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1. Introduction 
 

Since the creation of operations research as a discipline, a continued interest has been in the 
development of heuristics or approximation algorithms to solve complex combinatorial 
optimization problems. As many problems have been proven computationally intractable, 
the heuristic approaches become increasingly important in solving various large practical 
problems.  
The most popular heuristics that have been widely studied in literature include Simulated 
Annealing (SA) (Kirkpatrick 1983), Tabu Search (TS) (Glover 1986), and Genetic Algorithm 
(GA) (Holland 1975). Simulated annealing is a stochastic search method that explores the 
solution space using a hill climbing process. Tabu search, on the other hand, is a 
deterministic search algorithm that attempts exhaustive exploration of the neighbourhood 
of a solution. In contrast to the local search algorithms such as SA and TS that work with 
one feasible solution in each iteration, GA employs a population of solutions and is capable 
of both local and global search in the solution space. 
Despite their successes in solving many combinatorial problems, these algorithms have 
some limitations. For instance, SA can be easily trapped in a local optimum or may require 
excessive computing time to find a reasonable solution. To successfully implement a tabu 
search algorithm, one requires a good knowledge about the problem and its solution space 
to define an efficient neighbourhood structure. Genetic algorithms often converge to a local 
optimum prematurely and their success often relies on the efficiency of the adopted 
operators.  
Due to the deficiencies of the conventional heuristics and ever increasing demand for more 
efficient search algorithms, researchers are exploring two main options, developing new 
methods such as nature inspired metaheuristics and investigating hybrid algorithms.  
In recent years, a number of metaheuristics have been developed. Examples include the 
Greedy Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995; Aiex et al., 
2003), Adaptive Multi Start (Boese et al., 1994), Adaptive Memory Programming (AMP) 
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(Taillard et al., 2001), Ant System (AS) (Dorigo & Gambardella, 1997), and Particle Swarm 
Optimization (PSO) (Kennedy & Eberhart 1995). 
Another important research domain in heuristics is hybridization by which a search 
algorithm such as GA is used in conjunction with one or more other techniques, e.g., 
simulated annealing and/or tabu search. Because of the complementary properties of each 
algorithm, hybrid approaches often outperform each individual method operating alone. 
However, they still require excessive computational effort. 
In view of the above, this chapter presents a Collaborative Search Algorithm (CSA) for 
combinatorial optimization problems. The proposed approach contains two independent 
search algorithms, an enhanced simulated annealing with memory and a blockage removal 
feature (called Tabu-SA component hereafter), and a genetic algorithm (i.e., GA component). 
The two algorithms exchange information while consecutively run to solve a problem. The 
Tabu-SA algorithm utilizes a short-term memory, i.e., tabu list to avoid revisiting solutions 
temporarily. The purpose of the blockage removal feature in the Tabu-SA component is to 
resolve deadlock situation in which a (acceptable) solution is hard to find in the 
neighbourhood of a solution. The GA component employs two evolutionary operators, 
crossover and mutation operators, and a long-term memory, i.e., population list to conduct 
global search. The population list is constantly updated by the two algorithms, Tabu-SA and 
GA, as the search progresses. 
The reminder of this chapter is organized as follow. In section 2, a review of the two popular 
hybrid algorithms, hybrid GA and hybrid SA, is presented. Section 3 describes the proposed 
collaborative search algorithm (CSA). In section 4, more details of its application to flow 
shop scheduling problem is presented. Computational results and the comparisons with 
other approaches followed by conclusion are presented in sections 5 and 6. 

 
2. Review of Hybrid GA and SA Algorithms 
 

Depending on which algorithm is selected to be the core component of the hybrid 
algorithms, the hybrid algorithms could be categorized as hybrid SA or hybrid GA. In a 
hybrid SA, the driving module of the algorithm is a simulated annealing while in a hybrid 
GA the driving component is a genetic algorithm. 

 
2.1 Hybrid genetic algorithms 
The popular forms of hybrid GAs are constructed by: a) including a constructive heuristic to 
generate one or more members of the initial population (e.g., Reeves, 1995); b) incorporating 
a local search heuristic to improve the quality of the solutions built by the crossover 
operator (e.g., Gonçalves et al., 2005); and c) by combination of the former two (a and b) 
strategies (e.g., Wang & Zheng, 2003; Ruiz et al., 2006; and Kolonko, 1999). Figure 1 
illustrates the framework of the two popular hybrid genetic algorithms. 
Reeves (1995) applied a genetic algorithm to the permutation flow shop scheduling 
problem. To generate the initial population, the author used the NEH (Newaz et al., 1983) 
heuristic to generate the first member of the population and the rest of the population were 
generated randomly. 
Wang and Zheng (2003) proposed a hybrid GA for the flow shop scheduling problem. In the 
hybrid algorithm, the NEH algorithm (Newaz et al., 1983) is utilized to generate the first 
member of the initial population while, the rest of the individuals are generated randomly.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To improve the performance of their algorithm, Wang and Zhang (2003) replaced the simple 
mutation operator of the plain GA with a simulated annealing module. Gonçalves et al., 
(2005) developed a hybrid GA for job shop scheduling problem. In Gonçalves et al., (2005), a 
local search is used to improve the quality of all individuals built by the crossover operator. 
Instead of using mutation operator, Gonçalves et al., (2005) replaced 20 percent of the 
population with randomly generated schedules (i.e., chromosomes).  
Ruiz et al., (2006) also proposed a hybrid GA for the flow shop scheduling problem. In their 
method, the entire initial population is generated using a modified NEH (Newaz et al., 1983) 
algorithm. Furthermore, each time when a new population is entirely set up, the algorithm 
enhances the generation by applying a local search to the best member of the new 
population. Kolonko (1999) proposed a hybrid GA algorithm in which members of 
population are independent SA runs. Each member of the population is enhanced by a SA 
module as long as the number of trials without improvement is less than a predetermined 
value. To generate a new population, two individuals are selected randomly and their 
schedules are crossed using a special type of crossover operator. The hybrid algorithm was 
favourably tested using several job shop scheduling problems. 

 
2.2 Hybrid simulated annealing algorithms 
Two common forms of hybrid SAs that have been reported in literature are built by: a) 
adding prohibited memory (i.e., tabu list) to simulated annealing algorithm (e.g., Osman, 
1993; Zolfaghari & Liang, 1999; Azizi & Zolfaghari, 2004); and b) addition of both prohibited 
and reinforcement memories (e.g., El-Bouri et al., 2007). Recently a new hybrid simulated 
annealing has been also reported in the literature that combines three algorithms, simulated 
annealing, genetic algorithm, and tabu search (Azizi et al., 2009a and Azizi et al.,2009b). 
Osman (1993) compared the performance of several heuristics including a hybrid simulated 
annealing that utilizes a tabu list. Osman (1993) concluded that the hybrid algorithm 
outperforms the conventional simulated annealing both in terms of solutions quality and  
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(Taillard et al., 2001), Ant System (AS) (Dorigo & Gambardella, 1997), and Particle Swarm 
Optimization (PSO) (Kennedy & Eberhart 1995). 
Another important research domain in heuristics is hybridization by which a search 
algorithm such as GA is used in conjunction with one or more other techniques, e.g., 
simulated annealing and/or tabu search. Because of the complementary properties of each 
algorithm, hybrid approaches often outperform each individual method operating alone. 
However, they still require excessive computational effort. 
In view of the above, this chapter presents a Collaborative Search Algorithm (CSA) for 
combinatorial optimization problems. The proposed approach contains two independent 
search algorithms, an enhanced simulated annealing with memory and a blockage removal 
feature (called Tabu-SA component hereafter), and a genetic algorithm (i.e., GA component). 
The two algorithms exchange information while consecutively run to solve a problem. The 
Tabu-SA algorithm utilizes a short-term memory, i.e., tabu list to avoid revisiting solutions 
temporarily. The purpose of the blockage removal feature in the Tabu-SA component is to 
resolve deadlock situation in which a (acceptable) solution is hard to find in the 
neighbourhood of a solution. The GA component employs two evolutionary operators, 
crossover and mutation operators, and a long-term memory, i.e., population list to conduct 
global search. The population list is constantly updated by the two algorithms, Tabu-SA and 
GA, as the search progresses. 
The reminder of this chapter is organized as follow. In section 2, a review of the two popular 
hybrid algorithms, hybrid GA and hybrid SA, is presented. Section 3 describes the proposed 
collaborative search algorithm (CSA). In section 4, more details of its application to flow 
shop scheduling problem is presented. Computational results and the comparisons with 
other approaches followed by conclusion are presented in sections 5 and 6. 

 
2. Review of Hybrid GA and SA Algorithms 
 

Depending on which algorithm is selected to be the core component of the hybrid 
algorithms, the hybrid algorithms could be categorized as hybrid SA or hybrid GA. In a 
hybrid SA, the driving module of the algorithm is a simulated annealing while in a hybrid 
GA the driving component is a genetic algorithm. 
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operator (e.g., Gonçalves et al., 2005); and c) by combination of the former two (a and b) 
strategies (e.g., Wang & Zheng, 2003; Ruiz et al., 2006; and Kolonko, 1999). Figure 1 
illustrates the framework of the two popular hybrid genetic algorithms. 
Reeves (1995) applied a genetic algorithm to the permutation flow shop scheduling 
problem. To generate the initial population, the author used the NEH (Newaz et al., 1983) 
heuristic to generate the first member of the population and the rest of the population were 
generated randomly. 
Wang and Zheng (2003) proposed a hybrid GA for the flow shop scheduling problem. In the 
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computational time. Zolfaghari and Liang (1999) proposed a hybrid tabu-simulated 
annealing approach to solve the group scheduling problem. The performance of the hybrid 
method was tested and favourably compared with two other algorithms using tabu search 
and simulated annealing alone. Azizi and Zolfaghari (2004) proposed an adaptive simulated 
annealing method complemented with a tabu list. The performance of the hybrid algorithm 
was evaluated and compared with conventional simulated annealing using classical job 
shop scheduling problems. Using statistical analysis, Azizi and Zolfaghari (2004) showed 
that the adaptive tabu-SA algorithm outperforms a stand-alone simulated annealing 
algorithm.  
El-Bouri et al., (2007) proposed four versions of a new memory-based heuristic based on 
AMP and simulated annealing. The main characteristic of the proposed methods is the use 
of two short-term memories. The first memory is a tabu list while the second is called seed 
memory list that keeps tracks of the best solution visited during the last iteration. El-Bouri et 
al., (2007) showed that the simultaneous use of prohibited and reinforcement memories in 
simulated annealing could significantly improve the search performance.  
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Azizi et al., (2009a) proposed a generic framework of a new metaheuristic, SAMED, that 
combines different features of several search algorithms. The framework contains several 
components including a simulated annealing module, three types of memories, and an 
evolutionary operator. Based on the generic framework, Azizi et al., (2009a & 2009b) 
developed several search algorithms to investigate the application of the proposed 
framework on two popular scheduling problems, job shop and flow shop scheduling 
problems. Azizi et al., (2009a & 2009b) showed that the new hybrid algorithms surpass the 
performance of the conventional heuristics as well as several hybrid genetic algorithms in 
both applications. The framework of the SAMED algorithm is presented in Figure 3. In the 
figure, control 1 verifies if the current solution is accepted, and controls 2 and 3 check if the 
short and long iterations are completed respectively. 
For the case of job shop scheduling, Azizi et al. (2009a) developed another version of the new 
metaheuristic that includes two new components. The first component features a problem-
specific local search that explores the neighbouring solutions on a critical path of a job shop 
scheduling solution. The second component is for blockage removal to resolve possible 
deadlock situations that may occur during the search (Figure 4). The algorithm is named 
SAMED-LB. Azizi et al. (2009a) showed that, in the majority of tested benchmark problems, 
the addition of the new components has significantly improved the computational 
efficiency. 
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The best member of the population is selected as the initial solution for the Tabu-SA 
module. The Tabu-SA module begins searching the solution space with an initial solution. 
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Azizi et al., (2009a) proposed a generic framework of a new metaheuristic, SAMED, that 
combines different features of several search algorithms. The framework contains several 
components including a simulated annealing module, three types of memories, and an 
evolutionary operator. Based on the generic framework, Azizi et al., (2009a & 2009b) 
developed several search algorithms to investigate the application of the proposed 
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problems. Azizi et al., (2009a & 2009b) showed that the new hybrid algorithms surpass the 
performance of the conventional heuristics as well as several hybrid genetic algorithms in 
both applications. The framework of the SAMED algorithm is presented in Figure 3. In the 
figure, control 1 verifies if the current solution is accepted, and controls 2 and 3 check if the 
short and long iterations are completed respectively. 
For the case of job shop scheduling, Azizi et al. (2009a) developed another version of the new 
metaheuristic that includes two new components. The first component features a problem-
specific local search that explores the neighbouring solutions on a critical path of a job shop 
scheduling solution. The second component is for blockage removal to resolve possible 
deadlock situations that may occur during the search (Figure 4). The algorithm is named 
SAMED-LB. Azizi et al. (2009a) showed that, in the majority of tested benchmark problems, 
the addition of the new components has significantly improved the computational 
efficiency. 
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Each time a solution is accepted, the quality of the solution is first compared to the overall 
best solution. Only if the solution improves the quality of the overall best solution, it is 
added to the population list. Then part of the solution that has been modified to generate the 
neighbouring solution is added to a tabu list. The completion of the tabu list marks the end 
of a short iteration. During a short iteration, the Tabu-SA also keeps track of the best 
solution visited during the iteration. At the end of the iteration, the tabu list is emptied and 
the best solution of the current iteration (if it is not the current solution) is selected as the 
initial solution for the next iteration. The above steps are repeated for a number of 
predetermined short iterations, i.e., a long iteration. Once a long iteration is completed, the 
performance of the search is evaluated by comparing the current (long) iteration best 
solution with that at the beginning of the past iteration. In the case of improvement, the 
Tabu-SA will continue the search; otherwise, the genetic algorithm component is called to 
participate in the search operations. The GA component generates a new population using 
the two evolutionary operators, crossover and mutation, and a copy of the current 
population list. The GA continues searching the solution space as long as there is 
improvement from one generation to another. Every time a new population is generated, 
GA also compares the quality of the best member of the new population with that of the 
overall best solution to update the original population list. Once the GA detects no 
improvement within its module, it will return the original population (that may have been 
also updated by the GA) and the best solution found during its own operations to the Tabu-
SA component. The Tabu-SA utilizes the best solution (provided by GA) as the initial 
solution. The framework of the CSA is presented in Figure 5. In the figure, controls 1 and 5 
check if the overall best solution has been improved to update the population list. Control 2 
verifies the improvement within the GA component, and controls 3 and 4 test whether or 
not the short and long iterations are completed respectively. 
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The CSA could be regarded as a variation of the SAMED algorithm proposed for the flow 
shop scheduling problem, SAMED-FSS (Azizi et al., 2009b). However, it differs from the 
SAMED-FSS algorithm in several aspects. The main differences between the two algorithms 
have been highlighted in Table 1. 
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Each time a solution is accepted, the quality of the solution is first compared to the overall 
best solution. Only if the solution improves the quality of the overall best solution, it is 
added to the population list. Then part of the solution that has been modified to generate the 
neighbouring solution is added to a tabu list. The completion of the tabu list marks the end 
of a short iteration. During a short iteration, the Tabu-SA also keeps track of the best 
solution visited during the iteration. At the end of the iteration, the tabu list is emptied and 
the best solution of the current iteration (if it is not the current solution) is selected as the 
initial solution for the next iteration. The above steps are repeated for a number of 
predetermined short iterations, i.e., a long iteration. Once a long iteration is completed, the 
performance of the search is evaluated by comparing the current (long) iteration best 
solution with that at the beginning of the past iteration. In the case of improvement, the 
Tabu-SA will continue the search; otherwise, the genetic algorithm component is called to 
participate in the search operations. The GA component generates a new population using 
the two evolutionary operators, crossover and mutation, and a copy of the current 
population list. The GA continues searching the solution space as long as there is 
improvement from one generation to another. Every time a new population is generated, 
GA also compares the quality of the best member of the new population with that of the 
overall best solution to update the original population list. Once the GA detects no 
improvement within its module, it will return the original population (that may have been 
also updated by the GA) and the best solution found during its own operations to the Tabu-
SA component. The Tabu-SA utilizes the best solution (provided by GA) as the initial 
solution. The framework of the CSA is presented in Figure 5. In the figure, controls 1 and 5 
check if the overall best solution has been improved to update the population list. Control 2 
verifies the improvement within the GA component, and controls 3 and 4 test whether or 
not the short and long iterations are completed respectively. 
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job has to be processed on all m machines in the order given by the index of the machines. 
Each job consists of a sequence of m operations, O1j, O2j , O3j,…,Omj, each of them 
corresponding to the processing of job j on machine i during an uninterrupted processing 
time period Pi,j. Each machine can only process one job at a time and it is assumed that each 
machine processes the jobs in the same order. The objective is to find the schedule that has 
the minimum makespan (the duration in which all jobs are completed). 

 
4.1.1 Solution representation 
A solution of the flow shop scheduling problem is represented by a string composed of 
several elements each corresponding to a job number (job based scheme). The sequence of 
the job numbers on the string indicates the processing order of jobs on all machines. 

 
4.1.2 Neighbouring solution 
A neighbouring solution is generated by inserting a randomly selected job in front or behind 
another job in the string (i.e., insertion technique). 

CSA(Collaborative Search Algorithm) SAMED-FSS Algorithm 
Population list is continually updated by 
SA and GA throughout the search  

Long-term memory is updated only at the 
end of short iterations and is emptied at 
the end of long iterations 

The population list is initially populated by 
randomly generated solutions which are 
gradually replaced by overall best solutions 
as the search progresses 

Long-term memory contains the short 
iteration's best solutions that have been 
visited during the recent long iteration  

Contains a complete genetic algorithm  GA component include a crossover 
operator  

Genetic algorithm operates as long as there 
is improvement from one generation to 
another 

Genetic algorithm component operates 
only for one generation 

Once GA stops functioning, it returns the 
best solution found within the GA module 

The new population is scanned and the 
first offspring whose cost is different than 
that of the iteration best solution might be 
selected. 
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4.2 Components of CSA 
As noted earlier, the CSA includes two main components, a Tabu-SA module with blockage 
removal and a genetic algorithm. The Tabu-SA component of the CSA is adopted from 
(Azizi et al. (2009b). The genetic algorithm component includes a random selection 
mechanism, a crossover operator, and a mutation operator. In order to generate a new 
population, two parents are selected randomly and operated by the Precedence Preservative 
Crossover (PPX) (Bierwirth et al., 1996). To generate a new offspring by the PPX crossover 
operator, a template vector h of length n (n denotes the number of jobs) is filled with 
random elements from the set {1, 2}. This vector is then used to define the order in which 
elements are drawn from parent 1 and parent 2. The selected element from one parent is 
appended to the offspring string and then the corresponding element is deleted from both 
parents. This procedure repeats itself until both parent strings are emptied and the offspring 
contains all the involved elements. 
The mutation operator selects a job randomly and inserts it in front or behind another job in 
the offspring chromosome. The corresponding makespans of the offspring chromosome 
before and after the mutation operation are compared and if the mutation deteriorates the 
quality of the offspring, the mutation result is revoked and then the chromosome is added to 
the population. 

 
4.3 Initial population and initial solution 
Both the initial population and initial solution in the CSA could be generated randomly. 
However, for the case of flow shop scheduling we developed a constructive heuristic based 
on the NEH algorithm (Newaz et al., 1983) to generate portion (e.g., 50% of the members) of 
the population. According to this constructive heuristic, a solution is first generated 
randomly. Then, the solution is scanned from left to right and the first two jobs on the 
solution string is selected and added to a template chromosome. Following this, the 
positions of the two jobs is swapped and the partial makespans of the template chromosome 
before and after the swap is calculated. The makespans are compared and the configuration 
that generates shorter makespan is selected. Once the configuration of the two jobs is 
decided, the next job on the original solution (i.e., third job from left) is inserted in all 
possible positions on the template chromosome (e.g., before the first job, between job one 
and job two, and after job two). The lengths of the schedules associated with each 
configuration are calculated and the one with shorter makespan is selected. The above steps 
are repeated until all jobs on the randomly generated solution are transferred to the 
template chromosome.  
 The rest of the population members, i.e., the second portion, are generated randomly. The 
best member of the population is selected as the initial solution for the Tabu-SA algorithm. 

 
5. Computational Results 
 

The performance of the CSA is evaluated using 40 hard problems selected from two 
benchmark problem sets known as Taillard (1993) and Demirkol et al. (1998) benchmark 
problems. The algorithm is coded in Visual Basic and run on a Pentium 4 PC with 3.3 GHz 
CPU. The computational times as well as the parameters of the CSA including the size of 
tabu list (short iteration), long iteration (long-term memory), the initial temperature, the 
control parameter, and the maximum number of unacceptable moves are the same as those 

utilized in the SAMED-FSS algorithm (Azizi et al., 2009b). The size of the population list is 30 
for all benchmark problems except for TA21, TA22, TA24, and TA25 for which it is set to 20. 
For all benchmark problems, 50% of the members in each initial population are generated 
using the modified NEH algorithm described in section 4.2 and the remaining solutions are 
generated randomly.  
The computational results for both benchmark problem sets are summarized in Table 2. The 
results presented in this table correspond to the best makespan over 10 runs and associated 
computing time (per second). According to the results presented in Table 2, the CSA found 
solutions with shorter makespans for 24 out of 28 Demirkol et al. (1998) benchmark 
problems (DMU01-DMU34) compared to those provided by the SAMED-FSS (Azizi et al., 
2009b). In comparison with the PSO (Liao et al., 2007) algorithm, solutions found by the CSA 
for 22 benchmark problems are of better quality. The CSA also outperformed the 
conventional SA, standard GA, and hybrid genetic algorithm with local search (GA-LS) 
(Azizi et al., 2009b) in all 28 test problems.  
Furthermore, For all the 12 Taillard (1993) benchmark problems, the CSA found better 
quality solutions (including nine optimal) compared to those solutions found by the 
conventional SA, standard GA, hybrid genetic algorithm with local search (GA-LS), and the 
PSO (Liao et al., 2007). Moreover, the CSA found the same (optimal) solutions as the 
SAMED-FSS for nine problems but with shorter computational times in the majority of the 
(nine) cases. In the remaining three problems, the CSA outperforms the SAMED-FSS both in 
terms of solution quality and computational times. 
 Figure 6 compares the standard deviation of the makespans obtained by five different 
methods for all the Demirkol et al. (1998) benchmark problems. The results presented in the 
figure clearly show that in the majority of the cases investigated in this study, the standard 
deviation of the makespans obtained by the CSA is significantly lower than those obtained 
by the other four techniques.  
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4.2 Components of CSA 
As noted earlier, the CSA includes two main components, a Tabu-SA module with blockage 
removal and a genetic algorithm. The Tabu-SA component of the CSA is adopted from 
(Azizi et al. (2009b). The genetic algorithm component includes a random selection 
mechanism, a crossover operator, and a mutation operator. In order to generate a new 
population, two parents are selected randomly and operated by the Precedence Preservative 
Crossover (PPX) (Bierwirth et al., 1996). To generate a new offspring by the PPX crossover 
operator, a template vector h of length n (n denotes the number of jobs) is filled with 
random elements from the set {1, 2}. This vector is then used to define the order in which 
elements are drawn from parent 1 and parent 2. The selected element from one parent is 
appended to the offspring string and then the corresponding element is deleted from both 
parents. This procedure repeats itself until both parent strings are emptied and the offspring 
contains all the involved elements. 
The mutation operator selects a job randomly and inserts it in front or behind another job in 
the offspring chromosome. The corresponding makespans of the offspring chromosome 
before and after the mutation operation are compared and if the mutation deteriorates the 
quality of the offspring, the mutation result is revoked and then the chromosome is added to 
the population. 

 
4.3 Initial population and initial solution 
Both the initial population and initial solution in the CSA could be generated randomly. 
However, for the case of flow shop scheduling we developed a constructive heuristic based 
on the NEH algorithm (Newaz et al., 1983) to generate portion (e.g., 50% of the members) of 
the population. According to this constructive heuristic, a solution is first generated 
randomly. Then, the solution is scanned from left to right and the first two jobs on the 
solution string is selected and added to a template chromosome. Following this, the 
positions of the two jobs is swapped and the partial makespans of the template chromosome 
before and after the swap is calculated. The makespans are compared and the configuration 
that generates shorter makespan is selected. Once the configuration of the two jobs is 
decided, the next job on the original solution (i.e., third job from left) is inserted in all 
possible positions on the template chromosome (e.g., before the first job, between job one 
and job two, and after job two). The lengths of the schedules associated with each 
configuration are calculated and the one with shorter makespan is selected. The above steps 
are repeated until all jobs on the randomly generated solution are transferred to the 
template chromosome.  
 The rest of the population members, i.e., the second portion, are generated randomly. The 
best member of the population is selected as the initial solution for the Tabu-SA algorithm. 

 
5. Computational Results 
 

The performance of the CSA is evaluated using 40 hard problems selected from two 
benchmark problem sets known as Taillard (1993) and Demirkol et al. (1998) benchmark 
problems. The algorithm is coded in Visual Basic and run on a Pentium 4 PC with 3.3 GHz 
CPU. The computational times as well as the parameters of the CSA including the size of 
tabu list (short iteration), long iteration (long-term memory), the initial temperature, the 
control parameter, and the maximum number of unacceptable moves are the same as those 

utilized in the SAMED-FSS algorithm (Azizi et al., 2009b). The size of the population list is 30 
for all benchmark problems except for TA21, TA22, TA24, and TA25 for which it is set to 20. 
For all benchmark problems, 50% of the members in each initial population are generated 
using the modified NEH algorithm described in section 4.2 and the remaining solutions are 
generated randomly.  
The computational results for both benchmark problem sets are summarized in Table 2. The 
results presented in this table correspond to the best makespan over 10 runs and associated 
computing time (per second). According to the results presented in Table 2, the CSA found 
solutions with shorter makespans for 24 out of 28 Demirkol et al. (1998) benchmark 
problems (DMU01-DMU34) compared to those provided by the SAMED-FSS (Azizi et al., 
2009b). In comparison with the PSO (Liao et al., 2007) algorithm, solutions found by the CSA 
for 22 benchmark problems are of better quality. The CSA also outperformed the 
conventional SA, standard GA, and hybrid genetic algorithm with local search (GA-LS) 
(Azizi et al., 2009b) in all 28 test problems.  
Furthermore, For all the 12 Taillard (1993) benchmark problems, the CSA found better 
quality solutions (including nine optimal) compared to those solutions found by the 
conventional SA, standard GA, hybrid genetic algorithm with local search (GA-LS), and the 
PSO (Liao et al., 2007). Moreover, the CSA found the same (optimal) solutions as the 
SAMED-FSS for nine problems but with shorter computational times in the majority of the 
(nine) cases. In the remaining three problems, the CSA outperforms the SAMED-FSS both in 
terms of solution quality and computational times. 
 Figure 6 compares the standard deviation of the makespans obtained by five different 
methods for all the Demirkol et al. (1998) benchmark problems. The results presented in the 
figure clearly show that in the majority of the cases investigated in this study, the standard 
deviation of the makespans obtained by the CSA is significantly lower than those obtained 
by the other four techniques.  
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Table 2. Comparison of computational results 
a) n×m = n jobs and m machines, b)Conventional SA, Standard GA, and GA with Local Search (Azizi et 
al., 2009b); bold= best solution. 
 

Size 
(n×m)a 

Problem Optimal Demirkol 
et al., 
1998 

SAb GAb 
 

GA-LSb PSO: 
Liao et 

al., 2007 

SAMED-
FSS (Azizi et 

al., 2009b) 

CSA 

20 × 15 DMU01 - 4437(69) 3965(5) 3981(55) 3981(5) 3937 3899(4) 3896(13) 
DMU02 - 4144(0.09 3838(2) 3878(2) 3833(2) 3571 3761(13) 3755(55) 
DMU03 - 3779(58) 3579(8) 3625(1) 3572(3) 3981 3534(7) 3532(5) 
DMU04 - 4302(67) 4097(6) 4148(25) 4094(4) 3805 4032(51) 4032(33) 

20 × 20 DMU06 - 4821(159) 4609(5) 4634(78) 4577(6) 4612 4523(40) 4523(25) 
DMU07 - 4779(148) 4544(12) 4561(9) 4482(10) 4570 4428(23) 4424(47) 
DMU08 - 4944(176) 4601(6) 4604(30) 4531(8) 4504 4523(79) 4520(55) 
DMU09 - 4886(203) 4590(6) 4574(34) 4546(8) 4538 4496(48) 4496(10) 

30 × 15 DMU11 - 5226(149) 4612(36) 4681(74) 4682(6) 4658 4582(22) 4574(58) 
DMU12 - 5304(163) 4742(55) 4730(79) 4725(10) 4743 4675(61) 4669(76) 
DMU13 - 5079(109) 4670(13) 4771(46) 4704(8) 4824 4569(99) 4568(63) 
DMU14 - 5605(0.17 4894(40) 5014(38) 4949(12) 4928 4836(54) 4836(52) 

30 × 20 DMU16 - 6183(0.24 5431(48) 5494(59) 5494(19) 5782 5384(76) 5372(87) 
DMU17 - 6037(471) 5815(4) 5854(53) 5794(17) 5485 5718(75) 5700(28) 
DMU18 - 6241(394) 5815(4) 5856(60) 5815(22) 5486 5726(55) 5767(43) 
DMU19 - 6095(320) 5546(57) 5654(34) 5537(20) 5848 5479(68) 5469(85) 

40 × 15 DMU21 - 6986(156) 6089(69) 6229(83) 6073(17) 6012 6026(119) 5965(107) 
DMU22 - 6351(224) 5797(95) 5931(101) 5829(14) 6080 5717(100) 5702(117) 
DMU23 - 6506(289) 5944(86) 6105(60) 5997(15) 6173 5904(40) 5895(108) 
DMU24 - 6845(186) 5967(33) 6081(102) 6039(13) 5855 5928(55) 5928(36) 

40 × 20 DMU26 - 7154(615) 6711(31) 6771(98) 6763(34) 6730 6556(176) 6518(167) 
DMU27 - 7528(645) 6833(140) 6972(161) 6824(35) 6723 6704(178) 6686(90) 
DMU28 - 7469(674) 6965(173) 7033(160) 6962(29) 6973 6860(180) 6842(144) 
DMU29 - 7608(682) 6834(131) 7000(133) 6935(23) 6950 6792(166) 6749(76) 

50 × 15 DMU31 - 7673(313) 6747(92) 6952(76) 6852(14) 6725 6747(80) 6677(168) 
DMU32 - 7679(299) 6740(172) 6844(118) 6761(28) 7143 6669(89) 6614(49) 
DMU33 - 7416(284) 6733(134) 6893(144) 6748(31) 6864 6656(138) 6596(117) 
DMU34 - 7548(307) 6945(149 7125(159) 6972(28) 7070 6878(101) 6839(152) 

20 × 10 Ta11 1582 - 1593(110) 1622(3) 1586(4) 1604 1582(41) 1582(47) 
 Ta12 1659 - 1676(33) 1710(4) 1692(1) 1685 1659(67) 1659(46) 
 Ta13 1496 - 1524(38) 1540(1) 1515(1) 1520 1496(156) 1496(31) 
 Ta14 1377 - 1384(118) 1413(10) 1396(2) 1402 1377(70) 1377(17) 

20 × 20 Ta21 2297 - 2320(38) 2325(2) 2315(7) 2319 2297(12) 2297(7) 
 Ta22 2099 - 2125(32) 2120(23) 2127(9) 2132 2099(18) 2099(28) 
 Ta24 2223 - 2254(7) 2264(5) 2246(29) 2243 2223(17) 2223(14) 
 Ta25 2291 - 2315(83) 2325(6) 2309(46) 2315 2291(43) 2291(12) 

50 × 10 Ta41 2991 - 3059(208) 3116(71) 3111(21) 3080 3035(148) 3030(146) 
 Ta42 2867 - 2921(197) 3006(77) 2975(9) 2974 2911(97) 2911(117) 
 Ta44 3063 - 3071(298) 3194(71) 3121(17) 3103 3066(217) 3063(201) 
 Ta48 3037 - 3048(230) 3121(88) 3108(10) 3085 3044(116) 3042(164) 

6. Conclusion 
 

Various scheduling problems that occur in manufacturing industries have been investigated 
in the literature. They are inherently complex and often referred to as combinatorial Non-
Polynomial (NP) hard problems. These problems are very difficult to solve using existing 
heuristics or conventional techniques. This chapter presents a generic framework of a 
collaborative search algorithm to solve scheduling problems. The proposed framework 
contains two independent search modules that exchange information while consecutively 
run to solve a problem. Based on the proposed framework a search algorithm tailored for 
the flow shop scheduling is presented. The computational results for the two challenging 
classical problem sets clearly indicate the superior performance of the proposed method 
over several conventional techniques including a simulated annealing, a genetic algorithm 
and a hybrid genetic algorithm. The CSA results also compare favourably with those of the 
two newly developed algorithms, PSO (Liao et al., 2007) and SAMED-FSS (Azizi et al., 
2009b). 
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Table 2. Comparison of computational results 
a) n×m = n jobs and m machines, b)Conventional SA, Standard GA, and GA with Local Search (Azizi et 
al., 2009b); bold= best solution. 
 

Size 
(n×m)a 

Problem Optimal Demirkol 
et al., 
1998 

SAb GAb 
 

GA-LSb PSO: 
Liao et 

al., 2007 

SAMED-
FSS (Azizi et 

al., 2009b) 

CSA 

20 × 15 DMU01 - 4437(69) 3965(5) 3981(55) 3981(5) 3937 3899(4) 3896(13) 
DMU02 - 4144(0.09 3838(2) 3878(2) 3833(2) 3571 3761(13) 3755(55) 
DMU03 - 3779(58) 3579(8) 3625(1) 3572(3) 3981 3534(7) 3532(5) 
DMU04 - 4302(67) 4097(6) 4148(25) 4094(4) 3805 4032(51) 4032(33) 

20 × 20 DMU06 - 4821(159) 4609(5) 4634(78) 4577(6) 4612 4523(40) 4523(25) 
DMU07 - 4779(148) 4544(12) 4561(9) 4482(10) 4570 4428(23) 4424(47) 
DMU08 - 4944(176) 4601(6) 4604(30) 4531(8) 4504 4523(79) 4520(55) 
DMU09 - 4886(203) 4590(6) 4574(34) 4546(8) 4538 4496(48) 4496(10) 

30 × 15 DMU11 - 5226(149) 4612(36) 4681(74) 4682(6) 4658 4582(22) 4574(58) 
DMU12 - 5304(163) 4742(55) 4730(79) 4725(10) 4743 4675(61) 4669(76) 
DMU13 - 5079(109) 4670(13) 4771(46) 4704(8) 4824 4569(99) 4568(63) 
DMU14 - 5605(0.17 4894(40) 5014(38) 4949(12) 4928 4836(54) 4836(52) 

30 × 20 DMU16 - 6183(0.24 5431(48) 5494(59) 5494(19) 5782 5384(76) 5372(87) 
DMU17 - 6037(471) 5815(4) 5854(53) 5794(17) 5485 5718(75) 5700(28) 
DMU18 - 6241(394) 5815(4) 5856(60) 5815(22) 5486 5726(55) 5767(43) 
DMU19 - 6095(320) 5546(57) 5654(34) 5537(20) 5848 5479(68) 5469(85) 

40 × 15 DMU21 - 6986(156) 6089(69) 6229(83) 6073(17) 6012 6026(119) 5965(107) 
DMU22 - 6351(224) 5797(95) 5931(101) 5829(14) 6080 5717(100) 5702(117) 
DMU23 - 6506(289) 5944(86) 6105(60) 5997(15) 6173 5904(40) 5895(108) 
DMU24 - 6845(186) 5967(33) 6081(102) 6039(13) 5855 5928(55) 5928(36) 

40 × 20 DMU26 - 7154(615) 6711(31) 6771(98) 6763(34) 6730 6556(176) 6518(167) 
DMU27 - 7528(645) 6833(140) 6972(161) 6824(35) 6723 6704(178) 6686(90) 
DMU28 - 7469(674) 6965(173) 7033(160) 6962(29) 6973 6860(180) 6842(144) 
DMU29 - 7608(682) 6834(131) 7000(133) 6935(23) 6950 6792(166) 6749(76) 

50 × 15 DMU31 - 7673(313) 6747(92) 6952(76) 6852(14) 6725 6747(80) 6677(168) 
DMU32 - 7679(299) 6740(172) 6844(118) 6761(28) 7143 6669(89) 6614(49) 
DMU33 - 7416(284) 6733(134) 6893(144) 6748(31) 6864 6656(138) 6596(117) 
DMU34 - 7548(307) 6945(149 7125(159) 6972(28) 7070 6878(101) 6839(152) 

20 × 10 Ta11 1582 - 1593(110) 1622(3) 1586(4) 1604 1582(41) 1582(47) 
 Ta12 1659 - 1676(33) 1710(4) 1692(1) 1685 1659(67) 1659(46) 
 Ta13 1496 - 1524(38) 1540(1) 1515(1) 1520 1496(156) 1496(31) 
 Ta14 1377 - 1384(118) 1413(10) 1396(2) 1402 1377(70) 1377(17) 

20 × 20 Ta21 2297 - 2320(38) 2325(2) 2315(7) 2319 2297(12) 2297(7) 
 Ta22 2099 - 2125(32) 2120(23) 2127(9) 2132 2099(18) 2099(28) 
 Ta24 2223 - 2254(7) 2264(5) 2246(29) 2243 2223(17) 2223(14) 
 Ta25 2291 - 2315(83) 2325(6) 2309(46) 2315 2291(43) 2291(12) 

50 × 10 Ta41 2991 - 3059(208) 3116(71) 3111(21) 3080 3035(148) 3030(146) 
 Ta42 2867 - 2921(197) 3006(77) 2975(9) 2974 2911(97) 2911(117) 
 Ta44 3063 - 3071(298) 3194(71) 3121(17) 3103 3066(217) 3063(201) 
 Ta48 3037 - 3048(230) 3121(88) 3108(10) 3085 3044(116) 3042(164) 

6. Conclusion 
 

Various scheduling problems that occur in manufacturing industries have been investigated 
in the literature. They are inherently complex and often referred to as combinatorial Non-
Polynomial (NP) hard problems. These problems are very difficult to solve using existing 
heuristics or conventional techniques. This chapter presents a generic framework of a 
collaborative search algorithm to solve scheduling problems. The proposed framework 
contains two independent search modules that exchange information while consecutively 
run to solve a problem. Based on the proposed framework a search algorithm tailored for 
the flow shop scheduling is presented. The computational results for the two challenging 
classical problem sets clearly indicate the superior performance of the proposed method 
over several conventional techniques including a simulated annealing, a genetic algorithm 
and a hybrid genetic algorithm. The CSA results also compare favourably with those of the 
two newly developed algorithms, PSO (Liao et al., 2007) and SAMED-FSS (Azizi et al., 
2009b). 
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