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2 Consistency of the posterior distribution in

generalised linear inverse problems

Natalia Bochkina
University of Edinburgh, UK

Abstract

For ill-posed inverse problems, a regularised solution can be inter-

preted as a mode of the posterior distribution in a Bayesian framework.

This framework enriches the set the solutions, as other posterior es-

timates can be used as a solution to the inverse problem, such as the

posterior mean. Bayesian formulation of an ill-posed inverse prob-

lem is also natural for scientists as it uses a priori information in a

rigourous probabilistic framework, and the posterior distribution can

be viewed as a set of possible solutions to the considered ill-posed in-

verse problem, with a weight characterising how well it is supported

by the data and the prior information.

In this paper we study properties of Bayesian solutions to ill-posed

inverse problems, namely consistency and the rate of convergence in

the Ky Fan metric. We consider the cases where the error distribution

is not necessarily Gaussian, but belongs to a particular type of mod-

els we refer to as Generalised Linear Inverse Problems. This setting

includes some models where the response depends on the unknown

parameter nonlinearly. We also consider a particular case of the un-

known parameter being on the boundary of the parameter set, and

show that the rate of convergence in this case is faster than in the

case the unknown parameter is an interior point.

Some key words: Ky Fan metric, consistency, rates of convergence, inverse prob-

lems, Bayesian inference, nonregular likelihood, boundary, constrained ill-posed

inverse problem.
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1 Introduction

1.1 Ill-posed problems and regularisation

Inverse problems encountered in nature are commonly ill-posed: their so-
lutions fail to satisfy at least one of the three desiderata of existing, being
unique, and being stable. Thus, in the case of linear inverse problems, the
focus is not on a unique solution x of

y = Ax, (1)

for given matrix A and data vector y, but rather on the corresponding space
of solutions.

Even when the solution x to (1) exists and is unique for each possible y,
lack of stability means that the solution can be extremely sensitive to small
errors, either in the observed y or in numerical computations for solving the
equations. This has obvious deleterious consequences for the practical value
of solutions. To circumvent this, the inverse problem is typically regularised,
that is, re-formulated to include additional criteria, such as smoothness of
the solution:

x = argminy=Axpen(x),

where pen(x) is a suitable scalar penalty function.
If the data is observed with error

y = Ax+ error,

then, allowing for the possibility of lack of existence or uniqueness, we might
replace the natural least-squares formulation

x = argmin||y − Ax||2

of the inverse problem by

x = argmin||y − Ax||2 + ν pen(x) (2)

where ν a positive constant determining the trade-off between accuracy and
smoothness. For further details, see ?.

Such solutions make sense, and are commonly used, whether we regard
the error in the data used as deterministic or stochastic in nature. The least-
squares set up is rather natural, but from a statistical perspective corresponds
to a Gaussian likelihood, and, as we shall see below, this may be replaced
by certain other distributions, in most cases without material change to the
subsequent analysis.
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1.2 Inverse problems from a Bayesian perspective

Smoothness, or other ‘regular’ behaviour of the solution to an inverse prob-
lem, is a prior assumption on the unknown x, information about the model
parameters known or assumed before the data are observed. To use such
information is thus to accept that the required solution must combine data
with prior information. In a statistical context the best-established principle
for doing this is the Bayesian paradigm, in which all sources of variation,
uncertainty and error are quantified using probability.

From this perspective, the solution to (2) is immediately recognisable
– it is the maximum a posteriori (MAP) estimate of x, the mode of its
posterior distribution in a Bayesian model in which the data y are modelled
with a Gaussian distribution with expectation Ax, with constant-variance
uncorrelated errors, and in which the prior distribution of x has negative
log-density proportional to pen(x).

However, the Bayesian perspective brings more than merely a different
characterisation of a familiar numerical solution. Formulating a statistical
inverse problem as one of inference in a Bayesian model has great appeal,
notably for what this brings in terms of coherence, the interpretability of reg-
ularisation penalties, the integration of all uncertainties, and the principled
way in which the set-up can be elaborated to encompass broader features
of the context, such as measurement error, indirect observation, etc. The
Bayesian formulation comes close to the way that most scientists intuitively
regard the inferential task, and in principle allows the free use of subject
knowledge in probabilistic model building (e.g. ?; ?; ?; ?; ?). For an in-
teresting philosophical view on inverse problems, falsification, and the role
of Bayesian argument, see ?. Various Bayesian methods to solve inverse
problems have been proposed (?; ?; ?; ?; ?).

1.3 Convergence of the posterior distribution

Mathematical analysis of inverse problems usually takes the form of asymp-
totic arguments concerning how well the true solution (the value of x assumed
to generate the data) can be recovered in the presence of noise, as the size
of that noise goes to zero. In a statistical setting, the noise is a random vari-
able, its size might be the variance, and we are concerned with convergence
of random variables or their distributions – in the case of a Bayesian analysis,
the focus is on the posterior distribution of x.
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In this paper, we present the rates of convergence of the posterior distribu-
tion on a finite-dimensional parameter space for an ill-posed inverse problem
where the distribution of errors is not necessarily Gaussian. We also consider
a particular case where the regularised solution is on the boundary of the pa-
rameter space. As we shall see, in the case of an ill-posed inverse problem,
the choice of the prior distribution strongly influences the limit of the poste-
rior distribution as well as the rate of convergence on the subspace where the
likelihood is not identified. Also, we will show that the rate of convergence
may change if the limiting point x⋆ lies on the boundary of the parameter
space for a constrained inverse problem (for a Gaussian noise and a Gaussian
prior, this problem has been studied by ?). We shall identify the assumptions
on the posterior distribution necessary for convergence which can be used as
a guidance to narrow down the set of potential prior distributions.

There are different approaches to quantify the convergence rates of the
posterior distribution. One of them is to consider the concentration rate of
the almost sure convergence of the posterior distribution which is the smallest
εσ such that

P(d(x, x⋆) > εσ | Y ) → 0 almost surely

as the noise level σ goes to 0, considered by ?.
Another approach, considered by ?; ? in the context of linear inverse

problems, is to metrise weak convergence of the posterior distribution as
a random variable µpost(ω) = p(x|Y (ω)) using the Ky Fan metric (?); see
Section 3. This type of convergence is weaker than almost sure convergence,
and the convergence rates in this metric are slower than the parametric rate
with the mean square error loss. In particular, there is an extra logarithm
factor in the rate which is unavoidable. In particular, the Ky Fan rate of
convergence εσ satisfies, with probability at least 1− ρK(Y, yexact),

P(d(x, x⋆) ≤ εσ | Y ) ≥ 1− εσ on {ω : d(Y (ω), yexact) ≤ ρK(Y, yexact)},

where ρK(Y, yexact) is the Ky Fan distance between the data Y and its small
noise limit yexact. This allows to have a non-asymptotic framework for the
study of convergence of the posterior distribution.

The setting for ? is the Gaussian linear inverse problem in the form
(2), with a particular quadratic penalty (Gaussian prior). Their main result
(Theorem 11) provides an upper bound on the Ky Fan metric between the
posterior distribution and its (degenerate) limit, as an explicit function of
the size of the noise, the parameters of the model and prior, and quantities
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relating the prior mean to the null space of the matrix A. This result is used
to prove a limit theorem (Theorem 13) on the convergence of this Ky Fan
metric to 0, in a small-noise, high-prior-precision limit, and to give the rate
of this convergence (Theorem 15).

In this paper we consider two asymptotic properties of the posterior distri-
bution in the small noise limit: we identify the limit of the posterior distribu-
tion and state the rate of convergence in Ky Fan metric. As an intermediate
step in deriving the Ky Fan rate of convergence, we have an upper bound on
the Prokhorov metric between the posterior distribution and its limit, that
metrises weak convergence. This bound is very simple and it allows to make
conclusions about the sufficient conditions for weak convergence. We consider
a broad class of probability distributions for the data, that we call generalised
linear inverse problems, allowing the likelihood to be unidentifiable, and a
broad class of prior distributions.

We will also study the asymptotics of the posterior distribution in a par-
ticular case where the exact solution lies on the boundary of the parameter
space. This is the case of so called nonregular likelihood since the error
density has a jump when the value of the parameter coincides with the ex-
act solution. Other examples of the behaviour of the posterior distribution
for nonregular likelihoods, including densities with jumps as well as other
nonregular models, were considered by ? and ? who extended the models
studied by ? in the frequentist setting. We consider a particular case where
all coordinates of the exact solution are on the boundary, and show that the
rate of convergence of the posterior distribution can be faster than for the
regular models.

Section 2 establishes the class of models we study. In Section 3 we discuss
the Ky Fan distance and present some examples of calculating the Ky Fan
distance for various error distributions. In Section 4 we formulate our theo-
rems on rates of convergence of the posterior distribution. In Section 5 we
study an inverse problem where the limit of the posterior distribution (the
regularised solution) is situated on the boundary. The proofs are deferred to
the Appendix.
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2 Model formulation

2.1 Generalised linear inverse problems (GLIP)

We assume that the joint density of the observable responses Y taking values
in Y ⊂ R

n (with respect to Lebesgue or counting measure) takes the form

p (y| x) = F (y, Ax, τ) = Cy, τ exp

{
−1

τ
f̃y(Ax)

}
, y ∈ Y , (3)

that is, that the distribution depends on x ∈ X only via Ax, where τ is a
scalar dispersion parameter; in the Gaussian model, τ is the variance σ2. The
observed data y are generated from this distribution, with x = xtrue, and we
aim to recover xtrue as τ → 0.

We assume a continuous bijective link function G : Y → R
n and write

G(yexact) = Axtrue. (In generalised linear models – see Example 3 below –
commonly G has identical component functions.)

We make the following assumptions about the error distribution:

1. If Y ∼ F (y,G(yexact), τ), then Y
P→ yexact as τ → 0.

2. For all µ0 ∈ G−1(AX ), f̃µ0
(η) has a unique minimum over AX at

η = G(µ0).

Assumption (i) states that τ is not only the dispersion parameter in the
model but also a scale parameter for the distribution of Y . Assumption (ii)
establishes identifiability of the likelihood with respect to the link parameter
η = Ax.

More generally, Assumption 1 is satisfied by generalised linear models ?,
an important class of nonlinear statistical regression problems, responses yt,
t = 1, 2, . . . , n are drawn independently from a one-parameter exponential
family of distributions in canonical form, with density or probability function

p(yt;µt, τ) = exp

(
−ytb(µt)− c(µt)

τ
+ d(yt, τ)

)
,

for appropriate functions b, c and d characterising the particular distribu-
tion family. The parameter τ is a common dispersion parameter shared by
all responses. The expectation of this distribution is E(yt;µt, τ) = µt =
c′(µt)/b

′(µt). Both assumptions are satisfied for this example.
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2.2 Bayesian formulation of GLIP

We adopt a Bayesian paradigm, using a prior distribution with density given
by

p (x) ∝ exp(−g(x)/γ2), x ∈ X ⊂ R
p, (4)

where γ2 is a scalar dispersion parameter for the prior that may depend
on τ ; we relate this to the data dispersion parameter τ by γ2 = τ/ν, and
express most of our results below in terms of τ and ν. Set of possible values
of the parameters X can be any subset of R

p that contains a nonempty
neighbourhood of x⋆. Therefore, the posterior distribution satisfies

p (x| y) ∝ exp(−[f̃y(Ax) + ν g(x)]/τ), x ∈ X , (5)

Denote fy(x) = f̃y(Ax) and hy(x) = fy(x) + ν g(x), so that p (x| y) ∝
e−hy(x)/τ .

We will show that in the limit τ → 0, the posterior distribution concen-
trates at point x⋆ defined by

x⋆ = arg min
Ax=Axtrue

g(x).

Below we make further assumptions on the likelihood and the prior dis-
tribution that we apply to study convergence of the posterior distribution.

3 Types of convergence and corresponding

distances

Convergence in distribution (weak convergence) can be metrised by Prokhorov
metric (?).

Definition 1. The Prokhorov metric between two measures on a metric space
(X , dX ) is defined by

ρP(µ1, µ2) = inf{ε > 0 : µ1(B) ≤ µ2(B
ε) + ε ∀ Borel B}

where Bε = {x : infz∈B dX (x, z) < ε}.
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This metric can be used to study the weak convergence of the posterior
distribution µpost(ω) = PX|Y (ω) as a measure on X to its limit for a fixed data
set Y (ω). We consider the Euclidean metric d(x, z) = ||x− z|| on X .

To study a weak convergence of the posterior distribution to its limit over
all ω, we can use Ky Fan metric that metrised convergence in probability (?).

Definition 2. The Ky Fan metric between two random variables ξ1 and ξ2
in a metric space (W, dW) is defined by

ρK(ξ1, ξ2) = inf{ε > 0 : P(dW(ξ1(ω), ξ2(ω)) > ε) < ε}.

Hence, weak convergence of the posterior distribution µpost (as a random
variable) to δx⋆ , the point mass at x⋆, is equivalent to its convergence in the
Ky Fan metric, where the metric space (W, dW) is a space of probability
distributions on X equipped with the Prokhorov metric.

Now we give the Ky Fan distance or its upper bound for some distribu-
tions.

For the Gaussian distribution, we quote Lemma 7 from ?.

Lemma 1. Let ξ ∼ Np(µ,Σ). Define

Cp =

{
2π/(p+ 1)2 if p is odd,

2p/p2 if p is even.
(6)

κp = max{1, p− 2} (7)

Then there exists a positive constant θ(p) such that for any Σ: ||Σ|| <
θ(p),

ρP(N (µ,Σ), δµ) ≤ (−||Σ|| log{Cp||Σ||κp})1/2 . (8)

In particular, we will use the following bound on the solution z = z(p, λ)
of

z(p, α) = inf
z>0

{z : 1− Γ

(
z2

2α
| p
2

)
< z},

given in the proof of this lemma for sufficiently small α:

z(p, α) ≤ [−α log(Cpα
κp)]1/2 . (9)

Here Γ(x|a) is the cumulative distribution function of the Gamma distribu-
tion Γ(a, 1) with probability density function f(x) = 1

Γ(a)
xa−1e−x, x > 0.

Now we consider a rescaled Poisson distribution.
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Lemma 2. Consider independent random variables Yt/τ ∼ Pois(µt/τ), t =
1, . . . , n, µt > 0. Denote M = 4

∑
t µt.

Then,
ρK(Y, µ) =

√
−τM log(τM)(1 + wτ ),

where wτ = o(1) as τ → 0 and wτ 6 0.

Note that the Ky Fan distance has the same asymptotic order as for the
Gaussian distribution with Σ = τΣ0, Σ0 is independent of τ , as τ → 0.

Now, if we consider the exponential distribution with variance propor-
tional to τ , the order of the Ky Fan distance is different. Let Y − µ ∼
Exp(λ/τ), then EY = µ + τ/λ, Var(Y) = τ 2/λ2. As τ → 0, Y → µ in
probability. The Ky Fan distance is given by

ρK(Y, µ) = −τ

λ
log
(τ
λ

)
(1 + wτ),

where wτ 6 0 and wτ = o(1) as τ → 0. This follows from Lemma 5.
Now we give some general statements on an upper bound on the Ky Fan

distance for various distributions.

Proposition 1. Assume that Yt are independent, EYt = µt and Var(Yt) =
wtτ .

1. Assume that ∃Ct > 1 such that κt,k, the kth cumulant of Yt, is bounded
by |κt,k| 6 Ctwtτ

k−1 ∀k > 2 and Ct and wt are independent of τ .
Denote M = 4

∑
t Ctwt.

Then, for τ 6 1/(eM),

ρK(Y, µ) 6
√

−τM log(τM).

2. Assume that ∃K > 2: E|Yt|K < ∞. Assume that E|Yt − µt|K 6

τm(K)LK for some LK > 0 that may depend on µt or wt but not on τ ,
for some m(K) > 0.

Then, for small enough τ ,

ρK(Y, µ) 6 [nτm(K)/2LK ]
1/(K+1).

The conditions in the first case are satisfied, for example, for the binomial
distribution Yt ∼ Bin(nt, pt), independently, since ct(x) = nt log(pte

x+ qt) 6
ntpt(e

x − 1).
Here is an example for the second case.
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Example 1. Suppose Yt has a t distribution with ν degrees of freedom, means
µt and scales

√
τwt, t = 1, . . . , n. Then we can take K = ν − 2− δ for some

small δ > 0. Then, using the second statement of Proposition 1,

E|Yt − µt|K = [
√
τwt]

KνK ,

where νK is the Kth moment of the standard tν distribution, i.e. m(K) =
K/2 and LK = wK

t νK. Hence,

ρK(Y, µ) 6 τ 1/2−1/(2(K+1))[nwK
t νK ]

1/(K+1).

Note that this bound holds if Yt can be written as Yt = µt + σwtZt where
Zt are iid and whose distribution is independent of τ .

4 Rates of convergence of posterior distribu-

tion in Ky Fan metric

Denote by µpost(ω) the posterior distribution of X given y = Y (ω). We
consider the metric space (X , ℓ2) equipped with the Euclidean metric ||x −
z|| =

√∑p
i=1(xi − zi)2, X ⊂ R

p. Then, the posterior measure µpost(ω) can be
viewed as a measure on the metric space (X , ℓ2). The corresponding metric
space for the observations is (Y , ℓ2), Y ⊂ R

n equipped with metric generated
by ℓ2 norm.

In the next section we evaluate the level of concentration of the posterior
distribution µpost around x⋆. We start with the concentration of the posterior
distribution µpost(ω) for a fixed ω (i.e. for a particular data set) in the
Prokhorov metric, and then, using the lifting theorem (Theorem 2), we use
bounds thus obtained to derive a bound on the Ky Fan distance between
the posterior distribution and the limit over all ω. In the results below, it is
assumed that the dimension p is fixed and is independent of τ .

Throughout the section, we assume that x⋆ is an interior point of X .

4.1 Assumptions on the likelihood and the prior

We will make the two main assumptions that the posterior distribution is
proper and that the log likelihood and log prior density have bounded third
order derivatives.
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Throughout, we use ∇i =
∂
∂xi

as the differentiating operator, and ∇ =

(∇1, . . . ,∇p)
T as the gradient. Similarly, ∇ij and ∇ijk are operators of the

second and third derivatives, with ∇2 = (∇ij) being the matrix of second
derivatives.

Assumptions on prior distribution.
We assume that the prior distribution is such that the posterior distribu-

tion is proper.

1. ∃τ0 > 0: ∀τ 6 τ0,
∫
X e−hy(x)/τdx < ∞ for all y ∈ Y .

2. x⋆ = argminx∈X Ax=Axtrue
g(x) is a unique solution of the minimisation

problem.

Smoothness in x.
There exists δ > 0 such that there exist bounded third order derivatives

∃f ′′′
y , ∃g′′′ on B(x⋆, δ) for all y ∈ Yloc, i.e. ∃Cf, 3, Cg, 3 < ∞ such that for all

x ∈ B(x⋆, δ), for all y ∈ Yloc and all 1 6 i, j, k 6 p,

|∇ijkfy(x)| 6 Cf, 3, |∇ijkg(x)| 6 Cg, 3, (10)

where Yloc is the following neighbourhood of yexact in Y :

Yloc = {y ∈ Y : ||y − yexact|| ≤ ρK(Y, yexact)} (11)

and ρK(Y, yexact) is the Ky Fan distance between Y and yexact. By the defi-
nition of the Ky Fan distance, P(Yloc) ≥ 1− ρK(Y, yexact).

Convergence in Y .
∃Mf, 1,Mf, 2 < ∞ such that for all 1 6 j1, . . . , jd 6 p with d = 1, 2, and

for all y ∈ Yloc,

|∇j1,...,jdfy(x
⋆)−∇j1,...,jdfyexact(x

⋆)| 6 Mf, d||y − yexact||; (12)

These assumptions are satisfied if ∇dfµ0
(x) is differentiable in µ0 for d =

1, 2 and this derivative is bounded on Yloc, with

Mf, d = sup
y∈Yloc

|∇y∇d
xfy(x

⋆)| for d = 1, 2.

Assumptions on δ.
Assume that δ > 0 satisfies the following conditions as τ → 0:
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1.

δ → 0,
δ√
τ
→ 0, δ ≫ ρK(Y, yexact) + ν, δ

[ρK(Y, yexact) + ν]2

τ
→ 0,(13)

δ

γ
→ ∞ (not necessary if ATA is of full rank).

2. With high probability,

∆0(B(0, δ)) → 0 as τ → 0, (14)

where

∆0(B(0, δ)) =

∫
X\B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx
∫
B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx
. (15)

After the approximation to e−[hy(x)−hy(x⋆)]/τ on B(x⋆, δ) is derived, condition
(14) will be stated in a simplified form in Lemma 3.

Throughout this section we use the error ∆0 = ∆0(B(0, δ)) defined by
(15), and constants κp and Cp defined by (6) that feature in the upper
bound on the Ky Fan metric between the Gaussian distribution and its mean
(Lemma 1 in the Appendix).

4.2 Ky Fan distance

The limiting behaviour of the posterior distribution is characterised by the
matrices of second derivatives:

Vy(x) = ∇2f̃y(Ax),

B(x) = ∇2g(x),

Hy(x) = ∇2hy(x) = ATVy(x)A+ νB(x),

and by the gradient:

x0 = [Hy(x
⋆)]−1∇hy(x

⋆). (16)

Denote a projection matrix on the image ofAT by PAT , and PA,V = (ATV A)†ATV A.
Define λmin pos(M) to be the minimum positive eigenvalue of a matrix

M , and λmin, P (M) = min||v||=1, P v=v ||Mv|| to be the smallest eigenvalue of a
matrix M on the range of a projection matrix P .

For a fixed ω, we have the following upper bound on the Prokhorov dis-
tance between the posterior distribution and its limit.
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Theorem 1. Suppose we have a Bayesian model given in Section 2.1, and
let the assumptions stated in Section 4.1 hold. Assume also that x⋆ is an
interior point of X , and that HY (ω)(x

⋆) = ATVY (ω)(x
⋆)A + νB(x⋆) is of full

rank.
Then, ∃τ0 > 0 such that for ∀ τ ∈ (0, τ0],

ρP(µpost(ω), δx⋆) 6 max

{
∆0

1 + ∆0

,
Mf1||Y (ω)− yexact||+ ν||PAT ∇g(x⋆)||

λmin,pos(ATVY (ω)(x⋆)A)

+

√

− τ

λmin(ω)

(
Cp log

(
τ

λmin(ω)

)κp
)
(1 + ∆⋆(δ, Y (ω)))

}
, (17)

where λmin(ω) = λmin(HY (ω)(x
⋆)), ∆0 = ∆0(B(0, δ)) defined by (15) and ∆⋆

is defined by (28).

The first term in the sum represents the bias of the posterior distribution,
and the second term is the Prokhorov distance between N (0, τHY (ω)(x

⋆)−1)
and the point mass at zero. The maximum reflects the fact that there are two
“competing” tails: Gaussian on the ball B(x⋆, δ) and the tail of the posterior
distribution outside the ball.

This theorem implies that to have convergence of the posterior distribu-

tion to δx⋆ , we must have (a) convergence of the data so that ||Y−yexact||
Pyexact→

0, (b) ν = τ/γ2 → 0, i.e. the prior distribution needs to be rescaled in a way
dependent on the scale of the likelihood, and (c) τ/λmin(HY (ω)(x

⋆)) → 0. If
the matrix ATVY (ω)(x

⋆)A is of full rank, then, for small τ , λmin(HY (ω)(x
⋆))

is close to the constant λmin(A
TVyexact(x

⋆)A) with high probability, hence the
latter condition is satisfied as τ → 0. However, if ATVY (ω)(x

⋆)A is not of full
rank, then, for small enough ν and τ , λmin(HY (ω)(x

⋆)) = νλmin,I−P
AT

(B(x⋆));
hence, we must have τ/ν = γ2 → 0.

This is summarised in the following corollary.

Corollary 1. For weak convergence of the posterior distribution to the point
mass at x⋆ as τ → 0 for a fixed ω, we must have ν = τ/γ2 → 0.

1. If the matrix ATVY (ω)(x
⋆)A is not of full rank, then we must also have

γ → 0.
2. If the matrix ATVY (ω)(x

⋆)A is of full rank, however, the scale of the
prior distribution γ may be taken a positive constant.

The theorem also implies that the rate of contraction of the posterior
distribution (in terms of Ky Fan distance) varies between PATX and (I −
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PAT )X and is determined by the second derivative of the logarithm of the
posterior density.

This theorem gives an upper bound on the Prokhorov distance between
the posterior distribution and the limit for any particular instance of observed
data Y (ω). To “lift” the result obtained to a bound on the Ky Fan distance
over all ω, we use the following generalisation of the lifting theorem of ? to
the case of different bounds for different outcomes ω.

Theorem 2. Let random variables X1, X2 and Y1, Y2 be defined on the same
probability space (Ω,F ,P) with values in metric spaces (X, dx) and (Y, dy),
respectively, and suppose the sample space Ω is partitioned into two parts,
Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.

Assume that there exist positive nondecreasing functions Φ1 and Φ2:

∀ω ∈ Ωk, dx(X1(ω), X2(ω)) 6 Φk(dy(Y1(ω), Y2(ω))), k = 1, 2

i.e. we have different upper bounds on Ω1 and Ω2.
Then, the following inequalities hold:

ρK(X1, X2) 6 max{ρK(Y1, Y2) + P(Ω2),Φ1(ρK(Y1, Y2))},
ρK(X1, X2) 6 max{ρK(Y1, Y2),Φ1(ρK(Y1, Y2)),Φ2(ρK(Y1, Y2))}.

In our case, (X, dx) is the space of all distributions equipped with the
Prokhorov metric, and (Y, dy) is the metric space Y with the ℓ2 metric.
Theorem 1 provides an upper bound Φ1 on the event Ω1 where a random
matrix HY (ω)(x

⋆) is of full rank, and the first statement of the theorem is
applied to obtain the Ky Fan rate of convergence. Note that we do not need
an upper bound Φ2 to bound the Ky Fan distance on Ω2, as long as P(Ω2) is
vanishingly small as τ → 0.

Denote

vmin = min
t: Vyexact tt(x⋆)>0

Vyexact tt(x
⋆),

c1 =
Mf1

vminλmin,pos(ATA)
c2 =

||PAT∇g(x⋆)||
vminλmin,pos(ATA)

, (18)

and, for small enough ρK(Y, yexact) and δ,

c̄k = ck

[
1− Mf2ρK(Y, yexact)

vminλmin pos(ATA)

]−1

[1− δ
√
p/λDH ]

−1, k = 1, 2, (19)

where λDH is a constant defined by (29).
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Theorem 3. Suppose we have the Bayesian model defined in Section 2.1,
and that the assumptions on fy, g and δ stated in Section 4.1 hold.

Assume that

1. x⋆ is an interior point of X ,

2. Hν = ATVyexact(x
⋆)A+ νB(x⋆) is of full rank,

Then, ∃τ0 > 0 such that for ∀ τ ∈ (0, τ0], and small enough ν and τ/ν,

ρK(µpost, δx⋆) 6 max

{
2ρK(Y, yexact),

∆0

1 + ∆0

, c̄1ρK(Y, yexact) + c̄2ν (20)

+

[
− τ

λmin(Hν)
log

(
Cp

(
τ

λmin(Hν)

)κp
)]1/2

(1 + ∆⋆,K(δ))

}
,

where c̄1 and c̄2 defined by (19), ∆0 = ∆0(B(0, δ)) is given by (21), and
∆⋆,K(δ) is defined by (34).

Under the assumptions on τ , ν and δ, ∆⋆,K(δ) = o(1) as τ → 0.

Recall that in the ill-posed case (if ATVyexact(x
⋆)A is not of full rank),

λmin ≍ ν · const, and in the well-posed case λmin ≍ const. Thus, we have the
following corollary.

Corollary 2. Suppose that ρK(Y, yexact) 6 C
√−τ log τ for some constant C,

and that the assumptions of Theorem 3 are satisfied, and that ∆0

1+∆0
is smaller

than the other terms in the maximum.
If ATVyexact(x

⋆)A is of full rank (well-posed problem), the smallest upper
bound on the Ky Fan distance is

ρK(µpost, δx⋆) 6 C1 (−τ log τ)1/2 ,

with γ2 ≥ τ 1/2[− log τ ]−1/4.
If ATVyexact(x

⋆)A is not of full rank (ill-posed problem), the smallest upper
bound on the Ky Fan distance is

ρK(µpost, δx⋆) 6 C2 (−τ log τ)1/3 ,

with γ2 = τ 2/3[− log τ ]−1/6.
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The assumption of corollary ρK(Y, yexact) 6 C
√−τ log τ is satisfied for

Gaussian random variables Y . In Section 3 we saw that it is also satisfied
for such distributions as rescaled Poisson and binomial distributions.

Consider the case of the rescaled Poisson distribution, and a linear inverse
problem with the identity link.

Example 2. Rescaled Poisson random variables satisfy the assumptions of
GLIP since it belongs to the exponential family, EYi = µi, Var(Yi) = τµi,
and Y → µ as τ → 0.

Since x⋆ is an interior point of X , then, for small enough σ and γ,

ρK(µpost, δx⋆) 6

[
C1

√
−τ log τ + C2

τ

γ2

+ C3,ατ
(1−α)/2γα

√
− log (τ (1−α)/2γα)

]
(1 + o(1)),

where α = 0 if ATVyexact(x
⋆)A is of full rank and α = 1 otherwise, and the

constants are given by

C1 = 2||yexact||1/21 max

(
1,

Mf1||yexact||∞
λmin,pos(ATA)

)
,

C2 =
||yexact||∞

λmin,pos(ATA)
||PA∇g(x⋆)||,

C3,α =
(
κp[(1− α)λmin(A

TA) + αλmin,I−PA
(B(x⋆))]

)1/2
.

If α = 0 (well-posed problem), the fastest rate is σ
√− log σ, with γ ≥

σ1/2[− log σ]−1/4.
If α = 1 (ill-posed problem) and τ = σ2, the fastest rate is σ2/3[− log σ]1/3,

with γ = σ2/3[− log σ]−1/6.

4.3 Choice of δ

Now, we discuss how to choose δ in such a way that
∫

X
e−(hy(x)−hy(x⋆))/τdx = [1 + o(1)]

∫

B(x⋆,δ)

e−(hy(x)−hy(x⋆))/τdx

with high probability as τ → 0, i.e. that the condition (14) ∆0(B(0, δ)) →
0 as τ → 0 is satisfied with high probability.
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We introduce the following additional notation. Diagonalise the projec-
tion matrices PAT and I−PAT simultaneously, so that PAT = UTdiag(Ip0, 0p1)U ,
I − PAT = UTdiag(0p0, Ip1)U and UTU = Ip, where p0 = rank(A) and
p1 = p− p0.

Ω00 = UT
0 ∇2fyexact(x

⋆)U0,

B11 = UT
1 ∇2g(x⋆)U1.

First we consider the integral of e−hy(x)/τ over B(x⋆, δ).

Lemma 3. Assume that Ω00 and B11 are of full rank. Under the assumptions
on fy, g and assumption (i) on δ stated in Section 4.1,

∫

B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx = τ p0/2γp1
(2π)p/2ex

T
0
Hx0/(2τ)

[det(Ω00) det(B11)]1/2
[1 + oP (1)].

In particular, this implies that

∆0(B(0, δ)) = CHτ
−p0/2γ−p1

∫

X\B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx [1 + oP (1)],(21)

where CH = (2π)−p/2[det(Ω00) det(B11)]
1/2 e−xT

0
Hx0/(2τ).

See Proposition 2, in the Appendix, for further details and the proof.

5 Convergence rate when x⋆ is on the bound-

ary

In this section we consider a special case where the assumption that x⋆ is an
interior point of X does not hold. This is an example of so called nonregular
models that have been considered mostly for a one-dimensional nonregular
parameter (ref), and, as far as we are aware, have not been considered in
the context of inverse problems. As we shall see, the rate of convergence is
different in this case. We shall see that for some probability distributions,
it makes it possible to observe exact data under the considered probabilistic
model (Section 2).

In this section we assume that the parameter space is X = [0,∞)p, and
that each coordinate of x⋆ is on the boundary of X = [0,∞)p, i.e. x⋆ = 0.

17



This is an important benchmark case where there is no signal. Such setup
arises, for example, in image analysis, where x is the vector of the unknown
intensities, and we want to test whether there is any image present. We could
assume that parameter x is restricted to an arbitrary convex polyhedron; this
could be reduced to [0,∞)p by a linear change of variables.

5.1 Assumptions

We make the same assumptions on the prior distribution as in Section 4.1,
however, we only need the smoothness and the convergence assumptions for
up to the second derivative only, rather than up to the third. Assumptions
on δ – the radius of approximation – are also changed.

Smoothness in x.
There exists δ > 0 such that there exist bounded second order derivatives

∃f ′′
y , ∃g′′ on B(x⋆, δ) for all y ∈ Yloc, i.e. ∃Cf̃ , 2, Cg, 2 < ∞ such that for all

x ∈ B(x⋆, δ), for all y ∈ Yloc,

max
16i,j6n

|∇ij f̃y(x)| 6 Cf̃ , 2, max
16i,j6p

|∇ijg(x)| 6 Cg, 2. (22)

Convergence in Y .
∃Mf̃ , 1 < ∞ such that for all 1 6 j 6 p and for all y ∈ Yloc,

|∇j f̃y(Ax
⋆)−∇j f̃yexact(Ax

⋆)| 6 Mf̃ , 1||y − yexact||. (23)

Assumptions on δ.
Assume that δ > 0 satisfies the following conditions as τ → 0:

1.

δ → 0,
δ

τ
→ 0,

δ

γ2
→ ∞ (not necessary if ATA is of full rank). (24)

2. With high probability,

∆0(B(0, δ)) → 0 as τ → 0, (25)

where ∆0(B(0, δ)) is defined by (15).
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5.2 Rate of convergence in Ky Fan distance

Define
b(ω) = ∇hY (ω)(x

⋆).

Theorem 4. Suppose we have the Bayesian model defined in Section 2.1,
and let the assumptions on fy, g and δ stated in Section 5.1 hold.

Assume that x⋆ = 0 and that bi(ω) > 0 for all i, and denote bmin(ω) =
mini bi(ω).

Then, ∃τ0 > 0 such that for ∀ τ ∈ (0, τ0] and small enough γ,

ρP(µpost(ω), δx⋆) ≤ max

{
∆0

1 + ∆0

, − τ
√
p

b̄min(ω)
log

(
τ√

p b̄min(ω)

)
(1 + ∆4)

}
,

where ∆0 = ∆0(B(0, δ)) is defined by (15) and ∆4(δ, Y (ω)) is defined by (37).

Recall that b(ω) = AT∇f̃Y (ω)(x
⋆) + ν∇g(x⋆). Thus, if the image of AT

includes the whole set X (well-posed case), the leading term of b(ω) for
each coordinate is a constant, then the rate of convergence is determined by
−τ log τ . However, if rank(A) < p (ill-posed case), then for some coordinates
the leading term of b(ω) is ν const → 0, then the rate of convergence is
determined by −γ2 log γ.

To have consistency in the ill-posed case, we must have τ/ν = γ2 → 0.
Hence, in this case to have the convergence we must assume that ν = τ/γ2 →
0 and γ → 0 as τ → 0.

Now we apply Theorems 2 and 4 to obtain an upper bound on the Ky
Fan distance. Define

b⋆ = ∇hyexact(x
⋆).

Theorem 5. Consider the Bayesian model defined in Section 2.1, and sup-
pose that the assumptions on fy and g stated in Section 5.1 hold.

Assume that X = [0,∞)p, x⋆ = 0, ∇if̃yexact(G(yexact)) > 0 and b⋆i > 0 for
all i. Denote b⋆min = mini b

⋆
i . If rank (A

TA) < p, assume also that γ → 0 and
τ/γ2 → 0 as τ → 0.

Then, for small enough τ , γ and ν,

ρK(µpost, δx⋆) ≤ max

{
2ρK(Y, yexact), ∆⋆

0, −τ
√
p

b⋆min

log

(
τ√
p b⋆min

)
(1 + ∆⋆

5)

}
,
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where ∆⋆
0 is defined by (21), and

∆⋆
5 = −1 +

1 + ∆⋆
4

1−∆11



1− log(1−∆11)

log
(

τ√
p b⋆

min

)



 ,

∆11 =
Mf1

b⋆min

ρK(Y, yexact) + δ
p[Cf2 + νCg2/2]

b⋆min

,

∆⋆
4 =

log ((1 + ∆⋆
1)/(1 + ∆⋆

0))

log
(√

p b⋆min[1−∆11]/τ
) ,

∆⋆
1 = −1 +

(
1−∆11

1 + ∆11

)p [
1− e−maxi b

⋆
i (1+∆11)δ/(

√
pτ)
]p
.

Under the assumptions on τ , γ and δ given in Section 5.1, ∆⋆
5(δ) = o(1)

as τ → 0.

Hence, in the case that the solution is on the boundary, we have a differ-
ent rate of convergence of the posterior distribution that is faster than the
corresponding rate in the case the solution is an interior point. This fits with
other studies of the rate of convergence of the posterior distribution for the
error densities with jump (?; ?).

Examples.

1. Rescaled Poisson distribution Yt/τ ∼ Pois(Atx/τ), independent. For
x⋆ = 0, we have P(Yt = 0) = 1 for all t. The Ky Fan distance between
the data and its limit is zero, so we observe exact data. In this case,
we can recover PATx exactly.

If ATA is of full rank, the Ky Fan distance 0 and we recover x⋆ exactly.
If ATA is not of full rank, the upper bound is of order −γ2 log (γ2) and
can be arbitrarily small. This rate is faster than the rate in the case
x⋆ is an interior point.

2. Exponential error distribution: Yt − Atx ∼ Exp(λt/τ), independent.
For x⋆ = 0, we have Yt ∼ Exp(λt/τ). In the well-posed case, the Ky
Fan distance between the data and its limit is −ΛEτ log τ , i.e. is of
the same order as the rate of contraction of the posterior distribution
to its maximum, where ΛE is a function of λ1, . . . , λn. In the ill-posed
case, the dominating rate is of order −γ2 log (γ2) which is faster than
the corresponding rate when x⋆ ∈ int(X ).
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A comprehensive study of the rate of convergence of inverse problems
under a more general setting (when x⋆ is an arbitrary point on the boundary)
is beyond the scope of this paper and is current work in progress.
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.1 Proofs of the results in Section 4

Lemma 4. Denote H = ATVy(x
⋆)A+ νB(x⋆), κA = p

3
Cf3, κB = p

3
Cg3.

Assume that H is invertible, and that x⋆ is an interior point of X .
Let x ∈ Bδ = {x ∈ X : ||x− x⋆|| ≤ δ}, and denote v = (x− x⋆)/

√
τ .

1. Upper bound. Then, for small enough δ and ν, we have the following
upper bound:

[hy(x)− hy(x
⋆)]/τ ≤ ||H̃1/2(v − H̃−1Hx0/

√
τ)||2/2

+
[Mf1||y − yexact||+ ν||PAT∇g(x⋆)||]2

τ [λmin pos(ATVy(x⋆)A)− δκA]
,

where D = κAPAT + νκBI and H̃ = H + δ
√
pD.

2. Lower bound. For small enough δ and ν, we have the following
lower bound:

[hy(x)− hy(x
⋆)]/τ ≥ ||H̄1/2(v − H̄−1Hx0/

√
τ)||2/2

+
[Mf1||y − yexact|| − ν||PAT∇g(x⋆)||]2

τ [λmin pos(ATVy(x⋆)A) + δκA + νλmin,P
AT

(B)]
,

where H̄ = H − δ
√
pD.

Proof. Approximate hy(x) by a quadratic function using Taylor decomposi-
tion in a neighbourhood of x⋆:

hy(x) = hy(x
⋆) + [∇hy(x

⋆)]T (x− x⋆) +
1

2
(x− x⋆)TH(x− x⋆) + ∆00(x).

Bound ∆00 for w = (x − x⋆) ∈ Bδ using Taylor decomposition of hy(x):
∃xc ∈ 〈x, x⋆〉:

∆00(δ) =
1

6

∑

ijk

∇ijkhy(xc)(xi − x⋆
i )(xj − x⋆

j )(xk − x⋆
k)

=
1

6

∑

i

(xi − x⋆
i )

∂

∂zi

[
(x− x⋆)T∇2hy(z)(x− x⋆)

]
z=xc

Note that

(x− x⋆)T∇2hy(z)(x− x⋆) = (x− x⋆)TPAT∇2fy(z)PAT (x− x⋆) + ν(x− x⋆)T∇2g(z)(x− x⋆).
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Differentiating with respect to z and bounding the third derivatives of fy
and g using the Smoothness Assumption, we have that for every i, with high
probability,

|(x− x⋆)TPAT∇i∇2fy(z)PAT (x− x⋆)| ≤ Cf3 ||PAT (x− x⋆)||21 ≤ pCf3 ||PAT (x− x⋆)||22,

and, similarly,

|(x− x⋆)T∇i ∇2g(z)(x− x⋆)| ≤ Cg3 ||x− x⋆||21 ≤ pCg3 ||x− x⋆||22.

Applying these inequalities together, we have

|∆00(δ)| ≤ 1

6
||x− x⋆||1max

i
|(x− x⋆)T∇i∇2hy(z)(x− x⋆)|

≤ δ
√
p

6
(x− x⋆)T (pCf3PAT + νpCg3I) (x− x⋆).

1. The upper bound. Making the change of variables v = (x − x⋆)/
√
τ ,

we have

[hy(x)− hy(x
⋆)]/τ ≤ −vTx0/

√
τ +

1

2
vT (H + δ

√
pD)v

=
1

2
(v − H̃−1Hx0/

√
τ )T H̃(v − H̃−1Hx0/

√
τ)− 1

2τ
||H̃−1/2Hx0||2.

2. The lower bound. A similar argument leads to the following lower
bound:

[hy(x)− hy(x
⋆)]/τ ≥ −vTx0/

√
τ +

1

2
vT (H − δ

√
pD)v

=
1

2
(v − H̄−1Hx0/

√
τ )T H̄(v − H̄−1Hx0/

√
τ)− 1

2τ
||H̄−1/2Hx0||2.

Proposition 2. Let assumptions on fy, g in Section 4.1 and assumptions
(13) on δ hold. Assume that H = ATVy(x

⋆)A + νB(x⋆) is of full rank, and
that γ → 0 and ν → 0 as τ → 0.

Then, for any ε ∈ (c1ρK(Y, yexact) + c2ν, δ) such that ε/γ → ∞,

∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

6

[
1− Γ

(
λmin(H̄)[ε− ||H̄−1Hx0||]2

2τ
| p
2

)]
1 + ∆2

1 + ∆0
+

∆0

1 + ∆0
,
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and, in particular,

∫

B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx ≥ τ p/2

[det(H̃)]1/2
[2π]p/2 exp

{
xT
0HH̃−1Hx0

2τ

}
[1 + ∆̃3],

where ∆2 is defined by

∆2(δ, y) =

[
Γ

(
λmax(H̃)(δ − ||H̃−1Hx0||)2

2τ
| p
2

)]−1 [
1 + δ

√
pλHD

1− δ
√
pλHD

]p/2

× exp

{
δ
√
p (κA + νκB)

[Mf1||y − yexact||+ ν||PA∇g(x⋆)]2

τ [λ2
min(A

TVy(x⋆)A)− δ2pκ2
A]

}
,(26)

∆̃3(δ, y) = −1 +

[
Γ

(
λmax(H̃)(δ − ||H̃−1Hx0||)2

2τ
| p
2

)]
. (27)

Here λHD = λmin(HD−1) = min

{
λmin,PA,V

(AT Vy(x⋆)A+νB(x⋆))

κA+νκB
,
λmin,I−PA,V

(B(x⋆))

κB

}
.

Proof of Proposition 2. Making the change of variables v = (x−x⋆)/
√
τ with

Jacobian J = τ p/2 and applying Lemmas 4 and 8, we have
∫

B(x⋆,δ)

e−[hy(x)−hyexact (x)]/τdx ≥ τ p/2 exp
{
||H̃−1/2Hx0||2/(2τ)

}

×
∫

B(0,δ/
√
τ)

exp



−

(
v − H̃−1Hx0√

τ

)T

H̃

(
v − H̃−1Hx0√

τ

)
/2



 dv

≥ τ p/2 exp
{
||H̃−1/2Hx0||2/(2τ)

}
[2π]p/2[det(H̃)]−1/2Γ

(
λmin(H̃)[δ + ||H̃−1Hx0||]2

2τ
| p
2

)
.

In particular, we have the statement of Lemma 3:
∫

B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx ≥ τ p/2 exp
{
xT
0HH̃−1Hx0/(2τ)

}
[2π]p/2[det(H̃)]−1/2[1 + ∆̃3]

with ∆̃3 defined by

∆̃3(δ, y) = −1 + Γ

(
λmax(H̃)[δ + ||H̃−1Hx0||]2

2τ
| p
2

)
.
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The error ∆̃3 → 0 as τ → 0, since λmin(H)δ2/τ → ∞ with Pyexact probability
→ 1.

Similarly, we can obtain an upper bound on this integral:
∫
B(x⋆,δ)\B(x⋆,ε)

e−[hy(x)−hy(x⋆)]/τdx ≤ τ p/2 exp
{
||H̄1/2Hx0||2/(2τ)

}

×
∫

ε/
√
τ≤||v||≤δ/

√
τ

exp

{
−1

2
||H̄1/2(v − τ−1/2H̄−1Hx0)||2

}
dv.

Assume that δ is small enough so that H̄ is positive definite.
Combining these results together, we have that for ε > ||H̄−1Hx0||,
∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
≤
[
1− Γ

(
λmin(H̄)[ε− ||H̄−1Hx0||]2

2τ
| p
2

)]

×
[
Γ

(
λmax(H̃)[δ + ||H̃−1Hx0||]2

2τ
| p
2

)]−1 [
det(H̃)

det(H̄)

]1/2

× exp
{
δ
√
p (∇hy(x

⋆))T H̄−1DH̃−1∇hy(x
⋆)/τ

}
,

since

H̄−1 − H̃−1 = H̃−1(H̃ − H̄)H̄−1 = 2δ
√
pH̃−1DH̄−1

The ratio of the determinants can be bounded by

det(H̃)

det(H̄)
=

det(I + δ
√
pH−1D)

det(I − δ
√
pH−1D)

≤
(
1 + δ

√
pλmax(DH−1)

1− δ
√
pλmax(DH−1)

)p

,

By Lemma 8,

(∇hy(x
⋆))T H̄−1DH̃−1∇hy(x

⋆) ≤ (κA + νκB)
[Mf1||y − yexact||+ ν||PA∇g(x⋆)]2

λ2
min(A

TVy(x⋆)A)− δ2pκ2
A

.

Thus, we have
∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
≤
[
1− Γ

(
λmin(H̄)[ε− ||H̄−1Hx0||]2

2τ
| p
2

)]

×
[
Γ

(
λmax(H̃)(δ + ||H̃−1Hx0||)2

2τ
| p
2

)]−1 [
1 + δ

√
pλmax(DH−1)

1− δ
√
pλmax(DH−1)

]p/2

× exp

{
δ
√
p (κA + νκB)

[Mf1||y − yexact||+ ν||PA∇g(x⋆)]2

τ [λ2
min(A

TVy(x⋆)A)− δ2pκ2
A]

}
.
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Now we take into account the error of approximating the integral over X
by the integral over B(x⋆, ε):

∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

=

∫
B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx+
∫
X\B(x⋆,δ)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx+
∫
X\B(x⋆,δ)

e−hy(x)/τdx

=

∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx

(1 + ∆0)
∫
B(x⋆,δ)

e−hy(x)/τdx
+

∆0

1 + ∆0
.

Substituting the previous upper bound, we have the required statement.

Proof of Theorem 1. By Strassen’s theorem, for any x, ρP(µpost(ω), δx) =
ρK(ξ, x) where ξ ∼ µpost(ω). Hence, we find an upper bound on the Ky Fan
distance between ξ and x⋆.

Take ε > ||x0||. Using Proposition 2, we have an upper bound on ε
satisfies
∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
6 ∆̃0 +

[
1− Γ

(
(ε− ||H̄−1Hx0||)2λmin(H̄)

2τ
| p
2

)]
(1 + ∆̃2)

≤ ε,

where ∆̃0 = ∆0/(1+∆0) and ∆̃2 = (1+∆2)/(1+∆0)−1. The last inequality
implies that as τ/λmin(H) → 0, ε → 0 and ε2λmin(H)/τ → ∞. Hence, using
Lemma 1, we have that

ε ≤ ||H̄−1Hx0||+

√√√√− τ

λmin(H̄)
log

(
Cp

(
τ

λmin(H̄)(1 + ∆̃2)2

)κp
)
.

By Lemma 8,

||x0|| ≤
Mf1||y − yexact||+ ν||PAT∇g(x⋆)||

λminpos(ATVy(x⋆)A)
,

which we can substitute into the upper bound for ε, and

||H̄−1H|| = ||(I − δ
√
pH−1D)−1|| ≤

[
1− δ

√
pλmax(DH−1)

]−1
.
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Hence an upper bound on the Ky Fan distance is the smallest ε ≥ ∆̃0 > 0
that satisfies the obtained upper bound. Therefore, the Ky Fan distance (and
thus, the corresponding Prokhorov distance) is bounded from above by:

ρP(µpost(ω), δx⋆) 6 max

{
∆0

1 + ∆0
,

Mf1||Y (ω)− yexact||+ ν||PAT ∇g(x⋆)||
λmin,pos(ATVY (ω)(x⋆)A)

+

√

− τ

λmin(ω)
log

(
Cp

(
τ

λmin(ω)

)κp
)
(1 + ∆⋆(δ, Y (ω)))

}
,

where λmin(ω) = λmin(HY (ω)(x
⋆)), ∆0 = ∆0(B(0, δ)) defined by (15) and ∆⋆

is defined by

∆⋆(δ, y) =
1 + ∆0

(1 + ∆2)

[
1 + 2

log(1 + ∆2)− log(1 + ∆0)

log
(
λmin(H̄)/τ

)
]1/2

− 1. (28)

Proof of Theorem 2. First we note that

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}

≥ P {Φ1(dy(Y1(ω), Y2(ω))) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+P {Φ2(dy(Y1(ω), Y2(ω))) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}

= P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2) ∩ Ω1}
+P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2) ∩ Ω2}

= P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2)}
≥ 1− ρK(Y1, Y2).

On the other hand,

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}

≤ P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2))}+ P {Ω2} .

Putting these together implies

P { dx(X1(ω), X2(ω)) > Φ1(ρK(Y1, Y2))} ≤ ρK(Y1, Y2) + P {Ω2} ,
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hence, using Lemma 6, we have

ρK(X1, X2) 6 max {Φ1(ρK(Y1, Y2)), ρK(Y1, Y2) + P(Ω2)} ,
and we have the first statement. The second statement follows from the first
inequality and

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}

≤ P { dx(X1(ω), X2(ω)) 6 max[Φ1(ρK(Y1, Y2)),Φ2(ρK(Y1, Y2))]} .

Proof of Theorem 3. Now we prove Theorem 3 in the notation defined in
the proof of Theorem 1.

We apply Theorem 2 with Ω1 = {ω : ||Y (ω)−yexact|| ≤ ρK(Y, yexact)} and
Ω2 = Ω \Ω1 with P(Ω2) ≤ ρK(Y, yexact) by the definition of Ky Fan distance,
with the bound Φ1 given in Theorem 3 which we modify to depend on y only
via ||y − yexact||. For small enough τ , the assumption of the theorems that
H = ATVy(x

⋆)A+νB(x⋆) is of full rank holds on Ω1, as we shall show below.
The upper bound depends on y via ||y−yexact||, λmin(Hy(x

⋆)), λmin pos(A
TVy(x

⋆)A),
∆0 and ∆2.

We start bounding the eigenvalues from below. Denote Hν = Hyexact(x
⋆).

Since |[Hy(x
⋆) − Hyexact(x

⋆)]ij | = |[∇2fy(x
⋆) − ∇2fyexact(x

⋆)]ij| ≤ Mf2||y −
yexact||, on Ω1 we have, by Lemma 9,

λmax(H̃) ≤ λmax(Hyexact(x
⋆)) +Mf2ρK(Y, yexact) + δ

√
pλmin(DH−1

ν ).

Similarly, since ATVy(x)A = ∇2fy(x),

|[AT (VY (x
⋆)− Vyexact(x

⋆))A]ij | 6 Mf2||Y − yexact|| for all i, j,

hence λmin pos(A
TVY (x

⋆)A) ≥ λmin pos(A
TVyexact(x

⋆)A)−Mf2||Y−yexact||. The
lower bound is positive for small enough τ .

We also need to bound λmax(DH−1) from above, or equivalently, its in-
verse from below, on Ω1,

λmin(HD−1) = min

{
λmin,PA,V

(ATVy(x
⋆)A + νB(x⋆))

κA + νκB
,
λmin,I−PA,V

(B(x⋆))

κB

}

≥ min

{
λmin,pos(A

TVyexact(x
⋆)A)−Mf2ρK(Y, yexact)

κA + νκB

,
λmin,I−P ⋆

A,V
(B(x⋆))

κB

}

def
= λDH . (29)
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Also, on Ω1:

||H̃−1Hx0|| ≤ c̃1||Y − yexact||+ c̃2ν,

where c̃k = ck [1−Mf2ρK(Y, yexact)/λmin pos(A
TVyexact(x

⋆)A)]−1 for k = 1, 2.
Hence, on Ω1,

∆̃2(δ, Y (ω)) ≤ −1 + exp

{
δp3/2 (Cf3 + νCg3)[c̃1ρK(Y, yexact) + c̃2ν]

2

3τ [1− δ2p/λ2
DH ]

}

×
[
Γ

(
[λmax(Hν) +Mf2ρK(Y, yexact) + δ

√
pλmin(DH−1

ν )] [δ + c̃1ρK(Y, yexact) + c̃2ν]
2

τ
| p
2

)]−1

×
[
1 + δ

√
p/λDH

1− δ
√
p/λDH)

]p/2
[1 + ∆⋆

0]
−1

def
= ∆⋆

2. (30)

By Lemma 9,

det(H) ≤ det(Hν)

[
1 +

Mf2ρK(Y, yexact)

λmin pos(ATVyexact(x
⋆)A)

]rank(ATA)

.

Hence, ∆0 is bounded on Ω1 from above by

∆⋆
0(B(0, δ)) =

τ p/2
∫
X\B(x⋆,δ)

exp
{
−τ−1[hY (ω)(x)− hY (ω)(x

⋆)]
}
dx

exp {[2τ ]−1[c̄1ν − c̄2ρK(Y, yexact)]2}
(31)

× [1 + ∆22]
rank(ATA)/2

[1 + ∆⋆
3]

[det(Hν)]
1/2

[2π]p/2
, (32)

where ∆22 = Mf2ρK(Y, yexact)/λmin pos(A
TVyexact(x

⋆)A). ∆⋆
3 is a lower bound

on ∆3 on Ω1 derived in a similar way:

∆⋆
3 = −1 + Γ

(
[λmax(Hν) +Mf2ρK(Y, yexact) + δ

√
pλmin(DH−1

ν )] [δ + c̃1ρK(Y, yexact) + c̃2ν]
2

τ
| p
2

)
.(33)

Therefore, we have that, on Ω1,

ε ≤ c̃1||Y − yexact||+ c̃2ν

(1− δ
√
p/λDH)

+

√

− τ

λmin(1−∆22)
log

(
Cp

(
τ

λmin(1−∆22)(1 + ∆⋆
2)

2

)κp
)
,
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since the function −x log x increases for x < 1/e.
The bound on ε increases as a function of ||y − yexact||. Using the lifting

Theorem 2, we have that, for small enough τ, ν,

ρK(µpost, δx⋆) ≤ max {2ρK(Y, yexact), ∆⋆
0, [c̄1ρK(Y, yexact) + c̄2ν]

+

√
τ√

λmin(1−∆22)

√

− log

(
Cp

(
τ

λmin(1−∆22)(1 + ∆⋆
2)

2

)κp
)}

.

Denoting

∆⋆,K(δ) =
1

(1 + ∆⋆
2)(1−∆22)1/2

[
1 +

2 log(1 + ∆⋆
2) + log(1−∆22)

log (λmin/τ)

]1/2
− 1,(34)

we have the statement of Theorem 3.

.2 Ky Fan distance inequalities

Lemma 5. Assume that A → 0 and A 6 e−1. Then the solution of

exp{−z/A} = z

satisfies
z = −A log(A)(1 + wA),

where wA 6 0 and wA = o(1) as A → 0.

Proof. Proof of Lemma 5. Taking the logarithm of the given expression, we
have

−z/A = log z

Since A → 0, we must have z/ log z → 0 which implies z → 0. Denote
f = z/A, i.e. z = Af . Hence, the equation above can be rewritten as

−f = logA + log f

implying that f → ∞ as A → 0 at the rate f = − logA(1 + o(1)). Hence,
the solution is z = −A logA(1 + o(1)).

To show that z 6 z∗ = −A log(A), we note that for A 6 e−1,

exp{z∗/A}z∗ = exp{− log(A)}(−A log(A)) = − log(A) > 1 = exp{z/A}z
implying the desired inequality.
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The following lemma follows obviously from the definition of Ky Fan
distance.

Lemma 6. If P(d(X, Y ) > ε1) 6 ε2 for some ε1, ε2 ∈ (0, 1), then ρK(X, Y ) 6
max(ε1, ε2).

.3 Proof of results in Section 3.

Proof of Lemma 2. Apply the Chernoff-Cramer bound to obtain that for all
t and all x, ε > 0,

P(||Y − µ|| > ε) 6 e−εx
Eex||Y−µ||

6 e−εx
Eex||Y−µ||1 = e−εx

∏

t

Eex|Yt−µt|

Now, Eex|Yt−µt| 6 Eex(Yt−µt)+Ee−x(Yt−µt). The cumulant function of a Poisson
random variable Z with parameter λ is logEeεZ = λ[eε − 1]; hence, for
Yt = σ2τZ and λ = µt/τ , the cumulant function of Yt − µt is

ct(x) = logEex(Yt−µt) = logEexτZ − xµt =
µt

τ
[exτ − 1− xτ ].

Hence, the cumulants of the rescaled Poisson distribution are κk = µtσ
2(k−1).

Similarly,

logEe−x(Yt−µt) =
µt

τ
[e−xτ − 1 + xτ ] 6 ct(x) ∀x > 0.

Hence, denoting M = 2
∑

t µt, we have

P(||Y − µ|| > ε) 6 e−εxe2
∑

t ct(x) = exp{−εx+M [exτ − 1− xτ ]/τ}.

Since x > 0 is arbitrary, we can take x corresponding to the minimum of the
upper bound, which is achieved at x = τ−1 log(1 + ε/M), implying

P(||Y − µ|| > ε) 6 exp

{
−ε+M

τ
log
(
1 +

ε

M

)
+

ε

τ

}
6 exp

{
− ε2

2Mτ

(
1− ε

3M

)}
,

due to the inequality (1 + x) log(1 + x) − x > −x2

2
(1 − x

3
) for small enough

x > 0. For ε 6 3M/2 we have

P(||Y − µ|| > ε) 6 exp

{
− ε2

4Mτ

}
.
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Using Lemma 5, for τ 6 1/(2eM), the solution of exp{−ε2/(4Mτ)} = ε
satisfies

ε =
√

−2τM log(2τM)(1 + ω),

where ω = o(1) as σ → 0 and ω 6 0.

Proof of Proposition 1. 1. Following the rescaled Poisson example, we have
that the cumulant function for Yt is bounded by

ct(x) = logEexYt = xµt +
x2

2
wtτ +

∞∑

i=3

xk

k!
κk 6 xµt +

x2

2
wtτ +

1

τ

∞∑

i=3

(xτ)k

k!
Ctwt

= xµt +
x2

2
wtτ +

Ctwt

τ
[exτ − 1− xτ − (xτ)2/2]

6 xµt +
Ctwt

τ
[exτ − 1− xτ ],

since Ct > 1. Similarly, logEexYt can be bounded in the same way. Hence,
we have

P(||Y − µ|| > ε) 6 e−εxe2
∑

t ct(x) = exp{−εx+
M

τ
[exτ − 1− xτ ]}.

where M = 2
∑

tCtwt. Now, this is the same upper bound as for the rescaled
Poisson distribution. Hence, we have the same inequality for the Ky Fan
distance.

2. Apply the Markov inequality to the random variable ||Y − µ||K:

P(||Y − µ|| > z) 6
E||Y − µ||K

zK
6

E||Y − µ||KK
zK

6
nτm(K)/2LK

zK
.

Hence, an upper bound on the Ky Fan distance satisfies nτLK/z
K = z, i.e.

z = [nτm(K)/2LK ]
1/(K+1).

.4 Proofs of the results in Section 5

Lemma 7. Denote δb =
δp
2
[Cf̃ ,2A

TA + νCg2I]1, and assume that bi(ω) > 0
for all i.
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Let x ∈ Bδ = {x ∈ X : ||x− x⋆|| ≤ δ}, x⋆ = 0. Then, for small enough δ
and ν, we have the following bounds:

hy(x)− hy(x
⋆) ≤ (b(ω) + δb)

T (x− x⋆),

hy(x)− hy(x
⋆) ≥ (b(ω)− δb)

T (x− x⋆).

Proof. Approximate hy(x) by a linear function using Taylor decomposition
in a neighbourhood of x⋆:

hy(x) = hy(x
⋆) + [∇hy(x

⋆)]T (x− x⋆) + ∆00(x).

Similarly to the proof of Lemma 4, bound ∆00 for w = x − x⋆ ∈ B(0, δ) ∩
(X − x⋆) using Taylor decomposition of hy(x): ∃xc ∈ 〈x, x⋆〉:

|∆00(δ)| =

∣∣∣∣∣
1

2

∑

ij

∇ijhy(xc)(xi − x⋆
i )(xj − x⋆

j)

∣∣∣∣∣

=

∣∣∣∣∣
1

2

∑

ij

[
∑

kℓ

AkiAℓj∇kℓf̃y(xc) +∇ijg(xc)](xi − x⋆
i )(xj − x⋆

j )

∣∣∣∣∣

≤ 1

2

[
Cf̃ ,2||A(x− x⋆)||21 + νCg2||x− x⋆||21

]

≤ p

2
(x− x⋆)T

(
Cf̃ ,2A

TA+ νCg2I
)
(x− x⋆)

≤ δp

2
(x− x⋆)T

(
Cf̃ ,2A

TA+ νCg2I
)
1 = δTb (x− x⋆),

since xi − x⋆
i ∈ [0, δ].

Thus, we obtain an upper bound

hy(x)− hy(x
⋆) ≤ (b+ δb)

T (x− x⋆)

and the lower bound:

hy(x)− hy(x
⋆) ≥ (b− δb)

T (x− x⋆).

Proposition 3. Let assumptions on fy, g and δ in Section 5.1 hold.
Assume that x⋆ = 0, bi = ∇ihy(x

⋆) > 0 for all i, and that γ → 0 and
ν → 0 as τ → 0.
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Then, for any ε ∈ (0, δ), such that bminε/τ → ∞,
∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

6 pe−b̄minε/(
√
pτ)1 + ∆1

1 + ∆0
+

∆0

1 + ∆0
,

and, in particular,∫

B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx ≥ τ p
∏

i

b−1
i [1 + ∆̃3],

where ∆1 and ∆̃3 are defined by

∆1(δ, b) = −1 +
∏

i

bi − δb,i
bi + δb,i

[
1− e−mini b̃iδ/(

√
pτ)
]−p

, (35)

∆̃3(δ, y) = −1 +
[
1 + max

i
δb, i/bi

]−p [
1− e−mini b̃iδ/(

√
pτ)
]p

. (36)

Proof of Proposition 3. Making the change of variables v = (x− x⋆)/τ with
Jacobian J = τ p, we have

∫

B(x⋆,δ)∩X
e−[hy(x)−hyexact (x)]/τdx ≥ τ p

∫

B(0,δ/τ)∩(X−x⋆)

exp
{
−(b+ δb)

Tv
}
dv

≥ τ p
∫

[0,δ/(
√
pτ)]p

exp
{
−b̃T v

}
dv = τ p

∏

i

b̃−1
i

∏

i

[
1− exp

{
−b̃iδ/(

√
pτ)
}]

≥ τ p
∏

i

b−1
i [1 + ∆̃3]

with ∆̃3 defined by (36). The error ∆̃3 → 0 as τ → 0, since δ → 0 and
bminδ/τ → ∞, with Pyexact probability → 1.

Similarly, we obtain an upper bound on the following integral:

∫
(X∩B(x⋆,δ))\B(x⋆ ,ε)

e−[hy(x)−hy(x⋆)]/τdx ≤ τ p
∫

ε/τ≤||v||≤δ/τ, vi≥0

exp
{
−b̄T v

}
dv

≤ τ p
∫

||v||≥ε/τ

exp
{
−b̄T v

}
dv

≤
∑

i

τ p
∫

vi≥ε/(
√
pτ), vj≥0∀j

exp
{
−b̄T v

}
dv

= τ p
∏

i

b̄−1
i

∑

i

exp{−b̄iε/(
√
pτ)}

≤ pτ p
∏

i

b̄−1
i exp{−min

i
b̄iε/(

√
pτ)},
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where b̄ = b− δb. Assume that δ is small enough so that b̄i > 0 for all i.
Therefore,

∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
≤ pe−b̄min ε/(

√
pτ)(1 + ∆1(δ, b)),

where

∆1(δ, b) = −1 +
∏

i

bi − δb,i
bi + δb,i

[
1− e−maxi b̃iδ/(

√
pτ)
]p

p exp{−mini b̄iε/(
√
pτ)} .

Hence, ∆1 is small if bminδ/τ → ∞ as τ → 0.
Now we take into account the error of approximating the integral over X

by the integral over B(x⋆, ε):
∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

=

∫
X∩B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx+
∫
X\B(x⋆,δ)

e−hy(x)/τdx
∫
B(x⋆,δ)∩X e−hy(x)/τdx+

∫
X\B(x⋆,δ)

e−hy(x)/τdx

=

∫
X∩B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx

(1 + ∆0)
∫
B(x⋆,δ)∩X e−hy(x)/τdx

+
∆0

1 + ∆0
.

Thus, we have the required statement.

Proof of Theorem 4. We proceed similarly as in the proof of Theorem 1.
By Strassen’s theorem, for any x, ρP(µpost(ω), δx) = ρK(ξ, x) where ξ ∼

µpost(ω). Hence, we find an upper bound on the Ky Fan distance between ξ
and x⋆.

Using Proposition 3, we have an upper bound ε on the Ky Fan distance
satisfies

∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
6

[
∆̃0 + p exp

{
−εb̄min√

pτ

}
1 + ∆1

1 + ∆0

]
≤ ε,

where ∆̃0 = ∆0/(1 + ∆0).
An upper bound on the Ky Fan distance is the smallest ε > 0 such that

∆̃0 ≤ ε,

p exp

{
−εb̄min√

pτ

}
1 + ∆1

1 + ∆0
≤ ε.
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The last inequality implies that as τ/b̄min → 0, ε → 0. Hence, using
Lemma 5, we have that

ε ≤ −τ
√
p

b̄min

[
log

(
τ√
p b̄min

)
− log

(
1 + ∆1

1 + ∆0

)]
.

Therefore, the Ky Fan distance is bounded from above by the maximum
of the two expressions:

ρP(µpost(ω), δx⋆) 6 max

{
∆0

1 + ∆0
, −τ

√
p

b̄min

[
log

(
τ√
p b̄min

)
− log

(
1 + ∆1

1 + ∆0

)]}

= max

{
∆0

1 + ∆0

, − τ
√
p

b̄min(ω)
log

(
τ√

p b̄min(ω)

)
(1 + ∆4(δ, Y (ω)))

}
,

where ∆0 = ∆0(B(0, δ)) is defined by (15) and ∆4 is defined by

∆4(δ, y) =
log ((1 + ∆1)/(1 + ∆0))

log
(√

p b̄min(ω)/τ
) . (37)

Proof of Theorem 5. Now we prove Theorem 5 in the notation defined in
the proof of Theorem 4.

We apply Theorem 2 with Ω1 = {ω : ||Y (ω)−yexact|| ≤ ρK(Y, yexact)} and
Ω2 = Ω \Ω1 with P(Ω2) ≤ ρK(Y, yexact) by the definition of Ky Fan distance,
with the bounds given in Theorem 5 which we modify to depend on y only
via ||y − yexact||. For small enough τ , given that b⋆i > 0, the assumption of
the theorems that bi > 0 holds on Ω1 for small enough τ , as we shall show
below.

The upper bound depends on y via ||y − yexact||, b(ω), ∆0 and ∆1.
We have that, on Ω1,

bi =
∑

j

Aji∇j f̃y(Ax
⋆) + ν∇ig(x

⋆)

≥
∑

j

Aji∇j [f̃yexact(Ax
⋆)−Mf̃ ,1ρK(Y, yexact)] + ν∇ig(x

⋆)

= b⋆i − ρK(Y, yexact)Mf̃ ,1

∑

j

Aji,
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and also

bi− δb,i ≥ b⋆i − [ρK(Y, yexact)Mf̃ ,1+ δpCf̃ ,2||A||1,1/2]
∑

j

Aj,i−νδpCg2/2, (38)

Note that if
∑

j Aj,i = 0, then bi − δb,i = ν[∇ig(x
⋆) − δpCg2/2], i.e. the

leading term in the lower bound is of order ν. If
∑

j Aj,i 6= 0, then the

leading term in the lower bound is a positive constant
∑

j Aji∇j f̃y(Ax
⋆).

Denote i⋆ = argmini b
⋆
i and assume that τ and δ are small enough so that

the minimum of the lower bound in (38) is also achieved at i⋆. Introduce ∆11

such that

∆11 =
[
ρK(Y, yexact)Mf̃ ,1 + 0.5δpCf̃ ,2||A||1,1

]
∑

j Aji⋆

b⋆min

+ δ
νCg,2

2b⋆min

.

If
∑

j Aj,i⋆ = 0.

∆11 = δ
νCg,2

2b⋆min

= δ
Cg,2

2∇i⋆g(x⋆)
.

Then, an upper bound on the Ky Fan distance is given by

ε ≤ −τ
√
p

b̄min

log

(
τ√
p b̄min

)
(1 + ∆4)

≤ − τ
√
p

b⋆min[1−∆11]
log

(
τ√

p b⋆min[1−∆11]

)
[1 + ∆⋆

4] ,

since the function −x log x increases for x < 1/e. This bound on ε on Ω1 is
independent of y. The error term ∆⋆

4 is given by

∆⋆
4 =

log ((1 + ∆⋆
1)/(1 + ∆⋆

0))

log
(√

p b⋆min[1−∆11]/τ
)

Using the lifting Theorem 2, we have that, for small enough τ, ν,

ρK(µpost, δx⋆) ≤ max

{
2ρK(Y, yexact), ∆⋆

0, −τ
√
p

b⋆min

log

(
τ√
pb⋆min

)
(1 + ∆⋆

5)

}
,

where

∆⋆
5 = −1 +

1 + ∆⋆
4

1−∆11


1− log(1−∆11)

log
(

τ√
p b⋆

min

)


 .

Thus, we have the statement of Theorem 5.
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.5 Auxiliary results

Define the following projections

PV = V †V,

PA,V = (ATV A)†ATV A = A†PVA.

Lemma 8. If [ATVy(x)A : B(x)] is of full rank,

||H−1
y (x)|| = [min(λmin, PA,V

(ATVy(x)A + νB(x)), νλmin, I−PA,V
(B(x)))]−1

6
1

min
[
λmin,pos(ATVy(x)A) + νλmin,PA,V

(B(x)), νλmin, I−PA,V
(B(x))

] ,

||Hy(x
⋆)−1∇hy(x

⋆)|| 6
||PA,V ∇fy(x

⋆)||+ ν||PA,V ∇g(x⋆)||
λmin,pos(ATVy(x⋆)A) + νλmin,PA,V

(B(x⋆))

+
1

λmin, I−PA,V
(B(x⋆))

[
ν−1||(I − PA,V )∇fy(x

⋆)||+ ||(I − PA,V )∇g(x⋆)||
]
,

where λmin, P (B(x)) = min||v||=1, P v=v ||B(x)v|| is the smallest eigenvalue of
B(x) on the range of P .

Proof of Lemma 8. The norm of H−1 is given by

||H−1|| = [λmin(A
TV A+ νB)]−1 = [ min

||x||=1
||(ATV A + νB)x||]−1

= [ min
||x||=1

||(ATV A+ νB)PATx+ νB)(I − PAT )x||]−1

= [min( min
||x||=1,P

AT x=x
||(ATV A+ νB)PATx||, min

||x||=1,(I−P
AT )x=x

ν||B(I − PAT )x||)]−1

= [min(λmin, P
AT

(ATV A+ νB), νλmin, I−P
AT

(B))]−1.

Weyl inequality implies that λmin, P
AT

(ATV A + νB) > λmin, P
AT

(ATV A) +
νλmin, P

AT
(B).

Note that since we assumed that Vyexact(x
⋆) is of full rank, the pro-

jection on the range of AT coincides with the projection on the range of
ATVyexact(x

⋆)A.
Now we find an upper bound on ||Hyexact(x

⋆)−1∇hy(x
⋆)|| using the first
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statement in Lemma 9:

||Hyexact(x
⋆)−1∇hy(x

⋆)|| = ||Hyexact(x
⋆)−1 (∇fy(x

⋆) + ν∇g(x⋆)) ||
6 ||Hyexact(x

⋆)−1||P
AT

||PAT (∇fy(x
⋆) + ν∇g(x⋆))||

+ ||Hyexact(x
⋆)−1||I−P

AT
||(I − PAT )[∇fy(x

⋆) + ν∇g(x⋆)]||

6
1

λmin,pos(ATVyexact(x
⋆)A) + νλmin,P

AT
(B(x⋆))

||PAT [∇fy(x
⋆) + ν∇g(x⋆)]||

+
1

λmin,I−P
AT

(B)
τ ||(I − PAT )[∇fy(x

⋆) + ν∇g(x⋆)]||

6
[||PAT ∇fy(x

⋆)||+ ν||PAT ∇g(x⋆)||]
λmin,pos(ATVyexact(x

⋆)A) + νλmin,P
AT

(B(x⋆))

+
1

λmin,I−P
AT

(B(x⋆))

[
ν−1||(I − PAT )∇fy(x

⋆)||+ ||(I − PAT )∇g(x⋆)]||
]
.

Lemma 9. 1. ||(C + δI)−1x|| 6 (δ + λk(C))−1||PCx||+ δ−1||(I − PC)x||
where k = rank(C) and λk(C) is the smallest positive eigenvalue of C,
and PC = C†C is the projection matrix.

2. Cauchy’s interlacing theorem (?): let C = CT be a n × n matrix, L
any n − k dimensional linear subspace, and CL = PLCPL. Then, for
any j = 1, . . . , n− k,

λj(C) > λj(CL) > λj+k(C).

3. λminpos(A
TDA) > minDi>0Diλminpos(A

TA) where D is a diagonal ma-
trix with non-negative entries.

Proof of Lemma 9. 3. λj(A
TDA) = λj(D

1/2AATD1/2), and since j > rank(ATDA) =
rank(D1/2AATD1/2),

λj(D
1/2AATD1/2) > min

Di>0
Diλj(PDAA

TPD) > min
Di>0

Diλj+m(AA
T )

by Cauchy’s interlacing theorem, where m = rank(PD), n = dim(D).
If j = r = rank(PATPD), λr(A

TDA) is the smallest positive eigenvalue
of ATDA, and j + m = rank(PD) + rank(PATPD) > rank(PAT ). Hence
λr+m(A

TA) > λrank(P
AT )

(ATA), and the latter is the smallest positive eigen-

value of ATA.

39


	1 Introduction
	1.1 Ill-posed problems and regularisation
	1.2 Inverse problems from a Bayesian perspective
	1.3 Convergence of the posterior distribution

	2 Model formulation
	2.1 Generalised linear inverse problems (GLIP) 
	2.2 Bayesian formulation of GLIP

	3 Types of convergence and corresponding distances
	4 Rates of convergence of posterior distribution in Ky Fan metric
	4.1 Assumptions on the likelihood and the prior
	4.2 Ky Fan distance
	4.3 Choice of 

	5 Convergence rate when x is on the boundary
	5.1 Assumptions
	5.2 Rate of convergence in Ky Fan distance
	.1 Proofs of the results in Section ??
	.2 Ky Fan distance inequalities
	.3 Proof of results in Section ??. 
	.4 Proofs of the results in Section ??
	.5 Auxiliary results


