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Abstract

Deep neural networks are powerful tools for classification and regression tasks. While a network with more than 100 hidden layers
has been reported for image classification, how such a non-recurrent neural network with more than 10 hidden layers will perform
for speech synthesis is as yet unknown. This work investigates the performance of deep networks on statistical parametric speech
synthesis, particularly the question of whether different acoustic features can be better generated by a deeper network. To answer
this question, this work examines a multi-stream highway network that separately generates spectral and F0 acoustic features based
on the highway architecture. Experiments on the Blizzard Challenge 2011 corpus show that the accuracy of the generated spectral
features consistently improves as the depth of the network increases from 2 to 40, but the F0 trajectory can be generated equally
well by either a deep or a shallow network. Additional experiments on a single-stream highway and normal feedforward network,
both of which generate spectral and F0 features from a single network, show that these networks must be deep enough to generate
both kinds of acoustic features well. The difference in the performance of multi- and single-stream highway networks is further
analyzed on the basis of the networks’ activation and sensitivity to input features. In general, the highway network with more than
10 hidden layers, either multi- or single-stream, performs better on the experimental corpus than does a shallow network.

Keywords: Text-to-Speech, Statistical parametric speech synthesis, Deep neural network, Highway neural network

1. Introduction

Speech synthesis aims at creating natural-sounding speech
waveforms and is used in various types of application with
speech waveforms as output. A widely used application is Text-
to-Speech (TTS) synthesis [1], where the speech is synthesized
to read aloud the input text. Its social value is obvious in
human-machine and human-human communication, e.g., when
a disabled human speaker cannot articulate sounds.

TTS is difficult because of the ambiguous association
between text and speech. Despite the recent trend towards end-
to-end TTS [2], most existing TTS systems consist of individual
front- and back-ends. The front-end infers the phonemic and
prosodic information from the text, and then the back-end
synthesizes the speech waveform given the output from the
front-end. The TTS back-end, or the acoustic model, can
be implemented on the basis of statistical parametric speech
synthesis (SPSS), a framework that uses statistical models such
as a hidden Markov model (HMM) to generate speech acoustic
features and then construct the waveform [3, 4]. Recently,
various acoustic models based on neural networks (NNs) have
been proposed [5, 6, 7]. Some of these focus on the multi-
mode distribution [8], cross-time dependence [9], or cross-
dimension dependence [10] of compact and low-dimensional
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acoustic features. Other models focus on generating raw
acoustic features such as the spectrum envelope [11, 12].

This work examines how the depth of a non-recurrent
neural network affects its acoustic modeling performance,
particularly on the commonly used low-dimensional spectral
and F0 acoustic features. This is achieved by using a highway
neural architecture. In our previous work, we proposed a
multi-stream highway network, where multiple sub-networks
were used to separately generate different acoustic features
[13]. Experiments on a multi-stream highway network with
14 hidden layers showed that the sub-network for F0 was
partially dormant, while the sub-network for spectral features
was active. This indicated that the generation of F0 and
spectral features may require networks with different depths.
Motivated by the previous observation, this work specifically
investigates whether different kinds of acoustic features can be
better generated by a deeper network.

To answer the question, this work compares multi-stream
highway networks of different depth when applied to the
Blizzard Challenge 2011 corpus. The results show that spectral
features can be better generated by a deeper network with up to
40 hidden layers, while F0 can be well generated by a network
with 4 hidden layers. This work also includes experiments on
single-stream highway and conventional feedforward networks,
where all acoustic features are generated from a single
network. It was found that the single-stream networks must be
sufficiently deep to generate both spectral and F0 features well.
These findings are further supported by a histogram analysis
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of each network’s activation and the neurons’ sensitivity to
the input textual features. The results and analysis indicate
that increasing the depth of the neural network is beneficial
for the experimental NN-based acoustic models. Comparing
the single- and multi-stream networks in a subjective test also
shows that the performance of all the experimental networks is
better when the depth is increased from 4 to 40.

This work is closely related to pioneering work using neural
networks for acoustic modeling in TTS [6, 8], where networks
with up to 7 hidden layers were reported. However, this work
explores deeper networks. Not only the normal feedforward
network, but also two types of highway network are considered.
More importantly, this work provides both results and analysis
regarding the single- and multi-stream networks. Although
several recent TTS system also used complex and deep neural
networks [2, 14, 15], these large systems work on high-
dimensional acoustic features or waveform sampling points.
We believe that highway networks examined in this paper and
the results on conventional low-dimensional acoustic features
can be useful for the common SPSS-based speech synthesizers.

Section 2 of this paper introduces the multi- and single-
stream highway networks. Section 3 then introduces the tools to
analyze the neural network. Section 4 explains the details of the
experiments, including the performance of highway networks
with different depths when modeling spectral and F0 features.
The trained networks are further analyzed in section 5 based
on the tools introduced in section 3. Section 6 discusses the
remaining issues, and section 7 concludes.

2. Acoustic model based on highway networks

2.1. Neural-network-based acoustic model for TTS

This work focuses on the neural-network-based acoustic
model for TTS systems with a pipeline structure [1]. This
type of TTS system uses a front-end to derive the information
on the pronunciation and prosody of the input text. Based on
the linguistic features, the SPSS-based back-end generates the
acoustic features and then constructs the waveform. For the
common configuration in English TTS, the prosodic features
may include the pitch accent of syllables and boundary tone
of phrases, and the acoustic features may consist of F0 and
compact spectral features of each speech frame [16]. The
acoustic model can be implemented on the basis of feedforward
neural networks, where the input linguistic features are
transformed into acoustic features frame by frame [6].

The advantage of a deep neural network is its ability to
extract structural features from data [17, 18, 19]. For example,
a non-recurrent network with more than 100 hidden layers
performed best in a recent image classification task [20]. For
acoustic modeling, existing work has explored feedforward
neural networks with up to 7 hidden layers [6, 8]. Although
this showed that a deeper network improved the accuracy of
generated acoustic features, the performance of a network with
more than 10 hidden layers remains unknown. This work thus
aims to investigate the performance of deeper non-recurrent
networks by analyzing their performance and behavior.

2.2. Highway-network-based acoustic model
A deep neural network cannot be easily trained using

the back-propagation algorithm and the random initialization
strategy. Various methods have been proposed to facilitate
the training of deep neural networks, including using better
initialization methods based on unsupervised pre-training [21,
22] and unsaturated activation functions [23, 24]. Another
thread of research focuses on the network architecture that
alleviates the difficulty of network training. One new
architecture is the highway network [25], which combats
the gradient-vanishing problem. It has been shown that
a deep highway network with more than 10 hidden layers
can be well trained for speech recognition without requiring
complicated engineering tunings [26]. Therefore, this work
investigates deep highway networks for parametric speech
synthesis because of their simplicity and effectiveness.

2.2.1. Highway block
The highway network consists of one or multiple highway

blocks. In one highway block, the input linguistic feature vector
x is transformed by a conventional feedforward layer as

H(x) = f (WH x + bH). (1)

Here, f (·) is the non-linear activation function, bH is the bias
vector and WH is the transformation matrix. Furthermore, the
highway block uses a highway gate to compute a control vector

T (x) = σ(WT x + bT ), (2)

and then merges the transformed feature vector H(x) with the
input x as the output of this highway block:

y = T (x) �H(x) + [1 − T (x)] � x. (3)

Here, � denotes element-wise multiplication, and the sigmoid
function σ(x) = 1

1+e(−x) is used in the highway gate. The above
computational flow in one highway block is plotted in Figure 1.

Parameters WT and bT in the highway gate are also trainable.
When the output of the gate T (x) is approximately zero, the
input x can be directly propagated forwards; i.e., y ≈ x. In this
case, the gradient can also be propagated backwards without
being attenuated by the feedforward transformation layer in
the highway block. Thus, a very deep network based on
highway blocks can be trained by using the standard gradient-
descent back-propagation algorithm. Note that H(x) can be a
transformation conducted by multiple feedforward layers. In
other words, one highway block can contain more than one
feedforward transformation layer.

2.2.2. Single-stream and multi-stream highway networks
A highway network based on one or more highway blocks

can be directly used as the acoustic model for TTS, which is
shown on the right side of Figure 1. Because all the acoustic
features are generated by a single network, we call it a single-
stream highway network. The word ‘stream’ is borrowed
from the HMM-based parametric framework [27]. Besides the
single-stream architecture, we propose a multi-stream highway
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Figure 1: Computation flow in one highway block (left), multi- (middle) and single-stream (right) highway networks. MGC and BAP denote mel-generalized
cepstral coefficients and band aperodicity. The ‘feedforward’ layer is a conventional non-linear or linear transformation layer in the feedforward neural network.

network as shown in the middle of Figure 1. On the input side, a
linear projection layer transforms the input vector into a shared
hidden vector. The multi-stream highway network then uses
several sub-networks to separately transform the shared vector
into different acoustic features.

There are two reasons for us to investigate multi-stream
networks. First, the hidden feature vector in a single-stream
network encodes the information for generating both spectral
and F0 features, so the effect of the network’s depth on
the spectral and F0 features cannot be separately examined.
In addition, the hidden vector may be biased toward high-
dimensional spectral features and affect the performance of F0
generation. Thus, a multi-stream architecture is investigated to
clearly show the result for each acoustic feature type.

Second, we want to compare the change of performance
when the depth of single- and multi-stream networks is
increased. Despite the claim that a single-stream network
can model the correlation between spectral and F0 features
[28], other research shows that the correlation between F0
and spectral features is somewhat weak, at least for reading
speech in a neutral style [29, 30]. Recent work also shows
that the F0 generation performance becomes worse even when
spectral features are better generated on the basis of multi-
task learning [31]. In addition, spectral and F0 features may
rely on different input textual features [32], thus on different
hidden representations in the network. Considering the above
argument, we wonder that multi- and single-stream highway
networks may perform differently on F0 and spectral feature
generation as the depth is increased.

3. Tools to analyze the highway network

3.1. Histogram of the output of the highway gate

Each network’s performance can be evaluated by calculating
the accuracy of the generated acoustic features. In addition, we
introduce two tools to analyze the highway network. The first
tool is the histogram of the output of the highway gate; i.e.,
T (x) in Equation 2. As discussed in section 2.2.1, a highway
block tends to avoid using the transformed H(x) as its output

when the highway gate is almost closed (T (x) ≈ 0). Thus,
the histogram on T (x) can reflect the behavior of the highway
block and thus the whole network. In practice, we activate
the network with the input data for one phoneme and collect
T (x) to plot the histogram. Note that the order of the feature
dimension is ignored.

3.2. Sensitivity of a neuron to input textual features
The second tool evaluates the sensitivity of a neuron to the

input textual feature. Suppose the input feature vector at time
t takes the value s for a feature class S. For example, when
S = {/a/, /t/, · · · } refers to the phoneme identity, s = /a/means
this frame realizes the phoneme /a/. Then, all the input vectors
that take the same feature value s can be fed to the neural
network, and the output of the k-th neuron can be summarized
as

ak(s) =
exp(ã(s))∑

s∈S exp(ã(s))
, (4)

where
ãk(s) =

∑
t γs(t)hk(t)∑

t γs(t)
. (5)

Here, γs(t) is an indicator whose value is 1 if the input feature
at time t takes the feature value s. On the basis of ak(s), the
k-th neuron’s sensitivity to the feature class S is defined as a
normalized entropy over all possible feature values as

ES,k =
−
∑

s∈S ak(s) log ak(s)
−
∑

s∈S
1
|S| log 1

|S|

, (6)

where |S| is the number of possible values in class S. Note that
if S refers to a continuous feature such as syllable position, s is
an index of a quantized interval. Intuitively, if hk(t) is constant
∀s ∈ S, then ES,k = 1 and the neuron is insensitive to the feature
class S . The average sensitivity of a neuron group K can be
further defined as ĒS = 1

|K|
∑

k∈K ES,k.
This sensitivity measure was originally defined by Dr. Sim

for a neural network in a speech recognition system [33]. The
difference is that ã(s) in Equation 4 is divided by the number
of matched data frames. Because the distribution of the textual
features for TTS can be highly unbalanced, this division makes
it possible to compare the entropy of different feature classes.
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Figure 2: Performance of feedforward network (DS), single-stream (HS), and multi-stream highway network (HM) on test set when the depth of the network varies.
Each highway block in HS and HM contains two hidden transformation layers with a tanh activation function. Each point is the average result over the last five
training epochs of each network for two training trials. The standard deviation is shown as the error bar.

Table 1: Experimental networks.

Definition
DS Single-stream deep feedforward network
HS Single-stream highway network

HM Multi-stream highway network

4. Experiments

4.1. Corpus and network notation
Experiments used the Blizzard Challenge 2011 Nancy corpus

that has 12072 English utterances [34]. Both the test and
validation set contained 500 randomly selected utterances.
Mel-generalized cepstral coefficients (MGCs) of order 60,
continuous F0 trajectory, voiced/unvoiced (V/U) condition, and
band aperiodicity (BAP) of order 25 were extracted for each
speech frame by using the STRAIGHT vocoder [35]. The Flite
toolkit [36] conducted the text-analysis for the entire corpus.
The output of Flite were converted into a vector of order 382
as the input xt to the neural network. This vector encodes
common textual features similar to those used in the HMM-
based framework [16]. Experiments were conducted on the
three types of neural network listed in Table 1. The toolkit for
training the neural network was modified on the basis of the
CURRENNT library [37] 1.

4.2. Experiments on the depth of the neural network
4.2.1. Network configuration and training recipe

This experiment investigated how the depth of a multi-stream
highway network influences its ability to generate different
acoustic features. For reference, the single-stream highway and
feedforward network were also examined.

All the highway blocks in the single-stream highway network
(HS) had a layer size of 382, equal to the dimension of the input

1The code and samples can be found at http://tonywangx.github.io.

vector. Each highway block contained 2 hidden layers based
on a tanh activation function. The bias of the highway gate
was initialized as -1.5 according to the results of a preliminary
experiment comparing −1.5, 0.0 and 1.5. The other parameters
were initialized using the normalized initialization strategy [38]
2. The single-stream feedforward network DS had a layer size
of 382 and a tanh function for all layers. Its model parameters
were initialized using the normalized initialization strategy.

The multi-stream highway network HM contained three sub-
networks for MGC, F0, and BAP. The layer size of each sub-
network was 256. The layer size of the linear projection layer
near the input side was 768 (= 256 ∗ 3). Each sub-network was
configured and initialized in the same way as the HS network.

These three networks were trained with the number of tanh-
based hidden layers set to {2, 4, 8, 14, 20, 40}. The the stochastic
gradient descent method with early stopping was used for
trainining. Batch normalization was not used [39] as our
initial experiment showed that its effect is limited when the
normalized initialization is used. The natural alignment on the
test data was used in the objective evaluation. The objective
measure was calculated on the test data for the last five training
epochs of two training trails. The mean and standard deviation
of each objective measure were then computed.

4.2.2. Results and analysis
The results are shown in Figure 2. Our first observation

is that the MGC RMSE decreased when the depth of HM
was increased from 2 to 40. The MGC RMSE curves of the
other two experimental networks also decreased in a similar
way. These results suggest that both single- and multi-stream
networks are better at generating spectral features if they are
deeper.

2Our previous work [13] used Gaussian noise to initialize the highway
network. However, we found that the normalized initialization strategy [38]
led to a consistently better performing highway and feedforward networks.
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Figure 3: Performance of multi-stream highway network (HM), the single-stream highway (HS) and feedforward network (DS) on the test set. Each network
contains 14 hidden tanh layers. The number associated with a HS or DS network denotes the layer size. Table 2 defines HM1 to HM4.

However, the error curves on F0 showed different patterns.
While the F0 curves of HS and DS start from a low point and
gradually rise with increased network depth, the F0 curve of
HM is almost flat. Particularly, HM with just 2 hidden tanh
layers performed as well as the HM with 40 hidden layers in
terms of F0. These results suggest that, for a network using
HM architecture, more hidden layers is better for generating
spectral features but not necessarily for F0.

Note that HM had a larger total layer size than HS and DS,
which may influence HM’s performance on F0 especially when
the network was shallow. This possibility is examined in the
next section. However, the shape of the RMSE curves generally
shows how the F0 and spectral feature generation performs
differently in the multi-stream network.

4.3. Experiments on the layer size of the neural network

4.3.1. Network configuration and training recipe
This experiment investigated network performance given a

fixed depth but different layer sizes. All the neural networks
in Table 1 were trained with 14 hidden layers. The depth
of 14 was selected because a deeper network with a large
layer size required too much GPU memory resource because
of the current software implementation. For HS and DS, the
trained networks in Section 4.2 with the layer size 382 were
included for comparison. Meanwhile, HSs with layer sizes of
482, 582, 782 and 1024 were trained. Then, DSs with layer
sizes of 782, 882 and 1024 were trained so that they were
comparable with the HSs in terms of model size. The HMs
used the configurations shown in Table 2. The training recipe
was the same as in Section 4.2. The total number of model
parameters of each network was collected in order to compare
results across different network types.

4.3.2. Results and analysis
According to the results shown in Figure 3, HM’s F0

performance did not change much when the layer size of the

Table 2: Network structure of HM networks in Figure 3.

Layer size of the sub-network
MGC stream F0 stream BAP stream

HM1 256 256 256
HM2 382 256 256
HM3 512 382 256
HM4 768 512 256

F0 sub-network changed. In contrast, HS and DS performed
better on F0 as their layer size grew larger. On MGC, all three
types of network performed better with a larger layer size.

These results are consistent with those in Section 4.2. For
the multi-stream network, a larger network is better at spectral
feature modeling than a smaller network, but it might not
surpass a shallower network on F0 modeling. A larger single-
stream network performs better on both acoustic features.
Particularly, its F0 generation performance is similar to that of
the multi-stream network. A single-stream network might be
dominated by the hidden features for the spectral features. If
that is the case, only in a very large network would some of the
nodes in the single-stream network be assigned to model the
F0. This possibility will be further discussed in Section 5.1.

4.4. Subjective evaluation

The objective evaluation results showed that spectral features
can be better modeled by a very deep network while this is not
the case for F0. However, it is of interest to know whether the
difference is perceptible. Thus, before analyzing the network
in detail, we describe a subjective evaluation in this section.
We prepared 5 groups of synthetic samples in Table 3 and
organized a MUSHRA test [40] in CSTR of the University of
Edinburgh. Ten paid native English speakers participated in the
test. Among the experimental groups, a comparison of H1, H2,
and H3 was used to evaluate the perceptible difference in the
generated spectral features, while a comparison of H1, H4, and
H5 was used to show the difference in the generated F0s.
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Figure 4: Results of the MUSHRA test on synthetic speech based on acoustic
features generated by several multi-stream highway networks (HM1). The
central mark is the median, and the edges of the box indicate the 25th and
75th percentiles. Each group is defined in Table 3.

Table 3: Summary of test groups in Figure 4. HM1 used 256 as the layer size
for each sub-network (Table 2). The number after HM1 denotes the number of
hidden tanh layers.

Network for generating the acoustic feature
MGC & BAP F0

H1 HM1 14 hidden layers HM1 14 hidden layers
H2 HM1 4 hidden layers HM1 14 hidden layers
H3 HM1 40 hidden layers HM1 14 hidden layers
H4 HM1 14 hidden layers HM1 4 hidden layers
H5 HM1 14 hidden layers HM1 40 hidden layers

The results are shown in Figure 4. Regarding the spectral
features, H3 achieved the best performance, followed by H1
and then H2. A two-sided t-test showed that the average score
of H3 was statistically higher than that of H1 (p ≈ 0.000) and
H2 (p ≈ 0.000). Meanwhile, H1’s average score was higher
than that of H2 (p = 0.049). These results indicated that
a deeper HM1 network generated spectral features that were
perceived to be better in quality.

Regarding F0 among the three groups with different
configurations, H1 had a lower score than H4 (p = 0.003),
even though H1 used F0 generated by a network with 10 more
hidden layers. Similarly, H5 was not significantly different
from H4 (p = 0.088) even though H5 used F0 from the
deepest network with 40 hidden layers. Interestingly, although
the objective evaluation of F0 in Figure 2 did not show
huge differences among networks with different depths, the
subjective evaluation showed a perceptible difference between
HM1 with 14 hidden layers and the other cases. This could be
because different models generate quite different F0 trajectories
even though the average RMSE and CORR metrics on the
generated F0 trajectories are not so different. However, this
result at least shows that a deeper network based on HM1 does
not guarantee improvement in the generated F0 trajectories,
unlike the case for spectral features.

On the basis of the first MUSHRA test, the second test
examined the overall performance of DS, HS and HM1 with
depths 4 and 40. The baseline depth was selected as 4 because it
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Figure 5: Results of the MUSHRA test on the single-stream feedforward
network (DS), single-stream highway network (HS), and multi-stream highway
network (HM1). The central mark is the median, and the edges of the box are
the 25th and 75th percentiles. HM1 used 256 as the layer size for each sub-
network (Table 2).

Table 4: Results of the two-sided Wilcoxon signed rank tests (α = 0.01)
between groups in Figure 5. The number denotes the depth of the network. �
indicates a significant difference, while � indicates an insignificant difference.

DS 4 HM 4 HS 4 DS 40 HM 40 HS 40
DS 4 - � � � � �

HM 4 � - � � � �
HS 4 � � - � � �

DS 40 � � � - � �
HM 40 � � � � - �
HS 40 � � � � � -

was commonly used for baseline feedforward neural networks.
Here, the F0 and spectral features of one synthetic sample were
generated by the same network.

The results of the second test are shown in Figure 5.
Additionally, a two-sided Wilcoxon signed rank test is used
to measure the significance of the difference and the results
are shown in Table 4. For all types of experimental network,
the synthetic samples generated by the network with 40 hidden
layers had a higher average score than those of the same type
of network with just 4 hidden layers. According to Table
4, increasing the depth to 40 led to a statistically significant
improvement for DS and HS. This result is consistent with
the objective evaluation and suggests that using a very deep
network with more than 10 hidden layers is better than using
a network with 4 hidden layers. Even the classical feedforward
network is improved if it is sufficiently deep. When the network
is very deep, both single- and multi-stream highway networks
are good choices.

Interestingly, HM had a higher average score than HS when
they each had 4 hidden layers. However, HS outperformed
HM when the number of hidden layers was 40 for each
network. One reason is that, when the network is shallow, the
multi-stream structure takes advantage of the larger layer size.
However, when the network is deep enough, even a single-
stream network with a smaller layer size has enough capacity
to model the spectral features as well as the F0 features.
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Figure 6: Histogram of highway gates’ output T (x) given input test data for phoneme /a/. Each highway block had 2 hidden tanh layers. Only 7 blocks are shown
here for the network with more than 14 hidden layers. b.1 always denotes the first block near the highway network’s input side.

5. Analysis of the highway network

5.1. Activity of the highway network

The experiments in Section 4 showed that the depth of a
multi-stream network had different effects on the generation
of F0 and spectral features. To explain this result, we used
the histograms introduced in Section 3 to analyze the network.
Specifically, we used the input feature vectors of a specific
phoneme from the test data as an excitation and plotted the
histogram over the output of the highway gate. The histograms
for different phonemes were similar and only the results for
phoneme /a/ are shown here.

Figures 6 (a) and (b) show the histograms for HM1 with
14 hidden layers. The histogram of the first block in the
MGC sub-network, which is plotted in figure (b.1), showed
an unbalanced binomial distribution, meaning that most of the
gates were closed (T (x) ≈ 0) while some gates were open
(T (x) ≈ 1). In the second block, the binomial distribution was
kept to some degree. For blocks near the output side, the shape
of the histogram gradually changed into a bell shape, which
indicates that these blocks conducted complex transformations
by summing the non-linear transformation output and the input.

The histograms for the F0 sub-network showed different
patterns from those for the MGC sub-network. The histograms
for the F0 sub-network, especially those near the end of the

network, were spike-shaped. The width of the spike - variance
of the data - was much smaller than that for MGC. Note that
the spike in the histogram was located around 0.2, and this
location was determined by the initial value of the gate units
( 1

1+exp(1.5) ). Nevertheless, these blocks generally avoided using
a non-linear transformation and simply delivered their input to
the next block. Therefore, most of the blocks in the F0 sub-
network were inactive.

Similar results were also observed in the histograms for HM1
with 20 and 40 hidden layers, which are shown in Figure 6 (c-
f). Particularly, the blocks near the output side in the deeper
F0 sub-network had a sharper spike in the histogram. This
result was consistent for all phonemes 3. Because an inactive
highway block tends to directly deliver the input data to the
output side, adding these inactive blocks may not introduce
additional feature transformation. This may explain why
adding highway blocks did not improve the overall performance
for F0 generation in the multi-stream highway network.

In contrast, the highway blocks in the MGC sub-network are
generally active even in the network with 20 highway blocks.
This result may explain the better performance of HM1 in MGC
generation as the depth increased from 2 to 40. Interestingly,
Figure 6(e) also shows that the last block (b.20) in the MGC

3The other histograms can be found on http://tonywangx.github.io.
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Figure 7: The sensitivity measure ES,k for highway gate neurons in the MGC (solid line) and F0 (dash line) sub-networks of HM1 with 14 hidden layers. b.1 always
denotes the first block near the network’s input side. The horizontal axis, which ranges from 1 to 256, is the sorted index of the gate neurons according to ES,k . A
higher value of ES,k denotes less sensitivity.

Table 5: The most- and least-sensitive input features in the HM1 network with 14 hidden layers. A lower ĒS (average over neurons) reflects a more sensitive feature.

in the MGC sub-network in the F0 sub-network
feature class ĒS feature class ĒS

Most
sensitive

Phoneme identity 0.9923 Position of phoneme in syllable 0.9973
Position of phoneme in syllable 0.9961 Accent type of next syllable 0.9974

Position of phoneme in syllable (backward) 0.9967 Accent type of previous syllable 0.9980
Number of previous stressed syllables in phrase 0.9974 Position of syllable in the word 0.9980

Number of stressed syllables remained in phrase 0.9975 Phoneme identity 0.9981

Least
sensitive

Position of phrase in utterance 0.9999 Number of words in previous phrase 0.9999
Number of words in phrase 0.9999 Number of words in next phrase 0.9999

Number of phrases in utterance 0.9999 ToBI boundary tone 0.9999
Number of syllables in previous phrase 1.0000 Number of syllables in next phrase 0.9999

ToBI boundary tone 1.0000 Number of syllables in previous phrase 1.0000

sub-network has a sharp histogram. This suggests that HM1
might not require 20 highway blocks on the corpus.

The above analysis concerns the multi-stream highway
network. Next, we plotted the histograms for HS with 14 hidden
layers in Figure 6(g). In this case, we cannot differentiate the
histograms for MGC and F0. Interestingly, the histograms
of HS resemble those in the MGC sub-network of HM1.
This resemblance suggests that HS mainly focused on MGC
modeling instead of F0. If this is true, it explains why HS’s
performance on F0 was worse than that of HM.

The objective results in Section 3 showed that HS performed
better on F0 when the network was deeper. One reason for
this may be that a larger network has additional capacity for
modeling F0. This assumption is supported to some extent by
the histogram of the deepest HS network shown in Figure 6(h).
Compared with b.20 in Figure 6(e), b.20 of HS didn’t produce
a sharp histogram. This indicates that the HS network took full
advantage of the increased model capacity to model both F0
and spectral features.

5.2. Sensitivity of the network to input textual features

The previous section showed different levels of activity in
the MGC and F0 sub-networks. Intuitively, we would expect a
highway block to be active when the input feature correlates
with the target feature and the mapping between them is
complex. It is possible that the blocks for F0 were inactive
because the target F0 had fewer dimensions than those of the

spectral features. It is also possible that the input features were
less correlated with F0.

Given the trained networks, we next examined the second
possibility by analyzing the sensitivity of neurons to the
input textual features. The HM1 network trained with
14 hidden layers was analyzed based on the measure ES,k
introduced in Section 3. This measure was calculated over
the test set for every highway gate neuron and textual feature
class. Additionally, the average ĒS over the sub-network was
calculated for each textual feature class S. The feature classes
with the highest and lowest ĒS value are listed in Table 5.

As Table 5 shows, the neurons in the MGC sub-network
were the most sensitive to the phoneme identity and position
of the phoneme in the syllable. The ES,k of each neuron with
respect to these two feature classes are shown in Figure 7(a) and
(b). The results are not suprising because the spectral features
correlate mainly with the segmental information of the text. The
results also showed that neurons in the F0 sub-network were
sensitive to the segmental information. However, although F0
does correlate with segmental features [41, 42], we cannot see
any input features above the word level that were highly ranked
in Table 5. What’s more, the ToBI boundary tone [43] was
ranked as one of the least sensitive features. This result may
be because the input features over the whole corpus, including
the ToBI boundary tone, were automatically annotated by the
text-analyzer. These input features may be too noisy to provide
useful information for F0 generation.

A comparison of the curves for the MGC and F0 sub-
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networks in Figure 7 generally indicates that the neurons in
the F0 sub-network were less sensitive to all classes of input
features. In addition, it shows that most of the neurons in the
F0 sub-network were insensitive even to the top two feature
classes. This may explain why most histograms of the highway
blocks in the F0 sub-network had a bell shape. In contrast,
the neurons in the MGC sub-network showed high sensitivity
at least to the phoneme identity, including the neurons near
the network’s output. This is consistent with the shape of the
histograms in the MGC sub-network.

In general, the results based on the sensitivity measure are
consistent with the histograms of the MGC sub-network. This
indicates that the network should be deep enough to fully
transform the input features. However, the sufficient depth
varies for different types of acoustic feature. Typically, the
network for F0 can be shallower than the one for MGC.

6. Discussion

Experiments and analysis in this paper didn’t measure the
correlation between F0 and spectral features directly. However,
the experiments’ results at least suggest that F0 and spectral
features cannot be assumed to be highly correlated for any
corpus. They also suggest that the network structure should
be carefully chosen to model spectral and F0 features together.

The experiments on the multi-stream highway network
indicated that the F0 generation didn’t gain from using a deeper
network. Analysis in Section 5.2 suggested that one reason
may be the uninformative input features. Particularly, the
automatically inferred ToBI boundary tones turned out to be
uninformative. Of course, this result depends on the language
and the front-end, and it does not deny the effectiveness of
ToBI boundary tone in other scenarios. For example, we
analyzed a multi-stream highway network trained on a large
Japanese corpus [44] and found that various information,
such as the pitch accent type and inflected form of the
word, were more useful than the phoneme identity since
these features can be easily acquired from the surface text or
retrieved from the lexicon. This result can be found online:
http://tonywangx.github.io. However, even though the input
features can be manually corrected, some of these features
are not highly related to the realization of F0 [32]. As F0 is
argued to rely on contextual information at various levels [45],
it may be necessary to introduce more effective context features
[46, 47]. Another approach is to consider the hierarchical
property of the F0 and using hierarchical feature representation
of F0 [48] and complex network structures [49].

Note that, although the depth of the experimental networks
has been increased to 40, the computational resource required
to train the network is still acceptable if the network is narrow.
This was also supported by the work on highway networks
for speech recognition [26]. From our experience, the total
training time for the deepest multi-stream highway network was
still short than that of training a neural network with just two
feedforward, two recurrent layers and less model parameters.

Another interesting direction for further work is to introduce
the highway connection to the recurrent neural networks

(RNN). Recent research on this topic proposes highway RNNs
with complex network structures [50, 51]. Based on a recent
analysis on the highway network [52], we tried a simple
approach to combine the highway and RNN. Although the
experiment results are preliminary, they suggest that this
structure performed relatively better than a deep RNN network
with a similar number of model parameters. Furthermore, the
training time was less than half of that for the deep RNN. To
keep the focus of the idea and control the length of this paper,
the work on the highway RNN is described in another report,
which can be found on http://tonywangx.github.io.

7. Conclusion

This work aimed at showing the effect of a neural network’s
depth on the performance of F0 and spectral feature modeling.
The comparison of multi-stream highway networks with
different depths showed that the quality of generated spectral
features improved when the network’s depth was increased
up to 40. However, the generated F0 from the network with
4 hidden layers was not significantly worse than that from
a deeper network. Histogram-based analysis of the highway
gate output in multi-stream highway networks showed that the
highway blocks in the F0 sub-network behaved differently from
those in the sub-network for spectral features. Typically, the
highway blocks in the F0 sub-network tended to carry their
input directly to the next layer, while blocks in the spectral sub-
network conducted more complex non-linear transformations.
This analysis supported the finding that the F0 sub-network
was not required to be deep. For the commonly used single-
stream architecture, the experiments showed that both the
single-stream highway and conventional feedforward networks
must be deep enough to provide sufficient network capacity to
accurately model both F0 and spectral features. This finding
was also supported by the histogram-based analysis.

In a nutshell, although a deeper network may be unnecessary
for F0 modeling in the case of multi-stream highway networks,
experiments and analysis on the experimental corpus suggest
that a deeper network generally enables better parametric
speech synthesis.
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