

Edinburgh Research Explorer

Using a generalisation critic to find bisimulations for coinductive
proofs

Citation for published version:
Dennis, L, Bundy, A & Green, I 1997, Using a generalisation critic to find bisimulations for coinductive
proofs. in Automated Deduction—CADE-14: 14th International Conference on Automated Deduction
Townsville, North Queensland, Australia, July 13–17, 1997 Proceedings. Lecture Notes in Computer
Science, vol. 1249, Springer-Verlag GmbH, pp. 276-290. https://doi.org/10.1007/3-540-63104-6_29

Digital Object Identifier (DOI):
10.1007/3-540-63104-6_29

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Automated Deduction—CADE-14

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. Apr. 2024

https://doi.org/10.1007/3-540-63104-6_29
https://doi.org/10.1007/3-540-63104-6_29
https://www.research.ed.ac.uk/en/publications/f414a096-2d77-42d1-9b48-459df43edd0f

Using a Generalisation Critic to FindBisimulations for Coinductive ProofsLouise Dennis, Alan Bundy and Ian GreenDAI Research Paper No. 834January 10, 1997
Submitted to Cade 14

Department of Arti�cial IntelligenceUniversity of Edinburgh80 South BridgeEdinburgh EH1 1HNScotlandc Louise Dennis, Alan Bundy and Ian Green

Using a Generalisation Critic to Find Bisimulations forCoinductive Proofs �Louise Dennis, Alan Bundy and Ian GreenAbstractCoinduction is a method of growing importance in reasoning about functional languages,due to the increasing prominence of lazy data structures. Through the use of bisimulationsand proofs that observational equivalence is a congruence in various domains it can be usedto proof the congruence of two processes. Several proof tools have been developed to aidcoinductive proofs but all require user interaction. Crucially they require the user to supplyan appropriate relation which the system can then prove to be a bisimulation.A method is proposed which uses the idea of proof plans to make a heuristic guess ata suitable relation. If the proof fails for that relation the reasons for failure are analysedusing a proof critic and a new relation is proposed to allow the proof to go through.Key words and phrases. coinduction, proof planning, proof critics1 IntroductionRecursive data structures and functions are of central importance in computer science. As a res-ult, inductive de�nitions and proofs form a major research area in the semantics of programminglanguages and in the �eld of program veri�cation.Inductive de�nitions specify the least set generated by some recursive function. The dualnotion is of the greatest set. The least and greatest closed sets can be expressed as the leastand greatest �xpoints of some function. Least �xpoints give inductive de�nitions; greatest�xpoints give \coinductive" de�nitions. The greatest closed set will contain in�nite as well as�nite datatypes. Hence coinduction, the associated proof method, allows reasoning about suchdatatypes.Coinduction was �rst seen a an important proof method in the theory of concurrency. Mil-ner's bisimulation proof method [19] is a form of coinduction. There is now a great deal of interestin using coinduction to reason about lazy functional languages. Abramsky �rst motivated thiswith the Lazy Lambda Calculus [1] which de�ned applicative bisimulations and showed that ob-servational equivalence was a congruence within the calculus. Milner and Tofte used coinductionto show the consistency of the dynamic and static semantics of a small functional language [20].Abramsky's congruence result was taken by Howe [13] and used to devise a general procedure forproving congruence. Work has been done by Andrew Gordon [15] proving congruences, settingdown the syntax and semantics for a number of lazy functional languages. Paulson has also donework providing a theory for coinduction within HOL [22].Other work has been done applying coinduction to Input/Output E�ects [14], Object{oriented Languages [16] and generally to recursively de�ned domains [25] and over recursivedatatypes [11].Several theorem provers have capabilities for coinductive proof although they all require userinteraction. Perhaps the most work has been done in Isabelle for which a special package hasbeen developed for coinductive de�nitions [24] and in which Milner and Tofte's work has beenreproduced [12]. However work has also been done in Coq [21] and HOL [10].�The research reported in this paper was supported by epsrc grant GR/L/117241

This paper discusses the use of CLAM [6], a proof{planning system, to develop a series ofmethods for guiding the tactics used in systems like Isabelle in the hopes of more fully automatingcoinductive proofs.2 Least and Greatest FixpointsI have adopted Paulson's formalization of coinduction, as described in [22]. This, in turn, isbased on the work of Tarski [26] who showed that the �xpoints of monotone functions form alattice.The least �xpoint operator is de�ned bylfp(F) �\fSjF(S) � Sg (1)This can be used to derive a form of the induction rulea 2 lfp(F) mono(F) [x 2 F(lfp(F) \ fx:	(x)g)]x...	(x)	(a) (2)The greatest �xpoint operator is de�ned bygfp(F) �[fSjS � F(S)g (3)and can be used to derive the coinduction rulea 2 X X � F(X)a 2 gfp(F) (4)It is important at this point to note the di�erence between the two rules (2) and (4). Theinduction rule is used to show that all members of the least �xpoint of some function have aproperty, 	. The coinduction rule is used to show that something is a member of the greatest�xpoint of some function.2.1 Observational EquivalenceCoinduction is useful when we can show that all members of some greatest �xpoint have someproperty of interest. In most cases this property is observational equivalence over some relation.In the case of lazy lists, observational equivalence is generally de�ned in terms of take(k; l).take(k; l) is the �rst k elements of l presented as a �nite list. Two lists, l1 and l2, are obser-vationally equivalent if take(k; l1) = take(k; l2) for all �nite k, this is based on work by Birdand Wadler [2]. In other domains, e.g. CCS, observational equivalence is de�ned di�erently, butit always hinges on the idea that the behaviour of both objects to any observer watching fora �nite time is the same. A lot of work has been done showing that observational equivalenceis a congruence for various domains. However this is not always the case, for instance in CCSobservational equivalence and observation congruence are not the same thing [19].Observational equivalence over lists is a property of the greatest �xpoint of the functionLlistD fun(R) def= fhh :: t1; h :: t2ijht1; t2i 2 Rg [fhnil; nilig1 (5)In this case the coinduction rule (4) can be specialised toha; bi 2 R R � LlistD fun(R)a � b (6)1LlistD fun is so named to follow Paulson, who also uses these functions.2

where � is observational equivalence.In this paper I shall only consider proofs of the observational equivalence of two lists, involvingcoinduction. So I shall be using (6) as my coinduction rule. However the techniques describedcan be extended to other datatypes.Choosing RRelations, R, which contain observationally equivalent pairs are called bisimulations.R is not determined by the conclusion of (6) it is introduced in the pre{conditions, thesubgoals that will need to be formed by any attempt at a proof. Hence, an important step ina coinductive proof is the choice of a suitable R. This is what is often termed a \eureka step",where an intelligent guess is made as to an object that will allow the proof to go through. Itis this step that has held up fuller automation of coinduction. Once R is chosen, a number oftheorem provers, e.g. Isabelle [23] can successfully produce a fully automated proof from thatpoint.The technique outlined in this paper allows an automated system to discover an appropriateR.3 An Example of a Simple Coinductive ProofHere is an example where the choice of R is fairly simpleExample1. The conjecture is:map(f; iterates(f;m)) = iterates(f; f(m))map and iterates are both functions over lazy lists. As mentioned above equality over lazy listsis a property of gfp(LlistD fun). map and iterates are de�ned by the following rewrite rules.map(F; nil)) nilmap(F;H :: T)) F (H) :: map(F; T)iterates(F;M))M :: iterates(F; F (M))A commonly used heuristic is to pick a fairly simple relation,e.g. R def= fhmap(f; iterates(f;m)); iterates(f; f(m))ig and attempt to show that this lieswithin gfp(LlistD fun). In fact, it is easier to represent R as the range of a function, i.e.R def= range(hmap(f; iterates(f;m)); iterates(f; f(m))i). The second pre{condition of (6) givesthe goal: range(hmap(f; iterates(f;m)); iterates(f; f(m))i) �LlistD fun(range(hmap(f; iterates(f;m)); iterates(f; f(m))i)) (7)To prove this, it is necessary to show that any two lists in R have equal heads and that theirtails are related by R. I shall start by showing that the tails of any two lists in R are also in R.This is done by proving the goal8T : hmap(f; iterates(f;m)); iterates(f; f(m))i 2 T ! (8)htl(map(f; iterates(f;m))); tl(iterates(f; f(m)))i 2 T (9)This goal is a little bit like an inductive goal and for that reason I've called (8) the coinductionhypothesis and (9) the coinduction conclusion. The coinduction conclusion will be manipulatedby rewriting to �nd the tails which will then match the coinduction hypothesis.hmap(f; iterates(f;m)); iterates(f; f(m))i 2 T !htl(map(f; iterates(f;m))); tl(iterates(f; f(m)))i 2 T: : : ! htl(map(f;m :: iterates(f; f(m)))); tl(f(m) :: iterates(f; f(f(m))))i 2 T: : : ! htl(f(m) ::map(f; iterates(f; f(m)))); iterates(f; f(f(m)))i 2 T: : : ! hmap(f; iterates(f; f(m))); iterates(f; f(f(m)))i 2 T3

The proof is completed by following a similar rewriting process to show that the heads areequal. hd(map(f; iterates(f;m))) = hd(iterates(f; f(m)))hd(map(f;m :: iterates(f; f(m)))) = hd(f(m) :: iterates(f; f(f(m))))hd(f(m) :: map(f; iterates(f; f(m)))) = f(m)f(m) = f(m)The simple heuristic shown here for choosing an appropriate R often fails. Examples of thiswill be shown later in this paper.4 Proof Planning and CLAMProof plans were �rst proposed by Alan Bundy [8] and have been successfully applied to inductivetheorem proving [5] and other domains.The idea is to make a plan of the tactics needed to conduct a given proof in advance ofapplying those tactics. A plan consists of a series of methods each of which is linked to atactic and contains pre-conditions and e�ects of applying the tactic. A completed proof plan isexecuted by executing the tactic part of the plan by giving it to a tactic based theorem proverwhich will provide a formal veri�cation of the theorem.Proof planing is implemented in Oyster{CLAM [7][6]. Oyster is a tactic based theorem proverfor Martin{L�of Type theory. The following techniques have been implemented in CLAM but theappropriate Oyster tactics and theory have not yet been built.4.1 CriticsCritics are an extension of the proof planning paradigm. When a method fails to apply, a criticlooks at the reasons for failure and may try to modify or patch the proof plan to allow it tocontinue.Typically a critic does this by looking at the pre{conditions for the method and seeingwhich ones failed. CLAM 's critics facilities also allow the critic to examine the current branchof the proof tree to see which methods have previously been applied, this is needed sincesome critics are only appropriate when certain types of proof are being attempted (e.g. therevise_bisimulation critic presented in this paper is only appropriate in coinductive proofs,though it is initiated when the rewriting not the coinduction method fails.)Once a critic's pre-conditions are satis�ed it proposes a patch for the proof plan, e.g. pro-posing a di�erent induction scheme. At this point it will usually jump back to a previous nodeof the proof tree, e.g. where the induction scheme was �rst proposed, and restart the attemptto build a proof plan from that point.Critics have been successfully used in inductive proof plans to speculate missing lemmas,revise the induction scheme and generalise theorems [17][18].5 Rule{of{Thumb CoinductionThere are two main stages to a coinductive proof and these are represented by two proof methodsin CLAM , the coinduction and gfp_membership methods.The �rst, the coinduction method, involves recognising that a greatest �xpoint is involvedand reformulating the goal in terms of this greatest �xpoint1.An observational equivalence problem is generally of the form:8�x : �1 � : : :� �n:f(�x) � g(�x) (10)1The method works fairly simply at present, consulting a database of known greatest �xpoints to see if anyare relevant. 4

where f and g are functions from �1 � : : :� �n to lazy lists of type �.Given a problem of this form the coinduction method produces the goalrange(hf; gi) � LlistD fun(range(hf; gi)) (11)range(hf; gi) is the relation R, the choice of which was described as a eureka step in x2.1. Itis a �rst guess at an appropriate relation for R and is, in fact, remarkably successful at �ndingproofs without the need for any critics. We have called this method of guessingRRule{of{Thumbcoinduction.Rule{of{thumb coinduction fails when the chosen relation isn't general enough for the prob-lem. In e�ect it picks out the smallest possible candidate for R, given the problem underinvestigation. It fails when the tails of the lists are not also related by R which suggests that, ifthe theorem is true, the relation will have to be extended to allow a proof.The second stage involves proving that the relation R is a member of the greatest �xpoint.This is performed through the gfp_membershipmethod and rewriting.The gfp_membership method transforms (11) into the two goals8T ; 8�x:h(f(�x); g(�x)i 2 T ! 8�y:htl(f(�y)); tl(g(�y))i 2 T (12)8�y:hd(f(�y)) = hd(g(�y)) (13)The following theorem justi�es this step. Its proof included as an appendix.Theorem1. Let � def= fhh :: l1; h :: l2i : hl1; l2i 2 range(h(f(�x); g(�x)i)g [fhnil; niligrange(h(f(�x); g(�x)i) � � , 8T ; 8�x:(h(f(�x); g(�x)i 2 T ! 8�y:(htl(f(�y)); tl(g(�y))i 2 T^ hd(f(�y)) = hd(g(�y))))_ range(h(f(�x); g(�x)i) 2 fhnil; niligIt will be noticed that there is an extra \case" here where f(x) = g(x) = nil. This isn'talways needed in the proof, and isn't used in any of the examples discussed in this paper. It issomewhat equivalent to the base case in an inductive proof.At this point rippling, a method for guiding rewriting developed by the MRG group inEdinburgh [9] is used to attempt to complete the proof. Rippling is a terminating rewritemethod and is used in conjunction with the fertilize method. Inductive proofs use two sortsof fertilization: weak fertilization where the induction hypothesis is used as a rewrite rule withinthe conclusion and strong fertilization where a direct appeal is made to the hypothesis since it isidentical to the (now rewritten) conclusion. CLAM uses strong fertilization in coinductive proofsto prove that the tails of two lists are related by the trial bisimulation when the coinductionhypothesis and conclusion are identical. CLAM always attempts fertilization before it attemptsrippling.We believe the exact rewriting method used in coinductive proofs to be relatively unimportantso long as it is terminating since termination is required to determine failure and hence motivatethe use of critics.Should the gfp_membershipmethod and rewriting fail to �nd a proof, CLAM will use a proofcritic to attempt to �nd a suitable revision of R. The current relation, R, under investigationat any one time is referred to as the trial bisimulation.The coinduction method and gfp_membership method only deal with the second precon-dition for coinduction, S � F(S). The �rst precondition, a 2 S is presumed to follow from theheuristic used to form S. Clearly once these methods are linked to Oyster then this preconditionwill also have to be proved in order for a formal proof to be developed. This isn't necessary inthe proof planning stage since knowledge about the heuristic used by the coinduction methodis su�cient. 5

6 Critics for CoinductionThe rule{of{thumb coinduction heuristic doesn't always work, as illustrated by the followingexample. We will use this as a worked example to explain the use of the basic form of therevise_bisimulation critic. Most of the examples involve the use of a more advanced form ofthe critic.Example2. 8a; b: lswap(a; b) = merge(lconst(a); lconst(b))lswap;merge and lconst are de�ned by the following rewrite ruleslswap(A;B)) A :: B :: lswap(A;B)lconst(A)) A :: lconst(A)merge(nil; L)) Lmerge(L; nil)) Lmerge(H1 :: T1;H2 :: T2)) H1 :: H2 :: merge(T1; T2)The coinductionmethod recognises that the theorem can be proved using coinduction withthe function LlistD fun and uses the rule{of{thumb method, choosingR def= range(hlswap(a; b); merge(lconst(a); lconst(b))i to produce the subgoalrange(hlswap(a; b); merge(lconst(a); lconst(b))i) �LlistD fun(range(hlswap(a; b); merge(lconst(a); lconst(b))i)) (14)The gfp_membership method then produces subgoals to check that the heads of each listare equal and the tails are in the bisimulation. The discussion will centre around proving thatthe tails are members of the bisimulation so we shall only consider the �rst subgoal. In all theproofs in what remains of this paper, we shall ignore subgoals dealing with the equality of theheads of both lists and base cases. The �rst subgoal ishlswap(a; b); merge(lconst(a); lconst(b))i 2 T !htl(a :: b :: lswap(a; b)); tl(merge(a :: lconst(a); b :: lconst(b)))i 2 T (15)which rewrites to: : : ! hb :: lswap(a; b); tl(a :: b :: merge(lconst(a); lconst(b)))i 2 T: : : ! hb :: lswap(a; b); b ::merge(lconst(a); lconst(b))i 2 TCLAM fails to prove this because none of its proof methods will apply.What the method actually needed was a di�erent de�nition of R:R = range(�a; b: hlswap(a; b); merge(lconst(a); lconst(b))i) [range(�a; b: hb :: lswap(a; b); b :: merge(lconst(a); lconst(b))i) (16)The aim of the critic is to modify the choice of R in the light of failure analysis.The critic is called the revise_bisimulation critic (see �gure 1) and it comes into play ifthe process of rippling has terminated without fertilization occurring.This means that at the point the proof of example 2 has reached CLAM has identi�ed that noamount of rewriting is going to show that hb :: lswap(a; b); b :: merge(lconst(a); lconst(b))i is inrange(hlswap(a; b); merge(lconst(a); lconst(b))i). This is why it is necessary to have a termin-ating rewriting method for the critic to be called.As discussed above a critic will have a number of preconditions which must be satis�ed beforeit comes into play. CLAM includes facilities for examining the proof plan already generated foroccurrences of certain methods and for restarting proofs from previous nodes in a plan. The6

If 1. The coinduction method has been used in this branch of the proof.2. The current goal is hf1; g1i 2 T ^ : : :^ hfn; gni 2 T ! hk; li 2 T . Where kand l are not of the form tl(: : :)3. Rewriting has terminated but the goal is not a theorem.Then Change the trial bisimulation by adding the set range(hk; li) to itand start the proof again from the most recent call of the coinductionmethod, supplying the revised relation as the new trial bisimulation.Figure 1: The Basic Revise Bisimulation Criticrevise_bisimulation critic checks that a coinduction proof is being attempted. It then patchesthe proof by altering the trial bisimulation provided by the coinductionmethod, and returningto that point in the proof search. Figure 1 presents the critic's pre{conditions in a naturallanguage format for ease of understanding. The actual critic is written in Prolog.Using the critic outlined in �gure 1, CLAM revises the trial bisimulation toR0 = range(�a; b: hlswap(a; b); merge(lconst(a); lconst(b))i) [hb :: lswap(a; b); b ::merge(lconst(a); lconst(b))i) (17)and starts out again with the goal.R0 � LlistD fun(�; R0) (18)The gfp_membership method splits this into two new goals, one for each function range inthe trial bisimulation. hlswap(a; b); merge(lconst(a); lconst(b))i 2 T ^hb :: lswap(a; b); b :: merge(lconst(a); lconst(b))i 2 T !htl(a :: b :: lswap(a; b)); tl(merge(a :: lconst(a); b :: lconst(b)))i 2 T (19)and hlswap(a; b); merge(lconst(a); lconst(b))i 2 T ^hb :: lswap(a; b); b :: merge(lconst(a); lconst(b))i 2 T !htl(b :: lswap(a; b)); tl(b ::merge(lconst(a); lconst(b)))i 2 T (20)The proof of (19) proceeds identically as in the �rst proof attempt, however, the extrahypothesis allows fertilization to occur. (20) resolves similarly.7 The Use of Generalisation in the CriticWhat commonly happens when this approach is taken to patching a proof is that a series ofrelations are progressively added to the trial bisimulation in a divergent process, as illustratedbelow. In this case a generalisation that encompasses all the revisions is required.7

Example3. 8X : �; f : � ! �: hf (X) = X :: map(f; hf (X)) �!8x : �; f : � ! �: hf (x) = iterates(f; x)The coinduction method produces the goalrange(hhf (x); iterates(f; x)i) � LlistD fun(range(hhf (x); iterates(f; x)i)) (21)The gfp_membership method then gives the goal:hhf (x); iterates(f; x)i 2 T ! htl(x :: map(f; hf (x))); tl(x :: iterates(f); f(x))i 2 T (22)which rewrites to:hhf (x); iterates(f; x)i 2 T ! hmap(f; hf (x)); iterates(f; f(x))i 2 T (23)At this point the proof attempt fails.The revise bisimulation critic will then intervene, addingrange(hmap(f; hf (x)); iterates(f; f(x))i) to R and (with the gfp_membership method) pro-ducing two subgoals. The �rst subgoal is similar to (22), only this time the addition of the extraelements to R means it is provable. The second new subgoal is:hhf (x); iterates(f; x)i 2 T ^hmap(f; hf (x)); iterates(f; f(x))i 2 T !htl(map(f; x ::map(f; hf (x)))); tl(f(x) :: iterates(f; f(f(x))))i 2 T (24)Once again the revise bisimulation critic will intervene and suggest addingrange(hmap(f;map(f; hf (x))); iterates(f; f(f(x)))i) to R. Clearly this is going to get theprover nowhere; we have embarked upon a divergent process. We need an extension of therevise bisimulation critic, to recognise when a divergent set of revisions has been embarkedupon, and propose a suitable generalisation. This extension, a divergence check, is based onWalsh's divergence critic [27].7.1 The Divergence CheckA divergence check is added to the revise_bisimulation critic to spot when the sort of diver-gence described above is occurring and to provide information about its cause.The check attempts to �nd some term structure introduced by the revisions which is accu-mulating in the sequence of equations and which was preventing fertilization solving some of thegoals. The critic identi�es the accumulating structure using di�erence matching [3].For instance take the sequence of sets added to the trial bisimulation in Example 3s0 = hhf (x); iterates(f; x)i 2 Ts1 = hmap(f; hf (x)); iterates(f; f(x))i 2 Ts2 = hmap(f;map(f; hf (x))); iterates(f; f(f(x)))i 2 TDi�erence matching successive equations adds the annotationss00 = hhf (x); iterates(f; x)i 2 Ts01 = h map(f; hf (x)) ; iterates(f; f(x))i 2 Ts02 = h map(f;map(f; hf (x))) ; iterates(f; f(f(x)))i 2 TAn annotation consists of a wavefront, a box with a wavehole, an underlined term. Theskeleton is formed by deleting everything that appears in the wavefront but not in the wavehole.The annotations above are determined on the conditions that the skeleton of each term in the8

1. There is a sequence of sets within the trial bisimulation, range(hsi; tii) whichhave been generated by the revise bisimulation critic.2. There exist Gs; Gt;Hs;Ht (at least one Hi non trivial) such that for eachj di�erence matching gives range(hsj ; tji) = range(hGs(U sj); Gt(U tj)i), andrange(hsj+1; tj+1i) = range(hGs(Hs(U sj)); Gt(Ht(U tj))i)Figure 2: Conditions for the Divergence Checkannotated sequence is the same as the previous term in the unannotated sequence. Di�erencematching is a process which annotates a term s with respect to a term, t with a substitution�. The erasure of an annotated term is that term with all the annotations removed. Hence,formally, s0 is a di�erence match of s and t with substitution � i� �(skeleton(s0)) = t anderase(s0) = s.It should be clear from viewing the above sequence that the accumulating term structurein the sequence is being marked out by the wave fronts. This shouldn't be surprising sincethe di�erence matching singles out di�erences between two equations and it is precisely thesedi�erences which are presenting fertilization occurring between them.The conditions for the divergence check to succeed appear in �gure 2 and are adapted closelyfrom those described for Walsh's divergence critic[27].Of course, identifying that divergence is taking place is only half the battle, it is also necessaryto �nd an appropriate generalisation to replace the trial bisimulation. Walsh's divergence criticwhich so far has been followed very closely, patched the proofs he was attempting by speculatingand proving additional lemmas. What is needed for coinductive proofs is some generalisation ofthe trial bisimulation.The divergence is being caused by the repeated addition of Hi (as de�ned by the diver-gence check preconditions) every time the tail of the latest addition to the trial bisimulation isexamined. This suggests using the function (: : :)nF 0(X)) XF s(N)(X)) F (FN(X))to produce the generalisation range(hGs((Hs)N (U s0)); Gt((Ht)N (U t0))i) and put it in place ofthe previous sequence of sets in the trial bisimulation.This produces the full revise_bisimulation critic described in �gure 3.7.2 Back to the ExampleIn the proof we are attempting the critic assigns Gs; Gt;Hs;Ht and U s0 and U t0 as id (the identityfunction), iterates(f), map(f), f , hf (x) and x respectively so giving the goalrange(hmap(f)n(hf (x)); iterates(f; fn(x))i) �LlistD fun(range(hmap(f)n (hf (x)); iterates(f; fn(x))i)) (25)The gfp_membership method produces the goalhmap(f)n(hf (x)); iterates(f; fn(x))i 2 T !htl(map(f)n(x :: (map(f; hf (x))))); tl(fn(x) :: iterates(f; f(fn (x))))i 2 T: : : ! htl(fn(x) :: map(f)n(map(f; hf (x)))); iterates(f; f(fn(x)))i 2 T: : : ! hmap(f)s(n)(hf (x)); iterates(f; fs(n)(x))i 2 Twhich can be solved by fertilization. 9

If 1. The coinduction method has been used in this branch of the proof.2. The current goal is hf1; g1i 2 T ^ : : :^ hfn; gni 2 T ! hk; li 2 T . Where kand l don't both equal tl(: : :).3. Rewriting has terminated but the goal is not a theorem.Then ifThe Divergence Check has succeeded identifying Gs; Gt;Hs;Ht and U s0 and U t0for some sequence of sets within the trial bisimulation.ThenChange the trial bisimulation by replacing the sequence with the setrange(hGs((Hs)n(U s0); Gt((Ht)n(U t0)i) and start the proof again from themost recent call of the coinduction method, supplying the revised relationas the new trial bisimulation.ElseChange the trial bisimulation by adding the set range(hk; li) to it andstart the proof again from the most recent call of the coinductionmethod, supplying the revised relation as the new trial bisimulation.Figure 3: The Full Revise Bisimulation Critic8 ResultsThe coinduction and gfp_membership methods and the revise_bisimulation critic havebeen implemented in CLAM .v3.2, using Sicstus Prolog.It has been tried on 19 example problems involving the observational equivalence of lists ofwhich it was able to solve 14. These were taken from a variety of sources and included standardproblems from the literature as well as problems adapted from a textbook on ML [28] andproblems devised by ourselves.The rule-of-thumb method has also been tried on theorems involving other coinductive data-types with similarly encouraging results. At the time of writing, however, the revise_bisimulationcritic had not been extended to deal with such datatypes.Of the �ve examples CLAM failed to prove two failed because, as yet, CLAM isn't reallyequipped to cope with additional hypotheses in the theorem or rewrite rules e.g. A � B !A [B � B.The rest failed because of over{generalisation in one form or another. For instance thetheorem jump(0; 1) � merge(jump(0; 2); jump(1; 2)) wherejump(N;M)) N :: jump(N +M;M) (26)When the integers 1 and 2 are presented in terms of s and 0 CLAM will eventually produce thegoal hjump(0; s(0)); merge(jump(0; s(s(0))); jump(s(0); s(s(0))))i 2 T !hjump(s(0); s(0); merge(jump(s(0); s(s(0))); jump(s(s(0)); s(s(0)))i 2 T (27)At this point CLAM attempts to generalise all the terms s(0) to sn(0) - which is equivalentto the number n giving the new trial bisimulationR def= range(hjump(n; n); merge(jump(n; s(n)); jump(s(n); s(n))i (28)which is not a bisimulation. The desired generalistion wasR def= range(hjump(n; 1); merge(jump(n; 2); jump(s(n); 2)i (29)10

Clearly a longer process of additions to the trial bisimulation would have produced a betterindication in the divergence check of the generalisation required.Theorems Proved by Rule{of{Thumb Coinduction Alonenil <> l = ll <> (m <> n) = (l <> m) <> nmap(f; iterates(f;m)) = iterates(f; f(m))map(f; x <> y :: z) = map(f; x) <> map(f; y :: nil <> z)map(f � g; l) = map(f;map(g; l))lconst(m) = map(id; lconst(m))map(h; iterates(f; a)) = inflist(a; h; t)flatten(map2(f; l)) = map(f; flatten(l))flatten(explode(l)) = lTheorems Proved Using the Revise Bisimulation Criticlswap(a; b) = merge(lconst(a); lconst(b))hf (x) = iterates(f; x)iterates(s; 2) = jump(2; 1)lconst(m) = iterates(id;m)inflist(m; id; id) = lconst(m)Theorems CLAM failed to Provejump(0; 1) = merge(jump(0; 2); jump(1; 2))del(0; lconst(1)) = del(0; lswap(1; 0))parity(T; T) = numparity(0; T)A � B ! A [B = Binflist(a; id; s) = jump(a; 1)9 Related WorkWork has been done in both Isabelle and HOL to provide support for inductive de�nitions.Graham Collins has created a system to support reasoning about lazy functional languageswithin HOL. The coinduction rule has been derived and support for coinductive de�nitionsprovided as well as tactics for coinduction. The �rst of these tactics, when supplied with arelation,R proves the �rst pre-condition of the coinduction rule (6) and forms goals equivalent tothose formed by the gfp_membershipmethod, (12) and (13). It then uses a series of simpli�cationand evaluation tactics to prove those goals. Collins reports [10] that the level of interactionrequired by these tools is similar to a proof on paper. That is the sort of level of guidance whichthe above proof plan could be expected to provide.Similar work has been done in Isabelle to provide support for coinductive de�nitions [24]allowing the coinduction rule to be derived and used. No speci�c tactics for coinductive proofshave been provided, but Isabelle's own very powerful simpli�cation tactics are more than capableof handling much of the proof in an automated fashion.As far as we are aware no work has been done on the automatic generation of bisimulationsfor these proofs, all the above systems relying on these relations being provided by the user.Toby Walsh's [27] divergence critic, on which the divergence check is based, was designedto work with an implicit induction theorem prover called SPIKE[4]. Induction is performedin SPIKE by means of test sets (�nite descriptions of the initial model). SPIKE attempts toinstantiate induction variables in the conjecture to be proved with members of the test set andthen to use rewriting to simplify the resulting expressions. The process of generate and simplifyoften produces a divergent set of equations if an appropriate generalisation or lemma wasn'tpresent. The preconditions for the divergence check used for coinduction are translated more{or{less directly across from those used for SPIKE. However Walsh's critic didn't hypothesizegeneralisations, instead it sought to speculate and prove lemmas needed to complete the proof.11

10 Conclusion and Further WorkThis paper has discussed the application of proof planning to coinductive proofs. In particular ithas focused on how the choice of a trial bisimulation may be determined via the use of a simpleheuristic in a proof method which can be patched using a proof critic, if necessary. It is thischoice of trial bisimulationwhich interactive theorem provers which o�er support for coinductionalways leave to the user.The results obtained so far are very pleasing and suggest that the proposed methods andcritics will provide proof plans for a number of coinductive proofs.Further work needs to be done to try and prevent over{generalisation occurring in the criticsalready developed.Whilst I have followed Paulson's formulation of lazy lists here, most work in developing prooftools and assistants for coinduction has used labelled transition systems. Since the tactics forcoinduction have yet to be formally de�ned, I hope to be able to adapt the proof plans to usethe lts style representation and bring this work more in line with the rest of the �eld.There are also a further interesting subset of coinductive problems not considered here wherehd(l) may be unde�ned, for instance del(m; lconst(m)). Any attempt to �nd hd(del(m; lconst(m)))will result in non-termination. These can be coped with through more sophisticated analysisof l and the inclusion of *, divergence, into the theory of observational equivalence. I haven'tattempt to extend the methods and critics described above to this kind of theorem.References[1] Abramsky, S. The Lazy Lambda Calculus. In Turner, D. editor, Research Topics in FunctionalProgramming, pages 65{116. Addison{Wesley, 1977.[2] Bird, R., Wadler, P., Introduction to Functional Programming. Prentice{Hall, 1988.[3] Basin, D. and Walsh, T. Di�erence Matching. In Kapur, D. editor, 11th Conference onAutomated Deduction, pages 295{309. Springer{Verlag, 1992. LNCS No. 607[4] Bouhoula, A., and Rusinowitch, M. Automatic Case Analysis in Proof by Induction. InProceedings of the 13th IJCAI. International Joint Conference on Arti�cial Intelligence,Chambery, France, 1993.[5] Bundy, A. The Use of Explicit Plans to Guide Inductive Proofs. In Lusk, R. and Overbeek,R. editors, 9th Conference on Automated Deduction, pages 111{120, Springer{Verlag, 1988.Longer version availabel from Edinburgh as DAI Research Paper No. 349.[6] Bundy, A., van Harmelen, F., Horn, C., Smaill, A. The Oyster{Clam system. In Stickel, M.E.editor, 10th International Conference on Automated Deduction, pages 647{648. Springer{Verlag, 1990. LNAI No.449. Also availabel from Edinburgh as DAI Research Paper 507.[7] Bundy, A., van Harmelen, F., Hesketh, J., Smaill, A. Experiments with proof plans forinduction. Journal of Automated Reasoning, 7:303{324, 1991. Earlier version availabel fromEdinburgh as DAI Research Paper No, 413.[8] Bundy, A. A Science of Reasoning. In Lassez, J{L. and Plotkin, G. editors, ComputationalLogic: Essays in Honour of Alan Robinson, pages 178{198. MIT Press, 1991. Also availabelfrom Edinburgh as DAI Research Paper 445.[9] Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A. Rippling: A heuristic forguiding inductive proofs. Research Paper 567. Dept. of Arti�cial Intelligence. Edinburgh,1991. In the Journal of Arti�cial Intelligence.12

[10] Collins, G. A Proof Tool for Reasoning About Functional Programs. In von Wright, J.,Grundy, J. and Harrison, J. editors. 9th International Conference of Theorem Proving inHigher Order Logics, Turku, Finland, 1996, pp. 109{124.[11] Fiore, M, P. A Coinduction Principle for Recursive Data Types Based on Bisimulation. InProc 8th Annual Symposium on Logic in Computer Science, Montreal, pages 110{119, IEEEComputer Society Press, Washington.[12] Frost, J. A Case Study of Co{induction in Isabelle HOL. Technical Report 308, Universityof Cambridge, Computer Laboratory. 1993.[13] Howe, D.J., Equality in lazy computation systems. In Proceedings of the 4th IEEE Sym-posium on Logic in Computer Science, pp. 198{203[14] Gordon, A. D. Functional Programming and Input/Output. Cambridge University Press,1994.[15] Gordon, A. D. Bisimilarity as a theory of functional programming. In 11th Annual Con-ference on Mathematical Foundations of Programming Semantics, Volume 1 of ElectronicNotes in Theoretical Computer Science. Elsevier Science Publishers B.V. To appear. Exten-ded version availabel as BRICS Note NS{95{3, Aarhus University, 1995.[16] Gordon, A. D., Rees, G. D. Bisimilarity for a First{Order Calculus of Objects with Sub-typing. To appear in Proceedings of the 23rd Annual ACM Symposium on Principles ofProgramming Languages, St. Petersburg Beach, Florida, 1996.[17] Ireland, A. The Use of Planning Critics in Mechanizing Inductive Proofs. In A. Voronkov,editor, International Conference on Logic Programming and Automated Reasoning { LPAR92, St. Petersburg, Lecture Notes in Arti�cial Intelligence No. 624, pages 178-189. Springer-Verlag, 1992. Also availabel from Edinburgh as DAI Research Paper 592.[18] Ireland, A., Bundy, A., Productive use of Failure in Inductive Proof. Journal of AutomatedReasoning, 16(1{2):79{111, 1996. Also availabel as DAI Research Paper No. 716, Dept. ofArti�cial Intelligence, Edinburgh.[19] Milner, R. Communication and Concurrency. Prentice{Hall, 1989.[20] Milner, R. and Tofte, M. Co{Induction in Relational Semantics. Theoretical ComputerScience, 87:209{220, 1991.[21] Paulin{Mohring, C. Circuits as streams in Coq Veri�cation of a sequential multiplier. Re-search Report RR95{16, Laboratoire de l'Informatique du Parallelisme, 1995.[22] Paulson, L.C. Co-induction and Co-recursion in Higer-Order Logic. Technical Report 304,University of Cambridge, Computer Laboratory, 1993.[23] Paulson, L.C. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828, 1994.[24] Paulson, L.C. A Fixpoint Approach to Implementing (Co)Inductive De�nitions. In AlanBundy, editor, Proc 12th Int. Conf. Automated Deduction, volume 814 of LNCS, pages148{161. Springer{Verlag, 1994.[25] Pitts, A. M. A Co-induction Principle for recursively De�ned Domains. Theoretical Com-puter Science 124:195{219, 1994.[26] Tarski, A., A Lattice-Theoretical Fixpoint Theorem and its Applications. Paci�c Journalof Mathematics, 5:285{309, 1955. 13

[27] Walsh, T., A Divergence Critic. In Alan Bundy, editor, 12th Conference on AutomatedDeduction, Lecture Notes in Arti�cial Intelligence, Vol. 814, pages 14-28, Nancy, France.Springer-Verlag[28] Wikstr�om, �A. Functional Programming Using Standard ML. Prentice{Hal, 1987.A Proof of Theorem 1Let � def= fhh :: l1; h :: l2i : hl1; l2i 2 range(h(f(�x); g(�x)i)g [fhnil; niligrange(h(f(�x); g(�x)i) � � , 8T ; 8�x:(h(f(�x); g(�x)i 2 T ! 8�y:(htl(f(�y)); tl(g(�y))i 2 T^ hd(f(�y)) = hd(g(�y))))_ range(h(f(�x); g(�x)i) 2 fhnil; niligProof.) range(hf; gi) � fhh :: l1; h :: l2i : hl1; l2i 2 range(hf; gi)g [fhnil; nilig (30)This means that for any set of variables �x9�z: hf(�x); g(�x)i = hh :: f(�z); h :: g(�z)i _ hf(�x); g(�x)i 2 fhnil; nilig (31)This implies that for all �x either hd(f(�x)); hd(g(�x)), etc. are all de�ned orf(�x) = g(�x) = nil. Hence we shall split the domain of hf; gi into two sets 	 and �. 	 is de�nedto contain only those �x for which hd(f(�x)); hd(g(�x)), etc. are de�ned and � contains only those�x for which f(�x) = g(�x) = nil. It should be noted that �\� � fg and �[� � domain(hf; gi).Rewriting the �rst disjunct of (31) by splitting o� the heads and tails of f(�x) and g(�x) giveshd(f(�x)) = hd(g(�x)) (32)htl(f(�x)); tl(g(�x))i = hf(�z); g(�z)i (33)Let A be the set fhtl(l1); tl(l2)i : hl1; l2i 2 range(hf; gij) ^ hd(l1) = hd(l2)g. Whererange(f jS) is the range of the function f when its domain is restricted to the set S.Then A � range(hf; gi) (34)Suppose hl1; l2i 2 range(hf; gij). By (32) this means that hd(tl(l1)) = hd(tl(l2)). Inwhich case (from the de�nition of A) htl(l1); tl(l2)i is in A. Hence by (34) htl(l1); tl(l2)i is inrange(hf; gi) .So hl1; l2i 2 range(hf; gij) ! (htl(l1); tl(l2)i 2 range(hf; gi)^ hd(l1) = hd(l2))The second disjunct of (31) refers to those elements of the domain of hf; gi in �.Since 	 [� = domain(hf; gi)hl1; l2i 2 range(hf; gi) ! (htl(l1); tl(l2)i 2 range(hf; gi)^ hd(l1) = hd(l2))_ l1 = l2 = nilRewriting this slightly gives8T : 8�x: hf(�x); g(�x)i 2 T ! 8�x: htl(f(�x)); tl(g(�x))i 2 T^ hd(f(�x)) = hd(g(�x)))_hf(�x); g(�x)i 2 fhnil; nilig))14

(8T :(8�x: hf(�x); g(�x)i 2 T ! 8�x:(htl(f(�x)); tl(g(�x))i 2 T ^ hd(f(�x)) = hd(g(�x)))_hf(�x); g(�x)i 2 fhnil; nilig))Then this is true even if T is the set range(hf; gi) so8�x: hf(�x); g(�x)i 2 range(hf; gi) ! 8�x:(htl(f(�x)); tl(g(�x))i 2 range(hf; gi)^ hd(f(�x)) = hd(g(�x)))_hf(�x); g(�x)i 2 fhnil; nilighf(�x); g(�x)i 2 range(hf; gi) is trivially true and once again we will leave consideration ofthe second disjunct hf(�x); g(�x)i 2 fhnil; nilig to one side for the moment.Hence, dealing only with the �rst disjunct.8�x: (htl(f(�x)); tl(g(�x))i 2 range(hf; gi) ^ hd(f(�x)) = hd(g(�x))) (35)Stripping o� the set notation8�x:9�y: htl(f(�x)); tl(g(�x))i = hf(�y); g(�y)i ^ hd(f(�x)) = hd(g(�x))) (36)and moving the heads and tails around.8�x:9�y: hf(�x); g(�x)i = hhd(f(�x)) :: (f(�y)); hd(g(�x)) :: g(�y)i ^ hd(f(�x)) = hd(g(�x))) (37)Adding the second disjunct back in and rewriting as sets once more gives.range(hf; gi) � fhh :: l1; h :: l2i : hl1; l2i 2 range(hf; gi)g [fhnil; nilig ut

15

