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ABSTRACT 

Over 200,000 tourists per year visit Cape Breton Highlands National Park, Nova Scotia, Canada. 

The forests within the park are home to many rare epiphytic lichens, the species diversity of 

which has declined in some areas. The primary motivation for this study was to gain insight into 

the concentrations and potential local and long-range sources of air pollution, but its association 

with lichen species diversity was also examined. Ogawa passive diffusion samplers were used to 

measure nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the park at 19 sites in the winter and 

20 sites in the summer of 2011. An improvement in the sensitivity of the sampler analytical 

protocol was developed. The mean concentrations in the park of winter and summer NO2 (0.81 

and 0.16 ppb) and SO2 (0.24 and 0.21 ppb) are not at levels known to be phytotoxic to lichen. 

The NO2 concentrations in winter were significantly (p = 0.001) higher than those in summer 

whilst the SO2 concentrations did not differ significantly between winter and summer (p=0.429). 

Highest NO2 concentrations in both seasons were observed in the Grand Anse Valley, 

presumably due to the steep road, emissions from the Pleasant Bay community at the foot of the 

valley and the enclosed topography of this area reducing dispersion of primary emissions. The 

SO2 concentrations in the park tended to be greater at elevated sites than valley sites, consistent 

with dispersion from long-range, rather than local, sources for this pollutant. Significant 

predictors in a multilinear regression for an index of air purity (lichen based measure of air 

quality) were lichen species number (p = 0.009), forest old growth index (p = 0.001) and distance 

from roads (p <0.001) (model R2
 = 0.8, model p = 0.004). The study suggests that local sources 

of pollution (roads emissions) are adversely associated with lichen species diversity in this 

National Park, compared with long-range transport, and that monitoring programs such as a 

lichen-based ‘index of air purity’ can reveal locations where ambient air pollution, although low, 
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is nevertheless at a level that may cause ecological detriment. The implications from this work 

could be applicable to national parks elsewhere. 

 

Keywords: Cape Breton Highlands National Park, Canada, NO2, SO2, Ogawa Passive Diffusion 

Sampler, Lichen, Index of Air Purity 

 

1. Introduction 

Cape Breton Highlands National Park (Figure 1) was established in the early 20
th

 century to 

protect 950 km
2
 of the Maritime Acadian Highlands natural region of Nova Scotia, Canada 

(Parks Canada, 2010b). The park is located in northern Cape Breton Island and is bordered on the 

west by the Gulf of St. Lawrence, on the east by the Cabot Strait and joined to the Nova Scotia 

mainland by the Canso causeway. A year round paved highway (the Cabot Trail) traverses the 

park’s steep topography. The park is enjoyed by over 200,000 visitors per year; most visiting 

from the months of June to October (Parks Canada, 2010a, 2010b). Winter in Cape Breton spans 

the months of November through to April. Winter recreation use of the park is low and is 

primarily by local residents who use the park for cross-country skiing and snow shoeing (Parks 

Canada, 2010b). The park plateau is dominated by coniferous boreal and taiga vegetation and the 

lowlands by deciduous forest. Some of the old growth deciduous stands in the park are over 350 

years old (Parks Canada, 2010b).  

 

Many species of cyanolichens (lichens containing cyanobacteria) are known to be sensitive 

indicators of air pollution (Cameron, 2002). The absence of many lichens that would be expected 

in the old growth forest of the National Park was first noted by Selva (1999) in the Grande Anse 
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Valley. Recent analyses of lichen species density using a lichen-based Index of Air Purity (IAP) 

(Asta et al., 2002, Cameron 2004, Will-Wolf and Neitlich 2010), and a Modified Hilsenhoff 

Biotic Index (MHBI) that used lichen pollution tolerance values from regional literature 

(Hilsenhoff, 1982; Brodo et al., 2001; Hinds and Hinds, 2008), has also flagged several areas in 

the park below expected lichen species biodiversity.  

 

The motivation for this study was to determine the potential impact of local and regional sources 

of air pollution on air pollution levels in two seasons in this previously unmonitored National 

Park amenity and the observational associations of these levels with lichen species abundance. 

Nitrogen dioxide (NO2) was chosen as a good marker for vehicle and local combustion sources 

such as wood smoke (Heal et al., 1999, Ward et al., 2012). NO2 in the atmosphere primarily 

arises from rapid oxidation of the NO formed from nitrogen in the air-fuel mix during 

combustion for transport, heat and power. Some NO2 is also emitted directly from combustion 

(Finlayson-Pitts and Pitts 1999; Heal et al., 1999). Sulfur dioxide (SO2) was chosen as a good 

marker for point and transitory regional upwind sources of sulphur fuel combustion (Wheeler et 

al., 2011, Corbett et al., 2007). SO2 is formed from oxidation of sulfur within the fuel itself, e.g. 

ship fuel oil and power station coal (Poplawski et al., 2011; Riga-Karandinos and Karandinos, 

1998). Shipping around the coast of Cape Breton Island currently uses 1% S-fuel (Lack et al., 

2011). The Canadian National Pollution Release Inventory database (2010) indicates that NO2 

and SO2 emissions from the Lingan and Port Aconi Power Stations near Sydney, Cape Breton 

(~60 km SE of the park) are 5,219 and 33,479 tonnes/year and 1,747 and 3,365 tonnes/year 

respectively (NPRI, 2010). NO2 and SO2 emissions from the Point Tupper Power Station and 
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NewPage Paper Mill near Port Hawkesbury, Cape Breton (~120 km SW of the park) are 1,952 

and 5,721 tonnes/year and 306 and 85 tonnes/year respectively (NPRI, 2010). 

 

A large body of research over the last 50 years has shown strong negative correlations between 

epiphytic lichen abundance and diversity and ambient concentrations of SO2 and NO2 (Tiwary 

and Colls, 2010). Lichens have therefore been used in many studies as bioindicators of SO2, NO2 

and other air pollutants and their deposition (Van Dobben et al., 2001). Sulfur dioxide fumigation 

over a 24-h period at a concentration of 4 ppm has been observed to be directly phytotoxic to a 

wide variety of lichen species (Nash-III, 1973). Typical rural ambient levels of SO2 measured at 

Government monitoring stations outside of the park rarely exceed 5 ppb, so direct toxicity
 
is 

unlikely. Prior to the study, ambient NO2 and SO2 concentrations in the park were unknown. 

Nitrogen dioxide is only directly phytotoxic to higher plants at concentrations of 0.3 ppm but also 

different species of lichen at concentrations of 1 ppm (6-h fumigations) (Nash-III, 1976), or at 

ambient concentrations over 22 ppb (Marmor and Randlane, 2007). The latter is generally only 

observed in larger Canadian cities (Atari et al., 2008).  

 

While individually, NO2 and SO2 ambient concentrations in clean environments do not appear to 

pose a direct phytotoxic threat to lichen abundance, their synergistic deleterious effects have been 

observed (Nash-III, 1976). Aside from direct phytotoxicity, SO2 and NO2 emissions also produce 

secondary H2SO4 and HNO3 which acidify tree bark and change the substrate chemistry upon 

which lichens depend for growth (Will-Wolf and Neitlich, 2010). The majority of trees retain 

their bark, so once acidified bark pH remains low which in turn reduces the abundance and re-

colonization of sensitive species of lichen (Marmor and Randlane, 2007). Therefore, NO2 and 
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SO2 are mainly toxic to lichen indirectly rather than through direct primary phytotoxicity (Bell 

and Treshow, 2003; Conti and Cecchetti, 2001). Other phytotoxic air pollutants known to impact 

lichen include ammonia, ammonium ions and ozone (Geiser and Neitlich, 2007, Geiser et al., 

2010). 

 

This study utilised two-sided Ogawa passive diffusion samplers (PDS) (Ogawa & Co., Pompano 

Beach, FL, USA) loaded with one filter pad that collected both NO2 and SO2. Two filter pads 

were loaded into the Ogawa sampler for the duplicate sample. These were placed at long-term 

forest monitoring locations and roadside sites in the National Park. Measurements were made at 

the same locations in both winter and summer in almost all instances. Sampling NO2 and SO2 

spatially and in contrasting seasons provided information on the sources of NO2 and SO2 and of 

the potential impact on lichen abundance from local combustion and long-range air pollutants. 

The utility of PDS is that they do not require power, an essential requirement for this study, and 

large numbers can be deployed simultaneously to obtain information on spatial concentration 

fields (Gibson et al., 2009). Their disadvantages include poorer temporal resolution and potential 

for positive and negative biases, for example due to variations in wind speed, temperature and 

relative humidity (Krupa et al., 2003). Ogawa PDS have been used in many spatial studies of air 

quality (Bytnerowicz et al., 2002b; Meng et al., 2010; Wheeler et al., 2011) and the effect of NO2 

and SO2 on vegetation growth (Conti and Cecchetti, 2001; Cox, 2003). 

 

In order to predict the IAP in other regions of the park, a multivariate regression model was 

developed. The independent variables investigated included wind direction, wind speed, rainfall, 

temperature, relative humidity, NO2, SO2, biological data (e.g. lichen species number) and 
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physical data (e.g. distance from roads). This model could also have application to similar remote 

locations elsewhere. 

 

2. Material and methods 

2.1 Study area and sampling 

The study area and locations of the sites used for the winter and summer NO2 and SO2 sampling 

are shown in Figure 1. Table 1 provides site names, descriptions and lat-long coordinates. The 

Ogawa PDS were deployed in the park in the periods March 15 to April 5, 2011 (winter) and 

August 4 to September 13, 2011 (summer), in staggered exposures of approximately 14-days 

duration. The remoteness of some sites prevented deployment of all PDS simultaneously. PDS 

were placed in the vicinity of locations (n = 11) used to create the lichen-based index of air purity 

(IAP) which is described in section 2.2. Twenty PDS were deployed during the winter with site 

A01BJ lost due to moose interference (as evidenced by moose hairs). Twenty PDS were 

deployed in the summer. Due to greater accessibility of more remote locations in the park, site 

A01BR was added in the summer. Site A01CH was sampled in the winter but not the summer. 

Duplicate PDS were exposed at site A01GA in both winter and summer. 

 

2.2 Index of Air Purity 

The lichen monitoring plots in the park are co-located with forest monitoring plots in mature 

hardwood forests dominated by yellow birch (Betula alleghaniensis) or sugar maple (Acer 

saccharum).  Four plots were located in an important old growth forest of the park (the Grande 

Anse Valley).  Past work by Selva (1999) indicated an impoverished lichen community compared 

to other old growth forests in the region and suggested that the steep road grade and tourist 
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vehicle traffic might be influencing air quality. In addition, the park is not adjacent to any 

permanent air quality monitoring sites, so knowledge about localized air pollution was lacking. 

Therefore the Park authority established twelve lichen monitoring sites in the park to sample 

different airsheds.  The methods used are derived from similar lichen IAP studies conducted in 

Canada and elsewhere (Asta et al. 2002; Cameron 2004; McMullin & Ure 2008; Richardson 

1992). At each plot, the lower bole of twelve randomly selected maple trees (Acer saccharum or 

Acer rubrum) located outside the vegetation plot (20 m x 20 m) were sampled at breast height. 

The three closest healthy maple trees to the outside edge of the forest plot were selected. If no 

trees were found within a reasonable distance, then an additional tree could be selected from 

another side of a plot. Only trees that were ≥ 40 cm circumference were chosen to allow for 

establishment time of some of the sensitive lichens. Species identifications were restricted to 

macrolichens that were field identifiable. A tag and nail was established at the base of the tree at 

a 50 cm height above the ground for future surveys. A tape was then placed at 150 cm above this 

marker (~2 m above the ground). A 10 cm x 50 cm “ladder” with five cells was then hung from 

200 cm to 150 cm. Each tree was sampled in each cardinal direction  (N, S, E, W). The lichen 

species present in each of the 10 x 50 cm cells were recorded. The IAP is based on the frequency 

of pollution intolerant (sensitive) lichen species in the cells. The formulae for calculating the IAP 

are comparable to McMullin and Ure (2008). The basis of the index is the summation of the 

frequency of pollution intolerant lichen species in each plot,  

     Index of Air Purity (IAP) = ∑n
i=1 f i                        (1) 

where f is the species frequency at a plot between 0 and 1, derived as the number of ladder cells 

in which a particular species is found divided by the total number of cells at a plot, and n is the 

number of pollution intolerant lichen species (McMullin and Ure, 2008). For example, if 
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Lungwort (Lobaria pulmonaria) occurs in 50% of 240 cells at a site then the IAP would be 0.5 

for that site. If an additional 50% of the 240 cells at a site contained a Jelly lichen (Collema spp.) 

then the total site score would rise to 1 (0.5 + 0.5). 

 

An additional metric based on all lichen species present was constructed from a similar method 

used in studying aquatic invertebrates (Hilsenhoff, 1982). The Modified Hilsenhoff Biotic Index 

(MHBI) assigns tolerance scores to each lichen taxa found in a cell and is calculated via, 

            (2) 

where n is the number of ladder cells occupied by lichen i, a is the index value of that taxon (1 = 

pollution tolerant; 2 = intermediate tolerance; 3 = pollution intolerant), and T is the total number 

of ladder cells in the site (McMullin and Ure, 2008). The proportion of lichens of various scores 

permits a final site score between one (impacted) and three (unimpacted) to be calculated.  

 

Lichen species by pollutant tolerance, species number and the IAP are shown in Table 2. The 

table is divided into those sites that experienced a winter median NO2 concentration below 0.46 

ppb and those sites above 0.46 ppb (highest median observed during the study) as a clear way of 

discerning which sites appear most impacted from local combustion sources. A similar division 

was not conducted for SO2 as no significant difference (p = 0.146) was seen between the seasons 

for this metric. 
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2.3 Ogawa NO2 and SO2 PDS analysis  

The two-sided Ogawa PDS contained one (two for duplicate) carbonate-coated quartz-fibre filter 

pad coated in tri-ethanolamine to adsorb both NO2 and SO2 (Ogawa, 2006). Un-opened filter 

pads obtained from Ogawa were stored in a freezer until required. The loaded PDS were placed 

inside an airtight Ziploc™ bag that was then placed inside an airtight transport container. The 

PDS in their transport containers were stored at 4°C before and after sampling. The PDS were 

kept on ice during transit to sampling sites and to laboratories for post sampling analysis.  

 

Filter pads from the winter PDS were analyzed by RTI International (3040 Cornwallis Road, 

Building 6, RTP, NC, NC 27709) using an 8 mL water extract and ion chromatography, as 

specified by the Ogawa protocol for NO2 and SO2 (Ogawa, 2006). The summer PDS were 

analyzed in the Department of Process Engineering and Applied Science at Dalhousie University 

using a modified Ogawa protocol. The modified protocol included a reduction in the extraction 

volume to 1.8 mL, to improve sensitivity, and analysis of the nitrite (NO2
−
) and sulfate (SO4

2−
) 

anions simultaneously, effectively halving the ion chromatographic analysis time. This offers a 

significant enhancement of the Ogawa analysis protocol in terms of analysis time and improved 

sensitivity. The modified Ogawa protocol for the summer sampling period was as follows. Each 

filter pad was placed in a 25 mL screw-cap Nalgene bottle and 1.75 mL of 18 MΩ water and 0.05 

mL of 1.75 % HPLC grade hydrogen peroxide solution (Fisher Scientific) added. The bottles 

were capped and the samples sonicated for 30 min. The extract was then filtered through an IC 

MILXLH, 13 mm diameter, 0.45 µm pore size syringe filter (Fisher Scientific) into autosampler 

vials. The solutions were analysed on a Thermo Fischer Scientific, Dionex ICS-1000 with an 

IonPac®, AG9-HC 4 × 50 mm guard and an IonPac®, AS9-HC 4 × 250 mm analytical column 
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for separation of NO2
−
 and SO4

2−
 anions. A 9 mM sodium carbonate eluent was used at a flow 

rate of 1 mL min-1. An anion self-regenerating suppressor (ASRS® 300 4 mm) was employed in 

recycle mode during analysis. The injection loop was 100 µl. A seven-point standard curve was 

constructed to quantify the NO2
− and SO4

2− peaks. Three blank samplers were included in winter 

and summer and used for blank subtraction of sample values.    

 

Average temperature and relative humidity for each sampling period were obtained from seven 

weather stations in the park. The data from the closest weather station was applied to each PDS 

site. These were used to determine the α-coefficient for calculation of exposure-average NO2 and 

SO2, as specified in the Ogawa protocol (Ogawa, 2006). The mean weather data associated with 

the NO2 and SO2 data at each sample site is presented in Table 3. 

 

The NO2 and SO2 method detection limits (mdl) were calculated by multiplying the standard 

deviation of 17 replicates of the lowest measurable standard by the 99% Student’s t-value. For 

the winter measurements NO2 and SO2 mdl were 0.11 and 0.09 ppb, respectively, whilst for the 

summer measurements they were 0.008 and 0.025 ppb, respectively. The lower detection limits 

obtained for the summer sampling was chiefly due to the reduction in the extraction volume used 

in the modified Ogawa protocol. Where NO2 and SO2 values were below their respective mdl, 

half the mdl value was substituted which is a standard approach when analyzing air quality data 

(Wheeler et al., 2011). This applied to 9 of the NO2 measurements and 2 of the SO2 

measurements in winter, and to 0 and 2, respectively, of the measurements in summer. 
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PDS precision was quantified from the duplicate exposures at site A01GA via the expression 

PDS1-PDS2/(PDS1+PDS2) (Wheeler et al., 2011). The bias in PDS NO2 and SO2 was 

determined during the summer deployment in the National Park by simultaneously collocating 

PDS with Federal Reference Method NOx chemiluminescence and SO2 pulsed fluorescence 

autoanalyzers in Halifax. Wintertime PDS bias was not determined. Bias was calculated as 

(A-T)/T, where A is the PDS NO2 or SO2 value and T is the true (autoanalyzer) value.  

 

2.4 Statistical analyses 

The results for NO2, SO2 and the weather variables are provided in Table 3 as mean values over 

the corresponding sampling period at each site. The descriptive statistics (SAS v9.2, SAS 

Institute Inc., Cary, NC 27513-2414, USA) for NO2, SO2 and weather data are contained in Table 

4. WRPLOT View (Lakes Environmental, Waterloo, Ontario, N2V 2A9 Canada) was used to 

generate average wind vectors contained in Table 3. For comparative purposes, boxplots 

(SigmaPlot v12, Systat Software Inc., San Jose, CA 95110 US) of the mean exposure-averaged 

winter and summer NO2 and SO2 within the park, and in Port Hawkesbury and Sydney are shown 

in Figure 2 and 3. In order to understand the relationships between observed NO2 and SO2, 

weather variables, biological parameters, physical features and distance from upwind SO2 sources 

correlation matrix analysis was conducted using IGOR Pro v6.22A (Wave Metrics, Inc., 

Portland, OR 97223, USA).  The parameters investigated included all the weather variables, NO2, 

SO2, distance of the sampling sites to Sydney (DTS), IAP, species number (SN), old growth 

index (OGI), elevation (E), distance from road (DFR) and Modified Hilsenhoff Biotic Index 

(MHBI).  
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2.5 IAP predictive model 

A multilinear regression model for IAP was developed using SigmaPlot v12.0. The independent 

variables used in the model included all of the winter and summer weather variables (rain fall, 

wind speed, wind direction, relative humidity, temperature), NO2 and SO2, DTS, SN, OGI, E and 

DFR. NO2 and SO2 were included because they were expected to be key predictors of IAP either 

directly or as surrogates of other phytotoxic chemicals associated with their emissions source 

such as HNO3 and H2SO4. The inclusion of DFR, DTS and E in the model was to investigate 

associations of advection and dispersion of local and long-range sources of NO2 and SO2 to the 

IAP sites. The inclusion of OGI is because this metric is likely to be a strongly related to lichen 

number and diversity of species. The inclusion of SN and MHBI is because these biological 

variables are likely to be strong predictors of the IAP. The weather variables are included as they 

influence the fate and transport of air pollutants and growth of lichen species.   

 

3. Results and discussion 

3.1 PDS precision and bias 

All duplicate NO2 and SO2 PDS exposures were above their mdl values. The winter and summer 

NO2 precision was found to be 0.02 ppb and 0.13 ppb, respectively, and for SO2 0.06 ppb and 

0.20 ppb respectively. The PDS precisions determined in this study compare favourably with 

previous studies using Ogawa PDS; for example, an NO2 precision of 0.07 ppb for a study in 

Windsor, Canada (Wheeler et al. 2011), and an SO2 precision of 0.1 ppb in a study by Krupa and 

Legge (2000). 
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The PDS NO2 bias in this study was 0.05 ppb, which again compares favourably with previous 

similar studies, e.g. between the bias of −0.17 ppb reported from a regional background site in 

China (Meng et al., 2010) and 0.17 ppb reported by Wheeler et al. (2011) for measurements in 

Windsor, Canada, and 0.012 ppb for a study in El Paso, USA (Sather et al., 2007). The PDS SO2 

bias here of −0.15 ppb is comparable with the bias of −0.19 ppb reported from a regional 

background site in China (Meng et al., 2010). 

 

3.2 Seasonal and spatial NO2, SO2 concentrations and weather variables 

The winter and summer NO2, SO2 concentrations and weather variables are presented in Table 3. 

Descriptive statistics of the winter and summer NO2, SO2 and weather variables across the 

individual sampling locations in Cape Breton National Park and the NAPS sites in Sydney and 

Port Hawkesbury are presented in Table 4. As described in Section 2.3, the large majority of 

measurements were above their respective mdl. Box-plots summarising the seasonal PDS 

measurements in the National Park, and comparing these to contemporaneous Government 

autoanalyser measurements in Sydney and Port Hawksebury, are shown in Figures 2 and 3 for 

NO2 and SO2, respectively.  

 

From Table 4 the median (min−max) NO2 concentrations in the park in winter and summer were 

0.46 (0.12−2.46) ppb and 0.15 (0.01−0.35) ppb, respectively. For SO2 they were 0.22 (0.10−0.59) 

ppb and 0.18 (0.04−0.40) ppb respectively. To place the results in context, the range of the winter 

and summer NO2 and SO2 concentrations in the park are significantly lower than those measured 

by Ogawa PDS in Sarnia “Chemical Valley”, Canada where the ambient mean (and range) for 

NO2 were 10.7 ppb (5.7 − 16.7 ppb), and for SO2 were 3.4 ppb (0.8 ppb −13 ppb) (Atari et al., 
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2008). Similarly, Table 4 shows that concentrations of NO2 observed in the park were in the 

range 8 to 18 times lower than concentrations found in Sydney and Port Hawkesbury in both 

seasons. The higher NO2 concentrations in the latter locations are presumably due to the 

substantially higher, and spatially widespread, combustion emissions for power, industry, 

transport, heating and cooking in these two urbanised areas (NPRI, 2010). The NO2 observations 

made during the summer in the park are a factor of 10 lower than the NO2 concentrations seen in 

Sequoia National Park, California in 1999 which ranged from 1.1 to 2.0 ppb (Bytnerowicz et al., 

2002b). Bytnerowicz et al (2002a) also reports the range of NO2 and SO2 observed in 28 forests 

in the European Carpathian Mountains was 0.9 - 17.5 ppb and 2.1 - 6.3 ppb respectively, which 

ranges between 6 - 100 times greater than our NO2 observations and ranging between 3.5 - 29 

times greater for our SO2 observations (Bytnerowicz et al., 2002a). The SO2 concentrations in 

Port Hawkesbury (particularly in winter) were also significantly greater than those in the park, as 

were SO2 concentrations in Sydney in winter. The high SO2 concentrations in Port Hawkesbury 

point to the direct influence of a local source on that site at that time.    

 

The mean winter and summer NO2 (0.81 and 0.16 ppb) and SO2 (0.24 and 0.21 ppb) 

concentrations in this Park are comparable to the NO2 (0.6 ± 0.4 ppb) and SO2 (0.7 ± 0.4 ppb) 

observed from a spatial study utilizing Ogawa PDS at a remote site on the Qinghai Plateau in 

China (Meng et al., 2010). These concentrations are not known to be directly phytotoxic to 

lichens (Fields and St. Clair, 1984; Nash-III, 1976), although observations from the current work 

are nevertheless indicative of an adverse association between air pollution and lichens, as 

discussed below. In respect of seasonality, the concentrations of NO2 in the National Park in 

winter were significantly higher than in the summer (Kruskal-Wallis test, p = 0.001). It had been 

hypothesised that NO2 concentrations would be higher in the summer due to greater tourist traffic 
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and photochemical production of NO2. Instead, it is likely that increased local wood and fossil 

fuel combustion for space heating and from heavy equipment used in snow clearing, coupled to 

emissions into a lower boundary layer depth in the very cold winters, drives the significantly 

higher NO2 concentrations observed in this season.  

 

In contrast there was no significant difference (Kruskal-Wallis, p = 0.429) between winter and 

summer SO2 concentrations in the park (Figure 3). This suggests a dominant influence for SO2 

concentrations from dispersion from long-range sources rather than local emissions into the local 

boundary layer. As can be observed in Figure 3, the SO2 concentrations observed in the park 

during the winter are significantly lower than in Sydney (p = 0.003) and Port Hawkesbury (p = 

0.001) and significantly lower in summer than in Port Hawkesbury (p = 0.006) (although not in 

Sydney (p = 0.146)) consistent with dispersion from a long-range source.  

 

In terms of spatial variation within the park, Table 3 shows that the highest concentrations of 

NO2 in both winter and summer are present in the Grand Anse Forest Valley (steep hill near “The 

Lone Shielding” crofters cottage), Rigwash (coastal road/view point/camp ground), the base of 

MacKenzie Mountain (coastal road/community of Pleasant Bay) and Neil Brook (coastal 

road/community of Neil’s Harbour). The lowest NO2 concentrations are confined to locations in 

the centre of the park that are far removed from local population centres and roads. This is 

consistent with the spatial pattern of NO2 reflecting local vehicle emissions, and wood and fossil 

fuel combustion in local communities. Table 3 shows that NO2 concentrations at sites A02GA, 

A03GA, A01GA and A04GA in the Grand Anse Valley were notably higher than at the other 

sites within the park. For example, NO2 at site A03GA in winter was 2.46 ppb (summer 0.13 

ppb), which was comparable to the town of Port Hawkesbury and about half that of the lower 
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range of NO2 concentrations measured in the Canadian industrial city of Sarnia (Atari et al., 

2008). The elevated NO2 concentrations in the Grand Anse Valley are presumably associated 

with the local conditions that include a steeply inclined road running through a deep valley. 

Vehicle engines labour on both ascent and descent, which enhances emissions, and the physical 

constraint of the valley limits dispersion. It is also suspected that the valley acts as a “chimney” 

drawing air pollution from the Pleasant Bay community located at the base of the valley up into 

the Grand Anse valley. This community burns biomass for space and water heating in the winter 

and is a significant source of winter-time wood smoke (Ward et al, 2012). 

 

Table 3 shows that whilst the NO2 concentration at site A01CL in winter was below the mdl, in 

summer the NO2 concentration (0.28 ppb) exceeded the majority of concentrations at other more 

remote locations of the park. Although relatively remote, this site is directly above the Highlands 

Links golf course that is not open during the winter. It is plausible that traffic emissions 

associated with use of the Links in summer maybe affected by a ‘chimney effect’ that draws NO2 

derived from the road and Links parking lot up the deeply incised valley, which is similar in 

topography to the Grand Anse Valley. If this is the case, it illustrates the important influence of 

local, tourist-related activity in an otherwise clean environment. Further monitoring of local 

weather conditions coupled with real-time monitoring of NO2 at this site would be required to 

support this suggestion. 

 

From Table 3 it appears that the temporal and spatial concentrations of SO2 measured in the park 

were not associated with specific local sources. The potential upwind sources of SO2 include 

Sydney which has two strong point sources (Lingan and Aconi Power stations, 60 km to the SE 

of the park). However, the correlations between SO2 and distance to Sydney in the winter (R
2
 = 



 18

0.2) and summer (R
2
 = 0.1) are weak. Other significant upwind sources of S-fuel combustion in 

the region include the NewPage Paper Mill and Point Tupper power station in Port Hawkesbury, 

120 km to the SW of the park and ship emissions along the park’s coastline. The observation that 

winter and summer SO2 concentrations tend to be associated with higher elevations in the park 

implies long-range transport from upwind sources rather than local emissions for this gas.  

 

3.3. Associations with lichen species diversity 

Table 2 shows that the number of pollutant intolerant lichen species drops from 10 to 5 with an 

associated decline in species number when the winter median NO2 concentration is above 0.46 

ppb and a summer median of 0.15 ppb. The presence of the intermediate tolerant lichen species 

when the median NO2 is above 0.46 ppb is roughly unchanged but the species number is lower 

than when NO2 concentration is below 0.46 ppb. Two of the pollutant tolerant species of lichen 

(Phaeophyscia rubropulchra and Pyxine sorediata) are absent from the sites that experience NO2 

concentrations above 0.46 ppb. However, two pollution tolerant species (Parmelia sulcata and 

Melanelia subaurifera) appear not to be impacted by median NO2 concentrations above 0.46 ppb. 

From Table 2 it is clear that the IAP is lower for those sites that experience a median NO2 

concentration above 0.46 ppb. Four of the latter five sites are found within the Grand Anse 

Valley (an area suspected as being impacted by tourist traffic as discussed in section 3.2) with the 

remaining being a road side site along the Cabot trail. This information, together with the 

reduction in IAP, clearly demonstrates a relationship between the IAP, proximity to roads and 

areas of the park that experience poor air pollutant dispersion such as the Grand Anse valley. 

 

The correlation matrix analysis of the air pollutants, weather variables, physical parameters and 

biological metrics yielded a number of positive and negative correlations with R
2 
values ≥ 0.4, 
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including MBHI v IAP (R
2
 = 0.98), MHBI v DFR (R

2
 = 0.74), MHBI v SN (R

2
 = 0.56), MHBI v 

DTS (R
2
 = 0.67), DFR v IAP (R

2
 = 0.75), IAP v SN (R

2
 = 0.44), NO2 v SN (R

2
 = 0.44) and NO2 v 

WS (R
2
 = 0.41). The strong positive correlation between MHBI and IAP or SN is due to the very 

similar nature of these indices, i.e. measures of lichen species abundance. Of most importance in 

terms of the project objectives are the significant positive correlation between DFR v IAP (R2 = 

0.75) and a negative correlation between NO2 v SN (R
2
 = 0.44), which imply that lichen species 

density in this park is negatively associated with local traffic-related and other local combustion 

sources (as discussed in section 3.2).  

 

A multilinear regression model to predict IAP in the park is provided in equation (3). The IAP 

can be predicted (model R
2
 = 0.8) from the following linear combination of SN, OGI and DFR.  

 

IAP =  −0.641 (± 0.21) + 0.0361 (± 0.012) × SN + 0.00848 (± 0.0023) × OGI  +  0.000161 (± 

0.000027) × DFR                                                                                                                    (3) 

 

Quoted uncertainty values in the coefficients are standard errors. The p values for the constant, 

SN, OGI and DFR variables were 0.008, 0.009, 0.002 and <0.001 respectively. The following 

variables were not significant predictors: wind speed, wind direction, rainfall, temperature, 

relative humidity, NO2, SO2, MHBI, DTS, and E.  

 

The inclusion of OGI in the model is logical since lichen species diversity is expected to be 

greater in the old growth forest than newer forest stands. The inclusion of SN is also logical as it 

has a direct relationship with the IAP. The presence of the DFR variable in the model implicates 
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local, road associated pollution (incorporating acidic gases, particles and heavy metals) as being 

causative in the decline of lichen species diversity at sites with low IAP values. The exclusion of 

NO2 and SO2 from the model may be because it is long-term exposure to secondary acidic 

compounds (e.g. HNO3 and H2SO4) formed from the primary NOx and SO2 emissions that are the 

true predictor rather than short-term exposure to NO2 and SO2. The multilinear regression model 

can be used to predict values of IAP elsewhere within the park using SN, OGI and DFR.  

 

4. Conclusions 

This work has provided new insights into the geospatial and seasonal variation of NO2 and SO2 in 

Cape Breton Highlands National Park, an area whose air quality has not previously been studied. 

It was observed that NO2 concentrations in winter were significantly higher than those in 

summer, counter to the expectation that NO2 concentrations would be higher in summer due to 

visitor traffic. SO2 concentrations did not differ significantly between winter and summer. High 

NO2 concentrations were observed in the Grand Anse Valley in both seasons, presumably due to 

the steep road and enclosed topography of this area reducing dispersion of traffic and local 

community related emissions. Multilinear regression predictors for a measure of lichen species 

diversity were lichen species number, forest old growth index and distance from road. The study 

has shown that local sources of air pollution appear to be the predominant influence on NO2 

concentrations and potentially also on the lichen species diversity in this National Park, 

especially in the Grand Anse valley. The study has shown that monitoring programs such as a 

lichen-based index of air purity can reveal locations where ecological detriment is occurring that 

may be associated with air pollution even at low levels. The implications from this work could be 

applicable to national parks elsewhere. The improved sensitivity to the Ogawa passive diffusion 
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sampler methodology developed here will also be applicable to other Ogawa PDS studies of 

ambient NO2 and SO2. 
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Figure 1. Winter and summer NO2 and SO2 sampling locations in Cape Breton Highlands 

National Park 
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Figure 2. Boxplot of integrated winter and summer NO2 concentrations found within the Park, 

Port Hawkesbury and Sydney  

 

 

Figure 3. Boxplot of integrated winter and summer SO2 concentrations found within the Park, 

Port Hawkesbury and Sydney  
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Table 1. Sampling site names, descriptions and coordinates. (W = Winter, S = Summer, EMAN = 

Ecological Monitoring and Assessment Network) 

Site Name Season Deployed 
Site latitude / longitude 

d°mm'ss.s"  NAD83 
Description 

A01BJ W (lost) & S N46 44 17.4 W60 48 36.9 Near Benjie's Lake 

A01BR S N46 44 55.2 W60 27 01.8 Branch Pond 

A01CB W & S N46 42 56.9 W60 54 29.1 Corney Brook EMAN site 

A01CH W N46 37 30.2 W60 48 15.6 Park Spur Road, plateau 

A01CL W & S N46 39 30.2 W60 27 30.0 Goldmine, EMAN site 

A01EF W & S N46 51 12.3 W60 27 19.4 Effie's Brook EMAN site 

A01FC W & S N46 47 34.9 W60 51 11.5 Fishing Cove EMAN site 

A01GA W & S N46 48 30.3 W60 43 50.8 Grande Anse Forest Plot 

A01JG W & S N46 47 22.1 W60 20 06.0 Jigging Cove Lake, east end. 

A01MC W & S N46 49 18.1 W60 49 39.8 Base of Mackenzie Mountain 

A01NA W & S N46 48 45.8 W60 38 12.9 EMAN site, base of North Mtn. 

A01NB W & S N46 48 41.9 W60 20 11.8 Neil Brook, behind warden station 

A01RG W & S N46 39 45.9 W60 56 47.1 Rigwash EMAN site 

A01WB W & S N46 43 01.6 W60 21 16.4 Warren Brook, near Marrach 

A02CH W & S N46 39 03.0 W60 40 04.2 Cheticamp Lake, park boundary 

A02CL W & S N46 39 26.8 W60 24 48.8 Clyburn Valley 

A02EF W & S N46 50 00.5 W60 26 15.6 Near Paquette Lake 

A02GA W & S N46 48 46.4 W60 44 39.0 Grande Anse Forest Plot 

A02NA W & S N46 49 06.2 W60 36 41.3 EMAN site, North Aspy 

A03GA W & S N46 48 14.2 W60 43 27.2 Grande Anse Forest Plot 

A04GA W & S N46 48 24.0 W60 43 20.9 Grande Anse Forest Plot 
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Table 2. Lichen species composition on ladder cells at study sites in Cape Breton Highlands 

National Park. 

 Sites below winter median NO2 0.46 ppb Sites above winter median NO2 0.46 ppb 

Species 
A

0
1

C
B

 

A
0

1
C

L
 

A
0

1
E

F
 

A
0

1
F

C
 

A
0

1
N

A
 

A
0

2
N

A
 

A
0

1
G

A
 

A
0

4
G

A
 

A
0

2
G

A
 

A
0

3
G

A
 

A
0

1
R

G
 

Index of Air Purity 0.37 1.13 0.13 0.46 0.37 0.69 0.16 0.40 0.00 0.53 0.07 

Pollution Intolerant            

Cladonia sp.  3  1  21  4    

Collema subflaccidum  2  3        

Leptogium cyanescens 13 4  38  12  1    

Leptogium laceroides      1      

Lobaria pulmonaria 27 167 21 32 57 74 38 63  49  

Lobaria quercizans 42 78 9 35 27 51  23  78 17 

Lobaria scrobiculata 3  2  2 2  4    

Nephroma laevigatum 2           

Parmeliella triptophylla     2 3      

Ramalina roeslerii      1      

Subtotal 87 254 32 109 88 165 38 95 0 127 17 

Intermediate Tolerance            

Punctelia rudecta 17  25 18  3 1 4   27 

Parmelia squarrosa 26 6 9 19  142 2 53 2 5 3 

Subtotal 43 6 34 37  145 3 57 2 5 30 

Pollution Tolerant            

Parmelia sulcata 43 5 222 65 92  108 40 111 71 44 

Phaeophyscia rubropulchra  1  1  2      

Pyxine sorediata 3           

Parmelia sp.  3     1 1 1  4 

Melanelia subaurifera 98 28 232 105 107 93 100 86 187 139 178 

Subtotal 144 37 454 171 199 95 209 127 299 210 226 
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Table 3. Mean winter and summer NO2, SO2 and weather variables observed at the sampling 

sites. 

 

 

  

 
NO2 [ppb] SO2 [ppb] 

Temperature 

(ºC) 

Relative Humidity 

(%) 

Wind Direction 

(º) 

Wind Speed  

(m/sec) 

Rain 

(mm) 

Sample Site 

ID 
Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter Summer Winter 

A01BJ 0.06 <0.008 <0.025 sample lost 16.9 -4.6 86 95 272 237 3.5 0.0 3.9 3.0 

A01BR 0.01 not sampled 0.40 not sampled 17.2 -2.4 79 82 284 332 2.3 3.1 5.8 4.6 

A01CB 0.16 0.23 0.38 0.14 17.4 -0.7 81 80 184 284 4.5 6.8 4.5 3.0 

A01CH not sampled <0.008 not sampled 0.34 N/A -0.9 N/A 79 N/A 280 N/A 6.3 0.0 3.0 

A01CL 0.28 <0.008 0.32 <0.025 17.9 -1.1 78 72 238 298 2.2 2.9 0.7 3.2 

A01EF 0.21 <0.008 0.39 0.26 17.1 -2.9 85 78 211 327 2.3 3.1 5.8 3.8 

A01FC 0.17 0.15 0.13 0.59 16.6 -4.9 87 95 263 237 3.6 0.0 4.2 2.9 

A01GA 0.30 0.47 0.04 0.16 15.6 -3.9 84 89 251 297 4.3 6.2 4.8 2.9 

A01GA (Duplicate) 0.23 0.45 0.06 0.18 15.6 -3.9 84 89 251 297 4.3 6.2 4.8 2.9 

A01JG 0.19 <0.008 0.11 <0.025 16.9 -2.5 85 79 219 329 2.2 3.2 5.8 3.2 

A01MC 0.18 1.19 0.17 0.10 17.3 -5.0 85 95 276 237 4.1 0.0 4.2 3.1 

A01NA 0.11 <0.008 0.36 0.22 14.0 -4.1 86 91 255 304 4.4 6.2 6.1 3.2 

A01NB 0.13 0.27 0.21 0.31 17.0 -2.4 84 79 232 329 2.2 3.2 1.7 3.2 

A01RG 0.24 1.84 0.14 0.17 17.0 -0.6 81 80 179 283 4.5 6.8 4.9 3.0 

A01WB 0.09 <0.008 0.25 0.11 16.8 -1.1 82 70 210 292 2.3 2.8 5.4 3.8 

A02CH 0.09 <0.008 0.20 0.13 15.1 -4.1 85 89 253 301 4.3 6.0 5.4 5.3 

A02CL 0.14 <0.008 0.19 0.11 16.9 -1.0 81 72 219 296 2.3 2.9 5.8 3.2 

A02EF 0.10 0.12 0.13 0.41 16.9 -2.5 85 80 201 331 2.3 3.2 5.4 3.2 

A02GA 0.15 0.89 0.10 0.27 15.6 -3.9 84 89 252 297 4.3 6.2 4.5 2.9 

A02NA 0.14 <0.008 0.13 0.21 14.8 -4.1 84 91 261 304 4.4 6.2 5.6 3.2 

A03GA 0.13 2.46 <0.025 0.29 15.8 -4.4 83 91 254 308 4.2 6.2 5.2 3.1 

A04GA 0.35 0.46 0.17 0.29 15.6 -4.4 84 91 251 308 4.3 6.2 4.8 3.1 
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Table 4. Summary statistics of winter and summer NO2, SO2 and weather variables observed in 

Cape Breton Highlands National Park, Sydney and Port Hawkesbury 

 

 

Pollutant Season Site n Mean Median Std Dev Min Max Range 

NO2 [ppb] 

Winter 

CB Highlands 10 0.81 0.46 0.8 0.12 2.46 2.35 

Sydney 10 3.61 3.56 0.15 3.36 3.83 0.47 

Port Hawkesbury 10 2.39 2.34 0.11 2.27 2.55 0.28 

Summer 

CB Highlands 20 0.16 0.15 0.08 0.01 0.35 0.34 

Sydney 20 2.73 2.77 0.12 2.52 2.91 0.39 

Port Hawkesbury 20 2.43 2.51 0.21 2.12 2.73 0.61 

SO2 [ppb] 

Winter 

CB Highlands 17 0.24 0.22 0.13 0.1 0.59 0.49 

Sydney 17 0.31 0.3 0.03 0.29 0.36 0.07 

Port Hawkesbury 17 1.17 1.16 0.02 1.12 1.21 0.1 

Summer 

CB Highlands 18 0.21 0.18 0.11 0.04 0.4 0.36 

Sydney 18 0.22 0.23 0.02 0.17 0.25 0.07 

Port Hawkesbury 18 0.3 0.3 0.07 0.09 0.38 0.29 

Temperature 

(ºC) 

Winter 

CB Highlands -2.9 -2.9 1.5 -5.0 -0.6 4.4 -2.9 

Sydney -1.5 -1.5 0.2 -1.9 -1.2 0.7 -1.5 

Port Hawkesbury -1.6 -1.5 0.2 -2.0 -1.2 0.8 -1.6 

Summer 

CB Highlands 20 16.4 16.9 1.0 14.0 17.9 3.8 

Sydney 20 17.9 17.8 0.5 17.1 18.7 1.6 

Port Hawkesbury 20 18.2 18.0 0.4 17.4 18.8 1.4 

Relative Humidity 

(%) 

Winter 

CB Highlands 21 84 82 8 70 95 25 

Sydney 21 74 74 1 73 75 2 

Port Hawkesbury 21 76 76 1 75 77 2 

Summer 

CB Highlands 20 83 84 2 78 87 9 

Sydney 20 83 83 1 80 84 5 

Port Hawkesbury not available 

Wind Speed (km/h) 

Winter 

CB Highlands 21 15.0 11.6 8.4 0.0 24.6 24.6 

Sydney 21 20.0 20.0 0.4 19.3 20.7 1.4 

Port Hawkesbury 21 18.6 18.7 0.7 17.3 19.5 2.2 

Summer 

CB Highlands 20 12.3 13.9 3.6 7.9 16.2 8.3 

Sydney 20 13.7 13.7 0.4 13.3 14.8 1.4 

Port Hawkesbury 20 12.7 12.7 0.3 12.3 13.4 1.1 

Wind Direction 

(º) 

Winter 

CB Highlands 21 296 298 29 237 332 95 

Sydney 21 285 285 4 277 293 16 

Port Hawkesbury 21 297 297 4 291 302 11 

Summer 

CB Highlands 20 238 251 30 179 284 105 

Sydney 20 211 213 8 197 228 31 

Port Hawkesbury 20 198 204 18 169 233 64 

 


