planells varied internally, but 494 

also it varied greatly from the pattern of food consumption in Italy and in mainland Spain during 495 

the Late Roman period. Twiss (2007) articulates that food forms the basis of identity politics and 496 

forms the basis of sustaining group cohesion and responses to internal and external pressures to a 497 

community. For the population of Joan Planells, the negotiation of identity was occurring 498 

through the Late Roman context and in the Early Byzantine period, when new internal and 499 

external pressures were mounting. This community may have faced environmental and socio-500 

political change that was mitigated by consuming more local, C3 plant resources, instead of 501 

engaging with the millet trade and fish acquisition. The ability for this population to negotiate 502 

their role in the midst the cessation of Roman influence recognizes the ingenuity and agency for 503 

the community at Joan Planells.  504 

 505 

6. Conclusions 506 

The results of δ
13

C and δ
15

N analysis of human bone collagen indicate that the population 507 

sampled at Joan Planells consumed a diet based largely on C3 resources with a possible small 508 

contribution from C4 plants and/or aquatic resources. The δ
13

C values of the men and women are 509 

statistically significantly different, suggesting dietary and potentially gender-differences. The 510 

enriched δ
15

N signatures of two males in particular may have implications for status and/or 511 

activity-related differences in dietary intake.  512 
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This investigation reveals important dietary trends for a region that was in the sphere of Roman 513 

influence. The combination of carbon and nitrogen isotopes along with demographic data 514 

indicates dietary diversity at Joan Planells. While there are limitations in the detail of 515 

archaeological contextual information, these dietary trends at Joan Planells to attest to great 516 

variation in subsistence practices and gendered access to food at a time when the Roman sphere 517 

was being impacted climatically with surges in extreme storm frequencies as well as greater 518 

contact with hostile groups. With the eventual transition to Byzantine dominance in the 519 

Mediterranean, these dietary trends reflect the diversity of strategies that may have been 520 

practiced during a period of political, economic and social instability. This paper contributes to a 521 

more in-depth understanding that scholars have of diet in the Late Roman period, in which no 522 

singular dietary trend can be labelled Roman. Better understand the variation in these subsistence 523 

signatures can begin to tell us more about local responses to socio-political, economic and 524 

environmental changes. 525 
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Table 1: Carbon and nitrogen stable isotope ratio values and collagen quality indicators of the Joan 

Planells samples.  

              GUsi  Context ID Element  Sex Age δ
13

C δ
15

N C/N %N %C 

2589 JP03 UE324  Scapula F 17-25 -17.7 12.2 3.2 14.8 40.6 

2590 JP03 UE352  Phalanx M adult -18.9 10.2 3.2 15.2 41.8 

2591 JP03 UE325  Metacarpal F 17-25 -17.9 11.3 3.2 14.7 40.1 

2592 JP03 UE304  Metacarpal M 17-24 -18.9 11.2 3.2 15.2 41.7 

2593 JP03 UE333  Radius  M 17-35 -18.4 10.9 3.2 10.0 27.7 

2594 JP03 UE340  Rib F 17-44 -18.4 11.3 3.2 12.4 34.4 

2595 JP03 UE355  Phalanx F 17-25 -18.6 11.6 3.2 15.0 40.9 

2596 JP03 UE323  Fibula F 17-35 -18.7 10.3 3.2 15.2 41.6 

2597 JP03 UE302   Long bone M 30-39 -18.2 10.6 3.2 10.3 28.3 

2598 JP03 UE357   Long bone M >23 -18.9 9.8 3.3 8.2 23.5 

2599 JP03 UE303   Long bone M 25-45 -18.6 14.4 3.2 15.3 42.1 

2600 JP03 UE316  Radius  F 22-24 -19.0 12.0 3.2 14.8 40.5 

2601 JP03 UE305  Rib M 21-25 -18.6 11.4 3.2 14.4 39.7 

2602 JP03 UE329   Rib F 17-25 -18.1 12.7 3.2 14.8 40.6 

2603 

JP03 UE301 

201x103  Scapula M 17-39 -19.1 14.8 3.2 14.9 41.1 

2604 

JP03 UE349-

2  Metatarsal M 17-39 -18.6 12.1 3.2 16.1 44.0 

4707 JP 03 UE 307 Long Bone UN UN -19.3 9.7 3.2 14.1 38.3 

4709 JP 03 UE 310 Fibula UN UN -19.1 10.2 3.2 14.8 40.5 

4702 JP 03 UE 312 Long Bone UN UN -19.0 9.4 3.2 15.7 43.1 

4703 JP 03 UE 314 Long Bone UN 17-21 -19.7 9.0 3.2 13.7 37.7 

4716 JP 03 UE 315 Metatarsal UN UN -19.0 10.4 3.2 15.8 43.0 

4712 

JP 03 UE 

316A Long Bone UN 25-45 -19.7 11.5 3.3 14.5 40.5 

4706 JP 03 UE 319 Fibula UN UN -18.3 11.1 3.2 13.9 37.9 

4720 JP 03 UE 320 Rib UN UN -18.4 9.8 3.2 13.4 36.8 

4715 JP 03 UE 321 Fibula UN UN -18.7 10.5 3.2 14.4 39.4 

4718 

JP 03 UE 

329B Long Bone UN 19-25 -18.9 12.1 3.2 15.5 42.8 

4700 JP 03 UE 332 Ulna UN <1 -18.9 9.2 3.2 14.2 39.3 

4701 JP 03 UE 334 Long Bone M? 30-34 -19.3 9.6 3.2 14.4 39.7 

4711 

JP 03 UE 

341-2 Long Bone UN 25-35 -19.5 10.0 3.3 15.0 41.9 

4704 JP 03 UE 344 Metacarpal UN 25-35 -18.8 9.1 3.2 14.7 40.2 

4719 JP 03 UE 346 Fibula UN UN -18.0 12.4 3.2 14.8 40.7 

4717 JP 03 UE 347 Humerus UN UN -18.9 10.4 3.2 15.1 41.7 

4710 

JP 03 UE 

348-5 Long Bone UN UN -18.0 12.0 3.2 15.6 42.7 

4699 JP 03 UE 352 Phalanx M UN -18.9 10.0 3.2 14.9 40.8 

4708 JP 03 UE 354 Metatarsal F? UN -17.7 10.9 3.2 14.6 39.6 

4714 JP 03 UE 357 Rib M? 23-35 -19.0 10.5 3.2 15.4 42.0 

4713 JP 03 UE 359 

4th 

Metacarpal UN UN -18.6 9.1 3.2 15.5 42.2 

4705 JP 03 UE 405 Radius UN UN -18.7 10.7 3.2 14.8 40.3 

          

 750 

 751 

  752 
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Table 2: Carbon (


C) and nitrogen (

)stable isotope ratio values of Late Antiquity-Early 753 

Byzantine fauna from S’Hort des Llimoners, Ibiza (data from Fuller et al., 2010). 754 

Sample Species 


C‰ 

‰ C:N 

     IBF 9 Pig -20.8 5.5 3.4 

IB-A-13 Pig -20.8 6.1 3.2 

IBF 10 Sheep/goat -21.0 5.7 3.3 

IBF 8 Sheep/goat -20.1 4.2 3.3 

IB-A-2 Sheep/goat -20.2 8.7 3.2 

IB-A-3 Sheep/goat -19.8 4.6 3.2 

IB-A-4 Sheep/goat -19.9 5.8 3.2 

IB-A-5 Sheep/goat -20.2 5.5 3.2 

IB-A-6 Sheep/goat -19.8 4.2 3.2 

IB-A-14 Sheep/goat -18.1 5.5 3.2 

IBF 11 Cow -20.3 7.7 3.3 

IBF 14 Cow -19.9 7.2 3.3 

IBF 13 Dog -19.0 9.2 3.3 

 755 

Table 3: Mann-Whitney p-values, U statistics and indication of statistically significant 756 

difference (SSD) data 757 

Variables compared p-value U statistic SSD 

δ
13

C δ
15

N δ
13

C δ
15

N δ
13

C δ
15

N 

trabecular (n= 15) vs cortical (n= 23)  0.100482 0.952372 227.5 170.5 N N 

human (n=38) vs animal-food 

species (n= 12) 

0.000009 n/a 32.5 n/a Y n/a 

Joan Planells males (n=12) vs 

females (n=8) 

0.027891 0.203017 19.5 64.5 Y N 

Joan Planells (n=23) vs  

S’Horts des Llimoners (n=34)  

0.028689 0.857998 525.5 402 Y N 

Joan Planells (n=23) vs  

Ses Païsses de Cala d’Hort (n=38) 

0.216777 0.000007 354 135 N Y 

Joan Planells (n=23) vs  

Puig des Molins (n=6) 

0.686370 0.914252 61.5 71 N N 

 758 

 759 

Table 4: Comparison of Joan Planells and S'Horts des Llimoners δ
13

C and δ
15

N values. 760 

Site  
δ

13
C δ

15
N Range   

Av. Max Min Av. Max Min δ
13

C  δ
15

N n 

Joan Planells -18.7±0.5 -19.7 -17.7 11.2±1.5 14.8 9.0 2.0 5.8 23 

S'Horts des Llimoners -19.0±0.4 -19.7 -18.0 11.1±0.9 12.6 8.3 1.7 4.3 34 
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 761 

 762 

Table 5 – Summary data of Roman/Late Roman period sites in the Mediterranean region 763 

Where available the data reflect adult values. For those sites marked with * demographic information 764 

was not available.765 

Site Date 

Human δ13C Human δ15N n Domesticate δ13C Domesticate δ15N n 
M vs 

F Reference 

m
ea
n   min max 

me
an min max 

 
mean min max 

mea
n min max 

   

ANAS, 
Rome, 
Italy* - 

-
19.
4±
0.4 -20.0 -18.9 

9.5
±1.
8 6.9 11.3 14 - - - - - - - n/a Prowse et al. 2004 

Carrer 
Ample 1, 
Spain 

AD 
1st-
4th C 

-
18.
9±
0.3 -19.5 -18.4 

11.
0±
0.4 10.4 11.7 15 -20.4±0.7 -22.0 -19.4 

4.6±
2.0 1.9 8.7 11 N Rissech et al. 2016 

Casal 
Bertone, 
Rome 
Italy 

AD 
2nd-
3rd C 

-
18.
2±
0.6 -19.5 -16.8 

10.
0±
1.5 7.0 11.8 23 - - - - - - - N  Killgrove and Tykot 2013 

Castellac
cio 
Europarc
o, Rome, 
Italy 

AD 
1st-
3rd C 

-
17.
8±
2.6 -19.5 -12.5 

9.4
±1.
4 7.8 11.5 7 - - - - - - - n/a Killgrove and Tykot 2013 

Isola 
Sacra, 
Rome, 
Italy* 

AD 
1st-
3rd C 

-
18.
8±
0.3 -19.7 -17.8 

10.
8±
1.2 7.5 14.4 105 -21.0 - - 5.4 - - - Y Prowse et al. 2004 

Leptimin
us, 
Tunisia 

AD 
2nd-
5th C 

-
17.
8±
0.6 -19.0 -16.5 

13.
0±
1.3 10.00 15.7 52 -19.4±1.0 -21.1 -18.3 

9.2±
2.7 6.0 12.9 6 N Keenleyside et al. 2009 

Monte 
de 
Cagonha, 
Portugal 

AD 
7th C 

-
18.
3±
0.3 -18.8 -17.4 

10.
3±
0.7 9.8 13.2 23 -20.2±0.7 -21.3 -18.8 

7.1±
0.7 6.1 8 10 N Saragoça et al. 2016 

S'Horts 
des 
Llimoner
s 

AD 
4th-
7th C 

-
19.
0±
0.4 -19.6 -18.0 

11.
1±
0.9 8.3 12.6 34 -20.1±0.7 -20.8 -18.1 

5.9±
1.4 4.2 8.7 12 N Fuller et al. 2010 

St 
Callixtus, 
Rome, 
Italy 

AD 
3rd-
5th C 

-
19.
7±
0.4 -20.2 -18.9 

10.
6±
0.5 9.7 11.8 14 - - - - - - - n/a Rutgers et al. 2009 

Tossal de 
les 
Basses, 
Spain 

AD 
6th-
7th C 

-
18.
2±
0.3 -18.7 -17.7 

10.
8±
0.9 8.4 12.2 37 - - - - - - - N Salazar-García et al. 2016  

Velia, 
Italy 

AD 
1st-
2nd 
C 

-
19.
4±
0.3 -20.0 -18.7 

8.7
±1.
3 6.6 14.1 117 -21.0±1.0 -22.6 -19.1 

4.4±
1.9 2.6 7.9 8 Y Craig et al. 2009 

 766 

 767 
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 768 

Figure 1: Map of Ibiza with the site of Joan Planells identified. 769 
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 772 

Figure 2: Scatterplot of Joan Planells human δ
13

C vs δ
15

N values. The positive linear 773 

relationship is indicated by the dashed red line. The R
2
 value is 0.11086 and the p value is 774 

0.04108 (<0.05).  775 
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 776 

 777 

Figure 3: Scatterplot comparing the human remains from Joan Planells with the animal remains 778 
from S’Hort de Llimoners (Fuller et al. 2010) – data presented as mean±sd (1σ) where 779 
appropriate. 780 
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