

Edinburgh Research Explorer

Constant-Size Structure-Preserving Signatures: Generic
Constructions and Simple Assumptions

Citation for published version:
Abe, M, Nishimaki, R, Chase, M, David, B, Kohlweiss, M & Ohkubo, M 2016, 'Constant-Size Structure-
Preserving Signatures: Generic Constructions and Simple Assumptions', Journal of Cryptology, vol. 29, no.
4, pp. 833-878. https://doi.org/10.1007/s00145-015-9211-7

Digital Object Identifier (DOI):
10.1007/s00145-015-9211-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Cryptology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Apr. 2024

https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1007/s00145-015-9211-7
https://www.research.ed.ac.uk/en/publications/69beab9d-33ab-44ca-9cd4-2b3dffb8bf2e

Constant-Size Structure-Preserving Signatures:
Generic Constructions and Simple Assumptions1

Masayuki Abe∗ Melissa Chase∗∗ Bernardo David∗∗∗ Markulf Kohlweiss†

Ryo Nishimaki∗ Miyako Ohkubo††

∗ NTT Secure Platform Laboratories, NTT Corporation, Japan
{abe.masayuki,nishimaki.ryo}@lab.ntt.co.jp

∗∗ Microsoft Research, USA
melissac@microsoft.com

∗∗∗ Aarhus University, Denmark
bernardo@cs.au.dk

† Microsoft Research, Cambridge, UK
markulf@microsoft.com

†† Security Architecture Laboratory, NSRI, NICT, Japan
m.ohkubo@nict.go.jp

Abstract

This paper presents efficient structure-preserving signature schemes based on simple assumptions
such as Decisional-Linear. We first give two general frameworks for constructing fully secure signature
schemes from weaker building blocks such as variations of one-time signatures and random-message
secure signatures. They can be seen as refinements of the Even-Goldreich-Micali framework, and pre-
serve many desirable properties of the underlying schemes such as constant signature size and structure
preservation. We then instantiate them based on simple (i.e., not q-type) assumptions over symmetric
and asymmetric bilinear groups. The resulting schemes are structure-preserving and yield constant-size
signatures consisting of 11 to 14 group elements, which compares favorably to existing schemes whose
security relies on q-type assumptions.

Keywords: Structure-preserving signatures, Tagged one-time signatures, Partially one-time signatures,
Extended random message attacks

1 Full version of [2] incorporating more recent construction from [3].

i

Contents

1 Introduction 1
1.1 Our contribution . 1
1.2 Related Works . 2

2 Preliminaries 3
2.1 Notation . 3
2.2 Bilinear groups . 3
2.3 Assumptions . 3

3 Definitions 4
3.1 Common setup . 4
3.2 Signature schemes . 5
3.3 Partial one-time and tagged one-time signatures . 6
3.4 Structure-preserving signatures . 7

4 Generic Constructions 7
4.1 SIG1: Combining tagged one-time and RMA-secure signatures 7
4.2 SIG2: Combining partial one-time and XRMA-secure signatures 9

5 Instantiating SIG1 9
5.1 Setup for Type-I groups . 10
5.2 Tagged one-time signature scheme . 10
5.3 RMA-secure signature scheme . 13
5.4 Security and efficiency of resulting SIG1 . 19

6 Instantiating SIG2 20
6.1 Setup for Type-III groups . 20
6.2 Partial one-time signatures for unilateral messages . 21
6.3 Partial one-time signatures for bilateral messages . 23
6.4 XRMA-secure signature scheme . 24
6.5 Security and efficiency of resulting SIG2 . 28

7 Applications 30

8 Conclusions and Open Questions 31

A Waters’ Dual System Signature Scheme 34

ii

1 Introduction
A structure-preserving signature (SPS) scheme [4] is a digital signature scheme with two structural prop-
erties: (i) the verification keys, messages, and signatures are all elements of a bilinear group; and (ii) the
verification algorithm checks a conjunction of pairing product equations over the key, the message and the
signature. This makes them compatible with the efficient non-interactive proof system for pairing-product
equations by Groth and Sahai (GS) [37]. Structure-preserving cryptographic primitives promise to combine
the advantages of optimized number theoretic non-blackbox constructions with the modularity and insight
of protocols that use only generic cryptographic building blocks.

Indeed the instantiation of known generic constructions with an SPS scheme and the GS proof sys-
tem has led to many new and more efficient schemes: Groth [36] showed how to construct an efficient
simulation-sound zero-knowledge proof system (ss-NIZK) building on generic constructions of [24, 47, 42].
Abe et al. [4, 8] show how to obtain efficient round-optimal blind signatures by instantiating a framework
by Fischlin [27]. SPS are also important building blocks for a wide range of cryptographic functionalities
such as anonymous proxy signatures [29], delegatable anonymous credentials [10], transferable e-cash [30]
and compact verifiable shuffles [21]. Most recently, [38] show how to construct a structure preserving tree-
based signature scheme with a tight security reduction following the approach of [33, 25]. This signature
scheme is then used to build a ss-NIZK which in turn is used with the Naor-Yung-Sahai [43, 46] paradigm
to build the first CCA secure public-key encryption scheme with a tight security reduction. Examples for
other schemes that benefit from efficient SPS are [11, 15, 12, 40, 34, 9, 45, 31, 28, 35].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by these construc-
tions, any structure-preserving signature scheme can be used as a drop-in replacement. Unfortunately, all
known efficient instantiations of SPS [8, 4, 5] are based on so-called q-type or interactive assumptions.
An open question since Groth’s seminal work [36] (only partially answered by [20]) is to construct a SPS
scheme that is both efficient – in particular constant-size in the number of signed group elements – and that
is based on assumptions that are as weak as those required by the GS proof system itself.

1.1 Our contribution
We begin by presenting two new generic constructions of signature schemes that are secure against cho-
sen message attacks (CMA) from variations of one-time signatures and signatures secure against random
message attacks (RMA). Both constructions inherit the structure-preserving and constant-size properties
from the underlying components. We then instantiate the building blocks with the desired properties over
bilinear groups. They yield constant-size structure-preserving signature schemes whose signatures consist
of only 11 to 14 group elements and whose security can be proven based on simple assumptions such as
Decisional-Linear (DLIN) for symmetric bilinear groups and analogues of DDH and DLIN for asymmetric
bilinear groups. These are the first constant-size structure-preserving signature schemes that eliminate the
use of interactive or q-type assumptions while achieving reasonable efficiency. We give more details on our
generic constructions and their instantiations:

• The first generic construction (SIG1, Section 4.1) combines a new variation of one-time signatures
which we call tagged one-time signatures (TOS) and signatures secure against random message at-
tacks (RMA). A TOS is a signature scheme that attaches a fresh tag to each signature. It is unforgeable
with respect to tags used only once. In our construction, a message is signed with our TOS using
a fresh random tag, and then the tag is signed with the second signature scheme, denoted by rSIG.
Since rSIG only signs random tags, RMA-security is sufficient.
In Section 5, we construct structure-preserving TOS and rSIG based on DLIN over symmetric (Type-
I) bilinear groups. Our TOS yields constant-size signatures and optimally small tags that consists
of only one group element. The resulting structure-preserving signature scheme produces signatures
consisting of 14 group elements, and relies solely on the DLIN assumption.1

• The second generic construction (SIG2, Section 4.2) combines partial one-time signatures and sig-
natures secure against extended random message attacks (XRMA). The latter is a new notion that we
explain below. A partial one-time signature scheme, denoted by POS, is a one-time signature scheme

1The optimal TOS proposed in this paper was first presented in [3]. We included it here as it saves one group element in a tag
compared to the original construction in [2], and reduces the resulting signature size from 17 in [2] to 14.

1

in which only a part of the key is renewed for every signing operation. The notion was first introduced
by Bellare and Shoup [13] under the name of two-tier signatures. In our construction, a message is
signed with POS and then the one-time portion of the public-key is certified by the second signature
scheme, denoted by xSIG. The difference between a TOS and POS is that a one-time public-key is
associated with a one-time secret-key. Since the one-time secret-key is needed for signing, it must
be known to the reduction in the security proof. XRMA-security guarantees that xSIG is unforgeable
even if the adversary is given auxiliary information associated with the randomly chosen messages
(e.g. the random coins used for selecting the message). The auxiliary information allows the reduc-
tion algorithm to security of the second scheme to use the one-time secret key to generate the POS
component correctly.
In Section 6, we construct structure-preserving POS and xSIG signature schemes based on assump-
tions that are analogues of DDH and DLIN in Type-III bilinear groups. The resulting SIG2 is
structure-preserving and produces signatures consisting of 11 or 14 group elements depending on
whether messages belong to either or both source groups.

The role of TOS and POS is to compress a message into a constant number of random group elements.
This observation is interesting in light of [6] that implies the impossibility of constructing collision resistant
and shrinking structure-preserving hash functions, which could immediately yield constant-size signatures.
Our (extended) RMA-secure signature schemes are structure-preserving variants of Waters’ dual-signature
scheme [51]. In general, the difficulty of constructing CMA-secure SPS arises from the fact that the ex-
ponents of the group elements chosen by the adversary as a message are not known to the reduction in the
security proof. On the other hand, for RMA security, it is the challenger that chooses the message and there-
fore the exponents can be known in reductions. This is the crucial advantage for constructing (extended)
RMA-secure structure-preserving signature schemes based on Waters’ dual-signature scheme.

As our SPSs can be drop-in replacements for existing SPS, we only briefly introduce recent applications
in Section 7. They include group signatures, tightly-secure structure-preserving signatures and public-key
encryption, and efficient adaptive oblivious transfer.

1.2 Related Works
On Generic Constructions: Even, Goldreich and Micali [26] proposed a generic framework (the EGM
framework) that combines a one-time signature scheme and a signature scheme that is secure against non-
adaptive chosen message attacks (NACMA) to construct a signature scheme that is secure against adaptive
chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework. There are two
reasons why the original framework falls short for our purpose. The first is that relaxing to NACMA
does not seem to help much in constructing efficient structure-preserving signatures since the messages are
still under the control of the adversary and the exponents of the messages are not known to the reduction
algorithm in the security proof. As mentioned above, resorting to (extended) RMA is a great help in this
regard. In [26], they also showed that CMA-secure signatures exist iff RMA-secure signatures exist. The
proof, however, does not follow their framework and their impractical construction is mainly a feasibility
result. In fact, we argue that RMA-security alone is not sufficient for the original EGM framework. As
mentioned above, the necessity of XRMA security arises in the reduction that uses RMA-security to argue
security of the ordinary signature scheme, as the reduction not only needs to know the random one-time
public-keys, but also their corresponding one-time secret keys in order to generate the one-time signature
components of the signatures. The auxiliary information in the XRMA definition facilitates access to these
secret keys. Similarly, tagged one-time signatures avoid this problem as tags do not have associated secret
values. The second reason that the EGM approach is not quite suited to our task is that the EGM framework
produces signatures that are linear in the size of one-time public-keys of the one-time signature scheme, and
known structure-preserving one-time signature schemes have one-time public-keys that scale linearly with
the number of group elements to be signed. Here, tagged or partial one-time signature schemes come in
handy as they have one-time public-keys separated from long-term public-keys. Thus, to obtain constant-
size signatures, we only require the one-time keys to be constant-size while allowing the long-term part to
scale in the size of the message.

2

On Efficient Instantiations: All previous constructions of structure-preserving signature schemes are either
inefficient, or use strong assumptions, or do not yield constant-size signatures. In particular, there are few
schemes that base on simple assumptions. Hofheinz and Jager [38] constructed an SPS scheme by follow-
ing the EGM framework. The resulting scheme allows a tight security reduction to DLIN but the size of
signatures depends logarithmically on the number of signing operations as their NACMA-secure scheme is
tree-based (like the Goldwasser-Micali-Rivest signature scheme [33]). Chase and Kohlweiss [20] and Ca-
menisch, Dubovitskaya, and Haralambiev [18] constructed SPS schemes with security based on DLIN that
improve the performance of Groth’s scheme [36] by several orders of magnitude. The size of the resulting
signatures, however, is still linear in the number of signed group elements, and an order of magnitude larger
than in our constructions. Finally, Camenisch, Dubovitskaya, and Haralambiev constructed a constant-size
SPS scheme based on simple assumptions over composite-order groups [17].

2 Preliminaries

2.1 Notation
By X := Y , we denote that object Y is referred to as X . For set X , notation a ← X denotes a uniform
sampling from X . Multiple independent samples from the same set X are denoted by a1, a2, a3, . . .← X .
By Y ← A(X), we denote the process where algorithm A is executed with X as input and its output is
labeled as Y . When A is an oracle algorithm that interacts with oracle O, it is denoted as Y ← AO(X).
By Pr[X |A1, A2, ..., Ak] we denote the probability that event X happens after executing the sequence of
algorithmsA1, . . . , Ak. The probability is taken over all coin flips observed inA1, . . . , Ak unless otherwise
noted. We say that a function ε is negligible in security parameter λ if ε < λ−c holds for all constant c > 0
and all sufficiently large λ. We refer to probabilistic polynomial time algorithms as p.p.t. algorithms. Unless
stated otherwise, we assume that all algorithms are potentially probabilistic.

2.2 Bilinear groups
Let G be a bilinear group generator that takes security parameter 1λ and outputs a description of bilinear
groups Λ := (p,G1,G2,GT , e), where G1, G2 and GT are groups of prime order p, and e is an efficient
and non-degenerate bilinear map G1 × G2 → GT . In this paper, generators for G1 and G2 are implicit in
Λ, and default random generators G and Ĝ are chosen explicitly and independently. Groups G1 and G2

are called the source groups and GT is called the target group. We use multiplicative notation for G1, G2

and GT . By G∗1, we denote G1 \ {1}, which is the set of all elements in G1 except the identity. The same
applies to G2 and GT as well. Following the terminology in [32] we say that Λ is Type-III when there is no
efficient mapping between G1 and G2 in either direction.

In the Type-III setting, we denote elements in G2 by putting a tilde on a variable like X̃ for visual aid.
By using the same letter for elements in G2 and G1 with a hat on the G2 element, e.g., X and X̂ , we denote
a pair of elements in relation logGX = logĜ X̂ . Should their relation be explicitly stated, we writeX ∼ X̂ .
Note that default random generators G and Ĝ are independent each other but notational consistency retains.

We count the number of group elements to measure the size of cryptographic objects such as keys,
messages, and signatures. For Type-III groups, we denote the size by (x, y) when it consists of x and y
elements from G1 and G2, respectively. We refer to the setting as Type-I when G1 = G2 (i.e., there are
efficient mappings in both directions). This is also called the symmetric setting. In this case, we define
Λ := (p,G,GT , e). When we need to be specific, the group description yielded by G will be written as
Λasym or Λsym.

2.3 Assumptions
Let G be a generator of bilinear groups. All hardness assumptions we deal with are defined relative to G. We
first define the computational and decisional Diffie-Hellman assumptions (CDH1, DDH1) and decisional
linear assumption (DLIN1) for Type-III bilinear groups. The corresponding more standard assumptions,
CDH, DDH, and DLIN, in Type-I groups are obtained by setting G1 = G2 and G = Ĝ in the respective
definitions.

3

Definition 1 (Computation co-Diffie-Hellman Assumption: CDH1).
Given Λ← G(1λ), G← G∗1, Ĝ← G∗2, Gx, Gy , Ĝx, and Ĝy for x, y ← Zp, any p.p.t. algorithm A outputs
Gxy with negligible probability Advco-cdh

G,A (λ) in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in G1: DDH1).
Given Λ ← G(1λ), G ← G∗1, and (Gx, Gy, Zb) where Z1 = Gxy and Z0 = Gz for random x, y, z ← Zp
and random bit b, any p.p.t. algorithm A decides whether b = 1 or 0 with negligible advantage Advddh1

G,A (λ)
in λ.

Definition 3 (Decisional Linear Assumption in G1: DLIN1).
Given Λ← G(1λ), (G1, G2, G3)← (G∗1)3 and (Gx1 , G

y
2, Zb) where Z1 = Gx+y3 and Z0 = Gz3 for random

x, y, z ← Zp and random bit b, any p.p.t. algorithmA decides whether b = 1 or 0 with negligible advantage
Advdlin1

G,A (λ) in λ.

For DDH1 and DLIN1, we define an analogous assumption in G2 (DDH2) by swapping G1 and G2

in the respective definitions. In Type-III bilinear groups, it is assumed that both DDH1 and DDH2 hold
simultaneously. The assumption is called the symmetric external Diffie-Hellman assumption (SXDH), and
we define advantage Advsxdh

G,C by Advsxdh
G,C (λ) := Advddh1

G,A (λ) + Advddh2
G,B (λ). We extend DLIN in a similar

manner:

Definition 4 (External Decision Linear Assumption in G1: XDLIN1).
Given Λ ← G(1λ), (G1, G2, G3) ← (G∗1)3 and (Gx1 , G

y
2, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2, Zb) where (G1, G2, G3) ∼

(Ĝ1, Ĝ2, Ĝ3), Z1 = Gx+y3 , and Z0 = Gz3 for random x, y, z ← Zp and random bit b, any p.p.t. algorithm
A decides whether b = 1 or 0 with negligible advantage Advxdlin1G,A (λ) in λ.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilinear group model [50,
14] where one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 , in XDLIN1 from G1, G2, G3, G

x
1 , G

y
2

in DLIN1. We define the XDLIN2 assumption analogously by giving Ĝx+y3 or Ĝz3 as Zb, to A instead.
Then we define the simultaneous external DLIN assumption, SXDLIN, that assumes that both XDLIN1

and XDLIN2 hold at the same time. By Advxdlin2G,A (AdvsxdlinG,A , resp.), we denote the advantage function for
XDLIN2 (and SXDLIN, resp.).

Definition 5 (Double Pairing Assumption in G1 [4]: DBP1).
Given Λ ← G(1λ) and (Gz, Gr) ← (G∗1)2, any p.p.t. algorithm A outputs (Z,R) ∈ (G∗2)2 that satisfies
1 = e(Gz, Z) e(Gr, R) with negligible probability Advdbp1G,A (λ) in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by swapping G1 and G2. It
is known that DBP1 (DBP2, resp.) is implied by DDH1 (DDH2, resp.) and the reduction is tight [8]. Note
that the double pairing assumption does not hold in Type-I groups since Z = Gr, R = G−1z is a trivial
solution. Thus in Type-I groups we will instead use the following extension:

Definition 6 (Simultaneous Double Pairing Assumption [19]: SDP).
Given Λ← G(1λ) and (Gz, Gr, Hz, Hs)← (G∗)4, any p.p.t. algorithm A outputs (Z,R, S) ∈ (G∗)3 that
satisfies 1 = e(Gz, Z) e(Gr, R) ∧ 1 = e(Hz, Z) e(Hs, S) with negligible probability Advsdp

G,A(λ) in λ.

As shown in [19], for the Type-I setting the simultaneous double pairing assumption holds relative to G
if the decisional linear assumption holds for G.

3 Definitions

3.1 Common setup
All building blocks make use of a common setup algorithm Setup that takes the security parameter 1λ and
outputs a global parameter gk that is given to all other algorithms. Usually gk consists of a description Λ

4

of a bilinear group setup and a default generator for each group. In this paper, we include several additional
generators in gk for technical reasons. Note that when the resulting signature scheme is used in multi-user
applications different additional generators need to be assigned to individual users or one needs to fall back
on the common reference string model, whereas Λ and the default generators can be shared. Thus we count
the size of gk when we assess the efficiency of concrete instantiations. For ease of notation, we make gk
implicit except w.r.t. key generation algorithms.

3.2 Signature schemes
We use the following syntax for signature schemes suitable for the multi-user and multi-algorithm setting.
We follow standard syntax with the following modifications: the key generation function takes as input
global parameter gk generated by Setup (instead of security parameter 1λ), and the message spaceM is
determined solely by gk (instead of being determined by the public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a triple of polynomial-time algorithms (Key,
Sign,Vrf):

• SIG.Key(gk) generates a public-key vk and a secret-key sk.

• SIG.Sign(sk,msg) takes sk and message msg and outputs a signature σ.

• SIG.Vrf(vk,msg , σ) outputs 1 for acceptance or 0 for rejection.

Correctness requires that 1 = SIG.Vrf(vk,msg , σ) holds for any gk generated by Setup, any keys
generated as (vk, sk)← SIG.Key(gk), any message msg ∈M, and any signature σ ← SIG.Sign(sk,msg).

Definition 8 (Unforgeability against Adaptive Chosen-Message Attacks). A signature scheme is unforge-
able against adaptive chosen message attacks (UF-CMA) if for any probabilistic polynomial-time oracle
algorithms A the following advantage function Advuf-cma

SIG,A is bound by a negligible function in λ.

Advuf-cma
SIG,A (λ) = Pr

 msg† 6∈ Qm ∧
1 = SIG.Vrf(vk, σ†,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),
(vk, sk)← SIG.Key(gk),
(σ†,msg†)← AOs(vk)

Os is a signing oracle that, on receiving message msgj , performs σj ← SIG.Sign(sk,msgj), returns σj to
A, and records msgj to Qm, which is an initially empty list.

Definition 9 (Unforgeability against Non-Adaptive Chosen-Message Attacks). A signature scheme is un-
forgeable against non-adaptive chosen message attacks (UF-NACMA) if for any probabilistic polynomial-
time algorithms A and any polynomial n in λ, the following advantage function Advuf-nacma

SIG,A (λ) is bound
by a negligible function in λ.

Advuf-nacma
SIG,A (λ, n) := Pr

 ∀j ∈ [1, n], msg† 6= msgj ∧
1 = SIG.Vrf(vk, σ†,msg†)

∣∣∣∣∣∣∣∣∣∣
gk ← Setup(1λ),
(msg1, . . . ,msgn)← A(gk),
(vk, sk)← SIG.Key(gk),
∀j ∈ [1, n], σj ← SIG.Sign(sk,msgj),
(σ†,msg†)← A(vk, σ1, . . . , σn)

It is implicit that A in the first run hands over an internal state to that in the second run.

Definition 10 (Unforgeability against Random Message Attacks (UF-RMA)[26]). A signature scheme
is unforgeable against random message attacks (UF-RMA) if for any probabilistic polynomial-time algo-
rithmsA and any positive integer n bound by a polynomial in λ, the following advantage function Advuf-rma

SIG,A
is negligible in λ.

Advuf-rma
SIG,A (λ) := Pr

 ∀j ∈ [1, n], msg† 6= msgj ∧
1 = SIG.Vrf(vk, σ†,msg†)

∣∣∣∣∣∣∣∣∣∣
gk ← Setup(1λ),
(vk, sk)← SIG.Key(gk),
(msg1, . . . ,msgn)←Mn,
∀j ∈ [1, n], σj ← SIG.Sign(sk,msgj),
(σ†,msg†)← A(vk, σ1,msg1, . . . , σn,msgn)

5

We consider a variation of random message attacks where the adversary is given, for example, the ran-
dom coin used to sample the random message. Our formal definition covers more general idea of auxiliary
information about the message generator as follows. Let MSGGen be a message generation algorithm that
takes gk (and random coins as well) as input and outputs msg ∈M. Furthermore, MSGGen outputs auxil-
iary information ω, which may give some hint about the random coins used for selecting msg . The extended
random message attack is defined relative to message generator MSGGen as follows.

The above syntax and security notions can be applied to one-time signature schemes by restricting the
oracle access only once or parameter n to 1.

Definition 11 (Unforgeability against Extended Random Message Attacks (UF-XRMA)). A signature
scheme is unforgeable against extended random message attacks (UF-XRMA) with respect to message
sampler MSGGen if for any probabilistic polynomial-time algorithms A and any positive integer n bound
by a polynomial in λ, the following advantage function Advuf-xrma

SIG,A is bound by a negligible function in λ.

Advuf-xrma
SIG,A (λ) := Pr

∀j ∈ [1, n], msg† 6= msgj ∧
1 = SIG.Vrf(vk, σ†,msg†)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk ← Setup(1λ),
(vk, sk)← SIG.Key(gk),
∀j ∈ [1, n],

(msgj , ωj)← MSGGen(gk),
σj ← SIG.Sign(sk,msgj),

(σ†,msg†)← A(vk, σ1,msg1, ω1,
. . . , σn,msgn, ωn)

For the above security notions,UF-CMA⇒ UF-XRMA⇒ UF-RMA holds. More precisely, for any

signature scheme SIG, for any A′ there exists A such that Advuf-cma
SIG,A (λ)≥Advuf-xrma

SIG,A′ (λ), and for any A′′

there exists A′ such that Advuf-xrma
SIG,A′ (λ)≥Advuf-rma

SIG,A′′(λ).

3.3 Partial one-time and tagged one-time signatures

Partial one-time signatures, also known as two-tier signatures [13], are a variation of one-time signatures
where only part of the public-key and secret-key must be updated for every signing, while the remaining
part can be persistent.

Definition 12 (Partial One-Time Signature Scheme [13]). A partial one-time signatures scheme POS is
a set of polynomial-time algorithms POS.{Key,Update,Sign,Vrf}.

• POS.Key(gk) generates a long-term public-key pk and secret-key sk , and sets the associated message
space to beMo as defined by gk. (Recall that we require thatMo be completely defined by gk.)

• POS.Update(gk) takes gk as input, and outputs a one-time key pair (opk , osk). We denote the space
for opk by Kopk .

• POS.Sign(sk ,msg , osk) outputs a signature σ on message msg based on sk and osk .

• POS.Vrf(pk , opk ,msg , σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = POS.Vrf(pk , opk ,msg , σ) holds except for negligible probability for any
gk, pk , opk , σ, and msg ∈ Mo, such that gk ← Setup(1λ), (pk , sk) ← POS.Key(gk), (opk , osk) ←
POS.Update(gk), σ ← POS.Sign(sk ,msg , osk).

A tagged one-time signature scheme is a signature scheme whose signing function in addition to the
long-term secret key takes a tag as input. A tag is one-time, i.e., it must be different for every signing.

Definition 13 (Tagged One-Time Signature Scheme). A tagged one-time signature scheme TOS is a set
of polynomial-time algorithms TOS.{Key,Tag,Sign,Vrf}.

• TOS.Key(gk) generates a long-term public-key pk and secret-key sk , and sets the associated message
space to beMt as defined by gk.

6

• TOS.Tag(gk) takes gk as input and outputs tag . By T , we denote the space for tag .

• TOS.Sign(sk ,msg , tag) outputs signature σ for message msg based on sk and tag .

• TOS.Vrf(pk , tag ,msg , σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk , tag ,msg , σ) holds except for negligible probability for
any gk, pk , tag , σ, and msg ∈ Mt, such that gk ← Setup(1λ), (pk , sk) ← TOS.Key(gk), tag ←
TOS.Tag(gk), σ ← TOS.Sign(sk ,msg , tag).

A TOS scheme is a POS scheme for which tag = osk = opk . We can thus give a security notion for
POS schemes that also applies to TOS schemes by reading Update = Tag and tag = osk = opk .

Definition 14 (Unforgeability against One-Time Adaptive Chosen-Message Attacks). A partial one-time
signature scheme is unforgeable against one-time adaptive chosen message attacks (OT-CMA) if for any
probabilistic polynomial-time oracle algorithmsA the following advantage function Advot-cma

POS,A is negligible
in λ.

Advot-cma
POS,A(λ) := Pr

 ∃(opk ,msg , σ) ∈ Qm s.t.
opk† = opk ∧ msg† 6= msg ∧
1 = POS.Vrf(pk , opk†, σ†,msg†)

∣∣∣∣∣∣
gk ← Setup(1λ),
(pk , sk)← POS.Key(gk),

(opk†, σ†,msg†)← AOt,Os(pk)

Qm is initially an empty list. Ot is the one-time key generation oracle that on receiving a request invokes
a fresh session j, performs (opk j , osk j) ← POS.Update(gk), and returns opk j . Os is the signing oracle
that, on receiving a message msgj for session j, performs σj ← POS.Sign(sk ,msgj , osk j), returns σj to
A, and records (opk j ,msgj , σj) to the listQm. Os works only once for each session. Strong unforgeability
is defined by replacing condition msg† 6= msg with (msg†, σ†) 6= (msg , σ).

We define a non-adaptive variant (OT-NACMA) of the above notion by integratingOt intoOs so that opk j
and σj are returned toA at the same time. Namely,Amust submit msgj before seeing opk j . If a scheme is
secure in the sense of OT-CMA, the scheme is also secure in the sense of OT-NACMA. By Advot-nacma

POS,A (λ)
we denote the advantage of A in this non-adaptive case. For TOS, we use the same notation, OT-CMA
and OT-NACMA, and define advantage functions Advot-cma

TOS,A and Advot-nacma
TOS,A accordingly. We will also

consider strong unforgeability, for which we use labels sot-cma and sot-nacma. Recall that if a scheme is
strongly unforgeable, it is unforgeable as well.

We define a condition that is relevant for coupling random message secure signature schemes with
partial one-time and tagged one-time signature schemes in later sections.

Definition 15 (Tag/One-time Public-Key Uniformity). A TOS is called uniform-tag if TOS.Tag outputs
tag that uniformly distributes over tag space T . Similarly, a POS is called uniform-key if POS.Update
outputs opk that distributes uniformly over key space Kopk .

3.4 Structure-preserving signatures
A signature scheme is structure-preserving over a bilinear group Λ, if public-keys, signatures, and messages
are all source group elements of Λ, and the verification only evaluates pairing product equations. Similarly,
POS and TOS schemes are structure-preserving if their public-keys, signatures, messages, and tags or
one-time public-keys consist of source group elements and the verification only evaluates pairing product
equations.

4 Generic Constructions

4.1 SIG1: Combining tagged one-time and RMA-secure signatures
Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time signature scheme
with tag space T such that Mr = T and both schemes use the same Setup. We construct a signature
scheme SIG1 from rSIG and TOS. Let gk be the global parameter generated by Setup(1λ). It is assumed
that a secret-key of rSIG includes gk.

[Generic Construction 1: SIG1]

7

SIG1.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk). Output vk := (pk t, vkr)
and sk := (sk t, skr).

SIG1.Sign(sk,msg): Parse sk into (sk t, skr) and take gk from skr. Run tag ← TOS.Tag(gk), σt ←
TOS.Sign(sk t,msg , tag), σr ← rSIG.Sign(skr, tag). Output σ := (tag , σt, σr).

SIG1.Vrf(vk,msg , σ): Parse vk and σ accordingly. Output 1 if 1 = TOS.Vrf(pk t, tag ,msg , σt) and
1 = rSIG.Vrf(vkr, tag , σr). Output 0 otherwise.

¶

We prove that SIG1 is secure by showing a reduction to the security of each component. As our reduc-
tions are efficient in their running time, we only relate success probabilities.

Theorem 1. SIG1 is UF-CMA if TOS is uniform-tag and OT-NACMA, and rSIG is UF-RMA. In particular,
for any p.p.t. algorithmA there exist p.p.t. algorithms B and C such that Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ)+

Advuf-rma
rSIG,C(λ).

Security against random messages is sufficient for rSIG as it is used only to sign uniformly chosen tags.
To formally prove it, however, we use the important fact that the signing function of TOS does not require
any secret behind the tags. Departing from the UF-CMA game for SIG1, the security proof is done by
evaluating two game transitions. The first transition is bases on the OT-NACMA security of TOS. This part
is rather simple as we can construct a simulator in a straightforward manner by following the key generation
and signing of rSIG. The second transition is bases on UF-RMA of rSIG. We construct a simulator that,
given signatures of rSIG on uniformly chosen tags as messages, simulates signatures of SIG1 for messages
provided by the adversary. For this to be done, the simulator needs to compute one-time signatures of
TOS for the given uniform tags. This, however, can be done without any problem since the simulator has
legitimate signing keys that are sufficient to run the signing function of TOS with uniform tags.

Proof. Any signature that is accepted as a successful forgery must either reuse an existing tag, or sign a new
tag. We show that former case reduces to attacking TOS and the latter case reduces to attacking rSIG. Thus
the success probability Advuf-cma

SIG1,A(λ) of an attacker on SIG1 will be bounded by the sum of the success
probabilities Advot-nacma

TOS,B (λ) of an attacker on TOS and the success probability Advuf-rma
rSIG,C(λ) of an attacker

on rSIG.

Game 0: The actual Unforgeability game. Pr[Game 0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no longer accept repetition
of tags.

Lemma 1. |Pr[Game 0]− Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Proof. Attacker A wins in Game 0, but loses in Game 1, iff it produces a forgery that reuses a tag
from a signing query. We describe a reduction B that uses such an attacker to break the OT-NACMA-
security of TOS. The reduction B receives gk and pk t from the challenger of TOS, sets up vkr and
skr honestly by running rSIG.Key(gk), and provides gk and vk = (vkr, pk t) to A.

To answer a signing query, B uses the signing oracle of TOS to get tag and σt, signs tag using skr to
produce σr, and returns (tag , σt, σr). When A produces a forgery (tag†, σ†t , σ

†
r) on message msg†,

B outputs (msg†, tag†, σ†t) as a forgery for TOS.

Game 2: The fully idealized game. The winning condition is changed to reject all signatures.

Lemma 2. |Pr[Game 1]− Pr[Game 2]| ≤ Advuf-rma
rSIG,C(λ)

8

Proof. AttackerA wins in Game 1, iff it produces a forgery with a fresh tag. We describe a reduction
algorithm C that uses A to break the UF-RMA security of rSIG. Algorithm C receives gk and vkr,
runs (pk t, sk t)← TOS.Key(gk), and provides gk and vk = (vkr, pk t) to A.

To answer signing query on message msg , algorithm C consults Os and receives random message
msgr ← T and signature σr. Algorithm C then uses msgr as a tag, i.e., tag = msgr, and creates
signature σt on msg by running TOS.Sign(sk t,msg , tag). It then returns (tag , σt, σr). Note that
for a uniform-tag TOS scheme TOS.Tag(gk) would generate tags distributed uniformly over the tag
space T . Thus the reduction simulation is perfect. When A produces a forgery (tag†, σ†t , σ

†
r) on

msg†, algorithm C outputs (tag†, σ†r) as a forgery.

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

The following theorem is immediately obtained from the construction.

Theorem 2. If TOS.Tag produces constant-size tags and signatures in the size of input messages, the
resulting SIG1 produces constant-size signatures as well. Furthermore, if TOS and rSIG are structure-
preserving, so is SIG1.

4.2 SIG2: Combining partial one-time and XRMA-secure signatures
Let xSIG be a signature scheme with message spaceMx, and POS be a partial one-time signature scheme
with one-time public-key spaceKopk such thatMx = Kopk and both schemes use the same Setup. We con-
struct a signature scheme SIG2 from xSIG and POS. Let gk be a global parameter generated by Setup(1λ).
It is assumed that a secret key for xSIG contains gk.

[Generic Construction 2: SIG2]
SIG2.Key(gk): Run (pkp, skp)← POS.Key(gk), (vkx, skx)← xSIG.Key(gk). Output vk := (pkp, vkx)

and sk := (skp, skx).

SIG2.Sign(sk,msg): Parse sk into (skp, skx) and take gk from skx. Run (opk , osk)← POS.Update(gk),
σp ← POS.Sign(skp,msg , osk), σx ← xSIG.Sign(skx, opk). Output σ := (opk , σp, σx).

SIG2.Vrf(vk,msg , σ): Parse vk and σ accordingly. Output 1 if 1 = POS.Vrf(pkp, opk ,msg , σp), and
1 = xSIG.Vrf(vkx, opk , σx). Output 0 otherwise.

¶

Theorem 3. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG is UF-XRMA relative to
POS.Update as a message generator. In particular, for any p.p.t. algorithm A, there exist p.p.t. algorithms
B and C such that Advuf-cma

SIG2,A(λ) ≤ Advot-nacma
POS,B (λ) + Advuf-xrma

xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 1. The only difference appears in constructing C in
the second step. Since POS.Update is used as the extended random message generator, the pair (msg , ω)
is in fact (opk , osk). Given (opk , osk), adversary C can run POS.Sign(sk ,msg , osk) to yield legitimate
signatures.
As for our first generic construction, the following theorem holds from the construction.

Theorem 4. If POS produces constant-size one-time public-keys and signatures in the size of input mes-
sages, the resulting SIG2 produces constant-size signatures as well. Furthermore, if POS and xSIG are
structure-preserving, so is SIG2.

5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to obtain our first SPS
scheme. We do so in the Type-I bilinear group setting. The resulting SIG1 scheme is an efficient structure-
preserving signature scheme based only on the DLIN assumption.

9

5.1 Setup for Type-I groups
The following setup procedure is common for all instantiations in this section. The global parameter gk is
given to all functions implicitly.

• Setup(1λ): Run Λ = (p,G,GT , e) ← G(1λ) and pick random generators (G,C, F, U) ← (G∗)4.
Output gk := (Λ, G,C, F, U).

The parameter gk fixes the message spaceMr := {(Cm, Fm, Um) ∈ G3 | m ∈ Zp} for the RMA-
secure signature scheme presented in Section 5.3. For our generic framework to work, the tagged one-time
signature schemes should have the same tag space.

5.2 Tagged one-time signature scheme
Our scheme generates tags consisting of only one group element, Ct, which is optimally efficient in its size.
However, as mentioned above, we need to adjust the tag space to match the message space of rSIG. We thus
describe the scheme with a tag in the extended form of (Ct, F t, U t). The extended elements F t and U t can
be dropped when unnecessary as it is done in its direct application shown in Section ??.

Our concrete construction of TOS can be seen as an adaptation of a one-time signature scheme in [8] so
that it enjoys optimally short one-time public-key (i.e., a tag) with no corresponding one-time secret-key.
We note that, given TOS, one can construct a one-time signature scheme. But the reverse is not known in
general.

[Scheme TOS]
TOS.Key(gk): Parse gk = (Λ, G,C, F, U). Choose wz, wr, µz, µs, τ uniformly from Z∗p and compute

Gz := Gwz , Gr := Gwr , Hz := Gµz , Hs := Gµs , Gt := Gτ and For i = 1, . . . , k, uniformly
choose χi, γi, δi from Zp and compute

Gi := Gχiz G
γi
r , and Hi := Hχi

z Hδi
s . (1)

Output pk := (Gz, Gr, Hz, Hs, Gt, G1, . . . , Gk, H1, . . . ,Hk) ∈ G2k+5 and sk := (wr, µs, τ,
χ1, γ1, δ1, . . . , χk, γk, δk,) ∈ Z3k+5

p .

TOS.Tag(gk): Choose t← Z∗p, compute T := Ct. Output tag := (T, T ′, T ′′) = (Ct, F t, U t) ∈ G3.

TOS.Sign(sk ,msg , tag): Parse msg as (M1, . . . ,Mk) and tag as (T, T ′, T ′′). Parse sk accordingly.
Choose ζ ← Zp and output σ := (Z,R, S) ∈ G3 where

Z := Gζ
∏k
i=1M

−χi
i , R := (T τG−ζz)

1
wr

∏k
i=1M

−γi
i , and S := (H−ζz)

1
µs

∏k
i=1M

−δi
i .

TOS.Vrf(pk , tag ,msg , σ): Parse σ as (Z,R, S) ∈ G3, msg as (M1, . . . ,Mk) ∈ Gk, and tag as (T, T ′, T ′′).
Return 1 if the following equations hold. Return 0, otherwise.

e(T,Gt) = e(Gz, Z) e(Gr, R)

k∏
i=1

e(Gi,Mi) (2)

1 = e(Hz, Z) e(Hs, S)

k∏
i=1

e(Hi,Mi) (3)

¶
Correctness is verified by inspecting the following relations.

For (2): e(Gz, Gζ
k∏
i=1

M−χii) e(Gr, (T
τG−ζz)

1
wr

k∏
i=1

M−γii)

k∏
i=1

e(Gχiz G
γi
r ,Mi)

= e(Gz, G
ζ) e(G,T τ)e(G,G−ζz) = e(G,T τ) = e(T,Gt)

For (3): e(Hz, G
ζ
k∏
i=1

M−χii) e(Hs, (H
−ζ
z)

1
µs

k∏
i=1

M−δii)

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz, G
ζ) e(G,H−ζz) = 1

10

We state the following theorems, of which the first one is immediate from the construction.

Theorem 5. The above TOS is structure-preserving, and yields uniform tags and constant-size signatures.

Theorem 6. The above TOS is strongly unforgeable against one-time tag adaptive chosen message attacks
(SOT-CMA) if the SDP assumption holds. In particular, for all p.p.t. algorithms A, there exists p.p.t. al-
gorithm B such that Advsot-cma

TOS,A (λ) ≤ Advsdp
G,B(λ) + 1/p(λ), where p(λ) is the size of the groups produced

by G. Moreover, the run-time overhead of the reduction B is a small number of multi-exponentiations per
signing or tag query.

Proof. Given successful forger A against TOS as a black-box, we construct B that breaks SDP as follows.
Let Isdp = (Λ, Gz, Gr, Hz, Hs) be an instance of SDP. Algorithm B simulates the attack game against TOS
as follows. It first builds gk := (Λ, G,C, F, U) by choosing G randomly from G∗, choosing c, f, u← Zp,
and computing C = Gc, F = Gf , and U = Gu. This yields a gk in the same distribution as produced by
Setup. Next B simulates TOS.Key by taking (Gz, Gr, Hz, Hs) from Isdp and computing Gt := Hτ

s for
random τ in Z∗p. It then generates Gi and Hi according to (1). This perfectly simulates TOS.Key.

On receiving the j-th query to Ot, algorithm B computes

T := (GζzG
ρ
r)

1
τ (4)

for ζ, ρ ← Z∗p. If T = 1, B sets Z? := Hs, S? := H−1z , and R? := (Z?)ρ/ζ , outputs (Z?, R?, S?) and
stops. Otherwise, B stores (ζ, ρ) and returns tagj := (T, T f/c, Tu/c) to A.

On receiving signing query msgj = (M1, . . . ,Mk), algorithm B takes ζ and ρ used for computing
tagj (if tagj is not yet defined, execute the above procedure for generating tagj and take new ζ and ρ) and
computes

Z := Hζ
s

k∏
i=1

M−χii , R := Hρ
s

k∏
i=1

M−γii , and S := H−ζz

k∏
i=1

M−δii . (5)

Then B returns σj := (Z,R, S) to A and records (tagj , σj ,msgj).
When A outputs a forgery (tag†, σ†,msg†), algorithm B searches the records for (tag , σ,msg) such

that tag† = tag and (msg†, σ†) 6= (msg , σ). If no such entry exists, B aborts. Otherwise, B computes

Z? :=
Z†

Z

k∏
i=1

(
M†i
Mi

)χi
, R? :=

R†

R

k∏
i=1

(
M†i
Mi

)γi
, and S? :=

S†

S

k∏
i=1

(
M†i
Mi

)δi
where (Z,R, S), (M1, . . . ,Mk) and their dagger counterparts are taken from (σ,msg) and (σ†,msg†),
respectively. B finally outputs (Z?, R?, S?) and stops. This completes the description of B.

We claim that B solves the problem by itself or the view of A is perfectly simulated. The correct-
ness of key generation has been already inspected. In the simulation of Ot, there is a case of T = 1
that happens with probability 1/p. If it happens, B outputs a correct answer to Isdp, which is clear by
observing Gz = G

−ρ/ζ
r , Z? = Hs 6= 1, e(Gz, Z?)e(Gr, R?) = e(G

−ρ/ζ
r , Z?)e(Gr, (Z

?)ρ/ζ) = 1 and
e(Hz, Z

?)e(Hs, S
?) = e(Hz, Hs)e(Hs, H

−1
z) = 1. Otherwise, tag T is uniformly distributed over G∗ and

the simulation is perfect.
Oracle Os is simulated perfectly as well. Correctness of simulated σj = (Z, R, S) can be verified by

inspecting the following relations.

(Right-hand of (2)) = e(Gz, H
ζ
s

k∏
i=1

M−χii) e(Gr, H
ρ
s

k∏
i=1

M−γii)

k∏
i=1

e(Gχiz G
γi
r ,Mi)

= e(GζzG
ρ
r , Hs) = e((GζzG

ρ
r)

1
τ , Hτ

s) = e(T1, Gt)

(Right-hand of (3)) = e(Hz, H
ζ
s

k∏
i=1

M−χii) e(Hs, H
−ζ
z

k∏
i=1

M−δii)

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz, H
ζ
s) e(Hs, H

−ζ
z) = 1

11

Every Z is uniformly distributed over G due to the uniform choice of ζ. Then R and S are uniquely
determined by following the distribution of Z.

Accordingly,A outputs a successful forgery with non-negligible probability andB finds a corresponding
record (tag , σ,msg). We show that output (Z?, R?, S?) from B is a valid solution to Isdp. First, equation
(2) is satisfied because

1 = e

(
Gz,

Z†

Z

)
e

(
Gr,

R†

R

) k∏
i=1

e

(
Gχiz G

γi
r ,

M†i
Mi

)

= e

(
Gz,

Z†

Z

k∏
i=1

(
M†i
Mi

)χi)
e

(
Gr,

R†

R

k∏
i=1

(
M†i
Mi

)γi)
= e (Gz, Z

?) e (Gr, R
?) ,

holds. Equation (3) can be verified similarly.
It remains to prove that Z? 6= 1. Note that, if msg = msg† but this is still a valid forgery then it

must be the case that (Z,R) 6= (Z†, R†). Since R (resp. R†) is uniquely determined by Z and msg (resp.
Z†,msg†), that would mean that Z? 6= 1. Alternatively, if msg† 6= msg , then there exists ` ∈ {1, . . . , k}
such that M†` /M` 6= 1. We claim that parameters χ1, . . . , χk are independent of the view ofA. We prove it
by showing that, for every possible assignment to χ1, . . . , χk, there exists an assignment to other coins, i.e.,
(γ1, . . . , γk, δ1, . . . , δk) and (ζ(1), ρ(1), . . . , ζ(qs), ρ(qs)) for qs queries, that is consistent with the view of
A. (By ζ(j), we denote ζ with respect to the j-th query. We follow this convention hereafter. Without loss
of generality, we assume that A makes qs tag queries and the same number of signing queries.) Observe
that the view of A consists of independent group elements (G,Gz, Gr, Hz, Hs, Gt, G1, H1, . . . , Gk, Hk)

and (T
(j)
1 , Z(j),M

(j)
1 , . . . ,M

(j)
k) for j = 1, . . . , qs. (Note that we omit R(j) and S(j) from the view since

they are uniquely determined by the other components.) We represent the view by the discrete-logarithms
of these group elements with respect to base G. Namely, the view is represented by (1, wz, wr, µz, µs, τ,

w1, µ1, . . . , wk, µk) and (t(j), z(j),m
(j)
1 , . . . ,m

(j)
k) for j = 1, . . . , qs. The view and the random coins

follow relations from (1), (4), and (5), which translate to

wi = wzχi + wrγi, µi = µzχi + µsδi for i = 1, . . . , k, (6)

τt(j) = wzζ
(j) + wrρ

(j), and (7)

z(j) = µs ζ
(j) −

k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (8)

For any ` ∈ {1, . . . , k}, fix χ1, . . . , χ`−1, χ`+1, . . . , χk, and consider χ`. For every value of χ` in Zp,
the linear equations in (6) determine γ` and δ`. Then, if m(j)

` 6= 0, equation (8) determines ζ(j), and ρ(j)

follows from equation (7). If m(j)
` = 0, then ζ(j), ρ(j) can be assigned independently from χ`. The above

holds for every ` in {1, . . . , k}. Thus, if (χ1, . . . , χk) is distributed uniformly over Zkp , then other coins are
distributed uniformly as well and the view of A is still consistent.

Now we see that given A’s view,
(
M†` /M`

)χ`
is distributed uniformly over G and independent of the

other {χi}i 6=`. Therefore Z? = 1 happens only with probability 1/p. Thus, B outputs a valid (Z?, R?, S?)

with probability AdvsdpG,B = 1/p+(1−1/p)(1−1/p)Advsot-cma
TOS,A , which leads to Advsot-cma

TOS,A ≤ Advsdp
G,B+1/p

as claimed. �

Remark 1. The above TOS does not trivially work in the Type-III setting since computing R from T in
signing, simulating T using Gr in the reduction, and computing pairing e(Gr, R) in the verification cannot
be consistent. In a very recent paper [7], however, it is claimed that it can work if some extra group elements
are given in public-keys and the underlying assumption. But details are not published yet.

Remark 2. The TOS can be used to sign messages of unbounded length by chaining the signatures. Every
message block except for the last one is followed by a tag used to sign the next block. The signature

12

consists of all internal signatures and tags. The initial tag is considered as the tag for the entire signature.
For a message consisting of m group elements, it repeats τ := 1 + max(0, dm−kk−1 e) times and the resulting
signature consists of 4τ − 1 elements.

5.3 RMA-secure signature scheme

To sign random group elements we will use a construction based on the dual system signature scheme of
Waters [51]. For readers unfamiliar with Waters’ scheme we recall it in Appendix A. Our intuition for
making the original scheme structure-preserving is as follows. While the original scheme is CMA-secure
under the DLIN assumption, the security proof makes use of a trapdoor commitment to elements in Zp and
consequently messages are elements in Zp rather than G. Our construction below resorts to RMA-security
and removes this commitment to allow messages to be a sequence of random group elements satisfying a
particular relation. Concretely, the message spaceMx := {(Cm, Fm, Um) ∈ G3 | m ∈ Zp} is defined by
generators (C,F, U) in gk. Moreover, the tag elements of Waters’ scheme are removed in our RMA-secure
scheme as they were primarily required for (adaptive) CMA-security.

Other minor modifications are needed for the structure-preserving property. We modify the verification
algorithm. Our verification algorithm is deterministic and uses five verification equations. Two equations
are for signature elements that are not related to the message part—this is a consequence of deterministic
verification. Three equations are for the (extended) message part. We also slightly modify the verification
key. One element in GT is divided into two elements of G via randomization due to the requirement of
SPS.

[Scheme rSIG]

rSIG.Key(gk): Given gk := (Λ, G,C, F, U) as input, uniformly select V, V1, V2, H from G∗ and a1, a2, b, α,
and ρ from Z∗p. Then compute and output vk := (B,A1, A2, B1, B2, R1, R2,W1,W2, H,X1, X2)
and sk := (vk,K1,K2, V, V1, V2) where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a11 , R2 := V V a22 , W1 := Rb1, W2 := Rb2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3). Pick random r1, r2, z1, z2 ∈ Zp. Let r = r1 + r2.
Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M3H)r1 , S1 := K2V
r, S2 := K−11 V r1 G

z1 , S3 := B−z1 ,

S4 := V r2 G
z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3) and σ into (S0, S1, . . . , S7). Also parse vk accord-
ingly. Verify the following pairing product equations:

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1), (9)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2), (10)

e(S7,M3H) = e(G,S0), (11)

e(F,M1) = e(C,M2), (12)

e(U,M1) = e(C,M3). (13)

¶

13

The scheme is structure-preserving by construction and the correctness is easily verified as follows.

(Left-hand of (9)) = e(Gαa1V r, Gb)e(G−αV r1 G
z1 , Gba1)e(G−bz1 , Ga1)

= e(G,V)bre(G,V1)ba1r

= e(G,V)b(r1+r2)e(G,V1)ba1(r1+r2)

= e(Gbr2 , V V a11)e(Gr1 , V bV ba11)

= (Right-hand of (9))

(Left-hand of (10)) = e(Gαa1V r, Gb)e(V r2 G
z2 , Gba2)e(G−bz2 , Ga2)

= e(G,G)αba1e(G,V)bre(G,V2)ba2r

= e(G,V)b(r1+r2)e(G,V2)ba2(r1+r2)e(G,G)αba1

= e(Gbr2 , V V a22)e(Gr1 , V bV ba22)e(Gρ, Gαba1/ρ)

= (Right-hand of (10))

Equation (9) and (10) hold since r = r1 + r2. The followings also hold.

(Left-hand of (11)) = e(Gr1 , UmH) = e(G,UmH)r1 = e(G, (UmH)r1) = (Right-hand of (11)),

(Left-hand of (12)) = e(F,Cm) = e(F,C)m = e(C,Fm) = (Right-hand of (12)),

(Left-hand of (13)) = e(U,Cm) = e(U,C)m = e(C,Um) = (Right-hand of (13)).

Theorem 7. The above rSIG scheme is UF-RMA under the DLIN assumption. In particular, for any
p.p.t. algorithm A against rSIG that makes at most qs(λ) signing queries, there exists p.p.t. algorithm
B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs(λ) + 2) · AdvdlinG,B(λ).

Proof. We refer to the signatures output by the signing algorithm as normal signatures. In the proof we
will consider an additional type of signatures which we refer to as simulation-type signatures; these will be
computationally indistinguishable but easier to simulate. For γ ∈ Zp, simulation-type signatures are of the
form σ = (S0, S

′
1 = S1 ·G−a1a2γ , S′2 = S2 ·Ga2γ , S3, S

′
4 = S4 ·Ga1γ , S5, . . . , S7) where (S0, . . . , S7) is

a normal signature. We give the outline of the proof using some lemmas. Proofs for the lemmas are given
after the outline.

Lemma 3. Any signature that is accepted by the verification algorithm must be either a normal signature
or a simulation-type signature.

To prove this lemma, we introduced two verification equations for signature elements that are not related
to a message. We consider a sequence of games. Let pi be the probability that the adversary succeeds in
Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively simulation-type forgery.

Then by Lemma 3, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.

Lemma 4. There exists an adversary B1 such that psim
0 (λ) ≤ AdvdlinG,B1

(λ).

Game i: The real security game except that the first i signatures that are given by the oracle are simulation-
type signatures.

Lemma 5. There exists an adversary B2 such that |pnorm
i−1 (λ)− pnorm

i (λ)| ≤ AdvdlinG,B2
(λ).

Game q: All signatures given by the oracle are simulation-type signatures.

14

Lemma 6. There exists an adversary B3 such that pnorm
q (λ) ≤ AdvcdhG,B3

(λ).

We have shown that in Game q, A can output a normal-type forgery with at most negligible probability.
Thus, by Lemma 5 we can conclude that the same is true in Game 0 and it holds that

Advuf-rma
rSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) ≤ psim

0 (λ) +

q∑
i=1

|pnorm
i−1 (λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ Advdlin
G,B1

(λ) + qAdvdlin
G,B2

(λ) + Advcdh
G,B3

(λ) ≤ (q + 2) · AdvdlinG,B(λ) .

Proof. (of Lemma 3)
We have to show that only normal and simulation-type signatures can fulfil these equations. We ignore
verification equations (12) and (13) that establish that msg is well-formed. A signature has 4 random
exponents, r1, r2, z1, z2. A simulation-type signature has additional exponent γ.

We interpret S7 as Gr1 , and it follows from verification equation (11) that S0 is (M3H)r1 . We interpret
S3 as G−bz1 , S5 as G−bz2 , and S6 as Gr2b. Now we have fixed all exponents of a normal signature. The
remaining two verification equations tell us that

e(Gb, S1) · e(Gba1 , S2) = e(V V a11 , Gr2b) · e((V V a11)b, Gr1) · e(Ga1 , Gbz1),

e(Gb, S1) · e(Gba2 , S4) = e(V V a22 , Gr2b) · e((V V a22)b, Gr1) · e(Ga2 , Gbz2) · e(G,G)αa1b.

We interpret S1 as Gα·a1V rG−a1a2γ . Now we have two equations and two unknowns that fix S2 to
G−αV r1 G

z1Ga2γ and S4 to V r2 G
z2Ga1γ respectively. If γ = 0 we have a normal signature, otherwise

we have a simulation-type signature.

Proof. (of Lemma 4).
Suppose for contradiction that there is an adversary A, which, when playing Game 0 (and thus receiving
only normal signatures), produces forgeries which are formed like simulation-type signatures. Then we can
construct an adversary B1 for DLIN as follows.

Let Idlin = (Λ, G1, G2, G3, X, Y, Z) be an instance of DLIN where Λ = (p,G,GT , e) is a Type-I
bilinear group setting and G1, G2, G3 are randomly taken from G∗ and there exist random x, y, z ∈ Zp
such that X = Gx1 , Y = Gy2 and Z = Gz3 or Gx+y3 . Given Idlin, adversary B1 works as follows. It
first sets G := G3 and chooses C,F, U at random from G∗, and then sets them into gk. Next, it chooses
v, v1, v2 ∈ Z∗p and computes V := Gv3 , V1 := Gv13 , and V2 := Gv23 . (This way we know the discrete log of
these values w.r.t. G3.) Then it chooses random H ∈ G∗, b, α, ρ ∈ Z∗p and compute:

B := Gb3,

A1 := G1, A2 := G2, B1 := Gb1, B2 := Gb2

R1 := V V a11 = Gv3G
v1
1 , R2 := V V a22 = Gv3G

v2
2 , W1 := Rb1 = (Gv3G

v1
1)b, W2 := Rb2 = (Gv3G

v2
2)b,

X1 := Gρ3, X2 := Gα·a1·b/ρ = G
αb/ρ
1 , K1 := Gα3 , K2 := Gα·a1 = Gα1 .

and sets them into vk and sk, accordingly. Note that both the distribution of the public and secret keys are
statistically close to that in the real DLIN game. Moreover, to sign random messages, B1 can follow the
real signing algorithm by using sk.

Suppose that A produces a valid forgery σ† and msg†. Then B1 proceeds as follows. It parses σ†

as (S0, . . . , S7). By Lemma 3, it is shown that if the verification equations hold, then it must hold that
S1 = Gαa1V rG−a1a2γ , S2 = G−αV r1 G

z1Ga2γ , and S4 = V r2 G
z2Ga1γ . If this is a simulation-type sig-

nature, it holds that γ 6= 0. According to our choice of public-key, we can rewrite S1 = Gα1V
rG−fγ2 ,

S2 = G−α3 V r1 G
z1
3 G

γ
2 , and S4 = V r2 G

z2
3 G

γ
1 , where f is the discrete log of G1 w.r.t. G3. Thus, if B1

15

can extract G−fγ2 , Gγ2 , G
γ
1 , it can easily break the DLIN instance by testing whether 1 = e(Z,G−fγ2) ·

e(Gγ2 , X)e(Gγ1 , Y). B1 can extract such values because the signature includes S3 = G−bz13 , S5 = G−bz23 ,
S6 = Gbr23 , and S7 = Gr13 , and it has b, α and the discrete logarithms of V, V1, V2 w.r.t. G3. Thus, it will
be straightforward to extract the above values.

Proof. (of Lemma 5).
Suppose for contradiction that there exists an adversary A such that the probabilities that A outputs a
normal-type forgery in Game i and Game i + 1 differ by a non-negligible amount. Then we will use A to
construct an algorithm B2 that breaks the DLIN assumption.
B2 is given an instance of DLIN; Idlin = (Λ, G1, G2, G3, X, Y, Z). Note that determining whether a

signature is of normal-type or simulation-type naturally corresponds to a DLIN problem: each signature
contains S7 = Gr1 , S6 = (Gb)r2 , and S1 which will include V r1+r2 or V r1+r2G−a1a2γ depending on
whether this is a normal- or simulation-type signature. (Recall that we define r = r1 + r2.) If B2 sets
G = G2, Gb = G1, and V = G3, then it seems fairly straightforward to argue based on the DLIN
assumption that it will be impossible for the adversary to distinguish normal and simulation-type signatures.
However, B2 cannot tell whether A’s forgery is normal- or simulation-type in this simulation. Thus, there
will be no way for B2 to take advantage of a change inA’s success probability to solve the DLIN challenge.

The solution is to set things up so that, with high probability B2 can take S0 from the adversary’s forgery
and extract something that looks likeGr13 (which will allow B2 to distinguish DLIN tuples and consequently
detect simulation-type signatures), but at the same time it is guaranteed that for the i-th message, the G3

component of S0 will cancel out, leaving only an Gr12 component which will not allow the challenger itself
to know whether a simulated signature is normal-type or simulation-type.

More specifically, the idea will be to choose some secret values ξ, β, χ, η and embed them in the pa-
rameters so that for message (Cw, Fw, Uw) we get UwH = Gχw+η

2 Gξw+β
3 . Then S0 = (UwH)r1 =

G
(χw+η)r1
2 G

(ξw+β)r1
3 . If ξw + β 6= 0, this gives useful information on Gr13 (in particular it will allow B2

to test candidate values), while if ξw + β = 0, this has no G3 component and thus doesn’t help at all with
finding Gr13 . B2 chooses ξ, β so that ξw + β = 0 for the w used to generate the ith message. Furthermore,
it will be guaranteed that ξ, β are information theoretically hidden even given w, so the adversary has only
negligible chance of producing another message with Uw

∗
such that ξw∗ + β = 0 as well.

Now we show details of the algorithm for B2. First of all, B2 sets up the message space and generates
the public-key in the following manner. B2 sets (C,F), used to define message space M, to (Gϕ1 , G3)

by choosing random ϕ ← Z∗p. It chooses random ξ, β, χ, η ← Z∗p, and computes U := Gχ2G
ξ
3, and

H := Gη2G
β
3 . These values will be uniformly distributed, and independent of ξ, β. B2 then sets

gk = (Λ, G,C, F, U) := (Λ, G2, G
ϕ
1 , G3, G

χ
2G

ξ
3)

B2 also sets B := G1, and chooses V, V1, V2. It must choose these values carefully so that it can compute
both Ri and Rbi , and at the same time so that the component V r of a signature-value S1 gives B2 some
useful information (in particular it will allow B2 to derive Gr3). It does this by choosing v1, v2, δ ← Z∗p, and
computing V := G−a1a2δ3 , V1 := Gv12 G

a2δ
3 , and V2 := Gv22 G

a1δ
3 .

Next, B2 chooses a1, a2, α, ρ← Z∗p and computes

B := G1,

A1 := Ga12 , A2 := Ga22 , B1 := Ga11 , B2 := Ga21

R1 := V V a11 = Ga1v12 , R2 := V V a22 = Ga2v22 , W1 := Rb1 = Ga1v11 , W2 := Rb2 = Ga2v21 ,

X1 := Gρ2, X2 := G
αa1/ρ
1 , K1 := Gα2 , K2 := Gαa12 ,

and sets them into vk and sk, accordingly. Note that both of these tuples are distributed statistically close
to those produced by Setup and rSIG.Key.

Next B2 simulates signatures for the j-th random message as follows.

Case j < i: It chooses wj at random and computes (M1,M2,M3) = (Cwj , Fwj , Uwj). It can compute a
simulation-type signatures for this message since it has sk and Ga1a2 = Ga1a22 .

16

Case j = i: It chooses w such that ξw + β = 0 and computes (M1,M2,M3) = (Cw, Fw, Uw). Note
that since no information about ξ, β is revealed this message will look appropriately random to the
adversary. It will implicitly hold that r1 = y and r2 = x. B2 computes S6 = Gbr2 = Gx1 = X and
S7 = Gr1 = Gy2 = Y . Recall that it chose U,H such that UwH = Gχw+η

2 . Thus, B2 can compute
S0 = (M3H)r1 = Y χw+η .

What remains is to compute S1, S2, S4. Note that this involves computing V r, V r1 , and V r2 re-
spectively. This is where B2 will embed its challenge. Recall that V = G−a1a2δ3 . Thus, it will
compute V r = (Gr1+r23)−a1a2δ as Z−a1a2δ . If Z = Gx+y3 this will be correct; if Z = Gz3 for
random z, then there will be an extra factor of G−a1a2δ(z−(x+y))3 . If B2 lets Gγ = G

δ(z−(x+y))
3

(which is uniformly random from the adversary’s point of view), then this is distributed exactly as it
should be in a simulation-type signature. Thus, B2 computes S1 which should be either Gαa1V r or
Gαa1V rG−a1a2γ as Gαa12 Z−a1a2δ .

B2 can try to apply the same approach to compute V r1 to get S2. However, recall that B2 sets V1 =
Gv12 G

a2δ
3 . Thus, computing V r1 involves computing Gr2, which B2 cannot do. (If it could it could use

that to break the DLIN assumption.) To get around this, B2 uses z1, z2. It chooses random s1, s2 and
implicitly sets Gz1 = G−v1r2+s12 and Gz2 = G−v2r2+s22 . While it cannot compute these values, it
can compute G−z1b = Gv1r2−s11 = Xv1G−s11 and G−z2b = Xv2G−s21 . Then to generate S2, B2 can
compute

G−α2 Y v1Za2δGs12 = G−αGr1v12 Za2δGs12 G
r2v1
2 G−r2v12

= G−αG
(r1+r2)v1
2 Za2δGs1−r2v12

= G−αGrv12 Za2δGz1 .

If Z = Gx+y3 = Gr3, then this will be

G−αGrv12 Gra2δ3 Gz1 = G−α(Gv12 G
a2δ
3)rGz1

= G−αV r1 G
z1 .

If Z = Gz 6=x+y3 , then this will be

G−αGrv12 Gza2δ3 Gz1 = G−αGrv12 Gra2δ3 G
a2δ(z−(x+y))
3 Gz1

= G−αGrv12 Gra2δ3 Ga2γGz1

= G−αV r1 G
a2γGz1

where the second to last equality follows from our choice of γ above. By a similar argument, B2
computes S4 as Y v2Za1δGs22 and this will be either V r2 G

z2 or V r2 G
z2Ga1γ as desired. B2 sets

S := (S0, S1, S2, S3, S4, S5, S6, S7) where

S0 = Y χwi+η S1 = Gαa12 Z−a1a2δ S2 = G−α2 Y v1Za2δGs12

S3 = Xv1G−s11 S4 = Y v2Za1δGs22 S5 = Xv2G−s21

S6 = X S7 = Y.

Case j > i: It chooses w and computes mj = (M1,M2,M3) = (Cw, Fw, Uw) and a signature σ accord-
ing to rSIG.Sign(sk,mj). It outputs σ,mj .

On receiving forgery S = (S0, S1, . . . , S7) and (M1,M2,M3) = (Cw, Fw, Uw) for some message w,
B2 outputs 1 if and only if

e(S0, G1) · e(Mξ
2G

β
3 , S6)

= e((S1G
−αa1
2)1/(−a1a2δ), (M

1/ϕ
1)ξGβ1) · e(S7, (M

1/ϕ
1)χGη1) .

17

By Lemma 3, we are guaranteed that if the signature S verifies, then there must exist w, r1, r2, γ such
that S0 = (UwH)r1 , S1 = Gαa1V rG−a1a2γ , S6 = Gbr2 , and S7 = Gr1 where r = r1 + r2. We are also
guaranteed that M1 = (Gϕ1)w and M2 = Gw3 .

Rephrased in terms of our parameters, this means

S0 = (Gχw+η
2 Gξw+β

3)r1 S1 = Gαa12 G−a1a2δr3 G−a1a2γ2

S6 = Gr21 S7 = Gr12 .

Plugging this into the above computation we get that B2 will output 1 if and only if

e((Gχw+η
2 Gξw+β

3)r1 , G1) · e((Gw3)ξGβ3 , G
r2
1)

= e
(

(Gαa12 G−a1a2δr3 G−a1a2γ2 G−αa12)1/(−a1a2δ), (Gw1)ξGβ1

)
· e(Gr12 , (Gw1)χGη1) .

Simplifying the left side to

e((Gχw+η
2 Gξw+β

3)r1 , G1) · e(Gξw+β
3 , Gr21)

=e(G2, G1)(χw+η)r1 · e(G3, G1)(ξw+β)r1 · e(G3, G1)(ξw+β)r2

=e(G2, G1)(χw+η)r1 · e(G3, G1)(ξw+β)r

and the right side to

e((G−a1a2δr3 G−a1a2γ2)1/(−a1a2δ), Gξw+β
1) · e(Gr12 , G

χw+η
1)

=e(Gr3G
γ/δ
2 , Gξw+β

1) · e(Gr12 , G
χw+η
1)

=e(G2, G1)(χw+η)r1 · e(G3, G1)(ξw+β)r · e(G2, G1)(γ/δ)(ξw+β)

and by dividing out all the pairings of the left side we obtain the simplified equation

1 = e(G2, G1)(γ/δ)(ξw+β)

which is true if and only if either ξw + β = 0 or γ = 0. Since ξwi + β is a pairwise-independent function,
we are guaranteed that ξw+ β = 0 happens with negligible probability. Thus, we conclude that B2 outputs
1 iff γ = 0 and this was a normal-type signature, and B2 outputs 0 iff γ 6= 0 and this was a simulation-type
signature.

Proof. (of Lemma 6).
Suppose that there exists an adversaryA that outputs normal-type forgeries with non-negligible probability
in Game q. Then we construct an adversary B3 for the CDH problem as follows.
B3 is given X = Gx, Y = Gy and must compute Gxy . B3 will proceed as follows.

Message space setup and key generation: B3 will implicitly set α := xy and a2 := y. It chooses b, a1
at random from Z∗p. B3 needs to be able to compute V a22 , so it chooses random v2 ∈ Z∗p and sets
V2 := Gv2 . It also wants to have the discrete logarithm of V1, so it will choose random v1 ∈ Z∗p and
set V1 := Gv1 . B3 chooses U,C, F ∈ G and H,V ∈ G∗ at random, sets Ga2 := Y , and computes
V V a22 = V Y v2 . It chooses random ρ′ ∈ Z∗p and sets X1 := Xρ′ and X2 := Y a1b/ρ

′
. The rest of the

parameters can be constructed honestly.

Signature queries: On a signature query, B3 choosesw at random, computes (M1,M2,M3) = (Cw, Fw, Uw),
and generates a simulation-type signature as follows. It chooses random r1, r2, z1, z2 ∈ Zp, and ran-
dom s ∈ Zp and implicitly sets γ := (x− s). B3 computes

S1 := Y sa1V r = Gysa1V r = Gysa1+xya1−xya1V r = Gxya1V rG(s−x)ya1 = Gαa1V rG−γa2a1 ,

S2 := Y −sV r1 G
z1 = G−ysV r1 G

z1 = G−ys+xy−xyV r1 G
z1 = G−xyV r1 G

z1G(x−s)y = G−αV r1 G
z1Gγa2 ,

S4 := V r2 G
z2Xa1G−sa1 = V r2 G

z2Gxa1G−sa1 = V r2 G
z2G(x−s)a1 = V r2 G

z2Ga1γ .

The rest of the signature can be computed honestly.

18

Adversary’s forgery: When the adversary outputs a normal-type forgery, there exists r1, r2, z1 such that
S2 = G−αV r1+r21 Gz1 , S3 = (Gb)−z1 , S6 = Gr2b, and S7 = Gr1 . Thus, B3 can compute

S−12 · Sv17 S
v1/b
6 S

−1/b
3 = GαV

−(r1+r2)
1 G−z1 · (Gr1)v1(Gr2b)v1/b((Gb)−z1)−1/b

= GαV −r1−r21 G−z1 · (Gv1)r1(Gv1)r2Gz1

= GαV −r1−r21 G−z1 · V r11 V r21 Gz1

= Gα .

B3 will output this value. By our choice of parameters, recall that α = xy, so it holds that Gα = Gxy

as desired.

That is, B3 can solve the CDH problem.

Let MSGGen be an extended random message generator that first chooses ω = m randomly from Zp
and then computes msg = (Cm, Fm, Um). Note that this is what the reduction algorithm does in the proof
of Theorem 7. Therefore, the same reduction algorithm works for the case of extended random message
attacks with respect to message generator MSGGen. We thus have the following.

Corollary 1. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the message generator that
provides ω = m for every message msg = (Cm, Fm, Um). In particular, for any p.p.t. algorithm A
against rSIG that is given at most qs(λ) signatures, there exists p.p.t. algorithm B such that Advuf-xrma

rSIG,A (λ) ≤
(qs(λ) + 2) · Advdlin

G,B(λ).

5.4 Security and efficiency of resulting SIG1
Let SIG1 be the signature scheme obtained from TOS and rSIG by following the first generic construction
in Section 4. From Theorems 1, 2, 6, and 7, the following is immediate.

Theorem 8. SIG1 is a structure-preserving signature scheme that yields constant-size signatures, and is
UF-CMA under the DLIN assumption. In particular, for any p.p.t. algorithm A for SIG1 making at most
qs(λ) signing queries, there exists p.p.t. algorithm B such that Advuf-cma

SIG1,A(λ) ≤ (qs(λ) + 3) ·Advdlin
G,B(λ) +

1/p(λ), where p(λ) is the size of the groups produced by G.

The efficiency is summarized in Table 1. It is compared to an existing efficient structure-preserving
scheme in [4, Section 5.2]. (The original scheme is presented over asymmetric bilinear groups. It is trans-
lated to the symmetric setting for our purpose.) We measure the efficiency by counting the number of group
elements and the number of pairing product equations for verifying a signature.

Scheme |msg | |gk|+ |vk| |σ| #(PPE) Assumption
[4] k 2k + 13 7 2 q-SFP
SIG1 k 2k + 21 14 7 DLIN

Table 1: Efficiency Comparison of constant-size SPS over symmetric bilinear groups.

In Table 2, we also assess the cost of proving possession of valid signatures and messages by using
Groth-Sahai NIWI and NIZK proof system. Columns ”σ” indicate the case where a witness is a valid
signature. (Regarding the signature scheme from [4], we optimize by putting randomizable parts of a
signature in the clear.) The message is put in the clear. Similarly, columns ”(σ,msg)” show the case where
a witness consists of a valid signature and a message. Details of each assessment are as follows.

For NIWI, the cost of proving valid σ is counted by

|NIWI(σ)| = |com| × |σwit|+ |σrnd|+ |πNL| × #(NLPPE) + |πL| × #(LPPE) (14)

and the cost of proving valid (σ,msg) is counted by

|NIWI(σ,msg)| = |com| × (|σwit|+ |msg |) + |σrnd|+ |πNL| × #(NLPPE) + |πL| × #(LPPE) (15)

19

where |πL/NL|, |σrnd|, |σwit|, |com| are the size of a proof for a linear/non-linear relation, randomizable parts
of a signature, rest of the parts in the signature, and commitment per witness, respectively. Also, LPPE and
NLPPE denotes the linear and non-linear PPEs in the verification predicate of the signature scheme. For
NIZK, we need to turn either of input constants in every constant pairing into a witness, and prove that it is
committed correctly. Those proof of correct commitment of public constants are done by proving a relation
in multiscalar multiplication equations, whose size is denoted by |πMS |. Let #(CONST) denote the number
of constant pairings in the verification PPE. The costs for ZK are estimated by

|NIZK(σ)| =|com| × (|σwit|+ #(CONST)) + |σrnd|+ |πNL| × (#(NLPPE) + #(CONST))

+ |πL| × #(LPPE) + |πMS | × #(CONST) (16)

and the cost of proving valid (σ,msg) is counted by

|NIZK(σ,msg)| =|com| × (|σwit|+ |msg |+ #(CONST)) + |σrnd|

+ |πNL| × (#(NLPPE)+#(CONST)) + |πL| × #(LPPE) + |πMS | × #(CONST). (17)

According to [37], we have (|com|, |πL|, |πNL|) = (3, 3, 9) in G, and |πMS | = 3 in Zp. Proof πMS can
consist of elements in G by describing the relation of correct commitment of public value with a pairing
product equation. It turns entire proof to be structure-preserving with increased proof size.

For [4], we have |σwit| = 3, |σrnd| = 4. Since the verification consists of 2 non-linear equations, we
have #(NLPPE) = 0 and #(LPPE) = 2. This results in |NIWI(σ)| = 3 · 3 + 4 + 9 · 0 + 3 · 2 = 19 and
|NIWI(σ,msg)| = 3·(3+k)+4+9·0+3·2 = 3k+19. For NIZK(σ), we have #(CONST) = 6+k constant
pairings in the signature verification. (In detail, k comes from the pairings that involve the message, 4 is
from the parings that only involves public-key, and 2 is from the pairings that involves the randomizable
part of the signature.) Thus 3 · (6 + k) group elements and Zp elements are needed on top of NIWI(σ). For
NIZK(σ,msg), on the other hand, the message is hidden as a witness. Thus we can set #(CONST) = 6 and
the additional cost on NIWI(σ,msg) is 3 · 6 group elements and Zp elements.

Regarding to SIG1, whole signature is considered as a witness. Thus we have |σwit| = 14 and |σrnd| = 0.
And the verification consists of 6 linear equations and 1 non-linear equation; #(NLPPE) = 1 and #(LPPE) =
6. We thus have |NIWI(σ)| = 3·14+0+9·1+3·6 = 69 and |NIWI(σ,msg)| = 3·(14+k)+0+9·1+3·6 =
3k + 69. For NIZK(σ), we have #(CONST) = 1 + k constant pairings in the signature verification, which
results in adding 3 + 3k elements in both G and Zp to NIWI(σ). Finally, for NIZK(σ,msg), we have
#(CONST) = 1, which adds 3 elements in G and Zp to NIWI(σ,msg).

Scheme NIWI(σ) NIWI(σ,msg) NIZK(σ) NIZK(σ,msg)
[4] 19 3k + 19 (3k + 37, 3k + 18) (3k + 37, 18)
SIG1 69 3k + 69 (3k + 72, 3k + 3) (3k + 72, 3)

Table 2: Size of GS proofs and commitments for proving possession of a valid signature and message
in WI or ZK. Numbers count elements in G. For ZK, (x, y) denotes x elements in G and y elements
in Zp.

6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction to obtain our second
SPS scheme. Here we choose the Type-III bilinear group setting. The resulting SIG2 scheme is an efficient
structure-preserving signature scheme based on SXDH and XDLIN.

6.1 Setup for Type-III groups
The following setup procedure is common for all building blocks in this section. The global parameter gk
is given to all functions implicitly.

• Setup(1λ): Run Λ = (p,G1,G2,GT , e) ← G(1λ) and choose generators G ∈ G∗1 and Ĝ ∈ G∗2.
Also choose u, f1, f2 randomly from Z∗p, compute F1 := Gf1 , F̂1 := Ĝf1 , F2 := Gf2 , F̂2 := Ĝf2 ,
U := Gu, Û := Ĝu, and output gk := (Λ, G, Ĝ, F1, F̂1, F2, F̂2, U, Û).

20

A gk defines a message space Mx = {(F̂m1 , F̂m2 , Ûm) ∈ (G∗2)3 | m ∈ Zp} for the XRMA-secure
signature scheme in this section. For our generic construction to work, the partial one-time signature scheme
must have the same key space.

6.2 Partial one-time signatures for unilateral messages
We first construct a partial one-time signature scheme, POSu2, for messages in Gk2 for k > 0. The suffix
”u2” indicates that the scheme is unilateral and messages are taken from G2. Correspondingly, POSu1
refers to the scheme whose messages belong to G1, which is obtained by swapping G2 and G1 in the
following description. In the following section we will show how to combine POSu2 and POSu1 to obtain
signatures on bilateral messages consisting of elements from both G1 and G2.

Our POSu2 scheme is a minor refinement of the one-time signature scheme introduced in [8]. It comes,
however, with a security proof for the new security model. Basically, a one-time public-key in our scheme
consists of one element in the source group G1, the opposite group from the one to which the messages
belong. This property is very useful when we move on to construct a POS scheme for signing bilateral
messages.

Like the tags in the TOS of Section 5.2, the one-time public-keys of POSu2 will have to be in an
extended form, (F a1 , F

a
2 , U

a), to meet the constraint from xSIG presented in the sequel. The extended part
(F a1 , F

a
2) can be dropped if unnecessary.

[Scheme POSu2]
POSu2.Key(gk): Take generators U and Û from gk . Choose wr uniformly from Z∗p and compute Gr :=

Uwr . For i = 1, . . . , k, uniformly choose χi and γi from Zp and compute Gi := UχiGγir . Output
pk :=(Gr, G1, ..., Gk) ∈ Gk+1

1 and sk :=(χ1, γ1, ..., χk, γk, wr).

POSu2.Update(gk): Take F1, F2, U from gk . Choose a ← Zp and output opk := (F a1 , F
a
2 , U

a) ∈ G3
1

and osk := a.

POSu2.Sign(sk ,msg , osk): Parse msg into (M̃1, . . . , M̃k) ∈ Gk2 . Take a and wr from osk and sk , respec-
tively. Choose ρ randomly from Zp and compute ζ := a − ρwr mod p. Then compute and output
σ := (Z̃, R̃) ∈ G2

2 as the signature, where

Z̃ := Ûζ
k∏
i=1

M̃−χii and R̃ := Ûρ
k∏
i=1

M̃−γii . (18)

POSu2.Vrf(pk , opk ,msg , σ): Parse σ as (Z̃, R̃) ∈ G2
2, msg as (M̃1, . . . , M̃k) ∈ Gk2 , and opk as (A1, A2, A).

Return 1, if

e(A, Û) = e(U, Z̃) e(Gr, R̃)

k∏
i=1

e(Gi, M̃i) (19)

holds. Return 0, otherwise.

¶

Scheme POSu2 is structure-preserving and has uniform one-time public-keys by construction. It is
correct as the following relation holds for the verification equation and the computed signatures:

e(U, Z̃) e(Gr, R̃)

k∏
i=1

e(Gi, M̃i) = e(U, Ûζ
k∏
i=1

M̃−χii) e(Gr, Û
ρ
k∏
i=1

M̃−γii)

k∏
i=1

e(UχiGγir , M̃i)

= e(U, Ûζ) e(Uwr , Ûρ) = e(Uζ+wrρ, Û) = e(A, Û) .

Theorem 9. POSu2 is strongly unforgeable against OT-CMA if DBP1 holds. In particular, for all p.p.t. al-
gorithmsA there exists a p.p.t. algorithm B such that Advsot-cma

POSu2,A(λ) ≤ Advdbp1
G,B (λ) + 1/p(λ), where p(λ)

is the size of the groups produced by G. Moreover, the run-time overhead of the reduction B is a small
number of multi-exponentiations per signing or key query.

21

Proof. Using a successful forger A against POSu2 as a black-box, we construct B that is successful in
breaking DBP1. Given instance Idbp1 = (Λ, Gz, Gr) of DBP1, algorithm B simulates the attack game
against POSu2 as follows.

Key Generation: SetU := Gz , Û ← G∗2, and gk := (Λ, Ug, Ûg, Uf
′
1 , Ûf

′
1 , Uf

′
2 , Ûf

′
2 , U, Û) for g, f ′1, f

′
2 ←

Z∗p. Then generate pk by following POSu2.Key(gk) except that Gr is taken from Idbp1.

One-time key query toOt: On receiving a one-time key query, generate ζ, ρ← Zp, compute A := UζGρr ,
A1 := Af

′
1 , A2 := Af

′
2 with f ′1 and f ′2 generated in Setup, and return opk := (A1, A2, A).

Signature query toOs: On receiving a signing query, msg(j), compute Z̃ and R̃ as described in (18) taking
χi and γi from those used in key generation and ζ and ρ from those used in simulating Ot. Then
output σ := (Z̃, R̃). For each signing, transcript (opk , σ,msg) is recorded.

When A outputs a forgery (opk†, σ†,msg†), algorithm B searches the records for (opk , σ,msg) such that
opk† = opk and (msg†, σ†) 6= (msg , σ). If no such entry exists, B aborts. Otherwise, B computes

Z̃? :=
Z̃†

Z̃

k∏
i=1

(
M̃†i
M̃i

)χi
, and R̃? :=

R̃†

R̃

k∏
i=1

(
M̃†i
M̃i

)γi
, (20)

where (Z̃, R̃, M̃1, . . . , M̃k) and its dagger counterpart are taken from (σ,msg) and (σ†,msg†), respectively.
B finally outputs (Z̃?, R̃?). This completes the description of B.

We first claim that the simulation by B is perfect; keys distribute uniformly due to the randomness of
Gz andGr in the given instance, and signaures are computed following the legitimate procedure. It is noted
that f ′1g and f ′2g corresponds to f1 and f2 in the real execution. Accordingly,A outputs a successful forgery
with noticeable probability and B finds a corresponding record (opk , σ,msg).

We next claim that each χi is independent of the view of A. Concretely, we show that, if coins
χ1, . . . , χk are distributed uniformly over (Zp)k, other coins γ1, . . . , γk, ζ(1), ρ(1), . . . , ζ(qs), ρ(qs) are dis-
tributed uniformly andA’s view is consistent. Observe that the view ofAmaking q signing queries consists
of independent group elements (U, Û), (G,F1, F2), (Gr, G1, . . . , Gk) and (A(j), Z̃(j), M̃

(j)
1 , . . . , M̃

(j)
k)

for j = 1, . . . , qs. (Note that Ĝ, F̂1, F̂2, and A(j)
1 , A(j)

2 , and R̃(j) for all j are uniquely determined by
the other group elements.) We represent the view by the discrete-logarithms of these group elements with
respect to bases U and Û in each group. Namely, the view is represented by (g, f ′1, f

′
2, wr, w1, . . . , wk)

and (a(j), z(j),m
(j)
1 , . . . ,m

(j)
k) for j = 1, . . . , qs. To be consistent, the view and the coins must satisfy the

following relations:

wi = χi + wrγi for i = 1, . . . , k, and (21)

a(j) = ζ(j) + wrρ
(j), and z(j) = ζ(j) −

k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (22)

From relation (21), (γ1, . . . , γk) is distributed uniformly according to the uniform choice of (χ1, . . . , χk).
From the second relation in (22) for every j, if (m1, . . . ,mk) 6= (0, . . . , 0) then ζ(j) is distributed uniformly
according to the uniform distribution of (χ1, . . . , χk). Then, from the first relation of (22), ρ(j) is distributed
uniformly, too. If (m1, . . . ,mk) = (0, . . . , 0), then ζ(j) and ρ(j) are independent of (χ1, . . . , χk) and can
be uniformly assigned by following the first relation in (22).

Finally, we claim that (Z̃?, R̃?) is a valid solution to the given instance of DBP1. Since both forged and
recorded signatures fulfill the verification equation, dividing the equations results in

1 = e

(
U,
Z̃†

Z̃

)
e

(
Gr,

R̃†

R̃

)
k∏
i=1

e

(
UχiGγir ,

M̃†i
M̃i

)

= e

(
U,
Z̃†

Z̃

k∏
i=1

(
M̃†i
Mi

)χi)
e

(
Gr,

R̃†

R̃

k∏
i=1

(
M̃†i
Mi

)γi)

= e
(
U, Z̃?

)
e
(
Gr, R̃

?
)
.

22

What remains is to prove that Z̃? 6= 1. If msg† 6= msg(j), there exists ` ∈ {1, . . . , k} such that M̃
†
`

M`
6= 1. As

already proven, χ` is independent of the view of A and of the other χi values. Thus
(
M†`
M`

)χ`
is distributed

uniformly over G2 and so is Z̃?. Accordingly, Z? = 1 holds only if Z† = Z̃
∏

(M†i /Mi)
−χi , which hap-

pens only with probability 1/p over the choice of χ`. Otherwise, if msg† = msg(j) and (Z†, R†) 6= (Z,R),
then, we have Z† = Z to fulfil Z? = 1. However, if Z† = Z, then R† = R holds since the verification
equation uniquely determines such R† and R. Thus msg† = msg(j) and (Z†, R†) 6= (Z,R) can never
happen. We thus have Advsot-cma

POSu2,A(λ) ≤ Advdbp1
G,B (λ) + 1/p as stated.

6.3 Partial one-time signatures for bilateral messages

Using POSu1 for msg ∈ Gk1+1
1 and POSu2 for msg ∈ Gk22 , we construct a POSb scheme for signing

bilateral messages (msg1,msg2) ∈ Gk11 × Gk22 . The scheme is a simple two-story construction where
msg2 is signed by POSu2 with one-time secret-key osk2 ∈ G1 and then the one-time public-key opk2 is
attached to msg1 and signed by POSu1. Public-key opk2 is included in the signature, and opk1 is output
as a one-time public-key for POSb.

[Scheme POSb]

POSb.Key(gk): Run (pk1, sk1)← POSu1.Key(gk) for message size k1+1 and (pk2, sk2)← POSu2.Key(gk)
for message size k2. Set pk := (pk1, pk2) and sk := (sk1, sk2), and output (pk , sk).

POSb.Update(gk): Run (opk , osk)← POSu1.Update(gk) and output (opk , osk).

POSb.Sign(sk ,msg , osk): Parse msg into (msg1,msg2) ∈ Gk11 × Gk22 , and sk into (sk1, sk2). Run
(opk2, osk2)← POSu2.Update(gk), and compute σ2← POSu2.Sign(sk2,msg2, osk2) and σ1 ←
POSu1.Sign(sk1, (msg1, opk2), osk). Output σ := (σ1, σ2, opk2).

POSb.Vrf(pk , opk ,msg , σ): Parse msg into (msg1,msg2) ∈ Gk11 ×G
k2
2 , and σ into (σ1, σ2, opk2). If 1 =

POSu1.Vrf(pk1, opk , (msg1, opk2), σ1) = POSu2.Vrf(pk2, opk2,msg2, σ2), output 1. Otherwise,
output 0.

¶

We consider dropping unnecessary extended part from opk2 so that it consists of only one group el-
ement. Then, for a message in Gk11 × Gk22 , the above POSb uses a public-key of size (k2 + 1, k1 + 2),
yields a one-time public-key of size (0, 3), and a signature of size (3, 2). Verification requires 2 pairing
product equations. A one-time public-key, which is treated as a message to xSIG in this section, is of the
form opk = (F̂ a1 , F̂

a
2 , Û

a) ∈ G3
2. The structure-preservation and uniform public-key properties carry over

from the underlying POSu1 and POSu2.

Theorem 10. Scheme POSb is strongly unforgeable against OT-CMA if SXDH holds. In particular, for
all p.p.t. algorithms A there exists a p.p.t. algorithm B such that Advsot-cma

POSb,A(λ) ≤ AdvsxdhG,B (λ) + 2/p(λ),
where p(λ) is the size of the groups produced by G. Moreover, the run-time overhead of the reduction B is
a small number of multi-exponentiations per signing or key query.

Proof. Suppose an adversaryA outputs a forgery (opk†, σ†,msg†). Then there exists a triple (σ, opk ,msg)

observed by the signing oracle such that opk† = opk and (msg†, σ†) 6= (msg , σ). Let msg† = (msg†1,msg†2)

and σ† = (σ†1, σ
†
2, opk

†
2). Similarly, let msg = (msg1,msg2) and σ = (σ1, σ2, opk2). Then there are two

cases; either ((msg1, opk2), σ1) 6= ((msg†1, opk
†
2), σ†1), or opk2 = opk†2 and (msg2, σ2) 6= (msg†2, σ

†
2).

In the first case we break the strong unforgeability of POSu1 and contradict the DBP2 assumption; in the
second case we break the strong unforgeability of POSu2 and contradict the DBP1 assumption.

Accordingly, we have Advot-cma
POSb,A(λ) ≤ Advdbp1

G,A (λ) + 1/p+ Advdbp2
G,B (λ) + 1/p ≤ Advsxdh

G,B (λ) + 2/p.

23

6.4 XRMA-secure signature scheme
Our construction is based on a variant of Waters’ dual system encryption proposed by Ramanna, Chatterjee,
and Sarkar [44]. An intuition behind our XRMA-secure scheme is the same as that of RMA-secure scheme
in the previous section. Recall that gk = (Λ, G, Ĝ, F1, F̂1, F2, F̂2, U, Û) with Λ = (p,G1,G2,GT , e) is
generated by Setup(1λ) in advance (see Section 6.1).

[Scheme xSIG]

xSIG.Gen(gk): Given gk as input, uniformly select generators V, V ′ ← G∗1, V̂ , V̂ ′ ∈ G∗2 such that
V ∼ V̂ , V ′ ∼ V̂ ′, H̃ ← G∗2, and exponents a, b, α, ρ ← Z∗p. Then compute and output vk :=

(gk, B̃, Ã, B̃a, R̃, W̃ , H̃,X1, X̃2) and sk := (vk,K1,K2, V, V
′) where

B̃ := Ĝb, Ã := Ĝa, B̃a := Ĝba, R̃ := V̂ (V̂ ′)a, W̃ := R̃b

X1 := Gρ, X̃2 := Ĝα·b/ρ, K1 := Gα, K2 := Gb .

xSIG.Sign(sk,msg): Parse msg into (M̃1, M̃2, M̃3) = (F̂m1 , F̂
m
2 , Û

m) ∈ G3
2 (m ∈ Zp). Pick random

r1, r2, z ← Zp. Let r := r1 + r2. Compute and output signature σ := (S̃0, S1, . . . , S5) where

S̃0 := (M̃3H̃)r1 , S1 := K1V
r, S2 := (V ′)rG−z, S3 := Kz

2 , S4 := Kr2
2 , S5 := Gr1 .

xSIG.Vrfy(vk,msg , σ): Parse msg into (M̃1, M̃2, M̃3) and σ into (S̃0, S1, . . . , S5). Also parse vk accord-
ingly. Verify the following pairing product equations:

e(S1, B̃)e(S2, B̃a)e(S3, Ã) = e(S4, R̃)e(S5, W̃)e(X1, X̃2), (23)

e(S5, M̃3H̃) = e(G, S̃0), (24)

e(F1, M̃3) = e(U, M̃1), (25)

e(F2, M̃3) = e(U, M̃2). (26)

¶

The scheme is structure-preserving by construction. We can easily verify the correctness as follows.

(Left-hand of (23)) = e(GαV r, Ĝb)e((V ′)rG−z, Ĝba)e(Gbz, Ĝa)

= e(G, Ĝ)αbe(V, Ĝ)bre(V ′, Ĝ)abr

= e(G, V̂)b(r1+r2)e(G, V̂ ′)ab(r1+r2)e(G, Ĝ)αb

= e(Gbr2 , V̂ (V̂ ′)a)e(Gr1 , V̂ b(V̂ ′)ba)e(G, Ĝ)αb

= (Right-hand of (23))

Equation (23) holds since r = r1 + r2, V ∼ V̂ , and V ′ ∼ V̂ ′. The followings also hold.

(Left-hand of (24)) = e(Gr1 , ÛmH̃) = e(G, ÛmH̃)r1 = e(G, (ÛmH̃)r1) = (Right-hand of (24)),

(Left-hand of (25)) = e(F1, Û
m) = e(F1, Û)m = e(U, F̂m1) = (Right-hand of (25)),

(Left-hand of (26)) = e(F2, Û
m) = e(F2, Û)m = e(U, F̂m2) = (Right-hand of (26)).

Theorem 11. The above xSIG scheme is UF-XRMA with respect to the message generator that returns
ω = m for every random message msg = (F̂m1 , F̂

m
2 , Û

m) under the DDH2 and XDLIN1 assumptions. In
particular for any p.p.t. algorithm A for xSIG making at most q(λ) signing queries, there exist p.p.t. algo-
rithms B1,B such that Advuf-xrma

xSIG,A (λ) ≤ Advddh2G,B1
(λ) + (q(λ) + 1)Advxdlin1

G,B (λ).

24

Proof. In this scheme, simulation-type signatures are of the form σ = (S̃0, S
′
1 = S1 · G−aγ , S′2 = S2 ·

Gγ , S3, S4, S5) for γ ∈ Zp. The outline of the proof follows that of Water’s dual signature scheme and is
quite similar to the proof of Theorem 7. We start with the following lemma.

Lemma 7. Any signature that is accepted by the verification algorithm must be either a normal-type sig-
nature or a simulation-type signature.

Proof. (of Lemma 7) We ignore the last row of verification equations that establish that msg is well-formed.
A signature has 3 random exponents, r1, r2, z. A simulation-type signature has an additional exponent γ.
We interpret S5 as Gr1 , so the first verification equation implies that S̃0 = (ÛmH̃)r1 . For fixed b ∈ Zp (Ĝb

is included in vk), there exists r2, z ∈ Zp such that S3 = Gbz , S4 = Gbr2 . If we fix S1 = GαV rG−aγ ,
then a remaining unknown value is S2. The verification equation is

e(S1, Ĝ
b)e(S2, Ĝ

ba)e(S3, Ĝ
a) = e(S4, R̃)e(S5, R̃

b)e(G, Ĝ)αb

so we can fix S2 = (V ′)rG−zGγ .

Based on the notion of simulation-type signatures, we consider a sequence of games. Let pi be the
probability that the adversary succeeds in Game i, and pnorm

i (λ) and psim
i (λ) be the probability that he

succeeds with a normal-type or simulation-type forgery respectively. Then by Lemma 7, pi(λ) = pnorm
i (λ)+

psim
i (λ) for all i.

Game 0: The actual Unforgeability under Extended Random Message Attacks game.

Lemma 8. There exists an adversary B1 such that psim
0 (λ) ≤ Advddh2G,B1

(λ).

Game i: The real security game except that the first i signatures that are given by the oracle are simulation-
type signatures.

Lemma 9. There exists an adversary B2 such that |pnorm
i−1 (λ)− pnorm

i (λ)| ≤ Advxdlin1G,B2
(λ).

Game q: All signatures given by the oracle are simulation-type signatures.

Lemma 10. There exists an adversary B3 such that pnorm
q (λ) ≤ Advco-cdh

G,B3
(λ).

We have shown that in Game q, A can output a normal-type forgery with at most negligible probability.
Thus, by Lemma 9 we can conclude that the same is true in Game 0. Since we have already shown that in
Game 0 the adversary can output simulation-type forgeries only with negligible probability, and that any
signature that is accepted by the verification algorithm is either normal or simulation-type, we conclude that
the adversary can produce valid forgeries with only negligible probability

Advuf-xrma
xSIG,A (λ) =p0(λ) = psim

0 (λ) + pnorm
0 (λ)

≤psim
0 (λ) +

q∑
i=1

|pnorm
i−1 (λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤Advddh2
G,B1

(λ) + qAdvxdlin1
G,B2

(λ) + Advco-cdh
G,B3

(λ)

≤Advddh2
G,B1

(λ) + (q + 1)Advxdlin1G,B (λ)

as stated. The last inequality holds since the CDH1 assumption is implied by the XDLIN1 assumption.

Proof. (of Lemma 8) We show that, if the adversary outputs a simulation-type forgery, then we can construct
algorithm B1 that solves the DDH2 problem. Algorithm B1 is given instance (Λ, Ĝ, Ĝs, Ĝa, Z̃ ∈ G2) of
DDH2, and simulates the verification key and the signing oracle for the signature scheme. (B1 does not
have the values a, s.)

25

B1 generates gk and vk as follows. It selects G ← G1, and exponents u, f1, f2 ← Z∗p, computes
F1 := Gf1 , F̂1 := Ĝf1 , F2 := Gf2 , F̂2 := Ĝf2 , U := Gu, Û := Ĝu, and sets them into gk. It also selects
exponents v, v′ ← Z∗p, computes V := Gv , V ′ := Gv

′
, V̂ := Ĝv , V̂ ′ := Ĝv

′
. Next, it selects exponents

b, α, h, ρ← Z∗p, computes H̃ := Ĝh, and

B̃ := Ĝb, Ã := Ĝa, B̃a := (Ĝa)b, R̃ := V̂ (V̂ ′)a = Ĝv(Ĝa)v, W̃ := R̃b = Ĝbv(Ĝa)bv

X1 := Gρ, X̃2 := Ĝαb/ρ, K1 := Gα, K2 := Gb ,

and sets them into vk and sk, accordingly.
B1 can generate normal-type signatures by using the (normal) signing algorithm since B1 has α, b and

V, V ′. For i-th signature, B1 randomly selects mi ∈ Zp, generates normal-type signature σi for message
(F̂mi1 , F̂mi2 , Ûmi), and gives ((F̂mi1 , F̂mi2 , Ûmi), σi,mi) to A.

If adversary A outputs a simulation-type forgery S1 := (GαV r) · G−aγ , S2 := ((V ′)rG−z) · Gγ ,
S3 := (Gb)−z , S4 := (Gb)r2 , S5 := Gr1 , and S0 := (M̃3H̃)r1 , for some r1, r2, z, γ ∈ Zp (r = r1 + r2)
for message msg = (F̂m1 , F̂

m
2 , Û

m), then B1 can compute (Gaγ , Gγ) from S1, S2 respectively. The reason
is as follows:
B1 has b, so it can compute Gz , Gr1 , Gr2 from S3 = Gbz , S5 = Gr1 , S4 = Gbr2 , respectively and

obtain Gr = Gr1+r2 , V r = Grv, (V ′)r = Grv
′

(B1 has v, v′). Thus, B1 can extract (Gaγ , Gγ) from S1

and S2 since it has α. B1 can solve the DDH2 problem by checking whether

e(Gγ , Z̃) = e(Gaγ , Ĝs)

or not because e(Gaγ , Ĝs) = e(G, Ĝ)asγ = e(Gγ , Ĝas). If Ẑ = Ĝas (DDH tuple), then the equation
holds. Thus, B1 solves the DDH2 problem whenever the adversary outputs a valid simulation-type forgery,
i.e., psim

0 (λ) ≤ Advddh2G,B1
(λ) as claimed.

Proof. (of Lemma 9) Given access to A playing pnorm
i−1 (λ) and pnorm

i (λ), we construct algorithm B2 that
solves the XDLIN1 problem with advantage |pnorm

i−1 (λ)− pnorm
i (λ)|.

B2 is given instance (Λ, G1, G2, G3, Ĝ1, Ĝ2, Ĝ3, X, Y, X̂, Ŷ , Z ∈ G1) of the XDLIN1 problem. It
implicitly holds that G1 = Gb2, Ĝ1 = Ĝb2, X = Gx1 , Y = Gy2, X̂ = Ĝx1 , Ŷ = Ĝy2 for some b, x, y ∈ Zp.
B2 generates the group elements in gk and vk as follows: It selects exponents ξ, β, χ1, χ2, ϕ ← Z∗p such
that ξm + β = 0 where m ∈ Zp is the exponent of the i-th random message. (If ξm + β = 0, then
it holds that (ÛmH̃) = Ĝmχ1+χ2

2 Ĝξm+β
3 = Ĝmχ1+χ2

2 . Note that ξ and β are information theoretically
hidden even given m, so the adversary has only negligible chance of producing another message Ûm

∗
such

that ξm∗ + β = 0.) It then computes G := G2, Ĝ := Ĝ2, F1 := Gϕ1 , F̂1 := Ĝϕ1 , F2 := G3, F̂2 := Ĝ3,
U := Gχ1

2 Gξ3, Û := Ĝχ1

2 Ĝξ3, sets into gk, and then compute H̃ := Ĝχ2

2 Ĝβ3 . It also chooses a, δ, v′ ← Z∗p
and computes V := G−aδ3 , V ′ := Gδ3G

v′

2 , V̂ := Ĝ−aδ3 , V̂ ′ := Ĝδ3Ĝ
v′

2 . Next it chooses α, ρ ← Z∗p,
computes

B̃ := Ĝ1, Ã := Ĝa2 , B̃a := Ĝa1 , R̃ := V̂ (V̂ ′)a = Ĝv
′a

2 , W̃ := (V̂ (V̂ ′)a)b = Ĝv
′a

1 ,

X1 := Gρ2, X̃2 := (Ĝ1)α/ρ, K1 := Gα2 , K2 := Gb2 = G1 ,

and them sets them into vk and sk, accordingly.
Since B2 has a, it can compute Ga and further generate simulation-type signatures. Now B2 simulates

signatures for j-th random message as follows.

Case j > i: B2 randomly selectsmj ∈ Zp, generates normal-type signature σj for message (F̂
mj
1 , F̂

mj
2 , Ûmj)

by using sk = (vk,Gα2 , G
b
2, V, V

′), and gives ((F̂
mj
1 , F̂

mj
2 , Ûmj), σj ,mj) to A.

Case j = i: B2 embeds the instance as follows. For the i-th randomly chosen message msg = (F̂m1 , F̂
m
2 ,

Ûm) ∈ G3
2, B2 implicitly sets r1 := y, r2 := x and computes S4 := Gbr2 = Gx1 , S5 := Gr1 = Gy2 .

B2 can compute S̃0 := (Ĝy2)mχ1+χ2 = (ÛmH̃)r1 . Next, in order to compute V r and (V ′)r, B2
computes (Gr1+r23)−aδ as Z−aδ . If Z = Gx+y3 , then this will be correct. If Z = Gζ3 for ζ ← Zp,

26

then we let Gγ := G
δ(ζ−(x+y))
3 and this will be a simulation-type signature. B2 chooses s ← Zp

and implicitly sets G−z := G−v
′r2+s

2 . These value are not computable but B2 can compute Gzb =

Gxv
′−s

1 . S2 := (Gy2)v
′
ZδGs2 = Gr1v

′+r2v
′

2 ZδGs−r2v
′

2 = Grv
′

2 ZδG−z . B2 generates a signature
σ := (S̃0, . . . , S5) as follows:

S̃0 := (Ĝy2)mχ1+χ2 S1 := Gα2Z
−aδ S2 := (Gy2)v

′
ZδGs2

S3 := (Gx1)v
′
G−s1 S4 := Gx1 S5 := Gy2.

B2 can generate S0 correctly since B2 set ξm+ β = 0. B2 gives ((F̂m1 , F̂
m
2 , Û

m), σ,m) to A.

• If Z = Gx+y3 ∈ G1, the above signature is a normal-type signature with Z = Gr3, S1 =

Gα2G
−aδr
3 = Gα2V

r, and S2 = (Gv
′

2 G
δ
3)rG−z = (V ′)rG−z .

• If Z ← G1, the above signature is a simulation-type signature since Z = Gζ3 for some ζ ← Zp,
S1 = Gα2G

−aδr
3 G−aδζ3 Gaδr3 = Gα2V

rG
−aδ(ζ−(x+y))
3 = GαV rG−aγ since Gδ(ζ−(x+y))3 = Gγ ,

and S2 = Grv
′

2 Grδ3 G
δ(ζ−(x+y))
3 G−z = (V ′)rGγG−z .

Case j < i: B2 randomly selectsmj ∈ Zp, generates simulation-type signature σj for message (F̂
mj
1 , F̂

mj
2 , Ûmj)

by using sk and Ga2 , and gives ((F̂
mj
1 , F̂

mj
2 , Ûmj), σj ,mj) to A.

If Z = Gx+y3 (linear), then A is in pnorm
i−1 (λ), otherwise A is in pnorm

i (λ). For all messages, B2 can return
µ(Mi) = mi.

At some point, A outputs forgery (S̃∗0 , S
∗
1 , . . . , S

∗
5) and message msg∗ = (Q̃1, Q̃2, Q̃3) = (F̂m

∗

1 ,

F̂m
∗

2 , Ûm
∗
). B2 outputs 1 if and only if

e(G1, S̃0) · e(S4, Q̃
ξ
2Ĝ

β
3) = e((S1G

−αa1
2)1/(−aδ), (Q̃

1/ϕ
1)ξĜβ1) · e(S5, (Q̃

1/ϕ
1)χ1Ĝχ2

1).

By Lemma 7, there exist m∗, r∗1 , r
∗
2 , γ
∗, r∗ = r∗1 + r∗2 such that S̃0 = (Ûm

∗
H̃)r

∗
1 , S1 = Gα2V

r∗G−aγ
∗

2 ,
S4 = G

r∗2
1 , S5 = G

r∗1
2 , Q̂1 = (Ĝϕ1)m

∗
, Q̂2 = Ĝm

∗

3 . Rephrased in terms of our parameters, this means

S̃0 = (Ĝm
∗χ1+χ2

2 Ĝξm
∗+β

3)r
∗
1 S1 = Gα2G3

−aδr∗G−aγ
∗

2

S4 = G1
r∗2 S5 = G

r∗1
2 .

Plugging this into the above computation, we have the left hand side is

e(G1, S̃0) · e(S4, Q̂
ξ
2Ĝ

β
3) =e(G1, (Ĝ

m∗χ1+χ2

2 Ĝξm
∗+β

3)r
∗
1) · e(Gr

∗
2

1 , (Ĝ
m∗

3)ξĜβ3)

=e(G1, Ĝ2)(m
∗χ1+χ2)r

∗
1 e(G1, Ĝ3)(ξm

∗+β)r∗1 e(G1, Ĝ3)(ξm
∗+β)r∗2

and the right hand side is

e((S1G
−α
2)1/(−aδ), (Q̂

1/ϕ
1)ξĜβ1) · e(S5, (Q̂

1/ϕ
1)χ1Ĝχ2

1)

=e(Gr
∗

3 G
γ∗/δ
2 , Ĝξm

∗+β
1) · e(Gr

∗
1

2 , Ĝ
m∗χ1+χ2

1)

=e(G3, Ĝ1)(ξm
∗+β)r∗e(G2, Ĝ1)γ

∗/δ(ξm∗+β)e(G2, Ĝ1)(m
∗χ1+χ2)r

∗
1 .

A simplified equation is 1 = e(G2, Ĝ1)γ
∗/δ(ξm∗+β).

Thus, the difference of A’s advantage in two games gives the advantage of B2 in solving the XDLIN1

problem as stated.

Proof. (of Lemma 10) Observe that, in pnorm
q (λ), A is given simulation-type signatures only. We show that

if A outputs a normal-type forgery in pnorm
q (λ) then we can construct algorithm B3 that solves the co-CDH

problem.

27

B3 is given instance (Λ, G, Ĝ,Gx, Gy, Ĝx, Ĝy) of the co-CDH problem. B3 generates the verification
key as follows: B3 selects exponents u, h, f1, f2 ← Z∗p, computes F1 := Gf1 , F̂1 := Ĝf1 , F2 := Gf2 ,
F̂2 := Ĝf2 , U := Gu, Û := Ĝu, and sets them into gk. B3 also selects exponents v, v′ ← Z∗p, computes
V := Gv , V ′ := Gv

′
, V̂ := Ĝv , V̂ ′ := Ĝv

′
. Next, it also selects exponents h, b, ρ′ ← Z∗p, computes

H̃ := Ĝh and

B̃ := Ĝb, Ã := Ĝy, B̃a := (Ĝy)b, R̃ := V̂ (V̂ ′)a = V̂ (Ĝy)v
′
, W̃ := R̃b = (V̂ (Ĝy)v

′
)b

X1 := (Gx)ρ
′
, X̃2 := (Ĝy)b/ρ

′
, K2 := Gb ,

and sets them into vk and sk, accordingly. Note that it means implicitly ρ = ρ′x and α = xy though
B3 does not have α, ρ. Therefore B3 does not have K1 = Gα = Gxy , and cannot compute normal-type
signatures. For i-th message, B3 randomly select mi ∈ Zp and outputs simulation-type signatures for each
random message msg i = (F̂mi1 , F̂mi2 , Ûmi) as follows:
B3 selects r1, r2, z, γ′ ← Zp, sets r := r1 + r2 (we want to set γ := x+ γ′), and computes:

S1 := (Gy)−γ
′
· V r = (GαV r) ·G−aγ (a = y, xy = α)

S2 := Gγ
′
Gx(V ′)rG−z = ((V ′)rG−z) ·Gγ

S3 := (Gb)z S4 := Gr2b S5 := Gr1 S̃0 := (ÛmiH̃)r1 .

B3 gives ((F̂mi1 , F̂mi2 , Ûmi), σi,mi) where σi := (S̃0, S1, . . . , S5) to A.
At some point,A outputs a normal-type forgery, S∗1 = GαV r

∗
, S∗2 = (V ′)r

∗
G−z

∗
, S∗3 = (Gb)z

∗
, S∗4 =

Gr
∗
2b, S∗5 = Gr

∗
1 , and S̃∗0 = (Ûm

∗
H̃)r

∗
1 , for some r∗1 , r

∗
2 , z
∗,∈ Zp for message msg∗ = (F̂m

∗

1 , F̂m
∗

2 , Ûm
∗
).

By using these values, B3 can computeGr
∗
2 = (S∗4)1/b,Gr

∗
1 = S∗5 ,Gz

∗
= (S∗3)1/b, V r

∗
= (Gr

∗
1 ·Gr∗2)v

since V = Gv . Thus, B3 can compute S∗1/V
r∗ = Gα = Gxy . That is, B3 can solve the co-CDH problem

and it holds that pnorm
q (λ) ≤ Advco-cdh

G,B3
(λ) as claimed.

Remark 3. It is difficult to modify xSIG so as to rely on the DDH1 and DDH2 assumption, that is, only
on the SXDH assumption because we are not given instances in group G2 and cannot simulate verification
keys in group G2 under the DDH1 assumption when we prove a similar statement to Lemma 9 by using
DDH1. Constructing XRMA-secure SPS scheme only from the SXDH assumption is an important open
problem since it will save on the number of group elements in a signature and a verification key. Moreover,
it is non-trivial to modify xSIG so as to rely on the DDH1 and XDLIN1 because if we use assumptions only
over G1, then all elements in a signature must be in G1. It means that a message must consist of elements
in both G1 and G2, which we would like to avoid.

6.5 Security and efficiency of resulting SIG2

Let SIG2 be the scheme obtained from POSb and xSIG. SIG2 is structure-preserving as vk, σ, and msg
consist of group elements from G1 and G2, and SIG2.Vrf evaluates pairing product equations. From Theo-
rem 3, 10, and 11, we obtain the following theorem.

Theorem 12. SIG2 is a structure-preserving signature scheme that is unforgeable against adaptive chosen
message attacks if SXDH and XDLIN1 hold for G. In particular, for any p.p.t. algorithmA for SIG2 making
at most qs(λ) signing queries, there exist p.p.t. algorithms B, C such that Advuf-cma

SIG2,A(λ) ≤ (qs(λ) + 1) ·
Advdlin

G,B(λ) + 2 · Advsxdh
G,C (λ) + 2/p(λ), where p(λ) is the size of the groups produced by G.

Table 3 summarizes the efficiency of SIG2 for both unilateral messages consisting of k elements and bi-
lateral messages consisting of k1 and k2 elements in G1 and G2, respectively. We count the number of group
elements in public components of SIG2. Note that the default generators in gk is not included in the count.
For comparison, we also evaluate the efficiency of the schemes in [4, Section 5.2] and [5, Section 5.2]. For
bilateral messages, the scheme from [4] is combined with POSb from Section 6.3. Since the scheme in

28

Scheme |msg | |gk|+ |vk| |σ| #(PPE) Assumptions
[4] (k1, 0) (5, 2k1 + 9) (5, 2) 2 q-SFP
[5] (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (5, k1 + 12) (7, 4) 5 SXDH, XDLIN1

POSb + [4] (k1, k2) (k2 + 12, k1 + 7) (8, 5) 4 q-SFP
[5] (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 6, k1 + 13) (8, 6) 6 SXDH, XDLIN1

Table 3: Efficiency of SIG2 and comparison to other schemes with constant-size signatures. The upper half
is for unilateral messages and the lower half is for bilateral messages. Notation (x, y) represents x elements
in G1 and y in G2.

[4] can sign a single group element, extended part of one-time verification key from POSb.Update can be
dropped and gk need to include only one generator for each G1 and G2.

In Table 4 and Table 5, we assess the size of proofs for showing ones possession of a valid signature
and message of SIG2 by using the GS-proof system as NIWI or NIZK. The general formulas are the same
as those in (14) to (17) except that witnesses and linear equations in G1 and G2 are considered separately.
(We say that an equation is linear in G1 if all variables in the equation are in G1.) By (x, y), we denote x
and y elements in G1 and G2, respectively. Similarly, by (x, y, z), we denote additional element z in Zp.
In this asymmetric setting, we have |com| = (2, 0, 0) for committing to G1 elements, and |com| = (0, 2, 0)
for G2. Proof size for linear equation in G1 and G2 is |πL| = (0, 2, 0) and (2, 0, 0), respectively. We also
have |πNL| = (4, 4, 0) and |πMS | = (0, 0, 2).

We first consider the cases of NIWI shown in Table 4. For unilateral messages, we have |σwit| =
(7, 4) group elements and |σrnd| = (0, 0). Verifying POSu1 consists of one non-linear relation (19), and
verifying xSIG consists of one linear equation in G1 (23), two linear equations in G2 (25, 26) and one non-
linear equation (24). Thus, |NIWI(σ)| = ((2, 0, 0) × 7 + (0, 2, 0) × 4) + 0 + (4, 4, 0) × 2 + ((0, 2, 0) ×
1 + (2, 0, 0) × 2) = (26, 18, 0). For bilateral messages, we have |σwit| = (8, 6) group elements and
|σrnd| = (0, 0). Verifying POSb consists of verification for POSu1 and POSu2, which are two non-linear
relations in total. (They are non-linear since one-time public-key A is in G1 whereas signature Z̃, R̃ are
in G2.) Equations for xSIG are the same as above. Thus |NIWI(σ)| = ((2, 0, 0) × 8 + (0, 2, 0) × 6) +
0 + (4, 4, 0) × 3 + ((0, 2, 0) × 1 + (2, 0, 0) × 2) = (32, 26, 0). For NIWI(σ,msg), we add (2k1, 0) and
(2k1, 2k2) elements for the commitment of the message in unilateral and bilateral case, respectively. Hence
|NIWI(σ,msg)| = (2k1 + 26, 18, 0) for unilateral case, and |NIWI(σ,msg)| = (2k1 + 32, 2k2 + 26, 0) for
bilateral case.

We next consider the cases of NIZK. Additional elements comes from public constants to commit to,
and the proof of their correct commitment. For NIZK(σ), every element in a message are regarded as public
constants that are input to constant pairings. And xSIG involves one constant pairing e(X1, X̃2) where we
commit to X1 so that (23) remains a linear equation. We thus have k1 + 1 constants to commit to in G1

for the unilateral case, and k1 + 1 and k2 constants to commit to in G1 and G2 respectively in the bilateral
case. By wrapping up, we have |NIZK(σ)| = |NIWI(σ)| + (2, 0, 0) × (k1 + 1) + (0, 0, 2) × (k1 + 1) =
(2k1+28, 18, 2k1+2) for the unilateral case, and |NIZK(σ)| = |NIWI(σ)|+(2, 0, 0)×(k1+1)+(0, 2, 0)×
k2 + (0, 0, 2) × (k1 + k2 + 1) = (32, 26, 0) + (2k1 + 2, 0, 0) + (0, 2k2, 0) + (0, 0, 2k1 + 2k2 + 2) =
(2k1 + 34, 2k2 + 26, 2k1 + 2k2 + 2) for the bilateral case. For NIZK(σ,msg) where messages are already
committed, additional elements are from committing toX1 compared to the case of NIWI(σ,msg). We thus
have |NIZK(σ,msg)| = |NIWI(σ,msg)| + (2, 0, 0) × 1 + (0, 0, 2) × 1 = (2k1 + 28, 18, 2) for unilateral
case, and |NIZK(σ,msg)| = |NIWI(σ,msg)|+ (2, 0, 0)× 1 + (0, 0, 2)× 1 = (2k1 + 34, 2k2 + 26, 2) for
bilateral case.

SIG2 |NIWI(σ)| |NIWI(σ,msg)|
Unilateral (26, 18, 0) (2k1 + 26, 18, 0)
Bilateral (32, 26, 0) (2k1 + 32, 2k2 + 26, 0)

Table 4: Costs of WI proofs with the GS proof system of valid signature of SIG2 for unilateral and bilateral
messages. Entry (x, y, z) denotes x, y, and z elements in G1, G2, and Zp respectively.

29

SIG2 |NIZK(σ)| |NIZK(σ,msg)|
Unilateral (2k1 + 28, 18, 2k1 + 2) (2k1 + 28, 18, 2)
Bilateral (2k1 + 34, 2k2 + 26, 2k1 + 2k2 + 2) (2k1 + 34, 2k2 + 26, 2)

Table 5: Costs for proving valid signature of SIG2 for unilateral and bilateral messages in ZK with the GS
proof system.

7 Applications

We list a few recent examples of applications of SPS that benefit from our results.

• Group Signatures with Efficient Revocation and Compact Verifiable Shuffles. Using our SIG1 scheme
from Section 5 both the construction of a group signature scheme with efficient revocation by Lib-
ert, Peters and Yung [41] and the construction of compact verifiable shuffles by Chase et al. [21]
can be proven purely under the DLIN assumption. All other building blocks already have efficient
instantiations based on DLIN.

• Tightly-secure Structure-preserving Signatures. Hofheinz and Jager [38] construct a tightly-secure
one-time signature scheme and use it to construct s tightly-secure tree-based SPS scheme, say tSIG.
Instead, we propose to use our partial one-time scheme to construct tSIG. As the resulting tSIG is
secure against non-adaptive chosen message attacks, it is secure against extended random message
attacks as well. We then combine the POSb scheme and the new tSIG scheme according to our
second generic construction. The resulting signature scheme is significantly more efficient than [38]
and is a SPS scheme with a tight security reduction to SXDH. As shown in [3], the same is possible
in Type-I groups by using the tagged one-time signature scheme in Section 5.2 whose security tightly
reduced to DLIN.

• Simulation-sound and Simulation-extractable NIZK. In [3], we also show how to construct more
efficient simulation-sound and simulation-extractable non-interactive zero-knowledge (SS-NIZK &
SE-NIZK) proof systems. While in [3] we were primarily interested in tightly-secure NIZK and thus
used the tree-based tSIG scheme, RMA-security suffices for constructing unbounded SS-NIZK and
SE-NIZK schemes. Our rSIG and xSIG schemes can thus be used directly to construct even more
efficient unbounded SE-NIZK if one lifts the requirement of a tight reduction.

• Tightly-secure Structure-preserving CCA-secure Public-key Encryption. Following the approach
of [38] and [3], tightly-secure SE-NIZK enables tightly-secure and structure-preserving CCA-secure
public-key encryption under standard decisional assumptions.

• Efficient Adaptive Oblivious Transfer. Hohenberger and Green proposed a universally composable
(UC) adaptive oblivious transfer (AOT) protocol by using an SPS scheme based on a q-type assump-
tion [34]. Thus their protocol relies on a q-type assumptions and constructing an efficient UC AOT
protocol from only standard assumptions was an open problem. As a corollary of our result, we can
obtain a UC AOT protocol based on only standard assumptions by replacing their SPS scheme with
ours.

As an application of our schemes, Abe, Camenisch, Dubovitskaya, and Nishimaki proposed a UC
AOT with hidden access control protocol from standard assumptions by using our schemes [1].
Moreover, they proposed an XRMA-secure SPS scheme only from the SXDH assumption based
on another (non-structure-preserving) signature scheme by Chen, Lim, Ling, Wang, and Wee [22].
However, their scheme is less efficient than ours since their construction technique is different from
ours and their message space is large.

30

8 Conclusions and Open Questions

We showed how to construct constant-size SPS consisting of only 11 to 14 group elements based on
simple assumptions such as DLIN for symmetric pairings and analogues of DDH and XDLIN for
asymmetric pairings. Our approach is modular and divides the problem into the need to construct
constant-size RMA/xRMA secure SPS and constant-size structure-preserving one-time signatures.
This is in line with the promise of [8] that SPS enable modular protocol design. Indeed this modularity
facilitates applications in which one can cherry pick primitives according to requirements.

A tight bound for the size of SPS under simple assumptions is an important open question, and
would shed light on the overhead of such a modular approach. It is also still an open question to
construct efficient RMS/xRMA secure SPS schemes from only the SXDH assumption. Similarly,
constructing (X)RMA-secure schemes with a message space that is a simple Cartesian product of
groups without sacrificing efficiency and constructing more efficient RMA-secure schemes, which
may not necessarily be XRMA-secure are interesting open problems. All RMA-secure signature
schemes developed in this paper are in fact XRMA-secure.

References

[1] M. Abe, J. Camenisch, M. Dubovitskaya, and R. Nishimaki. Universally composable adaptive
oblivious transfer (with access control) from standard assumptions. In DIM’13, Proceedings of
the 2013 ACM Workshop on Digital Identity Management, Berlin, Germany, November 8, 2013,
pages 1–12. ACM, 2013. (Cited on page 30.)

[2] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-size
structure-preserving signatures generic constructions and simple assumptions. In Advances in
Cryptology — Asiacrypt ’12, LNCS. Springer-Verlag, 2012. (Cited on page i, 1.)

[3] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Tagged one-time signatures:
Tight security and optimal tag size. In PKC ’13, LNCS. Springer-Verlag, 2013. (Cited on page i,
1, 30.)

[4] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signa-
tures and commitments to group elements. In Advances in Cryptology - CRYPTO, LNCS, pages
209–237, 2010. (Cited on page 1, 4, 19, 20, 28, 29.)

[5] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo. Optimal structure-prserving signatures
in asymmetric bilinear groups. In Advances in Cryptology — CRYPTO ’11, LNCS. Springer-
Verlag, 2011. (Cited on page 1, 28, 29.)

[6] M. Abe, J. Groth, and M. Ohkubo. Separating short structure preserving signatures from non-
interactive assumptions. In Advances in Cryptology – Asiacrypt 2011, LNCS. Springer-Verlag,
2011. (Cited on page 2.)

[7] M. Abe, J. Groth, M. Ohkubo, and T. Tango. Converting cryptographic schemes from symmetric
to asymmetric bilinear groups. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology
- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science, pages 241–260.
Springer, 2014. (Cited on page 12.)

[8] M. Abe, K. Haralambiev, and M. Ohkubo. Signing on group elements for modular protocol de-
signs. IACR ePrint Archive, Report 2010/133, 2010. http://eprint.iacr.org. (Cited
on page 1, 4, 10, 21, 31.)

[9] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind sig-
natures. IJACT, 2(3):229–249, 2012. (Cited on page 1.)

[10] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, and H. Shacham. Ran-
domizable proofs and delegatable anonymous credentials. In S. Halevi, editor, CRYPTO, vol-
ume 5677 of LNCS, pages 108–125. Springer, 2009. (Cited on page 1.)

31

http://eprint.iacr.org

[11] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal defini-
tions, simplified requirements and a construction based on general assumptions. In E. Biham,
editor, Advances in Cryptology - EUROCRPYT ’03, volume 2656 of LNCS, pages 614–629,
2003. (Cited on page 1.)

[12] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of LNCS,
pages 136–154. Springer-Verlag, 2005. Full version available at IACR e-print 2004/077. (Cited
on page 1.)

[13] M. Bellare and S. Shoup. Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir
without random oracles. In Public-Key Cryptography, volume 4450 of LNCS, pages 201–216,
2007. (Cited on page 2, 6.)

[14] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, Advances
in Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages 41–55. Springer-Verlag, 2004.
(Cited on page 4.)

[15] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume
2656 of LNCS, pages 416–432. Springer-Verlag, 2003. (Cited on page 1.)

[16] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure against key
dependent chosen plaintext and adaptive chosen ciphertext attacks. In Advances in Cryptology
- EUROCRYPT 2009, volume 5479 of LNCS, pages 351–368. Springer-Verlag, 2009. (Cited on
page .)

[17] J. Camenisch, M. Dubovitskaya, and K. Haralambiev. Efficiently signing group elements under
simple assumptions. Unpublished Manuscript, available from the authors. (Cited on page 3.)

[18] J. Camenisch, M. Dubovitskaya, and K. Haralambiev. Efficient structure-preserving signature
scheme from standard assumptions. In SCN, volume 7485 of LNCS, pages 76–94. Springer,
2012. (Cited on page 3.)

[19] J. Cathalo, B. Libert, and M. Yung. Group encryption: Non-interactive realization in the stan-
dard model. In M. Matsui, editor, Advances in Cryptology - ASIACRYPT, volume 5912 of
LNCS, pages 179–196, 2009. (Cited on page 4.)

[20] M. Chase and M. Kohlweiss. A new hash-and-sign approach and structure-preserving signatures
from DLIN. In SCN, volume 7485 of LNCS, pages 131–148. Springer, 2012. (Cited on page 1,
3.)

[21] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and
applications. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of LNCS,
pages 281–300. Springer, 2012. (Cited on page 1, 30.)

[22] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee. Shorter identity-based encryption via
asymmetric pairings. Des. Codes Cryptography, 73(3):911–947, 2014. (Cited on page 30.)

[23] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in
the presence of key leakage. In ASIACRYPT, pages 613–631, 2010. (Cited on page .)

[24] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–
437, 2000. (Cited on page 1.)

[25] C. Dwork and M. Naor. An efficient existentially unforgeable signature scheme and its applica-
tions. J. Cryptology, 11(3):187–208, 1998. (Cited on page 1.)

[26] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. J. Cryptology, 9(1):35–
67, 1996. (Cited on page 2, 5.)

[27] M. Fischlin. Round-optimal composable blind signatures in the common reference model. In
C. Dwork, editor, Advances in Cryptology — CRYPTO, volume 4117 of LNCS, pages 60–77,
2006. (Cited on page 1.)

[28] G. Fuchsbauer. Commuting signatures and verifiable encryption. In Advances in Cryptology —
Eurocrypt ’11, LNCS, pages 224–245. Springer-Verlag, 2011. (Cited on page 1.)

32

[29] G. Fuchsbauer and D. Pointcheval. Anonymous proxy signatures. In R. Ostrovsky, R. D. Prisco,
and I. Visconti, editors, SCN, volume 5229 of LNCS, pages 201–217. Springer, 2008. (Cited on
page 1.)

[30] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud. Transferable constant-size fair e-cash. In J. A.
Garay, A. Miyaji, and A. Otsuka, editors, CANS, volume 5888 of LNCS, pages 226–247, 2009.
(Cited on page 1.)

[31] G. Fuchsbauer and D. Vergnaud. Fair blind signatures without random oracles. In
AFRICACRYPT, pages 16–33, 2010. (Cited on page 1.)

[32] S. D. Galbraith, K. G. Peterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 12008. (Cited on page 3.)

[33] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, April 1988. (Cited on
page 1, 3.)

[34] M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer. In
J. Pieprzyk, editor, Advances in Cryptology - ASIACRYPT, volume 5350 of LNCS, pages 179–
197, 2008. (Cited on page 1, 30.)

[35] M. Green and S. Hohenberger. Practical adaptive oblivious transfer from simple assumptions.
In Y. Ishai, editor, TCC, volume 6597 of LNCS, pages 347–363. Springer, 2011. (Cited on
page 1.)

[36] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group sig-
natures. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006, volume
4284 of LNCS, pages 444–459. Springer-Verlag, 2006. (Cited on page 1, 3.)

[37] J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J.
Comput., 41(5):1193–1232, 2012. (Cited on page 1, 20.)

[38] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In CRYPTO,
volume 7417 of LNCS, pages 590–607. Springer, 2012. (Cited on page 1, 3, 30.)

[39] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation. In
A. Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages
553–571. Springer-Verlag, 2007. (Cited on page .)

[40] A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In Advances in
Cryptology – Eurocrypt 2005, volume 3494 of LNCS, pages 198–214. Springer-Verlag, 2005.
(Cited on page 1.)

[41] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation. In Advances in
Cryptology – Eurocrypt 2012, LNCS. Springer-Verlag, 2012. (Cited on page 30.)

[42] Y. Lindell. A simpler construction of CCA2-secure public-key encryption under general as-
sumptions. J. Cryptology, 19(3):359–377, 2006. (Cited on page 1.)

[43] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC’90, pages 427–437, 1990. (Cited on page 1.)

[44] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of Waters’ dual system primitives using
asymmetric pairings - (extended abstract). In M. Fischlin, J. Buchmann, and M. Manulis, edi-
tors, Public Key Cryptography, volume 7293 of LNCS, pages 298–315. Springer, 2012. (Cited
on page 24.)

[45] M. Rückert and D. Schröder. Security of verifiably encrypted signatures and a construction
without random oracles. In H. Shacham and B. Waters, editors, Pairing, volume 5671 of LNCS,
pages 17–34. Springer, 2009. (Cited on page 1.)

[46] A. Sahai. Non-malleable non-interactive zero-knowledge and chosen-ciphertext security. In
FOCS’99, pages 543–553, 1999. (Cited on page 1.)

[47] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In J. Kilian, editor, CRYPTO, volume 2139 of LNCS, pages 566–598. Springer,
2001. (Cited on page 1.)

33

[48] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume 2139 of
LNCS, pages 566–598. Springer-Verlag, 2001. (Cited on page .)

[49] H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from pro-
gressively weaker linear variants. IACR ePrint Archive, Report 2007/x, 2007. (Cited on page .)

[50] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS, pages 256–266. Springer-
Verlag, 1997. (Cited on page 4.)

[51] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple as-
sumptions. In Advances in Cryptology - CRYPTO 2009, pages 619–636. Springer-Verlag, 2009.
(Cited on page 2, 13, 34.)

A Waters’ Dual System Signature Scheme

We review Waters’ dual system signature scheme [51] in this section.
[Scheme WdSIG]

WdSIG.Key(gk): Given gk := (Λ, G) as input, sample V, V1, V2, H, I, U uniformly from G∗ and
a1, a2, b, and α from Z∗p. Then compute

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a11 , R2 := V V a22 , W1 := Rb1, W2 := Rb2,

T := e(G,G)α·a1·b K1 := Gα, K2 := Gα·a1 ,

and output vk := (B,A1, A2, B1, B2, R1, R2,W1,W2, H, I, U, T) and sk := (vk,K1,K2, V, V1, V2).

WdSIG.Sign(sk,msg): Parse sk into (vk,K1,K2, V, V1, V2). Also parse vk accordingly. For msg ∈
Zp, pick random r1, r2, z1, z2, tagk ∈ Zp. Let r = r1 + r2. Compute and output signature
σ := (S1, . . . S7, S0, tagk) where

S1 := K2V
r, S2 := K−11 V r1 G

z1 , S3 := B−z1 , S4 := V r2 G
z2 ,

S5 := B−z2 , S6 := Br2 , S7 := Gr1 , S0 := (UmsgItagkH)r1 .

WdSIG.Vrf(vk, σ,msg): Parse σ into (S1, . . . , S7, S0, tagk). Also parse vk accordingly. Pick ran-
dom s1, s2, t and tagc from Zp, compute

C1 := Bs1+s2 , C2 := Bs11 , C3 := As11 , C4 := Bs22 ,

C5 := As22 , C6 := Rs11 R
s2
2 , C7 := W s1

1 W s2
2 , E1 := (UmsgItagcH)r1 , E2 := Gt,

and if tagc − tagk 6= 0, verify

e(C1, S1) · e(C2, S2) · e(C3, S3) · e(C4, S4) · e(C5, S5),

=e(C6, S6) · e(C7, S7) · (e(E1, S7)/e(E2, S0))1/(tagc−tagk) · T s2 .

34

	Introduction
	Our contribution
	Related Works

	Preliminaries
	Notation
	Bilinear groups
	Assumptions

	Definitions
	Common setup
	Signature schemes
	Partial one-time and tagged one-time signatures
	Structure-preserving signatures

	Generic Constructions
	SIG1: Combining tagged one-time and RMA-secure signatures
	SIG2: Combining partial one-time and XRMA-secure signatures

	Instantiating SIG1
	Setup for Type-I groups
	Tagged one-time signature scheme
	RMA-secure signature scheme
	Security and efficiency of resulting SIG1

	Instantiating SIG2
	Setup for Type-III groups
	Partial one-time signatures for unilateral messages
	Partial one-time signatures for bilateral messages
	XRMA-secure signature scheme
	Security and efficiency of resulting SIG2

	Applications
	Conclusions and Open Questions
	Waters' Dual System Signature Scheme

