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A Critical Review of “Travelling Fire” Scenarios for Performance-
Based Structural Engineering 

XU DAI1, STEPHEN WELCH1, and ASIF USMANI2 
1 BRE Centre for Fire Safety Engineering, the University of Edinburgh, United Kingdom 
2 Department of Building Services Engineering, Hong Kong Polytechnic University, Hong Kong 

ABSTRACT 

Many studies of the thermal and structural behaviour for large compartments in fire carried out over the past 

two decades show that fires in such compartments have a great deal of non-uniformity (e.g. Stern-Gottfried 

et al. [1]), unlike the homogeneous compartment temperature assumption in the current fire safety 

engineering practice. Furthermore, some large compartment fires may burn locally and tend to move across 

entire floor plates over a period of time. This kind of fire scenario is beginning to be idealized as travelling 
fires in the context of performance-based structural and fire safety engineering.  

This paper presents a literature review of the travelling fire research topic and its state of the art, including 

both the experimental and theoretical work for the past twenty years. It is found that the main obstacle of 

developing the travelling fire knowledge is the lack of understanding of the physical mechanisms behind this 

kind of fire scenario, which requires more reasonable large scale travelling fire experiments to be set up and 

carried out. The demonstration of the development of a new travelling fire framework is also presented in 

this paper, to show how current available experimental data hinder the analytical model development, and 

the urgent need that the new travelling fire experiments should be conducted.  

KEYWORDS: structural fire design, travelling fires, compartment fires, performance-based design. 

INTRODUCTION 

The “travelling fire” methodology originating at the University of Edinburgh in 2007, due to Rein et al. [2], 

postulates that fires may burn locally and move across the entire floor plate over a period of time in large 

compartments. It was proposed on the basis of observed fire dynamics from real fires and a few experimental 

programmes that have occurred over the past two decades, such as [3]–[6]. 

In real life, travelling fires have been observed in several structural failures especially since 2000: the World 

Trade Center Towers [7] in New York City in 2001, the Windsor Tower [8] in Madrid in 2005, and the 

Faculty of TU Delft Architecture building [9] in Netherlands in 2008. Looking closely at an example of an 

open-plan modern building, i.e. the Informatics Forum that opened at the University of Edinburgh in 2009, a 

statistical survey indicated that traditional fire safety design methods were applicable to only 8% of the total 

volume of the building (other areas being out-of-range by Eurocode limitations, e.g. opening factor (>0.2), 

compartment height (>4m), size of the compartment (>500m2) [10]). These facts underline the need for a 

better description of fire scenarios that recognise the radically different spatial layouts preferred in 

contemporary architecture. There is currently greatly increased interest in methodologies for representation 

of more realistic fire scenarios for the purposes of fire safety engineering design.  

In 2012, a review paper was published by Stern-Gottfried & Rein [11]. It summarized several fire tests 

conducted in the large compartments (e.g. [3]–[5]) as experimental evidence which clearly showed the 

temperature heterogeneity in such compartments. There have been three further large scale travelling fire 

tests performed from 2011 to 2015. In 2011, to investigate how the travelling fires impact the steel structural 

components especially for beam-to-column connections, a full-scale travelling fire test was conducted at the 

upper floor of a two-storey steel composite building in Veselí, in the Czech Republic [12]. In 2013 a series 

of experiments were conducted at the Building Research Establishment (BRE) in UK as part of the EPSRC 

funded research project ‘Real Fires for Safety Design of Tall Buildings’ [13]. The project intended to obtain 

a better understanding how a fire progresses in a large compartment and affects the temperature distribution 

spatially and temporally. In 2015, another experiment called the Tisova Fire Test [14] was conducted in the 

Czech Republic inside a 4-storey concrete frame building, in order to test the travelling fire methodology put 

forward by Stern-Gottfried & Rein [15].  
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Moreover, two main theoretical representations of travelling fire models can be found in the current literature, 

hereinafter referred to as: Clifton’s model [16]; and Rein’s model [11], [15]. Clifton developed a fire model, 

which divides the whole large compartment into several design areas, which are then subjected to time-

temperature curves individually and sequentially. In Rein’s model, Alpert’s correlation is adopted to calculate 

far field smoke temperature, and a uniform temperature ( ) is assumed for the near field. 

However, both models necessarily neglect some aspects of the fire dynamics. For instance, the accumulation 

of a hot smoke layer is ignored in both models. In Clifton’s model, all elements in one ‘firecell’ (one design 

area) share the same fire exposure history. In Rein’s model the uniform  assumption is very 

generic. In 2016, a new travelling fire framework was proposed by Dai et al. [17], [18]. It is based on a 

“mobile” version of Hasemi’s localized fire model, combined with a simple smoke layer calculation for the 

areas of the compartment away from the fire. This combined fire model enables the analysis to capture both 

spatial and temporal changes of the thermal field which is then automatically coupled to a thermomechanical 

analysis using the software framework OpenSees [19].  

This paper is divided into three sections: firstly, several  large-scale fire experiments are reviewed, especially 

the ones labelled as travelling fire tests; secondly, a literature review of the current analytical travelling fire 

models is summarized, including the recent travelling fire framework proposed by the authors (Dai et al. 

[17], [18]); thirdly, a demonstration of the newly developed travelling fire framework is also presented, to 

show how existing experimental data hinder the analytical model development highlighting the urgent need 

for new travelling fire scenario experiments. 

EXPERIMENTS CONDUCTED FOR CHARACTERISING TRAVELLING FIRES 

This section reviews the experiments that fires in which a ‘travelling’ nature in large compartments, with a 

particular emphasis on the ones labelled as travelling fire tests conducted for the past five years. 

Fire Tests of a ‘Travelling’ Nature Before 2010 

Although true dynamics of travelling fires has received “zero attention” in large scale structural fire tests [20] 

(as summarized by Bisby et al. in 2013), there are still some experiments where a ‘travelling’ nature of the 

fire is recorded in the literature.  

In 1993, to validate the ‘Time Equivalent’ formula given in Eurocode 1 for buildings with large 

compartments, a series of nine tests were carried out at BRE Cardington laboratory [3]. The dimensions of 

the test compartment were 22.8m long × 5.6m wide × 2.75m high (128m2 floor area) with uniform wood 

cribs as the fuel load, and the ventilation was at one end of the long compartment. The fuel was ignited at the 

opposite end to the ventilation (apart from Test 9, which was ignited simultaneously for comparison), and it 

was observed that the fire spread quickly to the ventilation side, consumed all the fuel near the vent region, 

and then the fire travelled back to the ignition region and burned out. Both the gas temperatures and steel 

temperatures of the protected and unprotected steel members were recorded for the entire duration. Cooke 

[21] took additional measurements including thermal radiation, gas analysis, air flow, and crib weight loss in 

the experiment. 

In 1995-1996, an experimental testing programme took place on an eight storey steel-framed structure, at 

BRE Cardington Large Building Test Facility (LBTF). This research programme contains four tests, in which 

the fourth one - Demonstration Furniture Test - was to investigate the impact of a more realistic fire scenario 

to the whole structure [22]. The test compartment was 18m wide and up to 10m deep (135m2 floor area), to 

represent an open plan office with modern day furnishings, computers and filing systems, which are 

equivalent to the fuel load density of 45.6kg of wood/m2. Both the ignition method and the ventilation 

conditions were designed to assist the fire growth, which generated non-uniform (migrating) fire scenarios 

during the test [23]. The gas temperatures, beam and column temperatures, and the connection temperatures 

were all measured. Moreover, the structural response was also recorded, including the strain along the 

columns, the deflections of the beams and floor slabs. All these test data can be found at the One Stop Shop 

web site, which is maintained by the University of Manchester [24].  

In 1999-2000, a series of eight large compartment fire tests were undertaken at BRE Cardington LBTF, to 

validate the zone models as part of the Natural Fire Safety Concept (NFSC) framework. These eight tests 

were full-scale post-flashover fires conducted in a large compartment with approximate dimensions 12m × 

12m × 3m high (144m2 floor area), with different opening situations, fire load compositions (wood cribs 

only, or 80% wood cribs + 20% plastic), and the compartment boundary linings [25]. Thermocouples were 



distributed throughout the compartment for recording gas temperatures, and the steel temperatures were 

measured for both the structural components with and without protections. Mass loss was also recorded 

through the tests by using load cells. The spatial and temporal change of the heat flux fields under the ceiling 

were produced by Welch et al. in Fig. 1 [6]. The maximum recorded temperature was over 1330°C. 

In 2005, a series of eight experiments were conducted by Thomas et al. [26] for investigating the fire 

behaviour in a deep enclosure with various openings in one end. The steel enclosure for the tests has 

dimensions of 8.0m long × 2.0m wide × 0.6m high (16m2 in area), with sixteen steel fuel trays containing 

97% ethanol (see Fig. 2(a)). Only the front end of the enclosure was ventilated with different opening sizes 

for the eight tests. Both gas temperatures and steel temperatures were recorded during the test (maximum 

thermocouple temperature was around 850°C) (see Fig. 2(b)), and a calorimeter hood was used for collecting 

the outgoing combustion products to estimate the heat release rate. A load cell was placed beneath each tray 

to record the mass loss of the fuel throughout the test.  

In three of the four sets of tests mentioned above: Kirby [3] & Cooke [21] in 1993, NFSC - BRE Cardington 

[6][25] in 1999-2000, and Thomas et al. [26] in 2005, all showed similar ventilation controlled fire dynamics 

in large compartments. In all three cases, the fire was ignited away from the ventilation area, rapidly spreading 

towards the area of abundant oxygen near the vent, exhausting the fuel near the vent, and then slowly burning 

back away from the vent area, consuming the majority of the available fuel.  

Although more fire tests with a ‘travelling’ nature can be found in the literature, such as the St. Lawrence 

Burns project reviewed by Gales [27], due to the page limit, the emphasis of this paper is about the state of 

the art of the travelling fires, hence only typical ‘spreading’ fire tests are reviewed as above. The following 

subsections present three large scale experiments labelled as travelling fire tests.  

Veselí Travelling Fire Test (Czech Republic, 2011) 

This test was part of an European-funded project called COMPFIRE [28], investigating the behaviour and 

robustness of the practical beam-to-column connections under travelling fire scenarios. The experimental 

building was a 10.4m × 13.4m in plane × 9m in height (139m2 floor area) two-storey steel composite 

structure, with a 2m × 5m unglazed opening for each floor to provide enough ventilation for a smooth 

development of the fire (see Fig. 3(a)). The height of each floor was 4m. The fuel load was wood cribs dried 

Fig. 1. Heat flux map under the compartment ceiling, reprinted from 

Welch et al. [6] with permission from Elsevier. 

Fig. 2(a). Schematic diagram of experimental test configuration; and Fig. 2(b). 

Gas time-temperature curves above the front and back rows, Thomas et al. [26].

(Fig. 2(a) is reorganised for saving space) 



to moisture content of 12%, with density 173.5 MJ/m2, distributed on the second floor, with a 3m × 8m 

rectangular shape as shown in Fig. 3(b), with the desired fire path parallel to the ventilation opening rather 

than perpendicular to it. In addition, no mechanical load was applied during the entire travelling fire test.  

Fig. 4 shows the fire development with a time step of every 5 min during the 40 min test duration. The fire 

was first ignited with a linear source on the left-hand side, then the flame spread gradually to the right, 

accompanied by a smoke layer generation beneath the ceiling for the beginning 15 minutes. Then more fuel 

was on fire with a maximum gas temperature recorded of  at 26 min. From 30-40 min, the process of 

the fire burn out can be clearly seen. Furthermore, neither flashover nor structural failure was observed during 

the test [28][29]. 

Importantly the temperatures of the gas atmosphere, steel beam at mid-span, connections, composite slabs, 

and columns were all measured. Unlike many similar tests, the structural response was also extensively 

recorded, including the vertical and horizontal displacement of the slab, the deflection of the beam mid-span, 

and the strain gauge on the columns for estimating the forces of the connections [30].  

BRE Travelling Fire Test (UK, 2013) 

In 2013 a series of experiments in support of the project ‘Real Fires for Safe Design of Tall Buildings’ 

[13][43] was conducted by the University of Edinburgh at the BRE in UK. The aim of these experiments is 

for obtaining a better understanding of how a fire progresses in a large compartment and affects the 

temperature distribution spatially and temporally.  

The experimental compartment was 5m × 18m in plane × 2m in height (90m2 in area), with 15 potential 

openings (1.5m high × 1m wide) along the front of the compartment. These openings were adjusted in the 

course of the tests to allow different ventilation progressions; one series of tests adopted sequentially ignited 

gas burners with different fire spread rate and ventilation combinations, and the other, wood cribs, these 

Fig. 4. Development of the fire during the test (photos provided by Horová K., CVUT in Prague). 

Fig. 3(a). Experimental building during Travelling fire test (photo provided by Horová K., 

CVUT in Prague); and Fig. 3(b). Fuel load scheme, in hatched, on the upper floor of the 

experimental building, Wald et al. [30]. 



being ignited at one end of the compartment to allow the fire to propagate parallel to the openings. Load cells 

were used to measure the crib mass loss.  

An example of the fire development in the experimental compartment can be seen in Fig. 5, which presents 

the temperature distributions of the plane parallel to the compartment openings in the wood crib fire test [13]. 

During this test, the ventilations were fully open to allow the maximum of smoke to evacuate. The fire was 

ignited at the right hand corner of the long compartment, and it spread very slowly compared to the 

propagation of the smoke under the ceiling (Fig. 5(a) to (d)). At about 1500 seconds (Fig. 5(e)), the 

temperature of the smoke exceeded , and a localized flashover was observed in the right half of the 

compartment (Fig. 5(f)). Then the flame continued to spread to the left hand side of the compartment, 

however no further flashover was observed due to the evacuation of the smoke and strong air entrainment 

from left side to the right side (Fig. 5(g)).  

Tisová Travelling Fire Test (Czech Republic, 2015) 

This is the latest travelling fire test reported in the literature [14], [31]. It was conducted by a team from SP, 

the University of Edinburgh, Imperial College London, Luleå Technical University, Technical University 

Ostrava, Majaczech, CSTB and CERIB, to investigate travelling fires and their impact on concrete and 

composite structures. The Tisová fire test structure was a four-storey concrete frame centred around a lift 

shaft, with the travelling fire test compartment located on the ground floor with a total area of 230m2 in plane 

× 4.4m in height (see Fig. 6). The large test compartment was well ventilated to fit in with the idealization 

made by Rein in his travelling fire model, which assumes that the travelling fire is entirely fuel controlled, 

i.e. ventilation is not limiting [15]. The fuel load was wood cribs uniformly distributed on the whole floor 

with a density of approximately 680 MJ/m2.  

Fig. 6(b) shows the fire ignition (FI) point, fire path, and the instrumented column C1 (30cm × 30cm) in the 

fire compartment. Once the fire was ignited, it spread very slowly and the measured temperature near the 

ceiling was below . This was apparently not as challenging a fire to the structure as intended. 

Therefore, the team decided to reduce the ventilation and add 10 litres of hydrocarbon accelerant to the wood 

Fig. 5. Temperature distributions along the plane of the openings, Torero et al. [13]. 

View Angle

FI 

Fig. 6(a). View inside of the experimental compartment (photo provided by Rush D., Tisova Fire Test-2015, 

report forthcoming); and Fig. 6(b). Fire path and instrumented column, reprinted from Rush et al. [31], with 

permission from DEStech Publications, Inc. (The view angle of Fig. 6(a) is shown in Fig. 6(b).) 



cribs at time 2.5 h. This produced a more severe fire, however when the fire proceeded to the north of the 

compartment, the spread rate slowed down again. It was concluded that the poor severity of the fire was 

mainly because of the high moisture content of the wood cribs, i.e. 18-22%, rather than the targeted 11% 

[31].  

In this travelling fire test, gas temperature, the concrete column temperature, and the slab deflections were 

measured. Of particular note, it was found that the smoke preheated the top of the column C1, which was 

located far away from the fire ignition point. When the fire had travelled to the vicinity of the column, it was 

found that the lower part of the compartment experienced higher temperatures than near the ceiling. It was 

also shown that the equivalent time method under the ISO-834 fire curve is not appropriate for predicting the 

temperature of the columns under the travelling fire scenarios, which implies that a new design method for 

columns in large compartment under fire may be needed in the future [31]. Analysis of the thermal and 

structural response of these tests is still ongoing at the University of Edinburgh and SP. 

Summary of the Experiments 

In general, these experimental reviews are focused on tests which have used ‘spreading’ fires, with a 

particular emphasis on the latest three large scale travelling fire experiments. The reviews aim at obtaining a 

better understanding of the travelling fire research frontier, and providing recommendations for future 

experimental research needs on this topic. Table 1 summaries the tests reviewed in the previous subsections. 

It is categorized with respect to the scale of the experiment, the fuel load type, the measurement of the thermal 

response, structural response (strain, deflections, etc.), and the mass loss of the fuel.  

 

Table 1. Summaries of the experiments reviewed for travelling fires. 

           
Dimensions  Fuel load Thermal 

response 
Structural 
response  

Mass loss 
measurement 

Kirby [3] & Cooke [21], 

1993 

22.8m × 5.6m × 

2.75m 
Wood cribs 

Gas and steel 

temperatures 
None Yes 

LBTF – Denmonstration 

Furniture [22] [23] [24], 

1995-1996 

135m2 Furniture 
Gas and steel 

temperatures 

Strain and 

deflections 
No 

NFSC - BRE Cardington 

 [6] [25], 1999-2000 
12m × 12m × 3m 

Wood cribs only,  

or 80% wood cribs 

+ 20% plastic 

Gas and steel 

temperatures 
None Yes 

Thomas et al. [26], 2005 8.m × 2.m × 0.6m 

Commercial grade 

methylated spirits 

(97% ethanol) 

Gas and steel 

temperatures 
None Yes 

St. Lawrence Burns project 

[27], 1958 

11.2m × 12.8m, 

and 13m × 9m 
Wood waste Gas temperatures None No 

Veselí Travelling Fire Test 

[12] [28] [29] [30], 2011  

10.4m × 13.4m × 

4m 
Wood cribs 

Gas, steel, and 

concrete 

temperatures 

Strain and 

deflections 
No  

BRE Travelling Fire Test 

[13] [43], 2013 
5m × 18m × 2m 

Gas burners, or 

wood cribs  
N/A N/A Yes 

Tisová Travelling Fire Test 

[14] [31], 2015 
230m2 × 4.4m 

Wood cribs + 

hydrocarbon 

accelerant 

Gas and concrete 

temperatures 
Deflections No 

 

It is obvious in Table 1 that most experimental floor areas were larger than 100m2, and wood cribs were 

commonly used as the fuel load. Gas and structural member temperatures were typically recorded for most 

cases. Of special interest is a finding that the test in which structural response was recorded did not record 

the mass loss rate of the fuel, and vice versa. It suggests that the researchers who conducted the measurement 

of the structural response (probably structural engineers), had less interest in the fire dynamics, as the mass 

loss of the fuel is a key factor to estimate heat release rate (HRR). Conversely, the researchers who conducted 

the measurement of the mass loss (probably fire engineers), took less interest in the fire impact induced 

structural response. This finding confirms a viewpoint expressed by Buchanan in 2008 [32], that “fire 

engineers and structural engineers need to talk to each other much more than they do now, and each group 

needs to learn as much as possible of the other discipline.”  This argument becomes more essential for the 

advancement of the topic of travelling fire research, as all the current analytical travelling fires models were 

Categories 
Experiments 



developed for structural fire design, and based on simple fire dynamic assumptions and experimental 

observations. The details of these analytical models are reviewed below.  

ANALYTICAL MODELS FOR TRAVELLING FIRES 

Whilst there is still a large amount of uncertainty regarding the fire dynamics within large compartments, 

there have been calls to bring the travelling fire concept into structural design. Commencing about twenty 

years ago different theoretical modelling approaches have been developed: Clifton’s model [16], Rein’s 

model [11], [15], and more recently a new travelling fire framework, based on a mobile version of Hasemi’s 

localized fire model combined with a simple smoke layer calculation, being developed at the University of 

Edinburgh [17], [18]. These are briefly reviewed below. 

Clifton’s Travelling Fire Model 

The first methodology of representing travelling fires in large compartments was put forward by Clifton in 

1996 [16]. This model divides the large compartment into several design areas (named as firecells), which 

are then subjected to modified parametric-fire curves individually and sequentially. In the model, ventilation 

to firecells, pre-heating of firecells, smoke logged, and cooling after burnout are all considered. A schematic 

of the model is shown in Fig. 7.   

Although this pioneering model introduced aspects which are not considered in the conventional uniform 

burning assumption, it was not widely used in the fire safety engineering. Wang et al. [33] suggested reasons 

for the poor uptake, including lack of documentation for the procedures to implement it, and insufficient 

experimental validation.  

Rein’s Travelling Fire Model 

In 2007, Rein et al. [2] put forward an alternative travelling fire methodology, based on a series of 

computational fluid dynamics (CFD) analyses and engineering simplifications. It proposed a near field (fire 

plume near the structure) and a far field (smoke) in the model, to replace the simultaneous burning assumption 

used in the conventional design approach (see Fig. 8). Fig. 9(a) shows a family of far field travelling fire 

curves that were generated by this method with different fire sizes, using a standard fire curve and a 

parametric fire curve (420 MJ/m2 fuel load density, 25% ventilation) for comparison. The family of fires is 

generated by covering the full range of all possible fire sizes. It is assumed in the model that each time the 

fire would burn a certain surface area, (m2), which is a percentage of the total floor area, (m2), ranging 

from 1% to 100% [34].  

This model was further developed by Stern-Gottfried & Rein, and eventually put forward as a design 

methodology in 2012 [15]. Alpert’s ceiling jet correlation [35] was adopted to calculate the far field smoke 

temperature (see Eq. (1)), and a uniform  was assumed for the near field:   

                                                                                                      (1) 

Fig. 8. Rein’s near field and far field temperature 

schematic [2]. 
Fig. 7. Conceptual illustration of Clifton’s 

model, adapted from [33]. 

20 min
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36m
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where  ( ) is the peak ceiling jet temperature,  ( ) is the ambient temperature,  (kW) is the heat 

release rate of the fire plume,  (m) is the height of the compartment ceiling,  (m) is the distance from the 

centre of the fire plume.  

The fire size within the model is governed by the available ventilation, which is usually difficult to estimate

[33], hence the user is required to parametrically assess the range of structural responses to various fire sizes. 

Another important feature is the local near field burning time for each fire size, which is decided by the fuel 

load density and the heat release rate per unit area, and for a typical office building, was suggested to be 19 

min by Stern-Gottfried & Rein [15]. Moreover, the fire path of the near field is not specified in the model, as 

there are too many uncertainties, such as the ignition point, ventilation conditions, and fuel load distributions, 

which combine to preclude determination of the actual fire path in a real building [33].  

More recently, Rackauskaite et al. [36] further improved Rein’s travelling fire model by taking into account 

more localised fire dynamics, specifically, reducing the range of possible fire sizes which should be 

implemented by realistically considering fire spread rates. Furthermore, the concept of flapping angle was 

introduced (see Fig. 9(b)), to account for the near field temperature range from  to , rather than 

the conservative  used in the previous version. This may lower the ceiling temperatures for some fire 

sizes but remains a crude approximation. 

Extended Travelling Fire Method (ETFM) Framework 

In the last couple of years, a new travelling fire framework has been developed and implemented by Dai et 

al. [17], [18]. It is based on a mobile version of Hasemi’s localized fire model [37], which quantifies the local 

effect of a fire on adjacent structural members, and is combined with the FIRM zone model [38] for the areas 

of the compartment away from the fire. This combined fire model enables the analysis to capture both spatial 

and temporal changes of the thermal field, thus addressing more fire dynamics than Clifton’s model and 

Rein’s model. Fire temperatures are variable for the near field, contrasting the uniform  

assumption in Rein’s model, while all elements in one firecell share the same fire exposure history in 

Clifton’s model. The ETFM framework also accounts for the accumulation of a hot smoke layer, variable 

fuel load distribution along the fire path, both of which are ignored in previous models. However, the current 

framework still employs a predetermined localized fire path (see Fig. 10(a) & (b)).  

Hasemi’s localized fire model [37], for quantifying the local effect of the travelling fire on adjacent structural 

members, is given by the equations below according to Eurocode 1 [39] when the fire plume is impinging 

the ceiling:   

                                         

                                                           (2)  
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Fig. 9(a). Time-temperature curves for the far-field using Rein’s model [2]; and Fig. 9(b). Flapping 

angle and reduced near field temperature, Rackauskaite et al. [36]. 
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where (W/m2) is the external heat flux,  is obtained through equation  

In implementing Hasemi’s localized fire model into the ETFM framework, three key parameters should be 

decided at each time step: fire origin, fire diameter,  (m), and heat release rate, (W) [17]. Fire origin is 

defined as the midpoint of the distance between the travelling fire burning front edge and back edge along 

the trajectory. The fire diameter,  (m), can be approximated as the diameter of a circular source with same 

burning area of the fuel. Heat release rate, (W), is calculated based on Eq. (3). More details of the 

implementation of Eq. (2) for the ETFM framework can be found in reference [17]. 

The assumption behind the localised fire treatment is of sufficient air being available, which is likely in many 

fires considering window glazing failure at -  [40]. Nevertheless, the model also has the 

capability to represent ventilation control, which is provided by the FIRM zone model. This framework also 

includes non-uniform burning rates of the travelling fire along the trajectory; changing fuel load density; and 

variable heat release rates. The speed of the travelling fire is decomposed into two variables: the constant fire 

spread rate, which determines the front edge location of the travelling fire; and the burn-out time, which 

determines the back edge location of the travelling fire. Moreover, a concept of regulatory minimum fuel 

depth (RMFD), uniformly distributed over the entire floor plate, is introduced in the model. It corresponds 

to a reference travelling fire spread rate and a certain level of fuel load density, based on experimental 

observations and design guides such as Eurocode 1 [39], respectively. 

The two most important parameters in this travelling fire framework are travelling fire speed (as mentioned 

above) and total heat release rate [17]. The heat release rate,  (W), is defined under the assumption that fire 

is at the steady state, given by: 

                                                                                                                   (3) 

where  (kW/m2) is the maximum heat release rate per unit area in fuel controlled conditions, which can 

be referred to Eurocode 1 [39] for different occupancies, and  (m2) is the burning area of the fuel. 

To reproduce pre-heating and post-heating effects, the combination of energy conservation and smoke 

generation is brought into the travelling fire framework in an elementary way, considering a varying 

distribution of fuel along the trajectory [17]. The depth of the smoke layer is assumed to be time dependent 

and uniform over the whole ceiling (see Fig. 10(b)). Smoke is considered to accumulate as more lumped fuel 

is consumed locally and the rate of air entrainment can be determined using a number of different models. 

For example, the Thomas model [41], which is an empirical equation to estimate the mass rate of production 

of hot gases, (kg/s), is given by:  

                                                                                                                              (4) 

where  (m) is the perimeter of the fire,  (m) is the height of the zone free of smoke.  
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The average temperature of the hot smoke layer,  ( ), is calculated by using FIRM zone model [38], which 

accounts for energy conservation, mass conservation, ventilations with vertical openings, and heat losses 

through compartment boundaries, etc.  

In addition, a flashover scenario is permitted in this framework, and the fire transitioning from a localised 

travelling fire to a whole compartment fire when a defined threshold is met, e.g. the temperature of the hot 

smoke layer reaches . 

A potential limitation of the ETFM framework is the applicability of Hasemi’s localized fire model, which 

is only strictly valid for fire diameters is less than 10m, and the rate of heat release less than 50 MW [39], 

though these are quite large fire sizes. Another limitation of the ETFM framework is from the simplicity of 

the representation of ventilation, as in reality this may play a very important role, e.g. changing the fire 

travelling trajectory, heat release rate, etc.      

Summary of the Analytical Models 

Table 2 summaries the above analytical models by categorizing with different model features, such as the 

heat release rate consideration, fire size determination, and fire path type, etc. Clifton’s model, as the earliest 

version of travelling fire analytical model, is actually a way of applying modified parametric fire curves for 

series of firecells with a time lag. The fire science knowledge it involved is mainly from the utilization of 

these fire curves, where the fuel load density, compartment boundary conditions, and ventilations are 

considered. Rein’s travelling fire model contains more fire dynamics, such as the considerations of heat 

release rate (HRR), mass conservation, and flapping angles, etc. ETFM framework can be regarded as an 

improvement of Rein’s model, as similar assumptions are made based on Rein’s work. For example, the 

determination of fire size, HRR, spread rate are the same in both models.  

Table 2. Summaries of the travelling fire analytical models. 

 

Generally, the development of these analytical models is based on simple theoretical assumptions and 

experimental observations. The role of experiments in the analytical development is providing sufficiently 

general data and characterising likely worst credible conditions, to facilitate researchers in developing and 

validating their models, although in reality large uncertainties will remain. However, it is worth noting that 

travelling fire models generally don’t consider the conditions in which a travelling fire may develop. They 

are implemented in the analysis by forcing the development of a fire moving across the floor area. Therefore, 

more experiments are needed to characterise these conditions in more generalised scenarios. 

           
Clifton’s Travelling Fire 

Model, [16] [33] 
Rein’s Travelling Fire Model, 

[2] [15] [36] ETFM Framework, [17], [18] 

Near field temperature 
Time-temperature curve for 

firecells 

800°C -1200°C, flapping angle Localised fire model 

Far field temperature 

(i.e. smoke) 
Alpert’s ceiling jet model 

Simple zone model  

(e.g. FIRM) 

Smoke accumulation No No Yes 

Fire path Firecell to neighboured ones Not defined Predefined trajectory 

Spread rate From observation [36] From observation [36] From observation [36] 

Non-uniform fuel  No No Yes 

Fire size Decided by fuel load density Decided by fuel & fire spread Decided by fuel & fire spread 

HRR consideration No Yes Yes 

Mass conservation No Yes Yes 

Energy conservation No No Yes 

Compartment 

boundary  
Yes No Yes 

Ventilation/fuel 

controlled 
Ventilation controlled Fuel controlled Fuel & ventilation controlled 

Categories 
Models 



CASE STUDY USING THE ETFM FRAMEWORK 

Clifton’s travelling fire model [16][23] and Rein’s travelling fire model [2][10][11][15][34][36][42] have 

been explored by researchers around the world on both thermal and structural response for the past two 

decades. This section shows the latest development of ETFM framework and its implementation. Further, it 

emphasizes the fundamental need of new travelling fire experiments to be carried out, for improving the 

understanding of the travelling fire behaviour and its relevant theoretical methodologies. 

Fig. 11(a) shows the plan view of an idealised structural layout for case study (630m2 floor area), which is 

generic in modern tall buildings with a core (162m2 area) in the middle. The clear floor height is 3.85m. The 

total vent widths of this large compartment are 28m. The soffit height and sill height are 3m and 1m 

respectively. The investigated beam size is UB 305 127 42 located at the top right of the floor plan. The 

ignition line of the travelling fire is also shown as in Fig. 11(a). The travelling fire path is predefined to be 

under the mid-span of the main beams, which would normally represent the worst case for the structural 

response (see Fig. 10(a)). A ‘base line scenario’ of the travelling fires is assumed with fuel load density 

( ) 570 MJ/m2, heat release rate per unit area ( ) 500 kW/m2, and fire spread rate ( ) 10 mm/s. 

Different fire scenarios would be generated with changing  or (1.6-15 mm/s [36], 100-780 MJ/m2 [39]) 

but keeping the other two values as constants from the ‘base line scenario’. 
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The newly developed travelling fire modules in SIFBuilder [18] are used to perform both the fire and heat 

transfer analysis. SIFBuilder is an OpenSees-based software framework [19], with features of facilitating fire 

model, heat transfer, and thermo-mechanical analysis for large structures in one software package. Heat 

transfer results of the investigated steel member using mobile Hasemi’s fire model, and the FIRM zone model 

are illustrated separately as below. Moreover, the evolutions of smoke temperature and smoke depth are also 

included. Fig. 11(b) and (c) are the two screenshots during the fire model analysis in SIFBuilder, showing 

two different fire locations at two specific time points. 

Three sides of the investigated beam are exposed to the thermal impact of the mobile Hasemi’s fire model 

/FIRM zone model, since a concrete slab is assumed to be at the top. Two dimensional heat transfer analysis 

is carried out for the cross-section at the mid-span of the beam, using 35W/m2 K as the convection coefficient 

for fire-exposed surfaces and 0.7 as the emissivity of the steel (two coefficients recommended in [39]). 

In Fig. 12(a), apart from the longer fire duration generated when the smaller fire spread rate  is used, the 

travelling fire scenarios with spread rates from 5 mm/s to 15 mm/s produce similar thermal impact in terms 

of the maximum steel temperatures. However, the two ‘slow’ fires with spread rates 1.6 mm/s and 2 mm/s 

produce relatively lower steel temperatures. The reason is because the fire HRR is calculated based on fire 

area (see Eq. (3)), and fire area is a resultant of fire spread rate and burning rate of the fuel. Hence, although 

‘slow’ fires have more time to heat up the steel member, they produce lower thermal impact due to smaller 

Fig. 11(a). Case study plan view; Fig. 11(b), Fig. 11(c) SIFBuilder visualization during heat 

transfer analysis at 38 min, 87min respectively at the ‘base line scenario’ of the travelling 

fires: = 570 MJ/m2,  = 500 kW/m2,  = 10 mm/s. 



fire areas and HRR generated. Fig. 12(b) illustrates that longer fire durations and higher thermal impact are 

generated if higher fuel load densities are used. 

Fig. 13(a) demonstrates that the travelling fire scenarios with higher fire spread rates (e.g. 10 mm/s, 15mm/s) 

generate higher smoke layer temperature, with quicker temperature increase rate. The reason is because the 

energy conservation equation, from the FIRM zone model for calculating the transient smoke layer 
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Fig. 12(a). Heat transfer results from mobile Hasemi’s fire model contribution, with various spread rates 

ranging from  = 1.6 mm/s to  = 15 mm/s; and Fig. 12(b). with various fuel load densities range from 

= 100 MJ/m2  to = 780 MJ/m2. 
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Fig. 13(a). Smoke temperature evolvement; and Fig. 13(b). Height of zone free of smoke, with 

various spread rates range from  = 1.6 mm/s to  = 15 mm/s. 

Fig. 14(a). Smoke temperature evolvement and Fig. 14(b). Height of zone free of smoke, with 

various fuel load densities range from = 100 MJ/m2 to = 780 MJ/m2. 
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temperature increase, is directly dependent on the HRR, which decides the amount of energy to be ‘pumped’ 

into the smoke layer at each time step. The same as discussed earlier, the HRR is calculated based on fire 

area, and fire area is a resultant of fire spread rate and burning rate of the fuel. Therefore, ‘fast’ fires produce 

higher thermal impact due to bigger fire areas and HRR generated. Fig. 13(b) illustrates that the smoke layer 

can become steady within 200 s for all the travelling fire scenarios. Fig. 14(a) shows that the travelling fire 

scenarios with higher fuel load densities generate higher smoke layer temperatures. Again, it is directly 

dependent on the HRR which decides the amount of energy to be ‘pumped’ into the smoke layer at each time 

step, thus depending on the spread rate and burning rate. Larger fuel load densities would generate slower 

fire burning edge, thus a larger fire area would be produced. Therefore, ‘dense’ fires produce higher thermal 

impact due to bigger fire areas and HRR generated. Fig. 14(b) shows the smoke depth evolution, which is 

nearly independent of fuel load densities in the initial spread phase of the fire. Fig. 15(a) and 15(b) are the 

steel temperatures via heat transfer analysis in SIFBuilder. 

Table 3 below presents the sensitivity of the results to selected design parameters relevant to performance-

based structural fire design. 

Table 3. Summaries of the travelling fire thermal impact due to , and . 

Although these results are based on a single assumed scenario, they do provide some insights into how the 

key variables such as travelling fire spread rate and fuel load densities might affect the structural thermal 

response. In the ETFM framework, these two variables are the essential inputs for the determination of HRR 

[17] and given the uncertainty in their values it is important to characterise the sensitivity of the structural 

response to their assumed values. Moreover, as discussed in the previous section (see Table 1), there is no 

           

Low fire spread 
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High fire spread 
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Low fuel load 
density 

 
High fuel load 

density 
 

Steel temperature from moving 

Hasemi’s model 
Slightly lower Slightly higher Lower Higher 

Thermal impact duration from 

moving Hasemi’s model 
Slightly longer Slightly shorter Shorter Longer 

Steel temperature from  

FIRM zone model 
Much lower Much higher Much lower Much higher 

Smoke layer temperature from 

FIRM zone model 
Much lower Much higher Much lower Much higher 

Time to form a steady smoke layer Slightly slower  Slightly quicker Not sensitive 

Smoke layer depth Slightly thinner Slightly thicker Not sensitive 
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Fig. 15(a). Heat transfer results from FIRM zone model contribution, with various spread rates 

ranging from  = 1.6 mm/s to  = 15 mm/s; and Fig. 15(b). with various fuel load densities range 

from = 100 MJ/m2 to = 780 MJ/m2.
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single experiment which possesses both HRR data and structural response data. Therefore, new travelling 

fire experiments are also required with both structural and fire key variables recorded to further develop and 

validate the theoretical framework. 

CONCLUSIONS 

This paper has examined experiments conducted for characterizing travelling fires, in conjunction with 

review of the current analytical travelling fire models, including the recent development of the ETFM 

framework by the authors. A case study of the ETFM framework is presented and used to explore the 

sensitivity of uncertainties in key input parameters (fire spread rate and fuel load density) on the predicted 

outputs. It is apparent that travelling fire research is still at an early phase of development, and the main 

limitation to progress is the lack of detailed measurements of required parameters in realistic large-scale tests. 

Design of appropriate tests can be effectively informed by modelling studies such as those reported here, and 

requires close collaboration between structural and fire engineers’ teams. Their value will be in providing 

better insights into fire behaviour in realistic travelling fire scenarios, which will ultimately provide a robust 

methodology for performance-based structural fire engineering. 
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