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Statistical Modeling of

Single-Photon Avalanche Diode Receivers

for Optical Wireless Communications
Elham Sarbazi, Student Member, IEEE, Majid Safari, Member, IEEE, and Harald Haas, Fellow Member, IEEE

Abstract—In this paper, a comprehensive analytical approach
is presented for modeling the counting statistics of active quench-
ing and passive quenching single photon avalanche diode (SPAD)
detectors. It is shown that, unlike ideal photon counting receiver
for which the detection process is described by a Poisson arrival
process, photon counts in practical SPAD receivers do not follow
a Poisson distribution and are highly affected by the dead time
caused by the quenching circuit. Using the concepts of renewal
theory, the exact expressions for the probability distribution and
moments (mean and variance) of photocounts in the presence
of dead time are derived for both active quenching and passive
quenching SPADs. The derived probability distributions are val-
idated through Monte Carlo simulations and it is demonstrated
that the moments match with the existing empirical models for
the moments of SPAD photocounts. Furthermore, an optical
communication system with on-off keying (OOK) and binary
pulse position modulation (BPPM) is considered and the bit error
performance of the system for different dead time values and
background count levels is evaluated.

Index Terms—Single photon avalanche diode (SPAD), optical
wireless communications, photon counting, dead time, active
quenching, passive quenching, on-off keying (OOK), binary pulse
position modulation (BPPM).

I. INTRODUCTION

IN recent years, there has been a growing interest in

optical wireless communications (OWC) as a promising

complementary solution to radio frequency (RF) technologies

[1]. OWC systems primarily use positive-intrinsic-negative

(PIN) diodes and avalanche photodiodes (APDs) as optical

receivers. PIN diodes have simple structure and are relatively

inexpensive. The main disadvantage of PIN diodes is their

low gain. When operating at extremely low signal levels,

their thermal noise can be more significant than the sig-

nal. Compared to PIN diodes, APDs are more complicated

and expensive. They outperform PIN diodes with respect to

sensitivity, as their internal gain reduces the thermal noise

effect. However, the random multiplication process introduces

additional gain-dependent excess noise, and this limits the

maximum achievable gain of an APD. Therefore, high gain

low noise transimpedance amplifiers (TIAs) are usually re-

quired for detection of relatively weak optical signals [2].

In photon-starving applications and long distance transmis-

sions, the optical signal can be received at levels below the

sensitivity of these conventional optical receivers and get lost

The authors are with the Li-Fi Research and Development Centre, In-
stitute for Digital Communications, School of Engineering, The Univer-
sity of Edinburgh, Edinburgh EH9 3JL, UK (e-mail: e.sarbazi@ed.ac.uk;
majid.safari@ed.ac.uk; h.haas@ed.ac.uk).

in the thermal noise. Single photon avalanche diodes (SPADs)

appear to be a more proper choice in such applications. SPADs

provide very large internal gain, thereby easily overcoming

thermal noise and enabling the detection of individual photons

without the need for TIAs. Thanks to their high single-photon

sensitivity and high gain, SPADs have enabled rapid progress

in many applications [3]–[5]. These receivers are able to

closely approach quantum-limited sensitivity in the detection

of weak optical signals and have drawn particular attention in

OWC [6]–[12].

SPADs are semiconductor devices with p-n junctions and

operate based on a simple principle: if the reverse bias voltage

of the p-n junction is raised slightly above the breakdown

threshold voltage, a very high electric field is produced, and

a single electron-hole pair, can trigger a strong avalanche,

leading to a large internal gain and a measurable current.

This current rises rapidly and continues until the avalanche

is quenched by lowering the bias voltage down to or below

breakdown threshold [13], [14]. To detect a subsequent photon,

the bias voltage must be raised again above breakdown level.

Reducing the bias voltage below the threshold and restoring

the SPAD to the operative level, is accomplished by quenching

circuit. The quenching process introduces a finite recovery

time, known as dead time, during which the device does not

respond to another incident photon [15].

There are two principal quenching modes: passive quench-

ing (PQ) and active quenching (AQ). In general, AQ circuits

offer shorter dead times and higher count rates compared with

PQ circuits, but are more complex, more expensive to fabricate

and larger in size [16]. The photon counting process of PQ

SPADs is similar to paralyzable detectors where any photon

arriving during dead time is not counted, but extends the

dead time period. In AQ SPADs, similar to nonparalyzable

detectors, the dead time is constant, and any photon arriving

during dead time is neither counted nor it extends the dead

time duration [16].

SPADs are still a relatively immature technology whose

performance is degraded by the unavoidable dead time. The

dead time is a limiting factor for the achievable data rate

in OWC systems. Because of demands for higher data rates,

several studies has been recently dedicated to reducing the

effect of dead time by employing arrays of SPADs [17]–

[20]. From a communication theory point of view, it is of

great importance to investigate the effect of dead time on

the performance of an SPAD-based OWC system. For this

purpose, the statistical dead time-affected photon counting
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behavior of SPAD receivers needs to be precisely modeled.

Previous Works: In [21], the paralyzable and nonparalyz-

able count rate models are introduced which are the most

well-known models for estimating the count rate of a single-

photon detector. These two models have also been adopted

for SPAD detectors to predict the approximate count rate

[22]. The count rate is a useful metric for assessing how

fast the detector can detect incoming photons. However, it

does not provide a complete description of the detected and

lost photons, required for error performance evaluation of

communication systems. In [6], a SPAD-based VLC system

with OOK modulation is proposed to address the problem of

continuous downhole monitoring in the oil and gas industry.

In this article, a SPAD array is considered, and the counting

losses due to SPAD’s dead time have not been taken into

account. In [7] and [8], a SPAD-based optical orthogonal

frequency division multiplexing (OFDM) system is presented

and the nonlinear distortion due to the saturation of SPAD

receiver, as well as the bit error ratio performance of both

DC-biased optical OFDM and asymmetrically clipped optical

OFDM are investigated. Authors in [7] and [8], have assumed

Poisson statistics for the distribution of SPAD photocounts,

which is not an accurate approximation in the presence of

dead time. In [23], the method of contour integration is used

for deriving the photon counting distribution of a single-

photon detector with paralyzable dead time. In [24], using

the concepts of Poisson point processes, the effect of a

nonparalyzable dead time is studied. In [25], a practical photon

counting receiver in optical scattering communication with

finite sampling rate, paralyzable dead time, and electrical noise

is characterized where it is shown that the dead time effect

leads to sub-Poisson distribution for the number of recorded

pulses. The approximate photocount distribution derived in

[25], is only applicable if the photon rate is sufficiently low.

In [26], we studied the statistical behavior of an AQ SPAD

receiver and investigated the effect of nonparalyzable dead

time on the bit error performance of an optical system. We

extended our approach in [27] and an array of AQ SPADs

was characterized for OWC applications. We also studied the

information transfer rate of an AQ SPAD in [28] where the

AQ SPAD receiver was modeled as a discrete memoryless

channel, and the information transfer rate was studied using

an information theoretic approach.

Our Contribution: In this study, we establish a mathe-

matical framework and precisely model the photon counting

behavior of SPAD receivers. We apply the concepts of renewal

theory to develop exact expression for the probability distribu-

tion of photon counts in the presence of a general type of dead

time, and then provide the exact probability distribution, mean

and variance of AQ and PQ SPAD photocounts. Moreover,

we study the bit error performance of a SPAD-based optical

link. This study shows that the counting process of a SPAD

receiver in the presence of dead time cannot be accurately

approximated by a Poisson distribution. To the best of our

knowledge, there exists limited, if not any analytical work to

find the exact photocount distribution of SPAD photocounts,

considering the impact of dead time. Although the main focus

of this article is on SPAD detectors, but the approach can be

applied to a variety of single-photon detectors with similar

photon counting behavior.

The rest of this paper is organized as follows. In Section II,

the concepts of renewal theory are applied for modeling the

exact dead time-modified photocount distribution of a detector

with a general type of dead time. The exact photocount

distribution of AQ and PQ SPAD receivers are then derived

in Section III using the results obtained in Section II, and

Monte Carlo methods are employed to verify the validity of

the analytical models. The system model of a SPAD-based

optical system is described in Section IV, and in Section V, the

numerical and analytical results are compared and discussions

on the bit error performance of the system are provided.

Finally, concluding remarks are given in Section VI.

II. DESCRIPTION OF THE THEORETICAL FRAMEWORK

In this section, first the concepts of “product density func-

tions” and “renewal processes” are introduced. These tools are

then applied for modeling the dead time-modified photocount

distribution of SPAD receivers based on a general approach

that can be applied to both AQ and PQ SPADs.

A. Product Density Functions

Consider a stochastic point process N corresponding to

events occurring at times {ti}, i = 0, 1, . . . . Let N(t)
represent the stochastic variable denoting the number of events

in the time interval (0, t). Then dN(t) denotes the number of

events in the small interval (t, t + dt]. A function f1(t)dt is

defined such that [29]:

f1(t)dt = E[dN(t)] , (1)

where E[dN(t)] represents the average number of events in

interval (t, t+ dt]. Accordingly, the product of two stochastic

variables dN(t1) and dN(t2) is defined as [29]:

f2(t1, t2)dt1dt2 = E[dN(t1)dN(t2)] , (2)

which is also equal to the joint probability that an event occurs

in (t1, t1+dt1] and another event occurs in (t2, t2+dt2]. The

function f2 is called a product density of order 2. Similarly,

the product density function of order k, fk(t1, t2, . . . , tk), is

defined as [29]:

fk(t1, t2, . . . , tk)dt1dt2 . . . dtk = E[dN(t1) . . . dN(tk)] , (3)

where fk(t1, t2, . . . , tk)dt1dt2 . . . dtk represents the probabil-

ity that an event occurs in the interval between t1 and t1+dt1,

one event between t2 and t2 + dt2, . . . , and one between tk
and tk + dtk.

Provided that t1, t2, . . . , tk are ordered (t1 < t2 < · · · < tk)

and the general class of Poisson processes is considered, the

following equation holds between the product density of order

k and the product densities of order one [29]:

fk(t1, t2, . . . , tk) = f1(t1)f1(t2 − t1) . . . f1(tk − tk−1) . (4)

We shall now apply the above tools to the problem of

modeling the exact counting distribution of a SPAD receiver

impaired by dead time. The aim is to determine p(k, t), the

probability that k photons have been detected during time



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2822815, IEEE
Transactions on Communications

SUBMITTED PAPER 3

∂kG(z, t)

∂zk

∣
∣
∣
∣
z=1

= k!

∫ t

0

dtk

∫ tk

0

dtk−1 . . .

∫ t3

0

dt2

∫ t2

0

f1(t1)f1(t2 − t1) . . . f1(tk − tk−1) dt1 , (7)

interval (0, t). It is clear that what happens between t and

t + dt is not only dependent on the fact that k photons have

been detected in time interval (0, t), but also upon the detection

time of last photon, due to dead time. Hence, the usual method

of expressing p(k, t+dt) in terms of p(k, t) is mathematically

involved. We first determine G(z, t), the generating function

(G.F.) corresponding to p(k, t), which is given by:

G(z, t) =

∞∑

k=0

p(k, t)zk. (5)

The following property holds for G(z, t) and the product

density of order k [29]:

∂kG(z, t)

∂zk

∣
∣
∣
∣
z=1

=

∫ t

0

∫ t

0

. . .

∫ t

0

fk(t1, t2, . . . , tk) dt1dt2 . . . dtk .

(6)

Note that fk is symmetrical in t1, t2, . . . , tk, and (6) can be

written as (7) at the top of this page. The following equation

is then deduced from (7):

∂G(z, t)

∂z

∣
∣
∣
∣
z=1

=

∫ t

0

f1(t1) dt1 (8)

Now, let the Laplace transform (L.T.) of the function f1(t)
with respect to the variable t be F1(s) =

∫∞

0 f1(t) e
−stdt.

Taking the L.T. of (8) gives:

g(z, s) =
1

s
×

1

1− (z − 1)F1(s)
, (9)

where g(z, s) is the L.T. of the function G(z, t). Let also

define P (k, s) as the L.T. of the function p(k, t). The following

diagram summarizes how the four functions p(k, t), P (k, s),
G(z, t), and g(z, s) are connected:

G(z, t)

L.T.

 (
■■

■■
■■

■■
■

■■
■■

■■
■■

■

p(k, t)

G.F.

6>
✉✉✉✉✉✉✉✉

✉✉✉✉✉✉✉✉

L.T.
 (

■■
■■

■■
■■

■■
■■

■■
■■

g(z, s)

P (k, s)

G.F.

6>
✉✉✉✉✉✉✉✉✉

✉✉✉✉✉✉✉✉✉

Since g(z, s) is the G.F. of P (k, s), according to (9), P (k, s)
can be obtained as [30]:

P (k, s) =
1

s
×

[F1(s)]
k

[1 + F1(s)]
k+1

. (10)

From this, it can be concluded that if f1(t) or F1(s)
is known for the point process associated with the SPAD’s

photon counting process, P (k, s), and hence, p(k, t) can be

obtained.

B. Renewal Processes

By definition, a counting process ω = {N(t) : t ≥ 0}
with the occurrence time sequence of {ti}, is called a re-

newal process if the inter-occurrence times w1 = t1 − t0,

w2 = t2 − t1, ... are independently and identically distributed

random variables. In the case of a Poisson point process,

the inter-occurrence times are independently and identically

distributed exponential random variables [29]. In this work,

assuming a Poisson arrival process for incoming photons, the

photon counts form a renewal counting process with:

p(k, t) = Pr{N(t) = k} . (11)

For renewal processes, the usual method for obtaining

p(k, t) is through renewal integral equations in which p(k, t)
is expressed in terms of p(k − 1, t). This requires the use of

product density functions as introduced earlier. First, please

note that the equation in (4) between the product densities

of order 1 and k implies that given an event at t = 0,

the probability that an event occurs between t and t + dt is

determined by f1(t)dt and is independent of what happened

before t = 0.

Consider a SPAD detector with dead time τ (whether

paralyzable or nonparalyzable or a combination of both).

For simplicity, normalized photon arrival rate is assumed

throughout the derivations. Given a photon registered at t = 0,

if the next photon arrives in the time period of (0, τ) it is not

detected, but if it arrives after the dead time of the photon

occurring at t = 0, it is counted. The probability that the

next photon arrives between t′ and t′+dt′, given that the first

photon is registered at t = 0, can be expressed by the function

(−∂φ(t′)/∂t′)dt′ where φ(t) represents the probability that no

photon arrives between 0 and t, given that a photon arrived at

t = 0 [29]. The integral equation for this renewal process can

be written as:

p(k, t) =

∫ t

0

p(k − 1, t− t′)(−
∂φ(t′)

∂t′
)dt′ + δ(k)φ(t) , (12)

where δ(k) = 1 for k = 0 and 0 otherwise. In the above

renewal equation, the first term in the right-hand side, accounts

for the case where the next photon arrives between t′ and

t′ + dt′. This photon is not detected if 0 < t′ ≤ τ . The

second term represents the case where no photon arrives during

time interval (0, t). The following equation holds for the G.F.

corresponding to p(k, t):

G(z, t) =

∫ t

0

z G(z, t− t′)(−
∂φ(t′)

∂t′
)dt′ + φ(t) . (13)

Taking the L.T. of the above equation with respect to the

variable t gives:

g(z, s) =
Φ(s)

1 + z(sΦ(s)− 1)
, (14)
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p(k, t) =

K1∑

r=0

(−1)r
(
k + r − 1

r

)
(t− kτ1 − rτ2)

k+r

(k + r)!
e−(k+r)τ2

−

K2∑

r=0

(−1)r
(
k + r

r

)
(t− (k + 1)τ1 − rτ2)

k+r+1

(k + r + 1)!
e−(k+r+1)τ2 ,

(16)

where Φ(s), is the L.T. of the function φ(t). Since g(z, s) is

also the G.F. of P (k, s), according to (14), P (k, s) is given

by [30]:

P (k, s) = Φ(s)(1 − sΦ(s))k . (15)

Thus, if φ(t) (and hence, Φ(s)) is known for SPAD’s photon

counting renewal process, p(k, t) can be obtained by finding

the inverse L.T. of the above equation.

C. A Solution for SPAD Receivers with Dead time

The above results can now be applied to derive the probabil-

ity distribution function p(k, t) of the number of detected

photons, k, in a time interval of (0, t) in the presence of

detector dead time. Here, a general approach is proposed

which provides the dead time-modified photocount distribution

of any photon counting detector. Note that AQ and PQ SPADs

are special cases and will be addressed later in Section III.

Suppose that detected and lost photons are followed by

two different dead times, τ1 and τ2, respectively. Assuming

different dead time values for detected and lost photons,

helps to clearly reflect distinct effects of paralyzable and

nonparalyzable dead times on the total renewal process. For

such a detector, we have the following results.

Theorem 1: For a general photon counting detector with

dead times τ1 and τ2, the probability distribution function,

p(k, t), of the number of detected photons, k, in a time interval

(0, t) is given by (16) at the top of this page where K1 and

K2 are integers such that:

t− kτ1
τ2

− 1 < K1 <
t− kτ1
τ2

t− (k + 1)τ1
τ2

− 1 < K2 <
t− (k + 1)τ1

τ2
.

Proof: Assume that τ1 > τ2. The probability φ(t) that

no photon is detected up to time t, given that a photon is

registered at t = 0, is:

φ(t) = [1(t)− 1(t− (τ1 − τ2))]

+ φp(t− (τ1 − τ2))1(t− (τ1 − τ2)) ,
(17)

where 1(t) is the unit step function, and is equal to 1 if t ≥ 0,

and 0, otherwise. In the above equation, the total probability

of not detecting any photons is obtained as follows: The first

term in the right-hand side of (17) expresses the condition that

no photon is detected for t < τ1 − τ2. If any photon arrives

during time interval of (0, τ1 − τ2), it is clearly lost and is

followed by a dead time of length τ2, and this dead time won’t

extend beyond the dead time caused by the registered photon

at t = 0, i.e. τ1. Thus, φ(t) = 1 for t < τ1− τ2. If any photon

arrives after τ1 − τ2, the dead time will be extended beyond

τ1. It is then valid to assume that the detector is in paralyzable

mode, where φp(t− (τ1 − τ2)) represents the probability that

no photon is registered in time t − (τ1 − τ2). Applying L.T.

to (17) gives:

Φ(s) =
1

s
(1− e−s(τ1−τ2)) + e−s(τ1−τ2)Φp(s) . (18)

In order to obtain Φp(s) and then Φ(s), the product density

of the first order for the paralyzable mode is easily calculated

as:

f1
p(t)dt = 1(t− τ2)e

−τ2dt . (19)

The above expression results from arguing that a photon is

detected if it arrives after the dead time of the photon at t = 0
is finished (t > τ2) and it is also not preceded by any photon

arrival event in time interval (0, τ2). Thus:

F1
p(s) =

1

s
e−(s+1)τ2 . (20)

F1
p(s) and Φp(s) are related through (9) and (14):

Φp(s) =
1

s
×

1

1 + F1
p(s)

. (21)

Therefore, (18), (20) and (21) result in:

F1(s) =
1

s esτ1+τ2 + es(τ1−τ2) − 1
. (22)

The same result is obtained for τ1 < τ2 following exactly

the same arguments. According to (10), for general values of

τ1 and τ2, the expression in (23) at the top of next page is

obtained for P (k, s). Applying the inverse L.T. then leads to

(24). Using the following equality for t > 0:

1

2πi

∫ α+i∞

α−i∞

est

sk
ds =

tk−1

(k − 1)!
,

the final expression in (16) for p(k, t) is obtained. This

completes the proof for Theorem 1.

When τ1 6= 0 and τ2 6= 0, p(k, t) is given by a finite series.

Particular cases include:

• With τ2 = 0, the photocount distribution for an AQ SPAD

is obtained.

• With τ1 = τ2, the photocount distribution for a PQ SPAD

is obtained.

• With τ1 = τ2 = 0, the Poisson distribution for an ideal

detector is obtained.

Note that the dead time of detected and lost photons are not

the same in general, e.g. for an AQ SPAD. In the next section,

AQ and PQ SPADs are studied in detail.
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P (k, s) =
1

s

[(

esτ1+τ2 + es(τ1−τ2)
)−k

−
(

esτ1+τ2 + es(τ1−τ2)
)−(k+1)

]

(23)

p(k, t) =
1

2πi

∫ α+i∞

α−i∞

[
1

s

(

esτ1+τ2 + es(τ1−τ2)
)−k

−
1

s

(

esτ1+τ2 + es(τ1−τ2)
)−(k+1)

]

estds

=
1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[

e−(k+r)τ2(−1)r
(
k + r − 1

r

)
es(t−kτ1−rτ2)

sk+r+1

]

ds

−
1

2πi

∫ α+i∞

α−i∞

∞∑

r=0

[

e−(k+r+1)τ2(−1)r
(
k + r

r

)
es(t−(k+1)τ1−rτ2)

sk+r+2

]

ds

(24)

III. SPAD’S COUNTING STATISTICS

In the absence of dead time, photon detection events of

a SPAD receiver are modeled as a Poisson process and the

probability of counting k photons during a time period of

(0, Tb) is given by [1]:

p0(k) =
(λTb)

ke−λTb

k!
, (25)

where the constant λ is the average photon arrival rate (in

photons/s), hence, λTb is the average number of photons

arriving at the SPAD during the observation time of Tb
seconds. The photon arrival rate λ is related to the power

of the optical signal by [1]:

λ =
ηQEPr

hν
, (26)

where ηQE is the quantum efficiency of the SPAD; Pr denotes

the power of the incident optical signal; h is the Planck’s

constant; and ν represents the frequency of the optical signal.

In the presence of dead time, however, the photon counts no

longer follow a Poisson distribution. In this section, the results

of previous section are applied to study the counting statistics

of AQ and PQ SPAD receivers. Throughout this work, it is

assumed that the sampling rate is very high compared to dead

time, so that the counting losses arising from finite sampling

rates are negligible. It is also assumed that the SPAD uses

the rising edge of a pulse as an event to count. Therefore, the

total number of counted photons during the counting interval

of (0, Tb) is obtained by recording the number of rising edges

of the pulse train and it can not exceed kmax = ⌊Tb/τ⌋ + 1,

where ⌊x⌋ denotes the largest integer that is smaller than x.

A. AQ SPAD

For AQ SPADs, after each photon detection, the detector

is inactive for a constant time τ . A photon is detected if and

only if no detection event has taken place during a time τ
preceding it, and any photon arriving during the dead time

is neither counted nor has any influence on the dead time

duration.

Theorem 2: The photocount distribution of an AQ SPAD

with nonparalyzable dead time of τ , during the time interval

of (0, Tb) is given by:

pK(k) =

k∑

i=0

ψ(i, λk+1)−

k−1∑

i=0

ψ(i, λk) , (27)

for k < kmax. Function ψ(i, λ) is defined as ψ(i, λ) =
λie−λ/i! , and λk = λ(Tb − kτ).

Proof: Assuming τ2 = 0 in (16), the photocount distri-

bution for an AQ SPAD is obtained:

p(k, t) =

∞∑

r=0

(−1)r
(
k + r − 1

r

)
λk+r(t− kτ)

k+r

(k + r)!

−

∞∑

r=0

(−1)r
(
k + r

r

)
λk+r+1(t− (k + 1)τ)k+r+1

(k + r + 1)!
,

(28)

for k < kmax, and p(k, t) = 0 for k ≥ kmax. Note that in (16)

normalized photon arrival rate (i.e. λ = 1) was assumed and

in (28) this assumption is released. The expression for p(k, t)
can be further simplified to:

p(k, t) =

k∑

i=0

λi(t− (k + 1)τ)i

i!
e−λ(t−(k+1)τ)

−
k−1∑

i=0

λi(t− kτ)i

i!
e−λ(t−kτ) .

(29)

Hence, pK(k) = p(k, t)|t=Tb
and the theorem follows.

The above expression is in line with results previously

derived in [24], [26]. The probability mass function (PMF)

obtained in (27) is plotted in Fig. 1 and compared with Monte

Carlo simulation results for different values of dead time ratio,

δ = τ/Tb. In this figure, a time interval of Tb = 1 µs is

considered and λ = 3×107 photons/s. Also, δ = 0, 0.02, 0.05,

and 0.07 are assumed. Note that for a receiver without dead

time, the photocount distribution is Poisson with mean λTb.

For the PMF expression in (27), some of the main properties

shall be addressed as follows:

1) The unitary condition: As required for any valid distri-

bution function, for the PMF in (27), the equality
∑

k

pK(k) =

1 holds. Furthermore, it is easily seen that limτ→0 pK(k) =
p0(k), that is, when τ goes to zero, the original Poisson

distribution is recovered.

2) First and second moments:

Proposition 3: The mean and variance of the photocount

distribution in (27) are:

µK = (kmax − 1)−

kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1), (30)
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Fig. 1. Probability distribution of AQ SPAD photocounts for Tb = 1 µs,
λ = 3× 10

7 photon/s and different values of δ.

σ2
K =

kmax−2∑

k=0

k∑

i=0

(2kmax − 2k − 3)ψ(i, λk+1)

−

(
kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

)2

.

(31)

Proof: Please refer to Appendix B.

Again, as dead time goes to zero, the limiting relations

limτ→0 µK = λTb and limτ→0 σ
2
K = λTb in (30) and (31)

can be verified, where λTb is the mean value of the ideal

Poisson distribution.

Fig. 2a presents µK and σ2
K for an AQ SPAD as functions

of λ where they are compared to an ideal Poisson counting

process. As shown, the difference between µK and σ2
K be-

comes more significant as λ increases. Let the ratio of the

variance to mean be defined as:

ξ =
σ2
K

µK
. (32)

Fig. 2b illustrates this ratio where it approaches to zero as λ
goes to infinity, unlike the Poisson distribution where this ratio

is equal to one for all values of λ.

3) Asymptotic mean for large Tb/τ ratio: The exact mean

value in (30) can also be expressed as follows:

µK = (kmax − 1)−

kmax−2∑

k=0

Γ (k + 1, λk+1)

Γ (k + 1)
, (33)

where for a positive integer s, Γ (s) = (s − 1)! and

Γ (s, x) = e−x(s − 1)!
s−1∑

i=0

xi

i!
are the gamma function

and incomplete gamma function, respectively [30]. Defining

γ(s, x) = Γ (s, x)/Γ (s), the following approximation holds

for γ(k + 1, λk+1) when Tb/τ goes to infinity [30]:

γ(k + 1, λk+1) ≈

{

1, k + 1 > λk+1

0, k + 1 ≤ λk+1

.

Therefore, γ(k + 1, λk+1) can be approximated as zero for

k ≤ (λTb − λτ − 1)/(1 + λτ), and 1, otherwise. Applying
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Fig. 2. First and second moments of AQ SPAD photocounts with Tb = 1 µs,
τ = 2 ns: (a) comparison of mean and variance with ideal Poisson distribution,
(b) the variance to mean ratio.

the above approximation to (33) gives:

lim
Tb/τ→∞

µK =
λTb

1 + λτ
. (34)

Thus, the asymptotic count rate of an AQ SPAD, i.e. the

average number of recorded photons per second, is given by:

λ′ =
λ

1 + λτ
. (35)

This expression is in line with the asymptotic expressions

presented in [31] and the practical models provided in [22].

B. PQ SPAD

For PQ SPADs, any photon arrival is followed by dead

time, and the ones occurring during the dead time of previous

photons, extend the dead time duration.

Theorem 4: The photocount distribution of a PQ SPAD

with paralyzable dead time of τ , during the time interval of
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Fig. 3. Probability distribution of PQ SPAD photocounts for Tb = 1 µs,
λ = 3× 10

7 photon/s and different values of δ.

(0, Tb) is given by:

pK(k) =

kmax−1∑

i=k

(−1)i−k

(
i

k

)
λi(Tb − iτ)i

i!
e−iλτ , (36)

for k < kmax and pK(k) = 0 for k ≥ kmax.

Proof: Assuming τ1 = τ2 = τ in (16), the photocount

distribution for a PQ SPAD is obtained which is further

simplified to:

p(k, t) =
K∑

r=0

(−1)r
(
k + r

r

)
λk+r(t− (k + r)τ)k+r

(k + r)!
e−(k+r)λτ .

(37)

With a change of variable i = k + r:

p(k, t) =
K+k∑

i=k

(−1)i−k

(
i

k

)
λi(t− iτ)i

i!
e−iλτ . (38)

where K is an integer such that:

t

τ
− (k + 1) < K <

t

τ
− k

With pK(k) = p(k, t)|t=Tb
, and therefore K + k = kmax − 1,

the expression in (36) is obtained. Hence, the theorem follows.

The PMF obtained in (36) is plotted in Fig. 3 and compared

with the Monte Carlo simulation results for different values of

δ = τ/Tb. In Fig. 3, a time interval of Tb = 1 µs is considered

and λ = 3 × 107 photons/s. Also, δ = 0, 0.02, 0.05, and

0.07 are assumed. Note that for a receiver without dead time,

the photocount distribution is Poisson with mean λTb. For

the PMF expression in (36), some of the main properties are

addressed as follows:

1) The unitary condition: It can easily be verified that the

unitary condition
∑∞

k=0 pK(k) = 1 holds for the PMF in (36)

and limτ→0 pK(k) = p0(k), that is, when τ goes to zero, the

PMF in (36) approaches the ideal Poisson distribution.
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Fig. 4. First and second moments of PQ SPAD photocounts with Tb = 1 µs,
τ = 2 ns: (a) comparison of mean and variance with ideal Poisson distribution,
(b) the variance to mean ratio.

2) First and second moments:

Proposition 5: The mean and variance of the photocount

distribution in (36) are derived as:

µK = λe−λτ (Tb − τ), (39)

σ2
K = λ2e−2λτ (3τ2 − 2Tbτ) + λe−λτ (Tb − τ). (40)

Proof: Please refer to Appendix C.

Similar to AQ SPAD, the limiting relations limτ→0 µK =
λTb and limτ→0 σ

2
K = λTb in (39) and (40) can be confirmed,

where λTb is the mean value of the ideal Poisson distribution

(see Appendix C). Fig. 4a presents µK and σ2
K for a PQ SPAD

as functions of λ. The mean and variance are also compared

to an ideal counting process where it is observed that unlike

a Poisson process, µK and σ2
K can differ greatly. Fig. 4b

illustrates the ratio, ξ, as defined in (32) where the minimum

occurs at λτ = 1 and the ratio approaches 1 when λτ goes to

infinity.
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3) Asymptotic mean for large Tb/τ ratio: For the case

when the ratio Tb/τ is large, yet the dead time cannot be

ignored, the following asymptotic expression for mean value

is obtained:

lim
Tb/τ→∞

µK = λTbe
−λτ . (41)

Therefore, the asymptotic count rate of a PQ SPAD, i.e. the

average number of recorded photons per second, is given by:

λ′ = λe−λτ . (42)

This expression is in line with the asymptotic expressions

presented in [31] and the practical models provided in [22].

IV. SPAD-BASED OPTICAL COMMUNICATION SYSTEMS

SPADs have been used as photon counting receivers in

OWC systems [7], [17], [19], [20]. Free space optics (FSO),

visible light communications (VLC), wireless IR, deep space

communications are all examples of such OWC applications.

In this section the effect of dead time on the bit error

performance of a SPAD-based optical system with on-off

keying (OOK) and binary pulse position modulation (BPPM)

is studied. The SPAD’s dead time also limits the maximum

achievable data rate of the system. The dead time of com-

mercially available SPAD devices varies in the range of a few

nanoseconds to tens of nanoseconds. Using binary modulation

schemes, a reliable bit error performance with maximum data

rate of a few Mbits/s can be achieved. For example, with OOK

modulation, the highest data rate to be achieved by an AQ

SPAD with dead time τ can not exceed 1/τ , and this is due

to saturation of SPAD receiver [26]. For a PQ SPAD receiver

the maximum achievable data rate is even lower than 1/τ .

Note that the maximum achievable data rate depends on not

only the dead time, but also the operating conditions [28].

Throughout this paper, a data rate of 1 Mbits/s is assumed.

In the following, the bit error performance of a SPAD-

based optical system with OOK and BPPM is derived. In

these binary modulation schemes, each bit is sent individually

by transmitting one of two optical pulses over a duration

of Tb seconds and the optical intensity modulated signal is

transmitted by an optical source. In this system the bit rate

is expressed as Rb = 1/Tb bits/s. At the receiver side,

direct detection is applied where the received optical signal is

photodetected by the SPAD. The number of photons counted

by the SPAD is processed to decide which of two optical

pulses was received, and then the transmitted bit during each

Tb second bit interval is determined. In this photon counting

system, the background counts and the SPAD’s dead time

determine the achievable bit error ratio (BER) of the system.

A. On-Off Keying

OOK is one of the most common modulation techniques

for intensity-modulation direct-detection (IM/DD) systems,

because of its easy implementation, simple receiver design,

bandwidth efficiency and cost effectiveness. In OOK, the

information bits are transmitted through the intensity of light,

where presence of a pulse denotes bit “1” and absence of a

pulse denotes bit “0”, during each slot time.

Define the contributions to the signal and background noise

counts per bit interval by Ks = λsTb and Kn = λnTb, re-

spectively, where λs and λn are the average photon rates from

signal and background noise. When a “0” bit is transmitted,

the average number of photons arrived at the SPAD receiver

per bit time interval is Kn, and when a “1” bit is transmitted,

the average number of received photons per bit time interval

is Ks +Kn. Therefore, pn(k) and psn(k), the probability that

exactly k photons are counted by the SPAD in the counting

interval of Tb seconds, when “0” or “1” are sent, respectively,

are given by:

pn(k) = pK(k;λn, Tb, τ) ,

psn(k) = pK(k;λs + λn, Tb, τ) .
(43)

OOK demodulation is accomplished by a classical binary

detection process: Let hypothesis “H0” represent the case

when a “0” is sent and “H1” represent the hypothesis that

a “1” is transmitted. The aim is to determine the optimum

rule for deciding which hypothesis is true based on a single

observation. This simple binary hypothesis-testing problem is

often formulated using the Bayes criterion, where the decision

should be made according to the well-known likelihood-ratio

test to minimize the probability of error. In this test, the

likelihood ratio is defined as:

L(k) =
psn(k)

pn(k)

H1

≷
H0

1 (44)

where it is assumed that H0 and H1 are equally probable.

With this maximum likelihood detection rule, the probability

of error is expressed as:

Pe =
1

2

∑

{k:L(k)>1}

pn (k) +
1

2

∑

{k:L(k)≤1}

psn (k) . (45)

For an ideal photon detector with Poisson statistics (without

dead time), the likelihood-ratio test in (44) simplifies to a

single threshold detection. For the SPAD receiver, however,

the complicated mathematical expressions of psn(k) and pn(k)
(for both AQ and PQ SPADs), makes the algebraic manipu-

lation of L(k) intractable. For given values of λs and λn,

if L(k) is monotonic with respect to k, the test in (44)

is equivalent to a single threshold test, i.e. the maximum

likelihood detection is achieved by a threshold comparison.

But it is even more challenging to check the monotonicity of

L(k) using finite differences (discrete derivatives). For an AQ

SPAD with small dead time ratio (δ < 0.1), an approximate

photocount distribution can be provided (see Appendix A) and

it can be proved that the above likelihood-ratio test leads to

a single threshold test (see Appendix D). For other cases,

no such proof can be provided. However, we conjecture that

the threshold detection is optimum in general. Our extensive

numerical investigation of the monotonicity of L(k) and and

the BER results in Section V strongly support this conjecture.

Hereinafter, the threshold detection is adopted for error

probability calculations, where the number of counted photons

is compared with a threshold mT. An error will occur if

k ≤ mT when a “1” bit is sent, or if k > mT, when a “0” bit
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is sent. The probability of error for equally likely bits is then

expressed as:

Pe =
1

2

kmax∑

k=mT+1

pn (k) +
1

2

mT∑

k=0

psn (k) . (46)

This equation holds for both AQ and PQ SPADs, how-

ever, for each case, the corresponding photocount distribu-

tion should be considered. The error probability, Pe, highly

depends on mT which can be selected to yield the lowest

probability of making an error. This occurs at the value of mT

where dPe/dmT = 0. It is in general challenging to obtain a

closed-form expression for (46), nevertheless, for the case of

an AQ SPAD, it is shown that (see Appendix E) given same

conditions (i.e. same threshold, sampling time, and radiation

intensity), the error performance of an AQ SPAD with dead

time is the same as that of a similar SPAD without dead

time, but with a quantum efficiency reduced by the factor

(1− (mT + 1)τ/Tb). According to (66):

Pe =
1

2

(

1−

mT∑

k=0

ψ(k, λn(Tb − (mT + 1)τ))

)

+
1

2

mT∑

k=0

ψ(k, (λs + λn)(Tb − (mT + 1)τ)) .

(47)

Solving the equation dPe/dmT = 0 for finding the optimum

threshold value leads to:

mT =
λsTb − λsτ

λsτ + ln
(

1 + λs

λn

) . (48)

B. Binary Pulse Position Modulation

The basic disadvantage of OOK signaling is that the average

photon rates λs and λn must be known, to optimally set

the threshold. BPPM signaling avoids this difficulty by using

pulse-to-pulse comparison for detection. In BPPM modulation,

the optical pulse is sent in one of two adjacent time intervals,

each of length Tb/2 and then the output counts are compared

over each half-bit interval. A “1” bit is sent as a pulse in the

first half of the bit interval, and a “0” bit as a pulse in the

second half. At the receiver side, the SPAD separately counts

the number of photons over the two half-bit intervals and then

they are compared for bit decoding. Since the pulse time is

half of the bit duration, the receiver bandwidth must be higher

than for the OOK system [1].

With the same approach as used for OOK, the bit error

probability of the BPPM system is the probability that signal

slot photon count does not exceed non-signal slot photon

count. Hence:

Pe =

∞∑

k1=0

∞∑

k2=k1+1

psn(k1)pn(k2)+
1

2

∞∑

k=0

psn(k)pn(k) . (49)

where the second term in (49) accounts for the possibility of

equal counts in each half-bit interval, in which case a random

choice will be made.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, bit error performance results are presented

where analytical results are compared with Monte Carlo sim-

ulation results. Throughout the calculations and simulations,

independent count statistics are assumed for each transmitted

bit and Tb = 1 µs is considered. In all figures, BER results

are plotted as a function of Ks for various Kn values and

δ = τ/Tb, where Ks and Kn are defined as the average signal

count and background count per bit interval, respectively.

Therefore, for both OOK and BPPM, Ks = 0.5λsTb and

Kn = 0.5λnTb.

A. AQ SPAD

The BER results for an AQ SPAD-based optical system with

OOK modulation are provided in Fig. 5. In these figures, the

error probability of OOK systems with maximum likelihood

(ML) detection and threshold (TH) detection are compared

with Monte Carlo simulation results, resulting in perfectly

matching curves. The analytical calculations are based on the

expressions given in (45) for ML detection, and (47) and (48)

for TH detection.

According to Figs. 5a and 5b, ML and TH detection show an

excellent match for all cases, confirming that for the specified

range of values in these figures, the ML detection and TH

detection are equivalent.

In Fig. 5a, moderately small values of δ = 0.001 and

δ = 0.01 are assumed, while in Fig. 5b the dead time ratio is

δ = 0.1 which is quite large for communication purposes. As

observed in Fig. 5b, the large value of dead time ratio degrades

the system performance as the SPAD is saturated with lower

signal and/or background noise levels. In these cases, kmax and

mT are small, and the ripples in the BER curves are direct

results of discrete threshold values. For the quantum-limited

cases, i.e. Kn = 0 curves, the threshold mT is zero and no

ripples are observed.

According to Fig. 5a, the performance of the AQ SPAD

receiver depends strongly on the background count statistics,

and even for Kn = 0 and 1, the error probability is slightly

affected by the SPAD dead time. This becomes more signifi-

cant, when Kn increases. Also, it is apparent that for a given

Kn, a higher signal power is needed to maintain the system

performance in the presence of longer dead time. In other

words, to achieve a particular BER, the larger δ is, the higher

Ks should be.

Fig. 6 provides the BER results for an AQ SPAD-based

optical system with BPPM modulation. It is observed that,

in the absence of background noise, the effect of dead time

on BER is negligible for small values of Ks as in Fig. 6a.

However, when background noise is present, the performance

becomes very sensitive to the dead time such that higher

dead time values lead to higher error rates. It should also be

noted that, as seen in Fig. 6b, the error performance severely

degrades when large dead time ratio (δ = 0.1) is assumed.

In this case, the SPAD gets saturated with lower signal and/or

background noise levels. Also, for stronger background counts,

the saturation happens at lower signal levels.
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Fig. 5. OOK bit error performance of an AQ SPAD-based system: (a) δ =

0.01, 0.001 and (b) δ = 0.1.

Note that OOK uses pulses twice as long as BPPM, and

has higher signal and background counts. Therefore, a fair

comparison between OOK and BPPM systems can be made if

the same average signal and background power are assumed.

For the systems under consideration, average signal and back-

ground noise power are directly proportional to Ks and Kn,

respectively. Thus, it is fair to compare the error performance

of OOK and BPPM systems as presented in Figs. 5 and 6.

As in Fig. 5a and Fig. 6a, OOK and BPPM show almost

similar performance when the background noise is present and

the dead time ratio is moderately small. For large dead time

ratio (δ = 0.1 as in Fig. 5b and Fig. 6b), in the presence of

background counts, OOK system shows slightly better BER

values. For ideal quantum-limited photon-counting OOK and

BPPM (Kn = 0) without dead time counting losses, OOK has

3 dB better performance as discussed in [1]. In the presence

of dead time, consistent results are achieved, however, the

effect of dead time is insignificant in the range of interest

as illustrated in Figs. 5 and 6.
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Fig. 6. BPPM bit error performance of an AQ SPAD-based system: (a)
δ = 0.01, 0.001 and (b) δ = 0.1.

B. PQ SPAD

Fig. 7 demonstrates the error performance results of a PQ

SPAD-based system with OOK modulation. In this figure,

the error probability with ML detection, given in (45), and

the error probability with TH detection, given in (46) are

numerically evaluated and compared with simulation results.

The threshold value is also obtained numerically. It is again

observed that ML and TH detection rules result in perfectly

matching curves, confirming that these two detection schemes

are equivalent in the range of interest.

Similar to BER results for the AQ SPAD, three different

values for dead time ratio are considered here. In Fig. 7a,

δ = 0.001 and δ = 0.01 are assumed, while in Fig. 7b

the dead time ratio is equal to 0.1. Again, large dead time

ratio (δ = 0.1) severely degrades the error performance and

results in SPAD’s saturation. According to (42), for a PQ

SPAD, the maximum count rate occurs at the point λ = 1/τ .

The lowest BER also occurs at this point which is clearly

seen in Fig. 7b. After this point, the counting losses due to
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Fig. 7. OOK bit error performance of a PQ SPAD-based system: (a) δ =

0.01, 0.001 and (b) δ = 0.1.

dead time drastically increase. The BER also increases until

the paralysis behaviour (see Fig. 4) results in the average

photon count of pulsed slots becoming lower than that of

non-pulsed slots. Our extensive numerical calculations show

that at this latter point, the monotonicity of the likelihood

ratio function L(k), given in (44) changes from monotonically

nondecreasing to monotonically nonincreasing. In such cases,

keeping the definition of hypotheses H0 and H1 as before, the

direction of the likelihood ratio test presented in (44) should

be reversed and the error probability expressions should be

modified accordingly. This has been done for obtaining the

results of Fig. 7b.

The probability of error for a PQ SPAD-based optical

system with BPPM modulation, given in (49), is in the

form of discrete summations, and therefore can be calculated

numerically. Fig. 8 shows some plots of the BER results

for such a system. Similar to previous cases, in the absence

of background noise, the effect of dead time on BER is

almost negligible. However, an increase in the dead time value

0 5 10 15 20 25 30
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Fig. 8. BPPM bit error performance of a PQ SPAD-based system: (a) δ =

0.01, 0.001 and (b) δ = 0.1.

degrades the error performance. Again, it is seen that the

error performance is severely affected by large dead time ratio

(δ = 0.1) and the lowest BER occurs at the maximum count

rate, as predicted.

As seen in Figs. 5–8, the BER of the OWC system strongly

depends on the value of dead time and large dead time values

increase the BER to levels even beyond 10−3. The dead time

of commercially available SPAD devices vary in the range of

a few nanoseconds to tens of nanoseconds, causing significant

losses for communication links with slot widths of the same

order. However, for data rates in the orders of a few tens of

Mbits/s and lower, the dead time ratio is small enough (≤
0.01) and assuming binary modulation schemes such as OOK

and BPPM, BER values of less than 10−3 can be achieved,

as shown in Figs. 5a, 6a, 7a and 8a for AQ and PQ cases,

respectively. These results highlight the need to develop SPAD

detectors with much reduced dead time to be able to achieve

higher data rates with reliable performance and arbitrary small

bit error probability.
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Fig. 9. BER performance of (a) AQ, and (b) PQ SPAD-based systems with OOK modulation considering exact SPAD photocount distribution, Poisson
approximation, and Gaussian approximation.

C. AQ SPAD vs. PQ SPAD

As stated in Section I, when using PQ SPADs any photon

arrival occurring during the dead time is not counted but is

assumed to extend the dead time period, while for AQ SPAD

devices, any photon arriving during the dead time is neither

counted nor has any influence on the dead time duration. Thus,

assuming the same dead time duration, in a bit interval of Tb
seconds, the average number of counted photons by an AQ

SPAD is generally higher than that of a PQ SPAD. This can

be observed from Figs. 1 and 3. Furthermore, this behavior

directly affects the BER performance. When the dead time

duration only is one order of magnitude lower than the bit

interval (δ = 0.1), the difference of AQ and PQ SPADs is

perceptible, as observed in Fig. 5b and Fig. 7b for OOK

modulation or in Fig. 6b and Fig. 8b for BPPM. For an

AQ SPAD, increasing the signal photon rate (or signal count)

results in the saturation of SPAD and the BER will reach a

constant value. However, in a PQ SPAD, by increasing the

signal photon rate (or signal count), the BER decreases until

the SPAD reaches its maximum count rate. At this point, the

lowest possible BER is achieved and higher signal counts

degrade the error performance.

D. Applicability of Gaussian and Poisson Approximations

The probability distribution of SPAD photocounts is com-

monly approximated by a Poisson distribution where the effect

of dead time is neglected. In order to investigate the accuracy

of this approximation, in Fig. 9, the OOK error probabilities of

both AQ and PQ SPADs, given in (47) and (46), respectively,

are evaluated and compared with the case when the photocount

distribution is approximated by a Poisson distribution through

moment matching, i.e., the rate parameter of the approximated

Poisson distribution is calculated according to (35) and (42) as

in [7], [8], rather than using an ideal Poisson model which does

not take into account the effect of dead time. Please note that

in Figs. 9a and 9b, δ = 0.01 is assumed, and as can be seen,

for both AQ and PQ SPADs, there is a considerable difference

between the exact BER values and the Poisson approximation

results, especially for higher values of Kn.

To have a better insight, the AQ and PQ SPAD photocount

distributions have also been approximated by Gaussian distri-

bution in Fig. 9, using a similar moment matching approach.

The mean and variance of the Gaussian distribution are ap-

proximated as in (30) and (31) for AQ SPAD, and as in (39)

and (40) for PQ SPAD. Although the Gaussian approximation

shows higher accuracy compared with the Poisson approxima-

tion, the differences are still noticeable. Note that by increasing

the dead time ratio, the accuracy of these approximations

will be more degraded. By comparing the results of these

approximations for AQ and PQ SPADs, it is observed that the

approximations show slightly higher accuracy for AQ SPADs,

and the reason is that the counting losses due to paralyzable

dead time are generally higher than that of nonparalyzable

dead time. According to these observations, the use of Poisson

or Gaussian approximations does not provide enough accuracy

for assessing the bit error performance of OWC systems, and

this highlights the importance of our statistical modeling for a

precise bit error analysis for potential optical communication

applications.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a complete analytical framework is presented

for modeling the statistical behavior of photon counting re-

ceivers. This rigorous analysis expounds the impact of paralyz-

able and nonparalyzable dead times on the counting statistics

of SPAD detectors, and provides exact expressions for the

probability distribution, mean and variance of active and pas-

sive quenching SPAD photocounts. The proposed expressions

for mean of AQ and PQ SPAD photocounts precisely predict

the SPAD effective count rates and are in line with empirical

count rate models and experimental data available in literature.

The proposed probability distributions are particularly required
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for maximum likelihood detection analysis and assessing the

bit error performance of any SPAD-based OWC system. In this

study, the effect of dead time on the bit error performance of

an OWC system with OOK and BPPM modulation schemes

is investigated and it is found that that the dead time-distorted

count statistics result in higher bit error rates, and a higher

signal intensity is required to maintain system performance. In

the AQ SPAD-based OWC system, assuming OOK modulation

and constant average background count of Kn = 1, for a BER

value of 10−4, the reduction of dead time by one order of

magnitude leads to almost 3 dB improvement in the average

signal count. The improvement is about 3.8 dB if BPPM

modulation is considered. PQ SPAD-based OWC systems with

large dead time ratios (δ = 0.1) can not achieve BER values

lower than 10−3. In general, for large dead time values, AQ

SPADs outperform PQ SPADs significantly, and for small dead

time values, AQ SPADs still provide slightly better bit error

performance. It is also found that in quantum-limited OWC

systems, the effect of dead time is negligible. Compared with

Gaussian and Poisson distributions commonly used in litera-

ture, our proposed probability distributions provide significant

accuracy in performance analysis of OWC systems. This in

turn highlights the importance of our statistical modeling for

a precise bit error analysis for potential optical communication

applications. Moreover, it is concluded that in applications

involving high photon rates, such as high data rate optical

wireless communications, the SPAD dead time causes signifi-

cant data loss. Using commercially available SPAD devices

with dead time values in the range of a few nanoseconds

to tens of nanoseconds, a reliable bit error performance with

maximum data rate of a few Mbits/s could be achieved through

binary modulation schemes. Thus, this study highlights the

need to develop SPAD devices with much reduced dead time

to be able to achieve higher data rates in the range of Gbits/s.

There is much work yet to be done in the analysis of SPAD-

based optical systems. It is of great importance to consider

modulation schemes with higher spectral efficiencies and less

sensitive to the fluctuations in the background and signal

strengths. However, in higher order modulation schemes, the

existence of dead time does not allow arbitrarily narrow time

slots, as the SPAD’s dead time can overlap two adjacent time

slots. Therefore, for future works, the photocount statistics

should be modified accordingly.

APPENDIX A

APPROXIMATE PMF FOR AQ SPADS WITH λ≫ 1 OR

τ ≪ Tb

The PMF in (27) can be re-written as:

pK(k) =

k∑

i=0

ψ(i, λk+1)−

k−1∑

i=0

ψ(i, λk)

= ψ(k, λk+1) +

k−1∑

i=0

(
ψ(i, λk+1)− ψ(i, λk)

)

= ψ(k, λk+1)

+

k−1∑

i=0

ψ(i, λk+1)

[

1−
(Tb − kτ)i

(Tb − (k + 1)τ)i
e−λτ

]

. (50)

Define A and B as follows:

A =

k−1∑

i=0

ψ(i, λk+1)

[

1−
(Tb − kτ)i

(Tb − (k + 1)τ)i
e−λτ

]

︸ ︷︷ ︸

B

.

Two asymptotic cases can be considered:

• λ ≫ 1: The limiting relation limt→∞ tαe−t = 0 results

in limλ→∞A = 0.

• τ ≪ Tb: Since limδ→0 B = 0 and ψ(k, λk+1) is finite,

limδ→0A = 0 is concluded.

Therefore, for the above two cases, the following approxima-

tion can be adopted:

pK(k) ≈ ψ(k, λk+1) . (51)

APPENDIX B

MEAN AND VARIANCE OF THE AQ PMF

By definition, the mean value of the distribution in (27) is:

µK =

kmax−1∑

k=0

k pK(k)

=

kmax−1∑

k=0

k ×

{
k∑

i=0

ψ(i, λk+1)−

k−1∑

i=0

ψ(i, λk)

}

. (52)

Replacing k by k + 1 in the summation index of the second

term in the right-hand side of the previous expression gives:

µK =

kmax−1∑

k=0

k∑

i=0

k ψ(i, λk+1)−

kmax−2∑

k=0

k∑

i=0

(k + 1)ψ(i, λk+1)

=

kmax−1∑

i=0

(kmax − 1)ψ(i, λkmax
)−

kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

≈ (kmax − 1)−

kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1) . (53)

where the approximation
kmax−1∑

i=0

ψ(i, λkmax
) ≈ 1 is used, as

λkmax
is very small. The above expression for µK in (53) can

be further simplified to:

µK =

kmax−2∑

k=0

∞∑

i=k+1

ψ(i, λk+1) . (54)

Next, the limit of this expression for τ → 0 or kmax → ∞
is taken. Although it follows directly from limτ→0 pK(k) =
p0(k) that limτ→0 µK = λTb, a direct proof can also be

obtained in the following way; the right-hand side of (54)

is a double series whose terms can be ordered in an infinite

matrix:

e−λTb ×



















0 (λTb)
1

1!
(λTb)

2

2!
(λTb)

m

m!

0 0 (λTb)
2

2! . . . (λTb)
m

m! . . .

0 0 0 (λTb)
m

m!

...
. . .

...

0 0 0 . . . (λTb)
m

m! . . .

...
...

. . .



















,
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The rows and columns of the above matrix are indexed by

summation indices of (54), k and i, respectively. Summation

of the first m rows of this matrix gives:

Sm = e−λTb ×

[
m∑

i=0

i×
(λTb)

i

i!
+m×

∞∑

i=m+1

(λTb)
i

i!

]

= e−λTb ×

[

(λTb)×

m−1∑

i=0

(λTb)
i

i!

+m×

∞∑

i=0

(λTb)
i

i!
−m×

m∑

i=0

(λTb)
i

i!

]

, (55)

As m goes to infinity, the summation of the second and third

terms clearly goes to zero. Furthermore, using the Taylor series

expression limm→∞

m−1∑

i=0

(λTb)
i/i! = eλTb , one has:

lim
τ→0

µK = lim
m→∞

Sm = λTb . (56)

With an approach similar to the one used for deriving µK ,

the variance of the distribution in (27) can be obtained as:

σ2
K =

kmax−2∑

k=0

k∑

i=0

(2kmax − 2k − 3)ψ(i, λk+1)

−

(
kmax−2∑

k=0

k∑

i=0

ψ(i, λk+1)

)2

.

(57)

and the limiting relation limτ→0 σ
2
K = λTb is verified,

where the product λTb is the variance of the original Poisson

distribution.

APPENDIX C

MEAN AND VARIANCE OF THE PQ PMF

According to (5) and (36), the generating function G(z, t)
and its derivatives are given by:

G(z, Tb) =

kmax−1∑

k=0

pK(k)zk

=

kmax−1∑

i=0

(z − 1)i
λie−iλτ

i!
(Tb − iτ)i, (58)

∂G(z, Tb)

∂z
=

kmax−1∑

k=0

kpK(k)zk−1

=

kmax−1∑

i=1

i(z − 1)i−1λ
ie−iλτ

i!
(Tb − iτ)i, (59)

∂2G(z, Tb)

∂z2
=

kmax−1∑

k=0

k(k − 1)pK(k)zk−2

=

kmax−1∑

i=2

i(i− 1)(z − 1)i−2λ
ie−iλτ

i!
(Tb − iτ)i.

(60)

Therefore, the mean and variance of the distribution function

in (36) are derived as:

µK =

kmax∑

k=0

kpK(k) =
∂G(z, Tb)

∂z

∣
∣
∣
∣
z=1

= λe−λτ (Tb−τ). (61)

σ2
K =

kmax∑

k=0

k2pK(k)−

(
kmax∑

k=0

kpK(k)

)2

=

[

∂2G(z, Tb)

∂z2
+
∂G(z, Tb)

∂z
−

(
∂G(z, Tb)

∂z

)2
]∣
∣
∣
∣
∣
z=1

= λ2e−2λτ (3τ2 − 2Tbτ) + λe−λτ (Tb − τ).
(62)

Finally, the limiting expressions limτ→0 µK = λTb and

limτ→0 σ
2
K = λTb are verified.

APPENDIX D

THRESHOLD DETECTION FOR AQ SPADS WITH λn ≫ 1 OR

τ ≪ Tb

With the approximate PMF given in (51), the likelihood

ratio test in (44) reduces to:

L(k) =
ψ(k, λsnk+1)

ψ(k, λnk+1)

H1

≷
H0

1 (63)

where λnk+1 = λn(Tb−(k + 1)τ ) and λsnk+1 = (λs + λn)(Tb−
(k + 1)τ ). Substituting ψ(i, λ) = λie−λ/i! gives:

L(k) = e−λs(Tb−(k+1)τ)

(
λs + λn
λn

)k H1

≷
H0

1 (64)

Finally, taking the natural logarithm from both sides gives:

k
H1

≷
H0

λsTb − λsτ

λsτ + ln
(

1 + λs

λn

) . (65)

Therefore, for an AQ SPAD, the maximum likelihood

detection simplifies to a threshold detection if λn ≫ 1 or

τ ≪ Tb.

APPENDIX E

SPECIAL PROPERTY OF AN AQ SPAD IN THRESHOLD

DETECTION

Here, the error probability of threshold detection for an AQ

SPAD is derived. Assuming mT < T/τ , the probability of

counting at most mT photons, is calculated as:

mT∑

k=0

pK(k)
(∗)
=

mT∑

i=0

mT∑

k=i

ψ(i, λk+1)−

mT−1∑

i=0

mT∑

k=i+1

ψ(i, λk)

(∗∗)
= ψ(mT, λmT+1)

+

mT−1∑

i=0

[
mT∑

k=i

ψ(i, λk+1)−

mT−1∑

k′=i

ψ(i, λk′+1)

]

= ψ(mT, λmT+1) +

mT−1∑

i=0

ψ(i, λmT+1)

=

mT∑

i=0

ψ(i, λmT+1) (66)

where, in (∗), the order of summations is changed and for

(∗∗), a change of variable k′ = k − 1 is used. According

to (66), the probability of counting up to mT photons, for

an AQ SPAD receiver with dead time τ in a bit interval of

Tb seconds, is the same as that of a SPAD receiver without
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dead time counting photons at the same rate, but during a bit

interval of Tb − (mT + 1)τ seconds, or the same as that of a

similar SPAD without dead time, but with a quantum efficiency

reduced by the factor (1− (mT+1)τ/Tb). This result greatly

simplifies the error probability calculations for an AQ SPAD.
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