

Edinburgh Research Explorer

A collaborative search strategy to solve combinatorial
optimization and scheduling Problems

Citation for published version:
Azizi, N, Zolfaghari, S & Liang, M 2010, A collaborative search strategy to solve combinatorial optimization
and scheduling Problems. in S Cakaj (ed.), Modeling Simulation and Optimization - Tolerance and Optimal
Control., Chapter 9, InTech, pp. 125-135. https://doi.org/10.5772/9030

Digital Object Identifier (DOI):
10.5772/9030

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Modeling Simulation and Optimization - Tolerance and Optimal Control

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.5772/9030
https://doi.org/10.5772/9030
https://www.research.ed.ac.uk/en/publications/e1bc15ed-ab4d-4b69-9da8-b8c119f7878e

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 125

A Collaborative Search Strategy to Solve Combinatorial Optimization
and Scheduling Problems

Nader Azizi, Saeed Zolfaghari and Ming Liang

X

A Collaborative Search Strategy to Solve
Combinatorial Optimization and

Scheduling Problems

Nader Azizi a, Saeed Zolfaghari b and Ming Liang a

a Department of Mechanical Engineering, University of Ottawa
Ottawa, Ontario, Canada

b Department of Mechanical and Industrial Engineering, Ryerson University
Toronto, Ontario, Canada

1. Introduction

Since the creation of operations research as a discipline, a continued interest has been in the
development of heuristics or approximation algorithms to solve complex combinatorial
optimization problems. As many problems have been proven computationally intractable,
the heuristic approaches become increasingly important in solving various large practical
problems.
The most popular heuristics that have been widely studied in literature include Simulated
Annealing (SA) (Kirkpatrick 1983), Tabu Search (TS) (Glover 1986), and Genetic Algorithm
(GA) (Holland 1975). Simulated annealing is a stochastic search method that explores the
solution space using a hill climbing process. Tabu search, on the other hand, is a
deterministic search algorithm that attempts exhaustive exploration of the neighbourhood
of a solution. In contrast to the local search algorithms such as SA and TS that work with
one feasible solution in each iteration, GA employs a population of solutions and is capable
of both local and global search in the solution space.
Despite their successes in solving many combinatorial problems, these algorithms have
some limitations. For instance, SA can be easily trapped in a local optimum or may require
excessive computing time to find a reasonable solution. To successfully implement a tabu
search algorithm, one requires a good knowledge about the problem and its solution space
to define an efficient neighbourhood structure. Genetic algorithms often converge to a local
optimum prematurely and their success often relies on the efficiency of the adopted
operators.
Due to the deficiencies of the conventional heuristics and ever increasing demand for more
efficient search algorithms, researchers are exploring two main options, developing new
methods such as nature inspired metaheuristics and investigating hybrid algorithms.
In recent years, a number of metaheuristics have been developed. Examples include the
Greedy Randomized Adaptive Search Procedure (GRASP) (Feo & Resende, 1995; Aiex et al.,
2003), Adaptive Multi Start (Boese et al., 1994), Adaptive Memory Programming (AMP)

9

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control126

(Taillard et al., 2001), Ant System (AS) (Dorigo & Gambardella, 1997), and Particle Swarm
Optimization (PSO) (Kennedy & Eberhart 1995).
Another important research domain in heuristics is hybridization by which a search
algorithm such as GA is used in conjunction with one or more other techniques, e.g.,
simulated annealing and/or tabu search. Because of the complementary properties of each
algorithm, hybrid approaches often outperform each individual method operating alone.
However, they still require excessive computational effort.
In view of the above, this chapter presents a Collaborative Search Algorithm (CSA) for
combinatorial optimization problems. The proposed approach contains two independent
search algorithms, an enhanced simulated annealing with memory and a blockage removal
feature (called Tabu-SA component hereafter), and a genetic algorithm (i.e., GA component).
The two algorithms exchange information while consecutively run to solve a problem. The
Tabu-SA algorithm utilizes a short-term memory, i.e., tabu list to avoid revisiting solutions
temporarily. The purpose of the blockage removal feature in the Tabu-SA component is to
resolve deadlock situation in which a (acceptable) solution is hard to find in the
neighbourhood of a solution. The GA component employs two evolutionary operators,
crossover and mutation operators, and a long-term memory, i.e., population list to conduct
global search. The population list is constantly updated by the two algorithms, Tabu-SA and
GA, as the search progresses.
The reminder of this chapter is organized as follow. In section 2, a review of the two popular
hybrid algorithms, hybrid GA and hybrid SA, is presented. Section 3 describes the proposed
collaborative search algorithm (CSA). In section 4, more details of its application to flow
shop scheduling problem is presented. Computational results and the comparisons with
other approaches followed by conclusion are presented in sections 5 and 6.

2. Review of Hybrid GA and SA Algorithms

Depending on which algorithm is selected to be the core component of the hybrid
algorithms, the hybrid algorithms could be categorized as hybrid SA or hybrid GA. In a
hybrid SA, the driving module of the algorithm is a simulated annealing while in a hybrid
GA the driving component is a genetic algorithm.

2.1 Hybrid genetic algorithms
The popular forms of hybrid GAs are constructed by: a) including a constructive heuristic to
generate one or more members of the initial population (e.g., Reeves, 1995); b) incorporating
a local search heuristic to improve the quality of the solutions built by the crossover
operator (e.g., Gonçalves et al., 2005); and c) by combination of the former two (a and b)
strategies (e.g., Wang & Zheng, 2003; Ruiz et al., 2006; and Kolonko, 1999). Figure 1
illustrates the framework of the two popular hybrid genetic algorithms.
Reeves (1995) applied a genetic algorithm to the permutation flow shop scheduling
problem. To generate the initial population, the author used the NEH (Newaz et al., 1983)
heuristic to generate the first member of the population and the rest of the population were
generated randomly.
Wang and Zheng (2003) proposed a hybrid GA for the flow shop scheduling problem. In the
hybrid algorithm, the NEH algorithm (Newaz et al., 1983) is utilized to generate the first
member of the initial population while, the rest of the individuals are generated randomly.

To improve the performance of their algorithm, Wang and Zhang (2003) replaced the simple
mutation operator of the plain GA with a simulated annealing module. Gonçalves et al.,
(2005) developed a hybrid GA for job shop scheduling problem. In Gonçalves et al., (2005), a
local search is used to improve the quality of all individuals built by the crossover operator.
Instead of using mutation operator, Gonçalves et al., (2005) replaced 20 percent of the
population with randomly generated schedules (i.e., chromosomes).
Ruiz et al., (2006) also proposed a hybrid GA for the flow shop scheduling problem. In their
method, the entire initial population is generated using a modified NEH (Newaz et al., 1983)
algorithm. Furthermore, each time when a new population is entirely set up, the algorithm
enhances the generation by applying a local search to the best member of the new
population. Kolonko (1999) proposed a hybrid GA algorithm in which members of
population are independent SA runs. Each member of the population is enhanced by a SA
module as long as the number of trials without improvement is less than a predetermined
value. To generate a new population, two individuals are selected randomly and their
schedules are crossed using a special type of crossover operator. The hybrid algorithm was
favourably tested using several job shop scheduling problems.

2.2 Hybrid simulated annealing algorithms
Two common forms of hybrid SAs that have been reported in literature are built by: a)
adding prohibited memory (i.e., tabu list) to simulated annealing algorithm (e.g., Osman,
1993; Zolfaghari & Liang, 1999; Azizi & Zolfaghari, 2004); and b) addition of both prohibited
and reinforcement memories (e.g., El-Bouri et al., 2007). Recently a new hybrid simulated
annealing has been also reported in the literature that combines three algorithms, simulated
annealing, genetic algorithm, and tabu search (Azizi et al., 2009a and Azizi et al.,2009b).
Osman (1993) compared the performance of several heuristics including a hybrid simulated
annealing that utilizes a tabu list. Osman (1993) concluded that the hybrid algorithm
outperforms the conventional simulated annealing both in terms of solutions quality and

a) Hybrid GA with local search

Genetic
algorithm

Local search
module

b) Hybrid GA with local search and initial population
constructor

Fig. 1. Hybrid genetic algorithm

Control

 Control Initial
population
constructor

Genetic
algorithm

Local search
module

 Control

 Control

1

2

1

2

www.intechopen.com

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 127

(Taillard et al., 2001), Ant System (AS) (Dorigo & Gambardella, 1997), and Particle Swarm
Optimization (PSO) (Kennedy & Eberhart 1995).
Another important research domain in heuristics is hybridization by which a search
algorithm such as GA is used in conjunction with one or more other techniques, e.g.,
simulated annealing and/or tabu search. Because of the complementary properties of each
algorithm, hybrid approaches often outperform each individual method operating alone.
However, they still require excessive computational effort.
In view of the above, this chapter presents a Collaborative Search Algorithm (CSA) for
combinatorial optimization problems. The proposed approach contains two independent
search algorithms, an enhanced simulated annealing with memory and a blockage removal
feature (called Tabu-SA component hereafter), and a genetic algorithm (i.e., GA component).
The two algorithms exchange information while consecutively run to solve a problem. The
Tabu-SA algorithm utilizes a short-term memory, i.e., tabu list to avoid revisiting solutions
temporarily. The purpose of the blockage removal feature in the Tabu-SA component is to
resolve deadlock situation in which a (acceptable) solution is hard to find in the
neighbourhood of a solution. The GA component employs two evolutionary operators,
crossover and mutation operators, and a long-term memory, i.e., population list to conduct
global search. The population list is constantly updated by the two algorithms, Tabu-SA and
GA, as the search progresses.
The reminder of this chapter is organized as follow. In section 2, a review of the two popular
hybrid algorithms, hybrid GA and hybrid SA, is presented. Section 3 describes the proposed
collaborative search algorithm (CSA). In section 4, more details of its application to flow
shop scheduling problem is presented. Computational results and the comparisons with
other approaches followed by conclusion are presented in sections 5 and 6.

2. Review of Hybrid GA and SA Algorithms

Depending on which algorithm is selected to be the core component of the hybrid
algorithms, the hybrid algorithms could be categorized as hybrid SA or hybrid GA. In a
hybrid SA, the driving module of the algorithm is a simulated annealing while in a hybrid
GA the driving component is a genetic algorithm.

2.1 Hybrid genetic algorithms
The popular forms of hybrid GAs are constructed by: a) including a constructive heuristic to
generate one or more members of the initial population (e.g., Reeves, 1995); b) incorporating
a local search heuristic to improve the quality of the solutions built by the crossover
operator (e.g., Gonçalves et al., 2005); and c) by combination of the former two (a and b)
strategies (e.g., Wang & Zheng, 2003; Ruiz et al., 2006; and Kolonko, 1999). Figure 1
illustrates the framework of the two popular hybrid genetic algorithms.
Reeves (1995) applied a genetic algorithm to the permutation flow shop scheduling
problem. To generate the initial population, the author used the NEH (Newaz et al., 1983)
heuristic to generate the first member of the population and the rest of the population were
generated randomly.
Wang and Zheng (2003) proposed a hybrid GA for the flow shop scheduling problem. In the
hybrid algorithm, the NEH algorithm (Newaz et al., 1983) is utilized to generate the first
member of the initial population while, the rest of the individuals are generated randomly.

To improve the performance of their algorithm, Wang and Zhang (2003) replaced the simple
mutation operator of the plain GA with a simulated annealing module. Gonçalves et al.,
(2005) developed a hybrid GA for job shop scheduling problem. In Gonçalves et al., (2005), a
local search is used to improve the quality of all individuals built by the crossover operator.
Instead of using mutation operator, Gonçalves et al., (2005) replaced 20 percent of the
population with randomly generated schedules (i.e., chromosomes).
Ruiz et al., (2006) also proposed a hybrid GA for the flow shop scheduling problem. In their
method, the entire initial population is generated using a modified NEH (Newaz et al., 1983)
algorithm. Furthermore, each time when a new population is entirely set up, the algorithm
enhances the generation by applying a local search to the best member of the new
population. Kolonko (1999) proposed a hybrid GA algorithm in which members of
population are independent SA runs. Each member of the population is enhanced by a SA
module as long as the number of trials without improvement is less than a predetermined
value. To generate a new population, two individuals are selected randomly and their
schedules are crossed using a special type of crossover operator. The hybrid algorithm was
favourably tested using several job shop scheduling problems.

2.2 Hybrid simulated annealing algorithms
Two common forms of hybrid SAs that have been reported in literature are built by: a)
adding prohibited memory (i.e., tabu list) to simulated annealing algorithm (e.g., Osman,
1993; Zolfaghari & Liang, 1999; Azizi & Zolfaghari, 2004); and b) addition of both prohibited
and reinforcement memories (e.g., El-Bouri et al., 2007). Recently a new hybrid simulated
annealing has been also reported in the literature that combines three algorithms, simulated
annealing, genetic algorithm, and tabu search (Azizi et al., 2009a and Azizi et al.,2009b).
Osman (1993) compared the performance of several heuristics including a hybrid simulated
annealing that utilizes a tabu list. Osman (1993) concluded that the hybrid algorithm
outperforms the conventional simulated annealing both in terms of solutions quality and

a) Hybrid GA with local search

Genetic
algorithm

Local search
module

b) Hybrid GA with local search and initial population
constructor

Fig. 1. Hybrid genetic algorithm

Control

 Control Initial
population
constructor

Genetic
algorithm

Local search
module

 Control

 Control

1

2

1

2

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control128

computational time. Zolfaghari and Liang (1999) proposed a hybrid tabu-simulated
annealing approach to solve the group scheduling problem. The performance of the hybrid
method was tested and favourably compared with two other algorithms using tabu search
and simulated annealing alone. Azizi and Zolfaghari (2004) proposed an adaptive simulated
annealing method complemented with a tabu list. The performance of the hybrid algorithm
was evaluated and compared with conventional simulated annealing using classical job
shop scheduling problems. Using statistical analysis, Azizi and Zolfaghari (2004) showed
that the adaptive tabu-SA algorithm outperforms a stand-alone simulated annealing
algorithm.
El-Bouri et al., (2007) proposed four versions of a new memory-based heuristic based on
AMP and simulated annealing. The main characteristic of the proposed methods is the use
of two short-term memories. The first memory is a tabu list while the second is called seed
memory list that keeps tracks of the best solution visited during the last iteration. El-Bouri et
al., (2007) showed that the simultaneous use of prohibited and reinforcement memories in
simulated annealing could significantly improve the search performance.

Simulated
annealing
algorithm

prohibited
memory
(tabu list)

Adaptive
simulated
annealing
algorithm

prohibited
memory

reinforcement
memory

a) Tabu-simulated annealing algorithm b) Adaptive tabu-simulated annealing algorithm

Fig. 2. Hybrid simulated annealing with memory

 Control Control

Simulated
Annealing

Short-term
memories

Long-term
memory

Fig. 3. The generic framework of the SAMED algorithm

Evolutionary
component

 Control

 Control

 Control 1

2

3

Azizi et al., (2009a) proposed a generic framework of a new metaheuristic, SAMED, that
combines different features of several search algorithms. The framework contains several
components including a simulated annealing module, three types of memories, and an
evolutionary operator. Based on the generic framework, Azizi et al., (2009a & 2009b)
developed several search algorithms to investigate the application of the proposed
framework on two popular scheduling problems, job shop and flow shop scheduling
problems. Azizi et al., (2009a & 2009b) showed that the new hybrid algorithms surpass the
performance of the conventional heuristics as well as several hybrid genetic algorithms in
both applications. The framework of the SAMED algorithm is presented in Figure 3. In the
figure, control 1 verifies if the current solution is accepted, and controls 2 and 3 check if the
short and long iterations are completed respectively.
For the case of job shop scheduling, Azizi et al. (2009a) developed another version of the new
metaheuristic that includes two new components. The first component features a problem-
specific local search that explores the neighbouring solutions on a critical path of a job shop
scheduling solution. The second component is for blockage removal to resolve possible
deadlock situations that may occur during the search (Figure 4). The algorithm is named
SAMED-LB. Azizi et al. (2009a) showed that, in the majority of tested benchmark problems,
the addition of the new components has significantly improved the computational
efficiency.

3. The Collaborative Search Algorithm

The CSA contains two main components, a Tabu-SA algorithm with blockage removal
capability (Azizi et al., 2009b) and a genetic algorithm. These two components exchange
information (i.e., solutions) via a population list while consecutively run to solve a problem.
In the CSA, the original population is generated randomly or by means of other heuristics.
The best member of the population is selected as the initial solution for the Tabu-SA
module. The Tabu-SA module begins searching the solution space with an initial solution.

Fig. 4. The generic framework of the SAMED-LB algorithm

Simulated
Annealing

algorithm with
blockage

removal feature

Short-term
memories

Long-term
memory

Evolutionary
component

 Control

 Control

 Control

Local search

1

2

3

www.intechopen.com

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 129

computational time. Zolfaghari and Liang (1999) proposed a hybrid tabu-simulated
annealing approach to solve the group scheduling problem. The performance of the hybrid
method was tested and favourably compared with two other algorithms using tabu search
and simulated annealing alone. Azizi and Zolfaghari (2004) proposed an adaptive simulated
annealing method complemented with a tabu list. The performance of the hybrid algorithm
was evaluated and compared with conventional simulated annealing using classical job
shop scheduling problems. Using statistical analysis, Azizi and Zolfaghari (2004) showed
that the adaptive tabu-SA algorithm outperforms a stand-alone simulated annealing
algorithm.
El-Bouri et al., (2007) proposed four versions of a new memory-based heuristic based on
AMP and simulated annealing. The main characteristic of the proposed methods is the use
of two short-term memories. The first memory is a tabu list while the second is called seed
memory list that keeps tracks of the best solution visited during the last iteration. El-Bouri et
al., (2007) showed that the simultaneous use of prohibited and reinforcement memories in
simulated annealing could significantly improve the search performance.

Simulated
annealing
algorithm

prohibited
memory
(tabu list)

Adaptive
simulated
annealing
algorithm

prohibited
memory

reinforcement
memory

a) Tabu-simulated annealing algorithm b) Adaptive tabu-simulated annealing algorithm

Fig. 2. Hybrid simulated annealing with memory

 Control Control

Simulated
Annealing

Short-term
memories

Long-term
memory

Fig. 3. The generic framework of the SAMED algorithm

Evolutionary
component

 Control

 Control

 Control 1

2

3

Azizi et al., (2009a) proposed a generic framework of a new metaheuristic, SAMED, that
combines different features of several search algorithms. The framework contains several
components including a simulated annealing module, three types of memories, and an
evolutionary operator. Based on the generic framework, Azizi et al., (2009a & 2009b)
developed several search algorithms to investigate the application of the proposed
framework on two popular scheduling problems, job shop and flow shop scheduling
problems. Azizi et al., (2009a & 2009b) showed that the new hybrid algorithms surpass the
performance of the conventional heuristics as well as several hybrid genetic algorithms in
both applications. The framework of the SAMED algorithm is presented in Figure 3. In the
figure, control 1 verifies if the current solution is accepted, and controls 2 and 3 check if the
short and long iterations are completed respectively.
For the case of job shop scheduling, Azizi et al. (2009a) developed another version of the new
metaheuristic that includes two new components. The first component features a problem-
specific local search that explores the neighbouring solutions on a critical path of a job shop
scheduling solution. The second component is for blockage removal to resolve possible
deadlock situations that may occur during the search (Figure 4). The algorithm is named
SAMED-LB. Azizi et al. (2009a) showed that, in the majority of tested benchmark problems,
the addition of the new components has significantly improved the computational
efficiency.

3. The Collaborative Search Algorithm

The CSA contains two main components, a Tabu-SA algorithm with blockage removal
capability (Azizi et al., 2009b) and a genetic algorithm. These two components exchange
information (i.e., solutions) via a population list while consecutively run to solve a problem.
In the CSA, the original population is generated randomly or by means of other heuristics.
The best member of the population is selected as the initial solution for the Tabu-SA
module. The Tabu-SA module begins searching the solution space with an initial solution.

Fig. 4. The generic framework of the SAMED-LB algorithm

Simulated
Annealing

algorithm with
blockage

removal feature

Short-term
memories

Long-term
memory

Evolutionary
component

 Control

 Control

 Control

Local search

1

2

3

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control130

Each time a solution is accepted, the quality of the solution is first compared to the overall
best solution. Only if the solution improves the quality of the overall best solution, it is
added to the population list. Then part of the solution that has been modified to generate the
neighbouring solution is added to a tabu list. The completion of the tabu list marks the end
of a short iteration. During a short iteration, the Tabu-SA also keeps track of the best
solution visited during the iteration. At the end of the iteration, the tabu list is emptied and
the best solution of the current iteration (if it is not the current solution) is selected as the
initial solution for the next iteration. The above steps are repeated for a number of
predetermined short iterations, i.e., a long iteration. Once a long iteration is completed, the
performance of the search is evaluated by comparing the current (long) iteration best
solution with that at the beginning of the past iteration. In the case of improvement, the
Tabu-SA will continue the search; otherwise, the genetic algorithm component is called to
participate in the search operations. The GA component generates a new population using
the two evolutionary operators, crossover and mutation, and a copy of the current
population list. The GA continues searching the solution space as long as there is
improvement from one generation to another. Every time a new population is generated,
GA also compares the quality of the best member of the new population with that of the
overall best solution to update the original population list. Once the GA detects no
improvement within its module, it will return the original population (that may have been
also updated by the GA) and the best solution found during its own operations to the Tabu-
SA component. The Tabu-SA utilizes the best solution (provided by GA) as the initial
solution. The framework of the CSA is presented in Figure 5. In the figure, controls 1 and 5
check if the overall best solution has been improved to update the population list. Control 2
verifies the improvement within the GA component, and controls 3 and 4 test whether or
not the short and long iterations are completed respectively.

Simulated
Annealing

algorithm with
blockage removal

Population List

Tabu list

Genetic Algorithm:
-crossover operator
-mutation operator

 Control

 Control Control

 Control

 Control

1

2

3

4

5

Fig. 5. Framework of the CSA

The CSA could be regarded as a variation of the SAMED algorithm proposed for the flow
shop scheduling problem, SAMED-FSS (Azizi et al., 2009b). However, it differs from the
SAMED-FSS algorithm in several aspects. The main differences between the two algorithms
have been highlighted in Table 1.

Table 1. Differences between CSA and SAMED-FSS algorithm

4. Application of the CSA to the Permutation Flow Shop Scheduling Problem

4.1 Flow shop scheduling problem
The permutation flow shop scheduling problem studied in this paper can be described as
follows. Consider a set of machines (M1, M2, M3,…, Mm) and a set of jobs (J1, J2, J2,…, Jn). Each
job has to be processed on all m machines in the order given by the index of the machines.
Each job consists of a sequence of m operations, O1j, O2j , O3j,…,Omj, each of them
corresponding to the processing of job j on machine i during an uninterrupted processing
time period Pi,j. Each machine can only process one job at a time and it is assumed that each
machine processes the jobs in the same order. The objective is to find the schedule that has
the minimum makespan (the duration in which all jobs are completed).

4.1.1 Solution representation
A solution of the flow shop scheduling problem is represented by a string composed of
several elements each corresponding to a job number (job based scheme). The sequence of
the job numbers on the string indicates the processing order of jobs on all machines.

4.1.2 Neighbouring solution
A neighbouring solution is generated by inserting a randomly selected job in front or behind
another job in the string (i.e., insertion technique).

CSA(Collaborative Search Algorithm) SAMED-FSS Algorithm
Population list is continually updated by
SA and GA throughout the search

Long-term memory is updated only at the
end of short iterations and is emptied at
the end of long iterations

The population list is initially populated by
randomly generated solutions which are
gradually replaced by overall best solutions
as the search progresses

Long-term memory contains the short
iteration's best solutions that have been
visited during the recent long iteration

Contains a complete genetic algorithm GA component include a crossover
operator

Genetic algorithm operates as long as there
is improvement from one generation to
another

Genetic algorithm component operates
only for one generation

Once GA stops functioning, it returns the
best solution found within the GA module

The new population is scanned and the
first offspring whose cost is different than
that of the iteration best solution might be
selected.

www.intechopen.com

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 131

Each time a solution is accepted, the quality of the solution is first compared to the overall
best solution. Only if the solution improves the quality of the overall best solution, it is
added to the population list. Then part of the solution that has been modified to generate the
neighbouring solution is added to a tabu list. The completion of the tabu list marks the end
of a short iteration. During a short iteration, the Tabu-SA also keeps track of the best
solution visited during the iteration. At the end of the iteration, the tabu list is emptied and
the best solution of the current iteration (if it is not the current solution) is selected as the
initial solution for the next iteration. The above steps are repeated for a number of
predetermined short iterations, i.e., a long iteration. Once a long iteration is completed, the
performance of the search is evaluated by comparing the current (long) iteration best
solution with that at the beginning of the past iteration. In the case of improvement, the
Tabu-SA will continue the search; otherwise, the genetic algorithm component is called to
participate in the search operations. The GA component generates a new population using
the two evolutionary operators, crossover and mutation, and a copy of the current
population list. The GA continues searching the solution space as long as there is
improvement from one generation to another. Every time a new population is generated,
GA also compares the quality of the best member of the new population with that of the
overall best solution to update the original population list. Once the GA detects no
improvement within its module, it will return the original population (that may have been
also updated by the GA) and the best solution found during its own operations to the Tabu-
SA component. The Tabu-SA utilizes the best solution (provided by GA) as the initial
solution. The framework of the CSA is presented in Figure 5. In the figure, controls 1 and 5
check if the overall best solution has been improved to update the population list. Control 2
verifies the improvement within the GA component, and controls 3 and 4 test whether or
not the short and long iterations are completed respectively.

Simulated
Annealing

algorithm with
blockage removal

Population List

Tabu list

Genetic Algorithm:
-crossover operator
-mutation operator

 Control

 Control Control

 Control

 Control

1

2

3

4

5

Fig. 5. Framework of the CSA

The CSA could be regarded as a variation of the SAMED algorithm proposed for the flow
shop scheduling problem, SAMED-FSS (Azizi et al., 2009b). However, it differs from the
SAMED-FSS algorithm in several aspects. The main differences between the two algorithms
have been highlighted in Table 1.

Table 1. Differences between CSA and SAMED-FSS algorithm

4. Application of the CSA to the Permutation Flow Shop Scheduling Problem

4.1 Flow shop scheduling problem
The permutation flow shop scheduling problem studied in this paper can be described as
follows. Consider a set of machines (M1, M2, M3,…, Mm) and a set of jobs (J1, J2, J2,…, Jn). Each
job has to be processed on all m machines in the order given by the index of the machines.
Each job consists of a sequence of m operations, O1j, O2j , O3j,…,Omj, each of them
corresponding to the processing of job j on machine i during an uninterrupted processing
time period Pi,j. Each machine can only process one job at a time and it is assumed that each
machine processes the jobs in the same order. The objective is to find the schedule that has
the minimum makespan (the duration in which all jobs are completed).

4.1.1 Solution representation
A solution of the flow shop scheduling problem is represented by a string composed of
several elements each corresponding to a job number (job based scheme). The sequence of
the job numbers on the string indicates the processing order of jobs on all machines.

4.1.2 Neighbouring solution
A neighbouring solution is generated by inserting a randomly selected job in front or behind
another job in the string (i.e., insertion technique).

CSA(Collaborative Search Algorithm) SAMED-FSS Algorithm
Population list is continually updated by
SA and GA throughout the search

Long-term memory is updated only at the
end of short iterations and is emptied at
the end of long iterations

The population list is initially populated by
randomly generated solutions which are
gradually replaced by overall best solutions
as the search progresses

Long-term memory contains the short
iteration's best solutions that have been
visited during the recent long iteration

Contains a complete genetic algorithm GA component include a crossover
operator

Genetic algorithm operates as long as there
is improvement from one generation to
another

Genetic algorithm component operates
only for one generation

Once GA stops functioning, it returns the
best solution found within the GA module

The new population is scanned and the
first offspring whose cost is different than
that of the iteration best solution might be
selected.

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control132

4.2 Components of CSA
As noted earlier, the CSA includes two main components, a Tabu-SA module with blockage
removal and a genetic algorithm. The Tabu-SA component of the CSA is adopted from
(Azizi et al. (2009b). The genetic algorithm component includes a random selection
mechanism, a crossover operator, and a mutation operator. In order to generate a new
population, two parents are selected randomly and operated by the Precedence Preservative
Crossover (PPX) (Bierwirth et al., 1996). To generate a new offspring by the PPX crossover
operator, a template vector h of length n (n denotes the number of jobs) is filled with
random elements from the set {1, 2}. This vector is then used to define the order in which
elements are drawn from parent 1 and parent 2. The selected element from one parent is
appended to the offspring string and then the corresponding element is deleted from both
parents. This procedure repeats itself until both parent strings are emptied and the offspring
contains all the involved elements.
The mutation operator selects a job randomly and inserts it in front or behind another job in
the offspring chromosome. The corresponding makespans of the offspring chromosome
before and after the mutation operation are compared and if the mutation deteriorates the
quality of the offspring, the mutation result is revoked and then the chromosome is added to
the population.

4.3 Initial population and initial solution
Both the initial population and initial solution in the CSA could be generated randomly.
However, for the case of flow shop scheduling we developed a constructive heuristic based
on the NEH algorithm (Newaz et al., 1983) to generate portion (e.g., 50% of the members) of
the population. According to this constructive heuristic, a solution is first generated
randomly. Then, the solution is scanned from left to right and the first two jobs on the
solution string is selected and added to a template chromosome. Following this, the
positions of the two jobs is swapped and the partial makespans of the template chromosome
before and after the swap is calculated. The makespans are compared and the configuration
that generates shorter makespan is selected. Once the configuration of the two jobs is
decided, the next job on the original solution (i.e., third job from left) is inserted in all
possible positions on the template chromosome (e.g., before the first job, between job one
and job two, and after job two). The lengths of the schedules associated with each
configuration are calculated and the one with shorter makespan is selected. The above steps
are repeated until all jobs on the randomly generated solution are transferred to the
template chromosome.
 The rest of the population members, i.e., the second portion, are generated randomly. The
best member of the population is selected as the initial solution for the Tabu-SA algorithm.

5. Computational Results

The performance of the CSA is evaluated using 40 hard problems selected from two
benchmark problem sets known as Taillard (1993) and Demirkol et al. (1998) benchmark
problems. The algorithm is coded in Visual Basic and run on a Pentium 4 PC with 3.3 GHz
CPU. The computational times as well as the parameters of the CSA including the size of
tabu list (short iteration), long iteration (long-term memory), the initial temperature, the
control parameter, and the maximum number of unacceptable moves are the same as those

utilized in the SAMED-FSS algorithm (Azizi et al., 2009b). The size of the population list is 30
for all benchmark problems except for TA21, TA22, TA24, and TA25 for which it is set to 20.
For all benchmark problems, 50% of the members in each initial population are generated
using the modified NEH algorithm described in section 4.2 and the remaining solutions are
generated randomly.
The computational results for both benchmark problem sets are summarized in Table 2. The
results presented in this table correspond to the best makespan over 10 runs and associated
computing time (per second). According to the results presented in Table 2, the CSA found
solutions with shorter makespans for 24 out of 28 Demirkol et al. (1998) benchmark
problems (DMU01-DMU34) compared to those provided by the SAMED-FSS (Azizi et al.,
2009b). In comparison with the PSO (Liao et al., 2007) algorithm, solutions found by the CSA
for 22 benchmark problems are of better quality. The CSA also outperformed the
conventional SA, standard GA, and hybrid genetic algorithm with local search (GA-LS)
(Azizi et al., 2009b) in all 28 test problems.
Furthermore, For all the 12 Taillard (1993) benchmark problems, the CSA found better
quality solutions (including nine optimal) compared to those solutions found by the
conventional SA, standard GA, hybrid genetic algorithm with local search (GA-LS), and the
PSO (Liao et al., 2007). Moreover, the CSA found the same (optimal) solutions as the
SAMED-FSS for nine problems but with shorter computational times in the majority of the
(nine) cases. In the remaining three problems, the CSA outperforms the SAMED-FSS both in
terms of solution quality and computational times.
 Figure 6 compares the standard deviation of the makespans obtained by five different
methods for all the Demirkol et al. (1998) benchmark problems. The results presented in the
figure clearly show that in the majority of the cases investigated in this study, the standard
deviation of the makespans obtained by the CSA is significantly lower than those obtained
by the other four techniques.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

DM
U01

DM
U02

DM
U03

DM
U04

DMU6
DMU7

DMU8
DMU9

DM
U11

DM
U12

DM
U13

DM
U14

DM
U16

DM
U17

DM
U18

DM
U19

DM
U21

DM
U22

DM
U23

DM
U24

DM
U26

DM
U27

DM
U28

DM
U29

DM
U31

DM
U32

DM
U33

DM
U34

St
an

da
rd

 D
ev

ia
tio

n
SAMED SA GA-LS GA CSA

Fig. 6. Comparison of standard deviation of makespans for Demirkol et al., (1998)
benchmark problems

www.intechopen.com

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 133

4.2 Components of CSA
As noted earlier, the CSA includes two main components, a Tabu-SA module with blockage
removal and a genetic algorithm. The Tabu-SA component of the CSA is adopted from
(Azizi et al. (2009b). The genetic algorithm component includes a random selection
mechanism, a crossover operator, and a mutation operator. In order to generate a new
population, two parents are selected randomly and operated by the Precedence Preservative
Crossover (PPX) (Bierwirth et al., 1996). To generate a new offspring by the PPX crossover
operator, a template vector h of length n (n denotes the number of jobs) is filled with
random elements from the set {1, 2}. This vector is then used to define the order in which
elements are drawn from parent 1 and parent 2. The selected element from one parent is
appended to the offspring string and then the corresponding element is deleted from both
parents. This procedure repeats itself until both parent strings are emptied and the offspring
contains all the involved elements.
The mutation operator selects a job randomly and inserts it in front or behind another job in
the offspring chromosome. The corresponding makespans of the offspring chromosome
before and after the mutation operation are compared and if the mutation deteriorates the
quality of the offspring, the mutation result is revoked and then the chromosome is added to
the population.

4.3 Initial population and initial solution
Both the initial population and initial solution in the CSA could be generated randomly.
However, for the case of flow shop scheduling we developed a constructive heuristic based
on the NEH algorithm (Newaz et al., 1983) to generate portion (e.g., 50% of the members) of
the population. According to this constructive heuristic, a solution is first generated
randomly. Then, the solution is scanned from left to right and the first two jobs on the
solution string is selected and added to a template chromosome. Following this, the
positions of the two jobs is swapped and the partial makespans of the template chromosome
before and after the swap is calculated. The makespans are compared and the configuration
that generates shorter makespan is selected. Once the configuration of the two jobs is
decided, the next job on the original solution (i.e., third job from left) is inserted in all
possible positions on the template chromosome (e.g., before the first job, between job one
and job two, and after job two). The lengths of the schedules associated with each
configuration are calculated and the one with shorter makespan is selected. The above steps
are repeated until all jobs on the randomly generated solution are transferred to the
template chromosome.
 The rest of the population members, i.e., the second portion, are generated randomly. The
best member of the population is selected as the initial solution for the Tabu-SA algorithm.

5. Computational Results

The performance of the CSA is evaluated using 40 hard problems selected from two
benchmark problem sets known as Taillard (1993) and Demirkol et al. (1998) benchmark
problems. The algorithm is coded in Visual Basic and run on a Pentium 4 PC with 3.3 GHz
CPU. The computational times as well as the parameters of the CSA including the size of
tabu list (short iteration), long iteration (long-term memory), the initial temperature, the
control parameter, and the maximum number of unacceptable moves are the same as those

utilized in the SAMED-FSS algorithm (Azizi et al., 2009b). The size of the population list is 30
for all benchmark problems except for TA21, TA22, TA24, and TA25 for which it is set to 20.
For all benchmark problems, 50% of the members in each initial population are generated
using the modified NEH algorithm described in section 4.2 and the remaining solutions are
generated randomly.
The computational results for both benchmark problem sets are summarized in Table 2. The
results presented in this table correspond to the best makespan over 10 runs and associated
computing time (per second). According to the results presented in Table 2, the CSA found
solutions with shorter makespans for 24 out of 28 Demirkol et al. (1998) benchmark
problems (DMU01-DMU34) compared to those provided by the SAMED-FSS (Azizi et al.,
2009b). In comparison with the PSO (Liao et al., 2007) algorithm, solutions found by the CSA
for 22 benchmark problems are of better quality. The CSA also outperformed the
conventional SA, standard GA, and hybrid genetic algorithm with local search (GA-LS)
(Azizi et al., 2009b) in all 28 test problems.
Furthermore, For all the 12 Taillard (1993) benchmark problems, the CSA found better
quality solutions (including nine optimal) compared to those solutions found by the
conventional SA, standard GA, hybrid genetic algorithm with local search (GA-LS), and the
PSO (Liao et al., 2007). Moreover, the CSA found the same (optimal) solutions as the
SAMED-FSS for nine problems but with shorter computational times in the majority of the
(nine) cases. In the remaining three problems, the CSA outperforms the SAMED-FSS both in
terms of solution quality and computational times.
 Figure 6 compares the standard deviation of the makespans obtained by five different
methods for all the Demirkol et al. (1998) benchmark problems. The results presented in the
figure clearly show that in the majority of the cases investigated in this study, the standard
deviation of the makespans obtained by the CSA is significantly lower than those obtained
by the other four techniques.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

DM
U01

DM
U02

DM
U03

DM
U04

DMU6
DMU7

DMU8
DMU9

DM
U11

DM
U12

DM
U13

DM
U14

DM
U16

DM
U17

DM
U18

DM
U19

DM
U21

DM
U22

DM
U23

DM
U24

DM
U26

DM
U27

DM
U28

DM
U29

DM
U31

DM
U32

DM
U33

DM
U34

St
an

da
rd

 D
ev

ia
tio

n

SAMED SA GA-LS GA CSA

Fig. 6. Comparison of standard deviation of makespans for Demirkol et al., (1998)
benchmark problems

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control134

Table 2. Comparison of computational results
a) n×m = n jobs and m machines, b)Conventional SA, Standard GA, and GA with Local Search (Azizi et
al., 2009b); bold= best solution.

Size
(n×m)a

Problem Optimal Demirkol
et al.,
1998

SAb GAb

GA-LSb PSO:
Liao et

al., 2007

SAMED-
FSS (Azizi et

al., 2009b)

CSA

20 × 15 DMU01 - 4437(69) 3965(5) 3981(55) 3981(5) 3937 3899(4) 3896(13)
DMU02 - 4144(0.09 3838(2) 3878(2) 3833(2) 3571 3761(13) 3755(55)
DMU03 - 3779(58) 3579(8) 3625(1) 3572(3) 3981 3534(7) 3532(5)
DMU04 - 4302(67) 4097(6) 4148(25) 4094(4) 3805 4032(51) 4032(33)

20 × 20 DMU06 - 4821(159) 4609(5) 4634(78) 4577(6) 4612 4523(40) 4523(25)
DMU07 - 4779(148) 4544(12) 4561(9) 4482(10) 4570 4428(23) 4424(47)
DMU08 - 4944(176) 4601(6) 4604(30) 4531(8) 4504 4523(79) 4520(55)
DMU09 - 4886(203) 4590(6) 4574(34) 4546(8) 4538 4496(48) 4496(10)

30 × 15 DMU11 - 5226(149) 4612(36) 4681(74) 4682(6) 4658 4582(22) 4574(58)
DMU12 - 5304(163) 4742(55) 4730(79) 4725(10) 4743 4675(61) 4669(76)
DMU13 - 5079(109) 4670(13) 4771(46) 4704(8) 4824 4569(99) 4568(63)
DMU14 - 5605(0.17 4894(40) 5014(38) 4949(12) 4928 4836(54) 4836(52)

30 × 20 DMU16 - 6183(0.24 5431(48) 5494(59) 5494(19) 5782 5384(76) 5372(87)
DMU17 - 6037(471) 5815(4) 5854(53) 5794(17) 5485 5718(75) 5700(28)
DMU18 - 6241(394) 5815(4) 5856(60) 5815(22) 5486 5726(55) 5767(43)
DMU19 - 6095(320) 5546(57) 5654(34) 5537(20) 5848 5479(68) 5469(85)

40 × 15 DMU21 - 6986(156) 6089(69) 6229(83) 6073(17) 6012 6026(119) 5965(107)
DMU22 - 6351(224) 5797(95) 5931(101) 5829(14) 6080 5717(100) 5702(117)
DMU23 - 6506(289) 5944(86) 6105(60) 5997(15) 6173 5904(40) 5895(108)
DMU24 - 6845(186) 5967(33) 6081(102) 6039(13) 5855 5928(55) 5928(36)

40 × 20 DMU26 - 7154(615) 6711(31) 6771(98) 6763(34) 6730 6556(176) 6518(167)
DMU27 - 7528(645) 6833(140) 6972(161) 6824(35) 6723 6704(178) 6686(90)
DMU28 - 7469(674) 6965(173) 7033(160) 6962(29) 6973 6860(180) 6842(144)
DMU29 - 7608(682) 6834(131) 7000(133) 6935(23) 6950 6792(166) 6749(76)

50 × 15 DMU31 - 7673(313) 6747(92) 6952(76) 6852(14) 6725 6747(80) 6677(168)
DMU32 - 7679(299) 6740(172) 6844(118) 6761(28) 7143 6669(89) 6614(49)
DMU33 - 7416(284) 6733(134) 6893(144) 6748(31) 6864 6656(138) 6596(117)
DMU34 - 7548(307) 6945(149 7125(159) 6972(28) 7070 6878(101) 6839(152)

20 × 10 Ta11 1582 - 1593(110) 1622(3) 1586(4) 1604 1582(41) 1582(47)
 Ta12 1659 - 1676(33) 1710(4) 1692(1) 1685 1659(67) 1659(46)
 Ta13 1496 - 1524(38) 1540(1) 1515(1) 1520 1496(156) 1496(31)
 Ta14 1377 - 1384(118) 1413(10) 1396(2) 1402 1377(70) 1377(17)

20 × 20 Ta21 2297 - 2320(38) 2325(2) 2315(7) 2319 2297(12) 2297(7)
 Ta22 2099 - 2125(32) 2120(23) 2127(9) 2132 2099(18) 2099(28)
 Ta24 2223 - 2254(7) 2264(5) 2246(29) 2243 2223(17) 2223(14)
 Ta25 2291 - 2315(83) 2325(6) 2309(46) 2315 2291(43) 2291(12)

50 × 10 Ta41 2991 - 3059(208) 3116(71) 3111(21) 3080 3035(148) 3030(146)
 Ta42 2867 - 2921(197) 3006(77) 2975(9) 2974 2911(97) 2911(117)
 Ta44 3063 - 3071(298) 3194(71) 3121(17) 3103 3066(217) 3063(201)
 Ta48 3037 - 3048(230) 3121(88) 3108(10) 3085 3044(116) 3042(164)

6. Conclusion

Various scheduling problems that occur in manufacturing industries have been investigated
in the literature. They are inherently complex and often referred to as combinatorial Non-
Polynomial (NP) hard problems. These problems are very difficult to solve using existing
heuristics or conventional techniques. This chapter presents a generic framework of a
collaborative search algorithm to solve scheduling problems. The proposed framework
contains two independent search modules that exchange information while consecutively
run to solve a problem. Based on the proposed framework a search algorithm tailored for
the flow shop scheduling is presented. The computational results for the two challenging
classical problem sets clearly indicate the superior performance of the proposed method
over several conventional techniques including a simulated annealing, a genetic algorithm
and a hybrid genetic algorithm. The CSA results also compare favourably with those of the
two newly developed algorithms, PSO (Liao et al., 2007) and SAMED-FSS (Azizi et al.,
2009b).

7. References

Aiex, R.M.; Binato, S.; & Resende, M.G.C. (2003). Parallel GRASP with path relinking for job
shop scheduling. Parallel Computing, 29, 393-430.

Aydin, M.E. & Fogarty, T.C. (2004). A Distributed Evolutionary Simulated Annealing
Algorithm for Combinatorial Optimisation Problems. Journal of Heuristics, 10, 269–
292.

Azizi, N. & Zolfaghari, S. (2004). Adaptive temperature control for simulated annealing: a
comparative study. Computers and Operations Research, 31, 2439-2451.

Azizi, N.; Zolfaghari, S.; & Liang, M. (2009a). Hybrid simulated annealing with Memory: An
evolution-based diversification approach, International Journal of Production Research
(IJPR), accepted.

Azizi, N.; Zolfaghari, S.; & Liang, M. (2009b). Hybrid Simulated Annealing in Flow-shop
Scheduling: A Diversification and Intensification Approach, International Journal of
Industrial and Systems Engineering (IJISE), 4(3), 326-348.

Bierwirth, C.; Mattfeld, D.C.; & Kopfer, H. (1996). On Permutation Representations for
Scheduling Problems, proceeding of 4th International Conference on Parallel Problem
Solving from Nature, Lecture notes in computer science, Springer-Verlag, pp.310–
318.

Demirkol, E.; Mehta, S.; & Uzsoy, R. (1998). Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109 (1), 137-141.

Dorigo, M. & Gambardella, L.M. (1997). Ant colony system: A cooperative learning
approach to the travelling salesman problem. IEEE Transaction on Evolutionary
Computation, 53-66.

El-Bouri, A.; Azizi, N.; & Zolfaghari, S. (2007). A comparative study of new metaheuristics
based on simulated annealing and adaptive memory programming. European
Journal of Operations Research, 2007, 177, 1894-1910.

Feo, T. & Resende, M. (1995). Greedy randomized adaptive search procedures. Journal of
Global Optimization, 16, 109-133.

www.intechopen.com

A Collaborative Search Strategy to Solve Combinatorial Optimization and Scheduling Problems 135

Table 2. Comparison of computational results
a) n×m = n jobs and m machines, b)Conventional SA, Standard GA, and GA with Local Search (Azizi et
al., 2009b); bold= best solution.

Size
(n×m)a

Problem Optimal Demirkol
et al.,
1998

SAb GAb

GA-LSb PSO:
Liao et

al., 2007

SAMED-
FSS (Azizi et

al., 2009b)

CSA

20 × 15 DMU01 - 4437(69) 3965(5) 3981(55) 3981(5) 3937 3899(4) 3896(13)
DMU02 - 4144(0.09 3838(2) 3878(2) 3833(2) 3571 3761(13) 3755(55)
DMU03 - 3779(58) 3579(8) 3625(1) 3572(3) 3981 3534(7) 3532(5)
DMU04 - 4302(67) 4097(6) 4148(25) 4094(4) 3805 4032(51) 4032(33)

20 × 20 DMU06 - 4821(159) 4609(5) 4634(78) 4577(6) 4612 4523(40) 4523(25)
DMU07 - 4779(148) 4544(12) 4561(9) 4482(10) 4570 4428(23) 4424(47)
DMU08 - 4944(176) 4601(6) 4604(30) 4531(8) 4504 4523(79) 4520(55)
DMU09 - 4886(203) 4590(6) 4574(34) 4546(8) 4538 4496(48) 4496(10)

30 × 15 DMU11 - 5226(149) 4612(36) 4681(74) 4682(6) 4658 4582(22) 4574(58)
DMU12 - 5304(163) 4742(55) 4730(79) 4725(10) 4743 4675(61) 4669(76)
DMU13 - 5079(109) 4670(13) 4771(46) 4704(8) 4824 4569(99) 4568(63)
DMU14 - 5605(0.17 4894(40) 5014(38) 4949(12) 4928 4836(54) 4836(52)

30 × 20 DMU16 - 6183(0.24 5431(48) 5494(59) 5494(19) 5782 5384(76) 5372(87)
DMU17 - 6037(471) 5815(4) 5854(53) 5794(17) 5485 5718(75) 5700(28)
DMU18 - 6241(394) 5815(4) 5856(60) 5815(22) 5486 5726(55) 5767(43)
DMU19 - 6095(320) 5546(57) 5654(34) 5537(20) 5848 5479(68) 5469(85)

40 × 15 DMU21 - 6986(156) 6089(69) 6229(83) 6073(17) 6012 6026(119) 5965(107)
DMU22 - 6351(224) 5797(95) 5931(101) 5829(14) 6080 5717(100) 5702(117)
DMU23 - 6506(289) 5944(86) 6105(60) 5997(15) 6173 5904(40) 5895(108)
DMU24 - 6845(186) 5967(33) 6081(102) 6039(13) 5855 5928(55) 5928(36)

40 × 20 DMU26 - 7154(615) 6711(31) 6771(98) 6763(34) 6730 6556(176) 6518(167)
DMU27 - 7528(645) 6833(140) 6972(161) 6824(35) 6723 6704(178) 6686(90)
DMU28 - 7469(674) 6965(173) 7033(160) 6962(29) 6973 6860(180) 6842(144)
DMU29 - 7608(682) 6834(131) 7000(133) 6935(23) 6950 6792(166) 6749(76)

50 × 15 DMU31 - 7673(313) 6747(92) 6952(76) 6852(14) 6725 6747(80) 6677(168)
DMU32 - 7679(299) 6740(172) 6844(118) 6761(28) 7143 6669(89) 6614(49)
DMU33 - 7416(284) 6733(134) 6893(144) 6748(31) 6864 6656(138) 6596(117)
DMU34 - 7548(307) 6945(149 7125(159) 6972(28) 7070 6878(101) 6839(152)

20 × 10 Ta11 1582 - 1593(110) 1622(3) 1586(4) 1604 1582(41) 1582(47)
 Ta12 1659 - 1676(33) 1710(4) 1692(1) 1685 1659(67) 1659(46)
 Ta13 1496 - 1524(38) 1540(1) 1515(1) 1520 1496(156) 1496(31)
 Ta14 1377 - 1384(118) 1413(10) 1396(2) 1402 1377(70) 1377(17)

20 × 20 Ta21 2297 - 2320(38) 2325(2) 2315(7) 2319 2297(12) 2297(7)
 Ta22 2099 - 2125(32) 2120(23) 2127(9) 2132 2099(18) 2099(28)
 Ta24 2223 - 2254(7) 2264(5) 2246(29) 2243 2223(17) 2223(14)
 Ta25 2291 - 2315(83) 2325(6) 2309(46) 2315 2291(43) 2291(12)

50 × 10 Ta41 2991 - 3059(208) 3116(71) 3111(21) 3080 3035(148) 3030(146)
 Ta42 2867 - 2921(197) 3006(77) 2975(9) 2974 2911(97) 2911(117)
 Ta44 3063 - 3071(298) 3194(71) 3121(17) 3103 3066(217) 3063(201)
 Ta48 3037 - 3048(230) 3121(88) 3108(10) 3085 3044(116) 3042(164)

6. Conclusion

Various scheduling problems that occur in manufacturing industries have been investigated
in the literature. They are inherently complex and often referred to as combinatorial Non-
Polynomial (NP) hard problems. These problems are very difficult to solve using existing
heuristics or conventional techniques. This chapter presents a generic framework of a
collaborative search algorithm to solve scheduling problems. The proposed framework
contains two independent search modules that exchange information while consecutively
run to solve a problem. Based on the proposed framework a search algorithm tailored for
the flow shop scheduling is presented. The computational results for the two challenging
classical problem sets clearly indicate the superior performance of the proposed method
over several conventional techniques including a simulated annealing, a genetic algorithm
and a hybrid genetic algorithm. The CSA results also compare favourably with those of the
two newly developed algorithms, PSO (Liao et al., 2007) and SAMED-FSS (Azizi et al.,
2009b).

7. References

Aiex, R.M.; Binato, S.; & Resende, M.G.C. (2003). Parallel GRASP with path relinking for job
shop scheduling. Parallel Computing, 29, 393-430.

Aydin, M.E. & Fogarty, T.C. (2004). A Distributed Evolutionary Simulated Annealing
Algorithm for Combinatorial Optimisation Problems. Journal of Heuristics, 10, 269–
292.

Azizi, N. & Zolfaghari, S. (2004). Adaptive temperature control for simulated annealing: a
comparative study. Computers and Operations Research, 31, 2439-2451.

Azizi, N.; Zolfaghari, S.; & Liang, M. (2009a). Hybrid simulated annealing with Memory: An
evolution-based diversification approach, International Journal of Production Research
(IJPR), accepted.

Azizi, N.; Zolfaghari, S.; & Liang, M. (2009b). Hybrid Simulated Annealing in Flow-shop
Scheduling: A Diversification and Intensification Approach, International Journal of
Industrial and Systems Engineering (IJISE), 4(3), 326-348.

Bierwirth, C.; Mattfeld, D.C.; & Kopfer, H. (1996). On Permutation Representations for
Scheduling Problems, proceeding of 4th International Conference on Parallel Problem
Solving from Nature, Lecture notes in computer science, Springer-Verlag, pp.310–
318.

Demirkol, E.; Mehta, S.; & Uzsoy, R. (1998). Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109 (1), 137-141.

Dorigo, M. & Gambardella, L.M. (1997). Ant colony system: A cooperative learning
approach to the travelling salesman problem. IEEE Transaction on Evolutionary
Computation, 53-66.

El-Bouri, A.; Azizi, N.; & Zolfaghari, S. (2007). A comparative study of new metaheuristics
based on simulated annealing and adaptive memory programming. European
Journal of Operations Research, 2007, 177, 1894-1910.

Feo, T. & Resende, M. (1995). Greedy randomized adaptive search procedures. Journal of
Global Optimization, 16, 109-133.

www.intechopen.com

Modeling, Simulation and Optimization – Tolerance and Optimal Control136

Gonçalves, J.F.; Mendes, J.J.M.; & Resende, M.G.C. (2005). A hybrid genetic algorithm for the
job shop scheduling problem. European Journal of Operational Research, 2005, 167, 77-
95.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, MI.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Proceeding of. IEEE
International Conference on Neural Network, 1942–1948.

Kirkpatrick, S.; Gelatt, C.D. Jr. & Vecchi, M.P. (1983). Optimization by simulated annealing.
Science, 220, 671-680.

Kolonko, M. (1999). Some new results on simulated annealing applied to the job shop
scheduling problem. European Journal of Operations Research, 113, 123-136.

Liao, C.J.; Tseng, C.T.; & Luarn, P. (2007). A discrete version of particle swarm optimization
for flow shop scheduling problems. Computers & Operations Research, 34(10), 3099-
3111.

Nawaz, M.; Enscore, E. E. & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA, 11(1), 91-95.

Osman, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41(4), 421-451.

Reeves, C. R. (1995). A genetic algorithm for flow shop sequencing. Computers & Operations
Research, 22(1), 5-13.

Ruiz, R. & Maroto, C. (2005). A comprehensive review and evaluation of permutation Flow
shop heuristics. European Journal of Operational Research, 165(2), 479-494.

Taillard, E. (1993). Benchmark for basic scheduling problems. European Journal of Operational
Research, 64(2), 278-285.

Taillard, E.D.; Gambardella, L.M.; Gendreau, M. & Potvin, J.Y. (2001). Adaptive memory
programming: A unified view of metaheuristics. European Journal of Operational
Research, 135, 1-16.

Wang, L. & Zheng, D.Z. (2003). An effective hybrid heuristic for flow shop scheduling.
International Journal of Advanced Manufacturing Technology, 21(1), 38-44.

Zolfaghari, S. & Liang, M. (1999). Jointly solving the group scheduling and machining speed
selection problems: A hybrid tabu search and simulated annealing approach.
International Journal of Production Research, 37(10), 2377-2397.

www.intechopen.com

Modeling Simulation and Optimization - Tolerance and Optimal
Control
Edited by Shkelzen Cakaj

ISBN 978-953-307-056-8
Hard cover, 304 pages
Publisher InTech
Published online 01, April, 2010
Published in print edition April, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

Parametric representation of shapes, mechanical components modeling with 3D visualization techniques using
object oriented programming, the well known golden ratio application on vertical and horizontal displacement
investigations of the ground surface, spatial modeling and simulating of dynamic continuous fluid flow process,
simulation model for waste-water treatment, an interaction of tilt and illumination conditions at flight simulation
and errors in taxiing performance, plant layout optimal plot plan, atmospheric modeling for weather prediction,
a stochastic search method that explores the solutions for hill climbing process, cellular automata simulations,
thyristor switching characteristics simulation, and simulation framework toward bandwidth quantization and
measurement, are all topics with appropriate results from different research backgrounds focused on tolerance
analysis and optimal control provided in this book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nader Azizi, Saeed Zolfaghari and Ming Liang (2010). A Collaborative Search Strategy to Solve Combinatorial
Optimization and Scheduling Problems, Modeling Simulation and Optimization - Tolerance and Optimal
Control, Shkelzen Cakaj (Ed.), ISBN: 978-953-307-056-8, InTech, Available from:
http://www.intechopen.com/books/modeling-simulation-and-optimization-tolerance-and-optimal-control/a-
collaborative-search-strategy-to-solve-combinatorial-optimization-and-scheduling-problems

