

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Synchronous microbial vanadium (V) reduction and denitrification in groundwater using hydrogen as the sole electron donor

Citation for published version:

Borthwick, A, Jiang, Y, Zhang, B, He, C, Shi, J & Huang, X 2018, 'Synchronous microbial vanadium (V) reduction and denitrification in groundwater using hydrogen as the sole electron donor', *Water Research*, vol. 141, pp. 289-296. https://doi.org/10.1016/j.watres.2018.05.033

Digital Object Identifier (DOI):

10.1016/j.watres.2018.05.033

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Water Research

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Synchronous microbial vanadium (V) reduction and denitrification
2	in groundwater using hydrogen as the sole electron donor
3	Yufeng Jiang ^a , Baogang Zhang ^{a*} , Chao He ^a , Jiaxin Shi ^a , Alistair G.L. Borthwick ^b ,
4	Xueyang Huang ^a
5	^a School of Water Resources and Environment, MOE Key Laboratory of Groundwater
6	Circulation and Environmental Evolution, China University of Geosciences (Beijing),
7	Beijing 100083, P. R. China
8	^b School of Engineering, The University of Edinburgh, The King's Buildings,
9	Edinburgh EH9 3JL, UK
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	*Corresponding author. Tel.: +86 10 8232 2281; Fax: +86 10 8232 1081.
22	E-mail: zbgcugb@gmail.com, baogangzhang@cugb.edu.cn (B. Zhang).

23 ABSTRACT

24	Groundwater co-contaminated by vanadium (V) $(V(V))$ and nitrate requires
25	efficient remediation to prevent adverse environmental impacts. However, little is
26	known about simultaneous bio-reductions of $V(V)$ and nitrate supported by gaseous
27	electron donors in aquifers. This study is among the first to examine microbial $V(V)$
28	reduction and denitrification with hydrogen as the sole electron donor. $V(V)$ removal
29	efficiency of 91.0 \pm 3.2% was achieved in test bioreactors within 7 d, with
30	synchronous, complete removal of nitrate. V(V) was reduced to V(IV), which
31	precipitated naturally under near-neutral conditions, and nitrate tended to be converted
32	to nitrogen, both of which processes helped to purify the groundwater. Volatile fatty
33	acids (VFAs) were produced from hydrogen oxidation. High-throughput 16S rRNA
34	gene sequencing and metagenomic analyses revealed the evolutionary behavior of
35	microbial communities and functional genes. The genera Dechloromonas and
36	Hydrogenophaga promoted bio-reductions of V(V) and nitrate directly coupled to
37	hydrogen oxidation. Enriched Geobacter and denitrifiers also indicated synergistic
38	mechanism, with VFAs acting as organic carbon sources for heterotrophically
39	functional bacteria while reducing $V(V)$ and nitrate. These findings are likely to be
40	useful in revealing biogeochemical fates of $V(V)$ and nitrate in aquifer and developing
41	technology for removing them simultaneously from groundwater.
42	Keywords: Vanadium (V); Hydrogen; Nitrate; Bio-reduction; Denitrification

seyword

43 **1. Introduction**

44 Vanadium is a transition metal prevalent in the Earth's crust and is extensively used in modern technologies (Naeem et al., 2007; Sturini et al., 2013; Cao et al., 45 46 2017). Geological weathering and discharges from industrial processes lead to the presence of vanadium in groundwater (Chen and Liu, 2017). In the U.S., substantial 47 vanadium contamination has been recorded at 283 superfund sites, with vanadium 48 concentration reaching 100 µM in an aquifer at a site near Rifle, Colorado (Yelton et 49 al., 2013), far exceeding the 0.2 μ g/L minimum reporting level proposed by the U.S. 50 Environmental Protection Agency. In China, groundwater at Panzhihua, famous for its 51 vanadium titanomagnetite resources and vanadium production, also contains very 52 high concentrations of vanadium, up to 0.2 mg/L (Liu et al., 2017). Vanadium is 53 54 moderately poisonous, with its toxicity increasing with valence state and solubility 55 (Ortiz-Bernad et al., 2004; Zhang et al., 2010). Vanadium (V) (V(V)) is the most toxic and mobile form, whereas vanadium (IV) (V(IV)) is less toxic and insoluble at 56 57 near-neutral pH (Safavi et al., 2000; Wang and Ren, 2014). Over recent decades, nitrate pollution of groundwater has become a serious issue worldwide owing to the 58 increasing use of nitrogenous fertilizers, and discharges of domestic and industrial 59 wastewater (Zhang et al., 2014a; Xie et al., 2018). Excess nitrate in drinking water 60 poses health risks, including gastric problems in adults, decreased functioning of the 61 thyroid gland, and multiple sclerosis (Cai et al., 2015; Zhai et al., 2016). Groundwater 62 63 co-contaminated by V(V) and nitrate is increasingly commonplace, such as in the Gulf Coast aquifer of Texas, with concentrations of both contaminants exceeding 64

65	established maximum levels or health risk limits (Glenn and James Lester, 2010).
66	Reduction of $V(V)$ to $V(IV)$ is the approach usually taken to remove vanadium
67	from contaminated groundwater (Zhang et al., 2015). Physical and chemical methods
68	are commonly used for V(V) removal (Reul et al., 1999), but their cost-effectiveness
69	is questionable, and secondary pollution may also occur. Microbial V(V) reduction is
70	increasingly recognized as a promising future strategy for remediation of V(V)
71	contaminated groundwater, due to its simplicity, sustainability, and low cost (Lovley
72	and Coates, 1997; Yelton et al., 2013). Various microorganisms, such as Geobacter
73	metallireducens, Shewanella oneidensis, and methanogens, which naturally occur in
74	groundwater, are capable of reducing V(V) to V(IV) (Liu et al., 2016). Most known
75	species are heterotrophic and consume organic carbon; however available organics
76	decrease with increasing depth in the subsurface geological environment (Singh et al.,
77	2015). Supplementary addition of soluble organics can increase remediation costs and
78	bring about potentially secondary pollution. Aquifer clogging may also take place due
79	to higher biomass production of heterotrophs (Li et al., 2010). Thereby autotrophic
80	bioremediation with inorganic electron donors is of particular importance.
81	Furthermore, aquifers may contain dissolved hydrogen due to the hydration and
82	oxidation of rocks and minerals (Miller et al., 2017). As an electron donor, hydrogen
83	possesses several advantages in that it is inexpensive, widely available, and non-toxic
84	(Rittmann et al., 2004). As a result hydrogen has been successfully employed to
85	support bio-reductions of contaminants in groundwater, including chromate (Singh et
86	al., 2015), arsenate (Chung et al., 2006), selenate (Van Ginkel et al., 2011),

perchlorate and nitrate (Zhao et al., 2013). To date, limited studies have focused on					
hydrogen-based microbial V(V) reduction (Xu et al., 2015), and the interactions					
between $V(V)$ and other co-contaminants in bio-reduction processes remain unknown.					
Herein, we investigate experimentally the bioremediation of $V(V)$ and nitrate					
co-contaminated groundwater with hydrogen as the sole electron donor. The paper					
aims to explore the simultaneous removal of $V(V)$ and nitrate which often occur					
together in groundwater, and to reveal dynamics of microbial communities, dominant					
species, and functional genes.					

96 **2. Materials and methods**

97 2.1. Experimental setup and operation

98 Eight cubic bioreactors were employed, made of plexiglass with total volume of 280 mL and covered with aluminum foil. Two holes were located in the top of the 99 reactor, one for replacing the culture medium and for sampling, and the other for 100 101 hydrogen injection. Each bioreactor was filled with synthetic groundwater containing the following mineral salts per L: CaCl₂ 0.2464 g, MgCl₂·6H₂O 1.0572 g, NaCl 102 0.4459 g, KCl 0.0283 g, NaHCO₃ 0.504 g, and KH₂PO₄ 0.0299 g. V(V) was provided 103 104 in the form of NaVO₃ at a prescribed concentration. Each bioreactor was inoculated 105 with 20 mL anaerobic sludge extracted from an upflow anaerobic sludge blanket reactor used to treat high strength wastewater (Beijing YanJing Brewery Co. Ltd, 106 China). The sludge shared the similar microbial community structure with 107 groundwater microbes in vanadium contaminated aquifer (Cao et al., 2017). They 108

109	were divided into four groups: BR-V-N comprising medium containing both 1 mM
110	V(V) and 1 mM nitrate with hydrogen donor; BR-V consisting solely of 1 mM V(V),
111	again with hydrogen donor; and BR-N consisting solely of 1 mM nitrate, with
112	hydrogen donor; and a control group BR comprising medium containing both 1 mM
113	V(V) and 1 mM nitrate without hydrogen donor. In all cases, except BR, air in the
114	headspace of all bioreactors (30 mL) was first expelled, and then hydrogen was
115	injected via a syringe, after which the bioreactors were sealed with a rubber plug. A
116	further two reactors without inoculation but with hydrogen in the headspace were
117	assigned as AR, and filled with same medium as BR-V-N.
118	The inoculated bioreactors were first incubated for 3 months, refreshing the
119	aqueous solution every 7 days. Soluble organics existing in the inocula originally
120	were almost depleted after cultivation. After that the feasibility of simultaneous
121	removal of $V(V)$ and nitrate was evaluated by employing hydrogen as the sole
122	electron donor in three consecutive operating cycles (each lasting 7 d), and comparing
123	the resulting concentrations against those in the control tests. Consumption of
124	hydrogen and generation of gaseous products during this process were examined by
125	collecting samples from the headspace into airbags for measurement. Soluble and
126	solid products were also analyzed. A parameter study was then undertaken whereby
127	the influence of key operating factors on hydrogen-supported $V(V)$ reduction and
128	denitrification was examined for different initial nitrate concentrations (0.5 mM, 1
129	mM and 1.5 mM) with fixed 1 mM V(V), and different V(V) loadings (0.5 mM, 1
130	mM and 1.5 mM) with fixed mole ratio of V(V) and nitrate (1:1). Liquid samples

131	were acquired by sterilized syringes at selected time intervals, and the samples filtered					
132	immediately through a 0.22- μ m polyether sulphone membrane filter for analysis.					
133	Each time after sampling, hydrogen was replenished through a needle connecting with					
134	hydrogen cylinder at the rate of 100 mL/min for 30 min to supply sufficient electron					
135	donor. Then another 3 months accumulation was conducted for BR-V-N for					
136	high-throughput sequencing analysis. For each sample, microbial community analysis					
137	was carried out in triplicate to confirm the reproducibility. The two reactors in each					
138	group were operated under identical conditions, and the mean results recorded. All					
139	experiments were conducted at room temperature (22 ± 2 °C).					
140	2.2. Analytical methods					
141	The presence of V(V) was analyzed using spectrophotometry (Zhang et al.,					
142	2012). Total V was analyzed using inductively coupled plasma-mass spectrometry					
143	(ICP-MS, Thermo Fisher X series, Germany). Nitrate, nitrite and ammonium were					
144	monitored using a spectrophotometer (DR6000, HACH, the USA). Total organic					
145	carbon (TOC) was measured by Multi N/C 3000 TOC analyzer (Analytik Jena AG,					
146	Germany). Gas chromatograph (Agilent, 4890, J&W Scientific, USA) was employed					
147	to analyze gases, including hydrogen and nitrogen by means of a thermal conductivity					
148	detector, and volatile fatty acids (VFAs) using a flame ionization detector. Precipitates					
149	that appeared during the operation were collected through centrifugation at 10,000					
150	rpm and analyzed using X-ray photoelectron spectroscopy (XPS) (XSAM-800, Kratos,					
151	UK).					

152 2.3. Microbiological analysis

153	Biomass in BR-V-N and the originally inoculated sludge underwent ultrasonic
154	pretreatment, and their total genomic DNA was extracted using a FastDNA® SPIN Kit
155	(Qiagen, CA, the USA), following manufacturer's instructions. Then the above DNA
156	was amplified with PCR primer 338F (5'-ACTCCTACGGGAGGCAGCAG-3') and
157	806R (5'-GGACTACHVGGGTWTCTAAT-3'). A mixture of amplicons was used for
158	high-throughput 16S rRNA gene and metagenomics analyses using MiSeq (Illumina,
159	USA), performed by Shanghai Majorbio Technology (Shanghai, China). Raw data
160	were submitted to the public National Center for Biotechnology Information (NCBI)
161	database with accession numbers: SRP096812 and SRP120206. Operational
162	taxonomic units (OTUs) were clustered from sequences by setting a 0.03 distance
163	limit (equivalent to 97% similarity). Rarefaction curves and alpha diversity indexes
164	were obtained using Mothur (version v.1.30.1). Phylogenetic affiliations and
165	metagenomic results were analyzed using the RDP Classifier by comparison with the
166	silva (SSU115) 16S rRNA database and Kyoto Encyclopedia of Genes and Genomes
167	(KEGG) database, following previous studies (Lai et al., 2016).

3. Results and discussion

3.1. Hydrogen-supported V(V) and nitrate removal

Both V(V) and nitrate gradually decreased in BR-V-N over three consecutive
operating cycles (Fig. 1a), during which simultaneous removal of V(V) and nitrate

173	took place, with a V(V) removal efficiency of 91.0 \pm 3.2% (<i>p</i> < 0.05), and complete
174	removal of nitrate within 7 d operation. The average removal rates were 124.7 ± 2.6
175	μ M/d for V(V) and 173.6 ± 3.9 μ M/d for nitrate ($p < 0.05$) (Fig. 1b), with pseudo
176	first-order rate constants of 0.2601 d ⁻¹ and 0.7252 d ⁻¹ (Supplementary information (SI),
177	Table S1). To the authors' knowledge, this is the first report concerning the
178	bio-reduction of V(V) and nitrate as co-contaminants, using hydrogen as the sole
179	electron donor. The present research appears to be an improvement over existing
180	studies to hydrogen-based $V(V)$ bio-reductions in that the $V(V)$ removal efficiency in
181	350 h was 95.5% for initial 2 mg/L V(V) and the calculated removal rate was only
182	0.005 mg/L·h by autohydrogentrophic bacteria (Xu et al., 2015), whereas 30 d was
183	required to reduce $2 \text{ mM V}(V)$ by mesophilic and thermophilic methanogens with
184	H_2/CO_2 (80:20 gas mix) (Zhang et al., 2014b). The obtained V(V) removal rate was
185	lower than that of 24.2 \pm 1.7 $\mu M/h$ in the presence of nitrate and acetate due to
186	differences in electron donors and carbon sources (Liu et al., 2017). V(V) was
187	removed more slowly than nitrate in BR-V-N because of its higher toxicity to
188	microbes (Liu et al., 2017).

Compared with removals of V(V) in BR-V and nitrate in BR-N (Fig. 1a), both V(V) and nitrate bio-reductions were suppressed in BR-V-N, due to the competitive consumption of electron donor. This phenomenon differed from result obtained using soluble organic carbon sources, where the bio-reduction of V(V) was accelerated by addition of chromium (VI), which is more toxic (Wang et al., 2017). Nitrate was removed relatively more slowly in the present study due to the discontinuous supply

195	of hydrogen (Wu et al., 2018). Furthermore, concentrations of $V(V)$ and nitrate
196	remained almost unchanged in AR (SI Fig. S1), which proved that V(V) and nitrate
197	removal in BR-V-N was biologically mediated. Hardly any V(V) was removed in BR,
198	with slight removal of nitrate (SI Fig. S1), implying that hydrogen played a key role
199	by providing electrons for microbes to detoxify V(V) and nitrate.

200 3.2. Reaction products identification and process elucidation

201	Gradually decreasing total V was observed in a typical operating cycle (7 d) in
202	BR-V-N (Fig. 2a), with appearance of blue precipitates, indicating the less mobile
203	characteristic of the generated products. V 2p spectra of XPS were recorded for the
204	precipitates (Fig. 2b). The sub-band with a peak at the binding energy of 515.9 eV
205	was identified as V(IV) (Zhao et al., 2016; Zhang et al., 2018), providing direct
206	evidence that $V(V)$ was bio-reduced to less toxic $V(IV)$. In situ, $V(IV)$ can precipitate
207	naturally in near-neutral conditions in the form of $VO(OH)_2$ and/or vanadyl phosphate
208	$[CaV_2(PO_4)_2(OH)_4 \cdot 3H_2O]$ (Qiu et al., 2017). Peaks corresponding to V(V) were also
209	observed, most likely due to the re-oxidation of generated V(IV) during the collection
210	and testing of precipitates (Zhang et al., 2009a). As hydrogen was consumed, its
211	content declined during successive sampling intervals (Fig. 2a). The hydrogen-based
212	V(V) bio-reduction could therefore be elucidated by the following stoichiometric
213	equation,
214	$HVO_{4}^{2^{-}} + 145H_{2} + NO_{2}^{-} + 5HCO_{2}^{-} + 8H^{+} \rightarrow VO(OH)_{2} + C_{2}H_{2}NO_{2} + 17H_{2}O_{2} $ (1)

$$214 \quad HVO_4^2 + 14.5H_2 + NO_3 + 5HCO_3 + 8H^2 \rightarrow VO(OH)_{2(s)} + C_5H_7NO_2 + 1/H_2O \quad (1)$$

215 Meanwhile, nitrite and ammonium initially accumulated in BR-V-N (Fig. 2c),

216 indicating the presence of multiple metabolic pathways, including denitrification and

dissimilatory nitrate reduction to ammonium (Tong et al., 2013). Both nitrite and

ammonium gradually disappeared, perhaps due to the occurrence of anammox

219 activities. Nitrogen accumulated in the headspace of the reactor during operation (Fig.

220 2a), and so hydrogen-based denitrification could be expressed as follows,

221
$$NO_3^- + 3H_2 + 0.23HCO_3^- + 1.23H^+ \rightarrow 0.48N_2 + 0.046C_5H_7O_2N + 3.63H_2O$$
 (2)

222 Mass balance and electron transfer were investigated based on the above

equations. During a typical operating cycle (7 d), 11.36 ± 0.04 mmol electrons were

released from hydrogen oxidation. The theoretically required amounts of electrons for

225 removal of V(V) and nitrate were 0.25 ± 0.01 mmol and 1.40 ± 0.01 mmol (p < 0.05),

along with the detected terminal reduction products. Hence, $2.20 \pm 0.03\%$ and $12.32 \pm$

227 0.07% (p < 0.05) of released electrons were consumed for V(V) respiration and

228 denitrification. The remaining electrons contributed to microbial growth and

229 proliferation. It should be noted that the utilization of hydrogen could be further

improved by diffusing hydrogen through the gas transfer membrane (Wu et al., 2018).

231 When practical bioremediation was conducted, the insufficiency of hydrogen could be

compensated by supplying hydrogen continuously through sustainable hydrogen

production, such as via bioelectrochemical systems (Zou and He, 2018).

234 Detoxification of V(V) and nitrate could be realized by bioaugmentation through

stimulating indigenous microorganisms in aquifer by hydrogen. According to Equ. (2),

- the theoretical nitrogen yield was 0.13 ± 0.02 mmol, while the monitored nitrogen
- was 0.11 ± 0.03 mmol in 7 d operation; this was probably due to the generation of

other nitrogen-containing intermediates and assimilations (Zhang et al., 2014a).

Hydrogen was found in aquifers with concentration around 15 nM (Chapelle et al.,

240 1996), thus results from this study could be helpful to reveal the biogeochemical fates

of V(V) and nitrate in groundwater. Lower biomass yields were produced in

242 hydrogen-based bioprocess (Wu et al., 2017), thus possible clogging of aquifer could

243 be prevented when it was practically applicated.

244 Residual VFAs were also detected during the operation of BR-V-N (Fig. 2d),

with average concentration of 9.84 ± 1.56 mg/L in a 7 d operating cycle (p < 0.05),

comparable with result from methane-based biological bromate reduction (Luo et al.,

247 2017). These metabolites might be derived from hydrogen oxidation and bicarbonate

reduction by autotrophic microbes with the function of hydrogenases encoded by

249 genes such as *hhyL* gene (Khdhiri et al., 2015). They could be consumed by

250 heterotrophic microbes for V(V) and nitrate bio-reductions (Lai et al., 2016). Unlike

acetate, which was the main form of residual VFAs under quasi-anaerobic condition

252 (Luo et al., 2018), valeric species were the dominant components in our study,

253 probably due to the immediate consumption of other species after their synthesis by

254 heterotrophic microbes. For example, microorganisms were favor to using acetate as

255 carbon source during V(V) bio-reduction (Liu et al., 2016). Less VFAs were

accumulated with average TOC concentration in a typical operating cycle of $1.26 \pm$

257 0.11 mg/L (p < 0.01), which was much lower than original TOC concentration in

258 natural groundwater (around 10 mg/L) (Zhang et al., 2017a). This result suggested

that the VFAs residue could hardly cause significant fluctuations of organics

260 concentration when this hydrogen-based process was performed.

3.3. Influences of operating factors

262	Both $V(V)$ and nitrate in BR-V-N decreased progressively with time, with lower
263	values observed at any given time for lower initial nitrate concentrations (Fig. 3a).
264	Removal efficiencies of V(V) reached 99.2 \pm 0.9%, 91.0 \pm 3.2% and 78.6 \pm 4.2%
265	after 7 d for initial nitrate concentrations of 0.5 mM, 1 mM and 1.5 mM ($p < 0.05$).
266	The corresponding pseudo first-order rate constants were 0.3561 d ⁻¹ , 0.2603 d ⁻¹ and
267	0.1921 d ⁻¹ (SI Fig. S2a, Table S2). Nitrate was removed more quickly than $V(V)$
268	under each test condition (Fig. 3b), with pseudo first-order rate constants of 0.9391 d ⁻¹ ,
269	0.7245 d ⁻¹ and 0.6035 d ⁻¹ . In practice, $V(V)$ and nitrate compete with respect to
270	electron donor consumption, whereas nitrate is less toxic to microbes than V(V).
271	Larger amounts of nitrate are commonly present in actual aquifers (Degnan et al.,
272	2016), and so the interaction of nitrate with $V(V)$ should be considered whenever
273	practical bioremediation is conducted with hydrogen as the sole electron donor.
274	Both $V(V)$ and nitrate were progressively removed with time under different
275	V(V) loadings (Fig. 3c). Here $V(V)$ removal efficiencies decreased as the $V(V)$
276	loading increased, ranging from complete removal at a V(V) loading of 0.5 mM to
277	71.2 \pm 1.3% at 1.5 mM V(V) loading (<i>p</i> < 0.05), with corresponding pseudo
278	first-order rate constants of 1.5372 d ⁻¹ to 0.1882 d ⁻¹ (SI Fig. S2b, Table S2). Nitrate
279	removal was faster than $V(V)$ (Fig. 3d), with pseudo first-order rate constants of
280	1.6095 d ⁻¹ , 0.7252 d ⁻¹ and 0.5661 d ⁻¹ at V(V) loadings of 0.5 mM, 1 mM and 1.5 mM,
281	respectively. V(V) and nitrate vary in aquifers (Schlesinger et al., 2017; Nolan and

282 Weber, 2015) and so the present results suggest that hydrogen-based bio-reductions of

283 V(V) and nitrate can be feasible over a large range of V(V) loadings.

281	31	Microhio	1 communities	and mor	hanisms
204	5.4.	microbia	<i>i</i> communities	unu meci	unisms

Fewer OTUs were detected in the biomass from BR-V-N, compared with

inoculated sludge (SI Fig. S3). This implies that the microbial richness decreased

significantly due to the presence of V(V) and nitrate, which was also reflected by the

288 Chao1 and Ace indexes (SI Table S3). The lower Shannon index and higher Simpson

index suggested lower diversity and evenness in BR-V-N, indicating that the microbes

290 were highly selected. Moreover, the microbial abundance within the hydrogen-fed

autotrophic bioreactor was lower than that in heterotrophic systems for V(V)

bio-reductions (Liu et al., 2016), most likely because of the limited metabolic

293 pathways.

294 Evolutions of different microbial communities were observed in BR-V-N at class

level (Fig. 4a). *Spirochaetes* increased dramatically from $1.72 \pm 0.02\%$ in the inocula

to $47.9 \pm 7.2\%$ and become dominant in BR-V-N (p < 0.05). Microbes in this class are

297 capable of fermenting carbohydrates into simple organic acids (Sun et al., 2010), a

298 process closely akin to nitrate reduction (Xu et al., 2017). *Bacteroidetes* BD2-2,

299 Betaproteobacteria, Actinobacteria and Mollicutes were also noticeably enriched after

300 cultivation in BR-V-N. Notably, Betaproteobacteria and Actinobacteria species are

301 associated with dissimilatory metal reductions and denitrification (Hao et al., 2016;

302 Cesarano et al., 2017).

303 Functional species were found at genus level in BR-V-N (Fig. 4b). Primary

304	examples included the genera <i>Dechloromonas</i> and <i>Hydrogenophaga</i> which are
305	reported to be autohydrogenotrophic denitrifiers (Zhang et al., 2009b; Zhang et al.,
306	2017b) and Geobacter which promotes the reduction of V(V) (Ortiz-Bernad et al.,
307	2004). Enriched Nitrospira, Ideonella and Methyloversatilis took part in nitrogen
308	cycling (Shi et al., 2017; Pepe-Ranney et al., 2015; Baytshtok et al., 2009). The
309	gathered denitrifiers could be also responsible for $V(V)$ removal given that $V(V)$
310	bio-reductions shared similar reductases with denitrification (Xu et al., 2015).
311	Interestingly, Fe(III) and sulfate-reducing bacteria also accumulated, including
312	Sphaerochaeta and Desulfuromonas (Ritalahti et al., 2012).
313	Metagenomic analysis with functional genes and encoding proteins summarized
314	into eight catalogs revealed the microbial dynamics at molecular level (Fig. 4c).
315	Details were listed in SI Table S4 and Table S5. Metal reduction genes and their
316	corresponding proteins increased significantly in BR-V-N, confirming the resultant
317	V(V) bio-reductions through pathways presented in SI Table S6. Similar tendencies
318	were found in denitrification genes and the corresponding enzymes, consistent with
319	the detected denitrifiers. NADP genes related to hydrogen metabolism bloomed due to
320	the presence of hydrogen. Although genes related to phosphate transporters decreased,
321	their corresponding proteins were enriched, which favored $V(V)$ removal, noting that
322	ABC transporters have been reported to be linked to selenate bio-reduction (Lai et al.,
323	2016). Notably, genes responsible for the synthesis of electron shuttles (flavodoxin,
324	ubiquinone, cytochrome, etc) also increased, facilitating electron transfers from
325	electron donor (hydrogen) to electron acceptors (V(V) and nitrate) (Kranz-Finger et

326 al., 2018).

327	Statistical studies revealed correlations between representative accumulated
328	functional genes and microbes (Fig. 4d). Genera Dechloromonas, Ideonella and
329	Methyloversatilis showed strongly positive relationships with genes involved in
330	metabolic pathways, microbial metabolism in diverse environments, biosynthesis of
331	secondary metabolites, and nitrogen metabolism such as <i>sdhA</i> , <i>nifJ</i> , <i>gltD</i> and <i>narG</i>
332	(Guardia et al., 2018). Genera Hydrogenophaga and Geobacter were linked with the
333	chrA gene, which participated in metal reductions (Shaw and Dussan, 2018). Genus
334	Desulfuromonas was positively related to phsA and cysH genes, which took part in the
335	removal of nitrite and metal (Haveman et al., 2004; Saltikov and Newman, 2003).
336	The mechanisms of hydrogen-based $V(V)$ bio-reduction and denitrification were
337	now summarized. Both direct and synergistic routes were proposed (Fig. 5). Detection
338	of Dechloromonas and Hydrogenophaga proved that hydrogen oxidation could be
339	coupled directly to nitrate removal. V(V) bio-reduction could also be performed by
340	these species given that their membrane-bound nitrate reductases had been implicated
341	in V(V) respiration (Xu et al., 2015). Through synergy, hydrogen was consumed by
342	hydrogen-utilizing bacteria such as Bacillus to synthesize VFAs (Chubukov and Sauer,
343	2014), after which the generated VFAs served as electron donors and carbon sources
344	for the heterotrophic $V(V)$ -reducing bacterium Geobacter involved in $V(V)$
345	bio-reduction, and denitrifiers for nitrate removal. Functional genes such as <i>gltD</i> ,
346	chrA and $narG$ encoded corresponding enzymes that conducted simultaneous V(V)
347	bio-reduction and denitrification coupled to hydrogen oxidation.

4. Conclusions

350	In this study, co-contaminants V(V) and nitrate in groundwater were handled in
351	anaerobic bioreactors. The major conclusions and outcomes are:
352	• Synchronous V(V) bio-reduction and denitrification can be realized with
353	hydrogen as the sole electron donor.
354	• V(V) removal efficiency of 91.0 \pm 3.2% was achieved in a typical operating
355	cycle (7 d), along with complete removal of nitrate.
356	• V(IV) formed as the reduction product of V(V), and nitrate was reduced to
357	nitrogen.
358	• The dynamics of microbial communities and functional genes provide
359	evidence for both direct and synergetic mechanisms.
360	
361	Acknowledgements
362	This research work was supported by the National Natural Science Foundation of
363	China (NSFC) (No. 41672237) and Beijing Nova Program (No. Z171100001117082).
364	References
365	Baytshtok, V., Lu, H., Park, H., Kim, S., Yu, R., Chandran, K., 2009. Impact of
366	varying electron donors on the molecular microbial ecology and biokinetics of
367	methylotrophic denitrifying bacteria. Biotechnol. Bioeng. 102 (6), 1527-1536.
368	Cai, C., Hu, S.H., Guo, J.H., Shi, Y., Xie, G.J., Yuan, Z.G., 2015. Nitrate reduction by

- 369 denitrifying anaerobic methane oxidizing microorganisms can reach a practically
 370 useful rate. Water Res. 87, 211-217.
- 371 Cao, X.L., Diao, M.H., Zhang, B.G., Liu, H., Wang, S., Yang, M., 2017. Spatial
- 372 distribution of vanadium and microbial community responses in surface soil of

Panzhihua mining and smelting area, China. Chemosphere 183, 9-17.

- 374 Cesarano, G., De Filippis, F., La Storia, A., Scala, F., Bonanomi, G., 2017. Organic
- amendment type and application frequency affect crop yields, soil fertility and
- 376 microbiome composition. Appl. Soil. Ecol. 120, 254-264.
- 377 Chapelle, F.H., Haack, S.K., Adriaens, P., Henry, M.A., Bradley, P.M., 1996.
- 378 Comparison of E_h and H₂ measurements for delineating redox processes in a
 379 contaminated aquifer. Environ. Sci. Technol. 30 (12), 3565-3569.
- 380 Chen, G.D., Liu, H.Z., 2017. Understanding the reduction kinetics of aqueous
- 381 vanadium (V) and transformation products using rotating ring-disk electrodes.
- 382 Environ. Sci. Technol. 51 (20), 11643-11651.
- 383 Chubukov, V., Sauer, U., 2014. Environmental dependence of stationary-phase
- metabolism in *Bacillus subtilis* and *Escherichia coli*. Appl. Environ. Microb. 80
 (9), 2901-2909.
- 386 Chung, J.W., Li, X.H., 2006. Rittmann, B. E. Bio-reduction of arsenate using a
- 387 hydrogen-based membrane biofilm reactor. Chemosphere 65 (1), 24-34.
- 388 Degnan, J.R., Bohlke, J.K., Pelham, K., Langlais, D.M., Walsh, G.J., 2016.
- 389 Identification of groundwater nitrate contamination from explosives used in road
- 390 construction: isotopic, chemical, and hydrologic evidence. Environ. Sci. Technol.

50 (2), **593-603**.

- 392 Glenn, S.M., James Lester, L., 2010. An analysis of the relationship between land use
- 393 and arsenic, vanadium, nitrate and boron contamination in the Gulf Coast aquifer
- 394 of Texas. J. Hydrol. 389 (1), 214-226.
- 395 Guardia, G., Vallejo, A., Cardenas, L.M., Dixon, E.R., García-Marco, S., 2018. Fate
- 396 of ¹⁵N-labelled ammonium nitrate with or without the new nitrification inhibitor
- 397 DMPSA in an irrigated maize crop. Soil Biol. Biochem. 116, 193-202.
- Hao, L.T., Zhang, B.G., Cheng, M., Feng, C.P., 2016. Effects of various organic
- 399 carbon sources on simultaneous V(V) reduction and bioelectricity generation in
 400 single chamber microbial fuel cells. Bioresour. Technol. 201, 105-110.
- 401 Haveman, S.A., Greene, E.A., Stilwell, C.P., Voordouw, J.K., Voordouw, G., 2004.
- 402 Physiological and gene expression analysis of inhibition of *Desulfovibrio*

403 *vulgaris* Hildenborough by nitrite. J. Bacteriol. 186 (23), 7944-7950.

- 404 Khdhiri, M., Hesse, L., Popa, M.E., Quiza, L., Lalonde, I., Meredith, L.K., Rockmann,
- 405 T., Constant, P., 2015. Soil carbon content and relative abundance of high
- 406 affinity H₂-oxidizing bacteria predict atmospheric H₂ soil uptake activity better
- 407 than soil microbial community composition. Soil Biol. Biochem. 85, 1-9.
- 408 Kranz-Finger, S., Mahmoud, O., Ricklefs, E., Ditz, N., Bakkes, P.J., Urlacher, V.B.,
- 409 2018. Insights into the functional properties of the marneral oxidase CYP71A16
- 410 from *Arabidopsis thaliana*. BBA-Proteins Proteom. 1866 (1), 2-10.
- 411 Lai, C.Y., Wen, L.L., Shi, L.D., Zhao, K.K., Wang, Y.Q., Yang, X., Rittmann, B.E.,
- 412 Zhou, C., Tang, Y., Zheng, P., Zhao, H.P., 2016. Selenate and nitrate

- 413 bioreductions using methane as the electron donor in a membrane biofilm reactor.
- 414 Environ. Sci. Technol. 50 (18), 10179-10186.
- 415 Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S., 2010. Effects of
- 416 physical and geochemical heterogeneitries on mineral transformation and
- 417 biomass accumulation during biostimulation experiments at Rifle, Colorado. J.
- 418 Contam. Hydrol. 112 (1-4), 45-63.
- Liu, H., Zhang, B.G., Xing, Y., Hao, L.T., 2016. Behavior of dissolved organic
- 420 carbon sources on the microbial reduction and precipitation of vanadium (V) in
- 421 groundwater. RSC Adv. 6 (99), 97253-97258.
- Liu, H., Zhang, B.G., Yuan, H.Y., Cheng, Y.T., Wang, S., He, Z., 2017. Microbial
- 423 reduction of vanadium (V) in groundwater: interactions with coexisting common
- 424 electron acceptors and analysis of microbial community. Environ. Pollut. 231 (Pt425 2), 1362-1369.
- Lovley, D.R., Coates, J.D., 1997. Bioremediation of metal contamination. Curr. Opin.
 Biotech. 8 (3), 285-289.
- Luo, J.H., Chen, H., Yuan, Z.G., Guo, J.H., 2018. Methane-supported nitrate removal
 from groundwater in a membrane biofilm reactor. Water Res. 132, 71-78.
- 430 Luo, J.H., Wu, M.X., Yuan, Z.G., Guo, J.H., 2017. Biological bromate reduction
- driven by methane in a membrane biofilm reactor. Environ. Sci. Technol. Let. 4
 (12), 562-566.
- 433 Miller, H.M., Mayhew, L.E., Ellison, E.T., Kelemen, P., Kubo, M., 2017. Templeton,
- 434 A. S. Low temperature hydrogen production during experimental hydration of

435	partially-serpentinized dunite. Geochim. Cosmochim. Acta 209, 161-183.
436	Naeem, A., Westerhoff, P., Mustafa, S., 2007. Vanadium removal by metal
437	(hydr)oxide adsorbents. Water Res. 41, 1596-1602.
438	Nolan, J., Weber, K.A., 2015. Natural uranium contamination in major U.S. aquifers
439	linked to nitrate. Environ. Sci. Technol. Let. 2 (8), 215-220.
440	Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., Lovley, D.R., 2004. Vanadium
441	respiration by Geobacter metallireducens: novel strategy for in situ removal of
442	vanadium from groundwater. Appl. Environ. Microb. 70 (5), 3091-3095.
443	Pepe-Ranney, C., Koechli, C., Potrafka, R., Andam, C., Eggleston, E., Garcia-Pichel,
444	F., Buckley, D.H., 2015. Non-cyanobacterial diazotrophs mediate dinitrogen
445	fixation in biological soil crusts during early crust formation. ISME J. 10 (2),
446	287-298.
447	Qiu, R., Zhang, B.G., Li, J.X., Lv, Q., Wang, S., Gu, Q., 2017. Enhanced vanadium
448	(V) reduction and bioelectricity generation in microbial fuel cells with
449	biocathode. J. Power Sources 359, 379-383.
450	Reul, B.A., Amin, S.S., Buchet, J.P., Ongemba, L.N., Crans, D.C., Brichard, S.M.,
451	1999. Effects of vanadium complexes with organic ligands on glucose
452	metabolism: a comparison study in diabetic rats. Brit. J. Pharmacol. 126 (2),
453	467-477.
454	Ritalahti, K.M., Justicia-Leon, S.D., Cusick, K.D., Ramos-Hernandez, N., Rubin, M.,
455	Dornbush, J., Loffler, F.E., 2012. Sphaerochaeta globosa gen. nov., sp. nov. and
456	Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int. J.

- 457 Syst. Evol. Micr. 62 (Pt 1), 210-216.
- 458 Rittmann, B.E., Nerenberg, R., Lee, K.C., Najm, I., Gillogly, T.E., Lehman, G.E.,
- 459 Adham, S.S., 2004. The hydrogen-based hollow-fiber membrance biofilm
- 460 reactor (MBfR) for removing oxidized contaminants. Water Sci. Tech-W Sup. 4,
- 461 223-230.
- 462 Safavi, A., Abdollahi, H., Sedaghatpour, F., Zeinali, S., 2000. Kinetic
- 463 spectrophotometric determination of V(IV) in the presence of V(V) by the
- 464 H-point standard addition method. Anal. Chim. Acta. 409 (1), 275-282.
- Saltikov, C.W., Newman, D.K., 2003. Genetic identification of a respiratory arsenate
 reductase. P. Natl. Acad. Sci. USA. 100 (19), 10983-10988.
- Schlesinger, W.H., Klein, E.M., Vengosh, A., 2017. Global biogeochemical cycle of
 vanadium. P. Natl. Acad. Sci. USA. 114 (52), E11092-E11100.
- 469 Shaw, D.R., Dussan, J., 2018. Transcriptional analysis and molecular dynamics
- 470 simulations reveal the mechanism of toxic metals removal and efflux pumps in
- 471 Lysinibacillus sphaericus OT4b.31. Int. Biodeterior. Biodegrad. 127, 46-61.
- 472 Shi, L.M., Huang, Y.X., Zhang, M., Yu, Y., Lu, Y.P., Kong, F.X., 2017. Bacterial

473 community dynamics and functional variation during the long-term

- decomposition of cyanobacterial blooms in-vitro. Sci. Total Environ. 598, 77-86.
- 475 Singh, R., Dong, H.L., Liu, D., Zhao, L.D., Marts, A.R., Farquhar, E., Tierney, D.L.,
- 476 Almquist, C.B., Briggs, B.R., 2015. Reduction of hexavalent chromium by the
- 477 thermophilic methanogen *Methanothermobacter thermautotrophicus*. Geochim.
- 478 Cosmochim. Acta 148, 442-456.

479	Sturini, M., Rivagli, E., Maraschi, F., Speltini, A., Profumo, A., Albini, A., 2013.
480	Photocatalytic reduction of vanadium (V) in TiO ₂ suspension: chemometric
481	optimization and application to wastewaters. J. Hazard. Mater. 254-255 (1),
482	179-184.
483	Sun, Y.J., Zuo, J., Cui, L.T., Deng, Q., Dang, Y., 2010. Diversity of microbes and
484	potential exoelectrogenic bacteria on anode surface in microbial fuel cells. J. Gen.
485	Appl. Microbiol. 56 (1), 19-29.
486	Tong, S., Zhang, B.G., Feng, C.P., Zhao, Y.X., Chen, N., Hao, C.B., Pu, J.Y., Zhao, L.
487	W., 2013. Characteristics of heterotrophic/biofilm-electrode autotrophic
488	denitrification for nitrate removal from groundwater. Bioresour. Technol. 148
489	(11), 121-127.
490	Van Ginkel, S.W., Yang, Z.M., Kim, B.O., Sholin, M., Rittmann, B.E., 2011. The
491	removal of selenate to low ppb levels from flue gas desulfurization brine using
492	the H ₂ -based membrane biofilm reactor (MBfR). Bioresour. Technol. 102 (10),
493	6360-6364.
494	Wang, G.Y., Zhang, B.G., Li, S., Yang, M., Yin, C.C., 2017. Simultaneous microbial

- 495 reduction of vanadium (V) and chromium (VI) by *Shewanella loihica* PV-4.
- 496 Bioresour. Technol. 227, 353-358.
- Wang, H.M., Ren, Z.J., 2014. Bioelectrochemical metal recovery from wastewater: a
 review. Water Res. 66 (66C), 219-232.
- 499 Wu, J.L., Yin, Y.N., Wang, J.L., 2018. Hydrogen-based membrane biofilm reactors
- 500 for nitrate removal from water and wastewater. Int. J. Hydrogen Energy 43 (1),

501 1-15.

- 502 Wu, Y.H., Li, Y.Z., Ontiveros-Valencia, A., Ordaz-Díaz, L., Liu, J.Z., Zhou, C.,
- 503 Rittmann, B.E., 2017. Enhancing denitrification using a novel *in situ* membrane
- 504 biofilm reactor (isMBfR). Water Res. 119, 234-241.
- 505 Xie, G.J., Liu, T., Cai, C., Hu, S.H., Yuan Z.G., 2018. Achieving high-level nitrogen
- removal in mainstream by coupling anammox with denitrifying anaerobic
- 507 methane oxidation in a membrane biofilm reactor. Water Res. 131, 196-204.
- 508 Xu, X.J., Chen, C., Guan, X., Yuan, Y., Wang, A.J., Lee, D.J., Zhang, Z.F., Zhang, J.,
- 509 Zhong, Y.J., Ren, N.Q., 2017. Performance and microbial community analysis of
- a microaerophilic sulfate and nitrate co-reduction system. Chem. Eng. J. 330,
- 511 63-70.
- 512 Xu, X.Y., Xia, S.Q., Zhou, L.J., Zhang, Z.Q., 2015. Rittmann, B. E. Bioreduction of
- 513 vanadium (V) in groundwater by autohydrogentrophic bacteria: mechanisms and

514 microorganisms. J. Environ. Sci-China. 30 (4), 122-128.

- 515 Yelton, A.P., Williams, K.H., Fournelle, J., Wrighton, K.C., Handley, K.M., Banfield,
- 516 J F., 2013. Vanadate and acetate biostimulation of contaminated sediments
- 517 decreases diversity, selects for specific taxa, and decreases aqueous V^{5+}
- 518 concentration. Environ. Sci. Technol. 47 (12), 6500-6509.
- 519 Zhai, Y.Z., Zhao, X.B., Teng, Y.G., Li, X., Zhang, J.J., Wu, J., Zuo, R., 2017.
- 520 Groundwater nitrate pollution and human health risk assessment by using HHRA
- 521 model in an agricultural area, NE China. Ecotox. Environ. Safe. 137, 130-142.
- 522 Zhang, B.G., Feng, C.P., Ni, J.R., Zhang, J., Huang, W.L., 2012. Simultaneous

523	reduction of vanadium (V) and chromium (VI) with enhanced energy recovery
524	based on microbial fuel cell technology. J. Power Sources 204 (1), 34-39.
525	Zhang, B.G., Hao, L.T., Tian, C.X., Yuan, S.H., Feng, C.P., Ni, J.R., 2015. Borthwick,
526	A. G. L. Microbial reduction and precipitation of vanadium (V) in groundwater
527	by immobilized mixed anaerobic culture. Bioresour. Technol. 192, 410-417.
528	Zhang, B.G., Liu, Y., Tong, S., Zheng, M.S., Zhao, Y.X., Tian, C.X., Liu, H.Y., Feng,
529	C.P., 2014a. Enhancement of bacterial denitrification for nitrate removal in
530	groundwater with electrical stimulation from microbial fuel cells. J. Power
531	Sources 268, 423-429.
532	Zhang, B.G., Zhao, H.Z., Shi, C.H., Zhou, S.G., Ni, J.R., 2009a. Simultaneous
533	removal of sulfide and organics with vanadium (V) reduction in microbial fuel
534	cells. J. Chem. Technol. Biot. 84 (12), 1780-1786.
535	Zhang, B.G., Zhou, S.G., Zhao, H.Z., Shi, C.H., Kong, L.C., Sun, J.J., Yang, Y., Ni,
536	J.R., 2010. Factors affecting the performance of microbial fuel cells for sulfide
537	and vanadium (V) treatment. Bioproc. Biosyst. Eng. 33 (2), 187-194.
538	Zhang, B.G., Zou, S.Q., Cai, R.Q., Li, M., He, Z., 2018. Highly-efficient
539	photocatalytic disinfection of Escherichia coli under visible light using carbon
540	supported Vanadium Tetrasulfide nanocomposites. Appl. Catal. B: Environ. 224,
541	383-393.
542	Zhang, D., Guo, H.M., Xiu, W., Ni, P., Zheng, H., Wei, C., 2017a. In-situ
543	mobilization and transformation of iron oxides-adsorbed arsenate in natural
544	groundwater. J. Hazard. Mater. 321, 228-237.

545	Zhang, H.X., Zheng, S.L., Ding, J.W., Wang, O.M., Liu, F.H., 2017b. Spatial
546	variation in bacterial community in natural wetland-river-sea ecosystems. J.
547	Basic Microb. 57 (6), 536-546.
548	Zhang, J., Dong, H.L., Zhao, L.D., McCarrick, R., Agrawal, A., 2014b. Microbial
549	reduction and precipitation of vanadium by mesophilic and thermophilic
550	methanogens. Chem. Geol. 370 (4), 29-39.
551	Zhang, Y.H., Zhong, F.H., Xia, S.Q., Wang, X.J., Li, J.X., 2009b.
552	Autohydrogenotrophic denitrification of drinking water using a polyvinyl
553	chloride hollow fiber membrane biofilm reactor. J. Hazard. Mater. 170 (1),
554	203-209.
555	Zhao, H.P., Ontiveros-Valencia, A., Tang, Y., Kim, B.O., Ilhan, Z.E.,
556	Krajmalnik-Brown, R., Rittmann, B.E., 2013. Using a two-stage hydrogen-based
557	membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in
558	the presence of nitrate and sulfate. Environ. Sci. Technol. 47 (3), 1565-1572.
559	Zhao, K., Han, W.L., Tang, Z.C., Zhang, G.D., Lu, J.Y., Lu, G.X., Zhen, X.P., 2016.
560	Investigation of coating technology and catalytic performance over monolithic
561	V_2O_5 - WO_3 /TiO ₂ catalyst for selective catalytic reduction of NO_x with NH_3 .
562	Colloid Surface. A 503, 53-60.
563	Zou, S.Q., He, Z., 2018. Efficiently "pumping out" value-added resources from
564	wastewater by bioelectrochemical systems: a review from energy perspectives.
565	Water Res. 131, 62-73.

566	Figure	captions.
	.	

567	Fig. 1. Temporal variations in $V(V)$ and nitrate in hydrogen-based bioreactors. (a)
568	time histories of $V(V)$ and nitrate concentrations during three consecutive operating
569	cycles; (b) pseudo first-order kinetic plots for a typical operating cycle (7 d). Red
570	arrows indicate the replacement of synthetic groundwater. $C_{0}\left(\mu M\right)$ and $C_{t}\left(\mu M\right)$ are
571	the concentrations of $V(V)$ or nitrate at initial condition and at time t (d), respectively.
572	Fig. 2. Reaction products during the operation of BR-V-N. (a) variation in total V,
573	hydrogen, and nitrogen with time; (b) XPS spectra of V 2p for the generated
574	precipitates; (c) variation in nitrite and ammonium with time; (d) average
575	concentrations of residual VFAs.
576	Fig. 3. Parameter study of operating factors affecting the performance of BR-V-N. (a)
577	V(V) and (b) nitrate removal time histories for different initial nitrate concentrations;
578	(c) $V(V)$ and (d) nitrate bio-reduction time histories for different $V(V)$ loadings.
579	Fig. 4. Microbial community compositions and functional genes revealed by
580	sequencing of inoculated sludge and BR-V-N. (a) class-level abundance; (b)
581	functional bacterial genera; (c) relative abundance of functional genes and proteins; (d)
582	heatmap of representative functional genes based on bacterial genera.
583	Fig. 5. Proposed mechanisms of $V(V)$ bio-reduction and nitrate removal with
584	hydrogen as the sole electron donor under anaerobic conditions.

Fig. 1. Temporal variations in V(V) and nitrate in hydrogen-based bioreactors. (a)

Fig. 2. Reaction products during the operation of BR-V-N. (a) variation in total V,
hydrogen, and nitrogen with time; (b) XPS spectra of V 2p for the generated
precipitates; (c) variation in nitrite and ammonium with time; (d) average
concentrations of residual VFAs.

Fig. 3. Parameter study of operating factors affecting the performance of BR-V-N. (a)

V(V) and (b) nitrate removal time histories for different initial nitrate concentrations;

(c) V(V) and (d) nitrate bio-reduction time histories for different V(V) loadings.

607 Fig. 4. Microbial community compositions and functional genes revealed by

608 sequencing of inoculated sludge and BR-V-N. (a) class-level abundance; (b)

609 functional bacterial genera; (c) relative abundance of functional genes and proteins; (d)

- 610 heatmap of representative functional genes based on bacterial genera.
- 611

- **Fig. 5.** Proposed mechanisms of V(V) bio-reduction and nitrate removal with
- 614 hydrogen as the sole electron donor under anaerobic conditions.