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Abstract

Buildings consume a significant amount of energy worldwide in maintaining
comfort for occupants. Building energy management systems (BEMS) are
employed to ensure that the energy consumed is used efficiently. However
these systems often do not adequately perform in minimising energy use.
This is due to a number of reasons, including poor configuration or a lack of
information such as being able to anticipate changes in weather conditions.
We are now at the stage that building behaviour can be simulated, whereby
computer programs can be used to predict building conditions, and there-
fore enable buildings to use energy more efficiently, when integrated with
BEMS (i.e. simulation assisted control [1]). In this paper we demonstrate
a low cost BEMS that uses building simulation to predict optimised electri-
cal heating startup control points. Those that use electricity for heating in
Scotland, where this study was based, tend to be fuel-poor, hence there is a
strong case for optimisation, particularly when electricity costs nearly three
times as much as the equivalent unit of gas for heating applications. The
proposed system demonstrated a 50% energy saving in the reduced heating
time compared to scheduling when retrospectively evaluated.
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1. Introduction

Buildings account for 40% of energy consumption worldwide and 30% of
global carbon emissions [2]. As the population expands, this statistic is set
to rise. A significant amount of the energy required in a building, is used to
maintain a comfortable environment for the occupants. If the control of that
energy is used inefficiently, it can lead to ‘sick’ buildings.

It is estimated that nearly 90% of buildings unfortunately have inapplica-
ble or ineffective controls [3], but if they were to be rectified, there could be
energy savings up to an additional 20% [4]. This is clearly a worrying statis-
tic, and if it is addressed there is great potential to save significant amounts
of energy worldwide.

Building controls have now evolved considerably into integrated building
energy management systems (BEMS), which are dedicated systems installed
to manage building services and energy consumption, whilst maximising com-
fort for occupants. Though BEMS are reserved for larger buildings, smart
home systems for residential settings are now becoming common-place (e.g.
Google Home). In this paper, the term energy management system is some-
times used interchangeably for BEMS and smart home systems.

Energy management systems are based on fixed rule sets which means
they have to be adapted throughout the year, leading to a maintenance over-
head. Furthermore, there are a multitude of factors to consider such as the
time of day, the location of zones and occupancy profile which would con-
tribute to internal heat gains [5]. Inappropriate selection of the parameters
of the control strategies can cause both local and supervisory control loops
to oscillate [5]. However building simulators and emulators can provide an
efficient method of testing control strategies and software during the devel-
opment and commissioning stages. For example, dynamic simulation tools
can be used to test a control algorithm at difficult operating conditions (such
as extreme thresholds) [5].

Taking this a step further, recent studies have been investigating the
use of simulation assisted control (SAC), whereby simulation output is used
directly in the control core of BEMS [6]. Consequently, such innovations are
required more than ever, as fuel poverty is becoming an increasing problem,
even for well developed countries such as Scotland.
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1.1. Fuel Poverty

Fuel poverty is defined in Scotland if a household is required to spend more
than 10% of its income in order to maintain a satisfactory heating regime. If a
household is spending more than 20% of its income on heating it is in extreme
fuel poverty [7]. At present, 54% of households in Scotland that use electricity
for their heating are in fuel poverty [7]. Not only that, these homes are also
in the lowest efficiency bands [8]. Furthermore a satisfactory heating regime
is defined in [8] as 21◦C in the living room and 18◦C in all other rooms for 9
hours a day during the week and 16 hours a day during the weekend. This
currently equates to a significant 74% of energy spend in an average household
to satisfy this regime [8]. Much can be done therefore to improve this. The
Scottish government have further recognised that energy saving technologies
should be used in the development of the latest fuel poverty strategy - ‘The
new fuel poverty strategy should acknowledge and address a fourth driver of
fuel poverty which is how people use energy in their homes’ [9]. In [9] it
was also recognised that though most households in Scotland report actively
using heating controls, other research had identified [10] that many people
find heating controls hard to use, are confused about the different controls,
and are uncertain over how to best use the timings and settings. With regards
to timing and efficiency there is therefore scope to make use of technologies
such as building simulation to help inform decisions for heat settings (such
as optimum start setpoints).

1.2. Building Simulation

Using building simulation early in the building design process, can have
a substantial impact on the building performance [11]. Building simulation
software permit a wide range of physical attributes to be applied in a building
model and analysed, such as thermal loads (e.g. TRNSYS) and lighting
luminance (e.g. Radiance). They can take into account the full spectrum of
building losses and gains, from the internal and external environment.

Generally losses are through the fabric of the building. However energy
gains in a building can be from lighting, equipment, occupancy, windows
(solar radiation) and heating. Losses are generally transmitted through win-
dows, walls, ceilings, floors, roofs, doors, infiltration and ventilation. These
are all parametric inputs in a building simulator.

Building simulators can be used to test out various occupancy profiles
and usage scenarios that could occur in building, with respect to energy use
and balances. For the case of efficient use of heating, there are opportunities
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to predict control strategies and integrate them into the control core of an
energy management system. Consideration of the building form, via building
simulation can further take into account internal and environmental factors,
and thus aid in the decision making process of maintaining a stable energy
efficient heating regime.

1.3. Objectives

This study explores the benefits of a low power computing implementa-
tion of a simulated assisted energy management system for houses that use
electrical heating. Though electricity is not the dominant energy demand,
the electrification of space and water heating has also recently started to gain
traction as a strong option for achieving a low carbon buildings sector [12].
Note in Scotland, and in the rest of the UK, heating forms the major demand,
where there is minimal cooling requirement for the domestic scenario. The
exploration will evaluate the potential for savings in a test house developed
for the purpose of energy efficiency optimisation through the use of smart
technologies. The structure of the paper is as follows. Section 2 provides the
background to the work. Section 3 discusses the experiment setup, Section
4 elaborates on the results and Section 5 concludes the paper.

2. Background

In the UK, much has been done to improve insulation characteristics of
houses, with millions of homes having insulation upgraded (cavity walls and
loft) as part of low carbon framework for significant reductions in energy by
2020 [13].

However there has been a lack of research to address heating systems, in
terms of improving control strategies, that take into account environmental
factors and conditions, though there has been a growing trend in internet
connected ‘smart’ heating control devices that give occupants more options
for control and ‘learn’ how they use it. These do little more than guess sched-
ules such as the Nest learning thermostat [14], after a period of learning how
occupants set temperatures throughout the day. Other examples of smart
heating control devices, include the Tado [15], which guesses arrival times
based on GPS coordinates, and the British Gas Hive system [16]. These
systems rely on understanding human behaviour in an attempt to better
control heating beyond predefined rules, which are commonly used to sched-
ule heating. Energy management systems are often programmed with static

4



rule based schedules, which are not optimised to react to changes in a build-
ing’s use, which can often be dynamic (e.g. occupancy variation, change in
climate).

A better method would be to employ a predictive control strategy that
can supersede traditional rules based systems. There are two main tech-
niques for predictive control in buildings that are currently being researched
to improve control in building energy management systems. These are model
predictive control (MPC) and simulation assisted control (SAC). Both tech-
niques rely on being able to accurately forecast conditions based on various
environmental factors, though can differ in their approaches, and some liter-
ature occasionally describe them as being essentially the same due to the fact
they both use models for prediction. Mahdavi was one the first proponents
of SAC identifying it as a separate method altogether, claiming ‘This con-
cept, which should not be confused with model-predictive control, involves the
incorporation of explicit numeric performance simulation in the control core
of buildings’ environmental systems’ [17]. To further this point, MPC re-
quires modelling of the building derived from first order principles or system
identification. This requires model training; for example neural networks can
be used for this purpose as black box models. Once the model is trained,
it is a simplified, though highly focused, representation of the building con-
trol systems, rather than a representation of the complete building. The
introduction of another parameter into the model, would require further re-
training. On the other hand SAC utilises a full building model, allowing more
diverse use cases to be applied and other control strategies to be explored,
without having to go through a process of training and data collection for
model verification. A lack of information in a building model may require
model calibration to fit parameters, similarly to the MPC method, however
this may lead to an incorrect physical model representation. For the case of
smaller buildings, such as houses, the knowledge-based SAC approach can be
viewed as more desirable, as they do not have complex HVAC systems that
MPC data-driven methods often seek to optimise. Examples of approaches
which are highly focused on optimum HVAC control, were performed by [18],
[19] and [20]. There is as yet no studies for SAC in smaller buildings such as
houses, which this paper addresses.

2.1. Simulation Assisted Control

Whereas MPC techniques use a black or grey box method to modelling,
simulation assisted control takes the white box method or physical model ap-
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proach and requires a full building model and a validated building simulator
such as ESP-r.

Simulator software such as ESP-r, allows exploration of the complex re-
lationships between a building’s parameters for form, fabric, airflow, plant
and control [21]. ESP-r is based on a finite volume, conservation approach
whereby problems are transformed into a set of conservation equations that
are then solved at successive time-steps in response to climate, occupant and
control system inputs. Other software take various approaches to solving
building physics problems. ESP-r is notable in that it is an integrated solu-
tion, where it not only considers thermal domains, normally only considered
by the aforementioned black and grey box methods, but also airflow. TRN-
SYS for example only performs thermal simulation. The coupling of the two
domains, and the intricacies of inter and intra zone air flow are significant
areas of research [22], and can enable the exploration of complex interactions.
This would be difficult to achieve using black box or grey box methods, that
often only represent a subset of the building knowledge, whereas BEPS white
box models take a whole building approach. The key difference is that BEPS
tools such as ESP-r have been extensively validated for numerous test cases
[23].

2.2. Previous SAC implementations

In [1], a prototype control structure was developed and tested in an en-
vironmental test room operated by Honeywell at Newhouse in Scotland.

They successfully demonstrated predictive heating startup to reach a de-
sired target temperature by a specified time, by integrating ESP-r building
simulation software with a LabVIEW based BEMS. Though a successful
demonstration, they concluded that further focus is required on a full-scale
real building subject to external climate variation.

[24] also investigated SAC using ESP-r by developing a prototype BEMs
(KOBRA) and new subroutines to link ESP-r into the BEMS. Experiments
were carried out in a single zone purpose built test chamber. Data collection
(monitoring) for temperature was performed by standalone HOBO datalog-
gers, and KOBRA was used for control. This study also did not consider the
affects of external climate, or whole building simulation. Other examples of
ESP-r integration include that with Matlab to replace the FORTRAN con-
trol system, using TCP/IP communication to link them [25]. The notable
focus in this study was the use networking to run simulations on separate
computer hosts (which could be geographically separated). Another example
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of this integration was carried out by [26], who investigated cooling strategies
using TRNSYS with Matlab, on a single computer host.

The integration of ESP-r with an energy management system, has mainly
focused on heating control but Mahdavi who first proposed SAC has led the
way in combined heating, lighting, shading and ventilation simulated assisted
implementations [27], [28], [29].

In [28], simulation-assisted control of window positions in two reference
buildings was investigated. The idea was to utilise the day-night difference in
outdoor air temperature toward passive space cooling via optimized dynamic
operation of windows.

[30] identified that optimising temperature schedules saves the most en-
ergy in an office building when applying simulation assisted control using
DOE-2.2. They noted that this was a challenge because there is no available
function in the DOE-2.2 software to simulate the energy management and
control system. They investigated various temperature schedules that were
closely aligned to thermal comfort in office buildings, and human work pro-
ductivity, for example temperature set back when occupancy rates dropped,
and reducing the temperature setpoint in the morning until occupancy body
temperatures reached a certain comfort level. By applying these simulation
assisted control strategies they demonstrated a 2.25% energy reduction, not-
ing that though the gain was minor, the target building was modern and had
good levels of insulation, glazing and an efficient HVAC system.

2.3. Research Gaps

This study intends to address previous issues not dealt with in the existing
SAC literature. For example Clarke had not considered full scale building
operation and external climate with ESP-r. This paper specifically looks at
external climate variation with ESP-r. Mahdavi’s previous studies are more
focused on lighting, ventilation and cooling, whereas in this study the focus
is predominantly on heating. Finally, Zhou’s implementation of SAC did not
use a full building model and used DOE-2.2 which does not simulate the
energy management and control system, whereas ESP-r has this capability,
and is used in this study. Furthermore there are no currently known studies
that look at the comparison of measured and simulated temperatures in a
residential house, with solar gains and electrical heating. This study will
explore this.
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3. Experimental Setup

To evaluate simulation assisted control requires several components.
(1) A building model (BIM).
(2) A building energy management system (BEMS).
(3) A building energy performance simulator (BEPS).
(4) A test building.
For (1) and (3), ESP-r has been used to create the model, and perform

simulation for prediction. For (2), a BEMS has been designed, developed and
integrated into the test building (4), with a focus on low cost. ESP-r has been
chosen as it is well known as an integrated solution that covers both thermal
and air-flow domains. Therefore climate files used also contain wind data1

to aid the simulation of air flow. Furthermore, ESP-r’s data files (model
description files and simulation output) are based on clear text, making data
extraction and manipulation straightforward using a text processing language
(such as perl).

3.1. BEMS Components

The various layers to the system are as follows.

Figure 1: User Interface showing setpoint control and energy use

1. A monitoring layer which records sensor values from the environment,
and measures and logs energy consumption.

1retrieved from Weather Underground (https://www.wunderground.com/)
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2. A control layer which provides interfaces (HTML/jQuery) to allow user
interaction (Figure 1) with heating control (e.g. changing temperature
of a room using ‘setpoints’). The control layer for the heating system
is based on a simple ‘on/off’ algorithm, rather than a system based on
a PID three term controller. This is due to the fact that the heaters
can only be switched on and off from the wireless control network. The
power output cannot be manipulated.

3. An automation layer which acts upon various user rules set in the
system (e.g. heating schedules). By default the schedule is 6am to
5pm. This would actuate heating during this period. The heating
system was provided by 2kW oil-filled or fan electric heaters in the
Garage, Family Room and Master Bedroom.

4. A simulation layer which can forward predict control strategies to op-
timise the automation layer (e.g. optimum heat startup). Note for the
purposes of this study, the simulation layer was only used to retrospec-
tively evaluate potential to predict the control strategy and was not
integrated with the control and automation layer. The integration is
future work.

The management of layers 1 - 3 is performed by a BEMS controller, which
was programmed to carry out the layer functions.

3.2. BEMS controller

An embedded plug computer (SheevaPlug) was chosen as the BEMS con-
troller. Similar to a Raspberry Pi, it consumes less than 5W, with a hardware
specification including a 1.2Ghz ARM processor and 512MB RAM. It was
configured to run Linux and was interfaced to numerous sensor networks
through USB, including a 1-Wire wired sensor network of carbon dioxide,
luminance, temperature and humidity sensors (internal and external), a Z-
Wave wireless control network (to control the heating and lighting) and a
Current Cost wireless electricity network for energy monitoring. All sensor
data for each main room in the house was logged to a USB hard drive every
minute using a round robin database (RRD) and the BEMS software was
written as set of perl language scripts. User interfaces to access the controls
(Figure 2) for the heating and lighting were developed in HTML using jQuery
libraries and an Apache web server.
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User Interface 
(Touchscreen Input) BEMS Control Layer Sensor (Temperature) Actuator (Heater)

Increase 
Setpoint

Is Setpoint >
Temperature

HTTP 
jQuery=>CGI:Perl

Get
Value

OWFS
Read 
Temperature

Yes Turn On
Z-Wave Switch 
ONNo

Provide Heating 
ON Status 

HTTP 
jQuery=>CGI:Perl

Figure 2: Flow of heating control actions in BEMS

3.2.1. 1-Wire sensor network

1-Wire sensors are the cheapest components used in the development. A
typical 1-Wire sensor costs less than $1. The One Wire File System (OWFS)2

library was used to interface to them. OWFS exposes all 1-Wire sensors as a
set of unix style directories and files. For example a temperature value for a
sensor can be retrieved by accessing the directory which represents the sen-
sor’s ID and within it, a the current sensor value would be contained within a
file called temperature (e.g. /1wire/28.2B7554023400/temperature). A perl
script was written to retrieve these values every minute and log the data to
the database. The on/off control of the heating system was maintained using
these sensors. 1-Wire temperature sensors are used extensively in the study
to compare measured and simulated data during validation. These sensors
are digital with 9 to 12-bit precision, and are operable from -55◦C to 125◦C
(+/-0.5◦C).

2http://owfs.org/
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3.2.2. Z-Wave sensor network

A Z-Wave proof of concept perl script3 was modified and integrated into
the control and automation scripts of the system. The control scripts were
used by the Apache web server to process HTML/CGI user interface setpoints
to actuate the heating. Similarly the modified Z-Wave script was used to
automate the scheduled heating.

3.2.3. Current Cost sensor network

The Current Cost monitors output XML strings 4 over a serial USB con-
nection. A perl script was written to capture these XML strings and the
provided data (total house consumption, and three appliance monitors for
each heater) was decoded every six seconds. An average of this was then
stored every minute in the database.

3.2.4. User interface (UI)

The user interface, developed in HTML permitted access by any web-
enabled device to monitor and control the house (i.e. set temperature, mon-
itor energy, dim a light (Figure 1 and 2)).

3.3. BEPS Layer

The BEPS layer consists of the ESP-r software, which has been compiled
to run on the Sheevaplug and can be used to generate predictive control
strategies for the heating, such as optimum heat startup. The simulator
requires a building model of the test house, that has been appropriately vali-
dated so that it can make useful predictions. The validation study addresses
the levels of uncertainty by assessing the prediction capabilities of the simu-
lator. ASHRAE guidelines have been used for this purpose and are discussed
in the next section.

3.4. Test House

The test house used in the study is a typical family-sized home based on
an affordable Scottish house design, and built using modular construction.
It consisted of two floors, and was composed of six prefabricated modules
in a 3x2 configuration with a roof module. The house was situated on an
off-site manufacturing facility. Individual modules were built and finished

3https://www.bigsister.ch/zwave/zwave_s
4http://www.currentcost.com/cc128/xml.htm

11



in the factory. The building exhibits some interesting features as it is a
demonstration facility. The north, east and west facades have no external
render finish, with only an exposed honeycomb layer, which is a fully vented
and drainable panel made from aluminium.

3.5. BEPS Simulation Model

The building model was created from 2D floorplans, and detailed infor-
mation about the construction of the walls was also gathered. Operating
schedules for the heaters were derived from the BEMS.

In ESP-r the BEPS model requires a building to be divided into a number
of zones. A zone is the primary reporting and descriptive unit in ESP-r and
is used to represent a range of spaces which are a direct mapping from reality,
e.g. a room, a portion of a room or a concatenation of several rooms. During
a simulation, a zone is approximated to a node in a model that represents
a number of variables such as temperature and pressure, which is calculated
at each specified time-step. In this paper, temperature will be one of the
variables under consideration when determining the goodness of fit, when
comparing with monitored temperature data from the BEMS every hour to
evaluate the potential for integrating a BEPS model in a BEMS for simulation
assisted control. Other types of node include a specific load, such as casual
gains or heating loads, that act on zones. High levels of goodness of fit across
various data sets should indicate that the BEPS model can be used for the
development of simulation assisted control strategies.

3.6. Predictive Control

An example of a predictive control strategy is to determine the optimum
switch on for the heating system to reach setpoint at a particular time in
the morning of the next day, when there is sufficient forecast data to do so
and the predictive mode has been selected. This type of prediction is useful
when there is a lookahead of several hours [1]. In order to have a lookahead
for several hours, a weather forecast is required. Retrieving hourly forecast
data for temperature, humidity and wind is relatively simple, with popular
weather sites such as weather.com providing easy access however hourly solar
radiation forecast data remains expensive (upwards of $2000 from specialist
websites). Alternatively it is possible to estimate solar radiation data using
solar tracking equations as in [31].

With an hourly forecast dataset in place, the simulator could be used to
consider the differences between the predicted heat time to reach setpoint
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and optimum heat time. For example, if it took 1.25 hours to reach setpoint,
this time could be subtracted from the arrival time of 9am to obtain an esti-
mated start time at 7.45am. The process could then be iteratively repeated
by instantiating simulation runs until the predicted time of reaching the set-
point is within the desired error of the algorithm. Once the prediction is
complete, the BEMS control scheduler could then be appropriately modified
with optimised start up time for the next morning.

4. Results and Discussion

Before evaluating the potential for simulation assisted optimisation, the
BEMS datasets were validated with the BEPS simulated data. For valida-
tion, a number of metrics can be used for this purpose. In the early years
of building simulation, simple per cent difference calculations were the pri-
mary means of comparing measured and simulated data [32]. Nowadays, the
majority of literature for building simulation research make use of the CV
(RMSE) (Coefficient of Variation of the Root Mean Squared Error) (Equa-
tions 1 and 2).

RMSE =

√√√√ n∑
i=1

(mi − si)
2

n
(1)

CV (RMSE) =
RMSE

m̄
.100 (2)

It measures the differences between simulated (s) and measured (m) val-
ues, at each timestep i, for a total number of timesteps, n. A lower value
indicates less variance and hence higher quality model. CV(RMSE) aggre-
gates time specific errors into a single dimensionless number. It is the most
used metric in building simulation model research and a model has passed
a threshold to be deemed useful, according to criteria set out in ASHRAE
Guideline 14 [33] which uses CV(RMSE) to determine validation or calibra-
tion, specified under section 5.2.11.3 (Modelling Uncertainty). According to
the criteria, a CV(RMSE) of 15% is acceptable for calibration models using
monthly data and 30% for hourly models. Hourly data gives the most accu-
rate results, though is the most difficult to capture; monthly data can also
be acceptable depending on the application, but can mask inaccuracies that
can appear at hourly or daily resolutions [34]. Another useful metric which
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can be used to determine goodness of fit is the Pearson correlation coefficient
(Equation 3) which can determine how well measured and simulated values
correlate in a particular period. It is also expressed as a percentage, whereby
the higher the value the better the fit the simulated data is to the measured.
For example 100% would yield a one to one match between the measured
and simulated data.

r =
Σ(mi − m̄)(si − s̄)√
Σ(mi − m̄)2Σ(si − s̄)2

(3)

4.1. Validation of data sets for prediction

Validation periods need to have consistent data, which can therefore be
replicated in the simulator, and also varied to consider different times of the
year, to test seasonal validity of the BEPS model. The first validation period
was 15th - 20th March 2012 and the second validation period was 10th - 17th
September 2012. During these times the setpoint was kept constant in heated
rooms.

4.1.1. Minor Calibration to determine density of glasswool in external wall

All building parameters and information were known, with the exception
of the density of glasswool used for insulation. In order to determine this un-
known parameter, the simulation is compared to measured data. One month
of measurement results were used, and compared with matching simulations
with various densities of glasswool. The density which gave the lowest whole
house average CV(RMSE) for temperature and heating energy delivery was
found to be 190kg/m3.

4.2. Validation for goodness of fit

Table 1 shows the goodness of fit statistics for each zone in the model
using the March dataset. The average CV(RMSE) for the whole house is
computed to be 11.5% with the the individual CV(RMSE) for the Garage
and all Bedrooms under 10%. The lowest individual CV(RMSE) is calcu-
lated to be for the Garage zone at 7.3%. The Master Bedroom has the
highest Pearson correlation at 95%. Table 2 shows the goodness of fit statis-
tics for each zone in the model using the September dataset. The average
CV(RMSE) for the whole house is computed to be 8.6%, which is lower
than March, with the the individual CV(RMSE) for all zones under 12%.
However the Pearson correlations are lower than those computed for March,
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Zone CV(RMSE)(%) Pearson (%)
Garage 7.3 93
Family Room 12.8 80
Kitchen 17.7 87
Bedroom 2 8.8 78
Bedroom 3 8.9 73
Master Bedroom 9.6 95

Table 1: CV(RMSE) & Pearson Correlation for Individual Zone Hourly Temperatures
(March Dataset)

Zone CV(RMSE)(%) Pearson (%)
Garage 11 83
Family Room 8.88 56
Kitchen 7.52 85
Bedroom 2 5.85 70
Bedroom 3 11.6 63
Master Bedroom 8.09 69

Table 2: CV(RMSE) & Pearson Correlation for Individual Zone Hourly Temperatures
(September Dataset)

suggesting the prediction capability is not as strong. For example, the lowest
individual CV(RMSE) for temperature in this dataset is calculated to be for
the Bedroom 2 at 5.85%, but the correlation is 70%. This comparatively
low CV(RMSE) is interesting to note, as CV(RMSE) results in shorter time
periods (such as March) are penalised more, when they have higher Pearson
correlation. There are few building simulation calibration/validation studies
that look at individual hourly temperature zone CV(RMSE) with the ma-
jority focusing on energy loads at monthly and hourly intervals, but these
values are competitive against a study for a large office building presented
in [35]. They attained a range between 12.4% - 28.7% for CV(RMSE) when
comparing indoor zone temperatures of measured and simulated data. Simi-
larly, a study of a historic building yielded RMSE results of 0.48 and 0.49 for
interior air temperature [36]. Overall the results presented here show that
the model is well within the ASHRAE guidelines when considering goodness
of fit using hourly temperature comparisons, which requires a CV(RMSE) of
less than 30% and compare well against similar studies.
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Figure 3: Temperature : March 15th - 20th 2012 : Garage, Setpoint 19.3◦C.

4.3. Implementation of Optimum Heat Startup

We choose the March dataset for the evaluation. The implementation for
the controller was designed to be scripted externally from ESP-r, to find the
optimum start up time for the setpoint to be reached by 9am on the 19th
March 2012, which was a Monday, following a weekend of no heating activity.

4.4. Results of retrospective evaluated Simulation Assisted Control

Figure 4 graphically shows the results of measured (blue line), simulated
scheduled (purple line) and simulated optimum start (green line) for Monday
19th March 2012.

The measured downward curve shown in Figure 4, starting from 6pm on
the 18th March is fairly well represented by the simulator response, and the
measured and simulated start at 6am on the 19th March is in near perfect
agreement, showing that the BEPS is representing the BEMS heating con-
trol system effectively, as shown by the (purple) simulated gradient tightly
aligned with the (blue) measured data. These two features demonstrate that
the simulator is responding well enough for this evaluation and highlights
the problem with scheduled heating starting at 6am, in that the setpoint is
reached at 7:48am, leaving over an hour of wasted energy in maintaining a
setpoint with an arrival time of 9:00am. The results of the optimum start
search have predicted the start up time should be at 7.30am rather than the
scheduled time at 6am. This is represented by the green line in the figure, and
demonstrates the effectiveness of employing predictive control using BEPS
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tools, and is an example of how simulation assisted control can enhance the
control core of the BEMS to save energy — in this case by delaying the
switch on time for the heating system as part of an optimum heat startup
control strategy. This leads to a 50% saving compared to scheduling. Not
only can savings be made by adapting scheduling times, but in some cases
simulation can aid in predicting that no heat would be required leading to
potential 100% savings. We can see this in Figure 3; if the heating was de-
sired at a specific time on the third day (the third and fourth days being the
weekend with no scheduled heating), the BEPS could predict (with forecast
climate data and a lookahead of several hours) that in fact the space would
be passively heated and heating would not be required.

5. Conclusion

In this paper we have presented a retrospective evaluation of simulation
assisted energy management system for electrical heating systems to demon-
strate the potential for a solution to the problem of fuel poverty reduction.
The system has been developed using low cost components, such as 1-Wire
sensors and also gives the ability to monitor energy consumption. With
the recent introduction of cheap and affordable smart home technology (e.g.
WiFi smart plugs and wireless temperature sensors) it can be seen that there
is great potential to explore this further and future work should entail an ac-
tual implementation, to thoroughly evaluate simulation assisted control with
forecast weather data. There is also scope to make this a cloud-based system,
which is currently the trend home energy management systems are taking. In
which case, the simulator could also be made a cloud application and linked
to the cloud energy management system, whereby demand information could
be further shared to a utility. This paper has also shown that external cli-
mate can have such an effect on passive solar heating, that in some cases
heating can be predicted to be not required, or can be reduced. The system
developed gives the necessary prediction capabilities to anticipate and man-
age heating regime requirements, and therefore aid in efficient use of space
heating. Given that research has identified that one of the key problems is
ineffective control of heating, a predictive system could alleviate this issue.
This study is also one of the few that has looked at solar gains in a residen-
tial house, and the effect it has on indoor temperatures, particularly with an
electrical heating system. Notably cooling has not been explored since there
is largely no need in Scotland, where this study has been based however the
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same principles should apply to a cooling system such as an air conditioning
unit, whereby an optimum cool start time can be determined. It is expected
that solar gains in such an application will be a dominant consideration, and
the modelling of shading and actuation of blinds will feature heavily as part
of the control system. Lastly this paper has considered an electrical heating
system, using basic on/off control. A more complex system of modelling a
boiler and simulating a wet central heating system, with zoned thermostatic
radiator valve (TRV) control can be developed for a simulation assisted ap-
plication for those that are fuel-poor with gas heating. TRVs can now be
controlled wirelessly, and are available as Z-Wave enabled devices, which can
be readily integrated into the prototype BEMS presented and described in
this paper.
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Building Simulation With A Hardware Real- Time Controller, in: Sev-
enth International IBPSA Conference, 2010.

[25] A. Yahiaoui, J. Hensen, L. Soethout, D. V. Paassen, P. O. Box, M. B.
Eindhoven, A. A. Delft, Interfacing Building Performance Simulation
With Control Modeling Using Internet Sockets, in: International Build-
ing Performance Simulation Association, 2005, pp. 1377–1384.
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