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ABSTRACT KEYWORDS

Laser absorption spectroscopy (LAS) has been rapidly developed and Laser absorption
widely applied to combustion diagnosis in recent decades. As a cost- spectroscopy;
effective tool for measuring multiple combustion parameters, LAS instrumentation; line-of-

sight; tomography;

rovides unique properties in terms of accuracy and sensitivity for
P a prop y Y combustion diagnosis

understanding the reactions and kinetics in reactive flows. Line-of-
sight and tomographic LAS techniques have stimulated numerous
applications and been proved to be robust for in situ combustion
diagnosis in uniform and non-uniform combustion fields, respectively.
This review highlights the breakthroughs in the evolution of LAS
techniques from the viewpoints of key principles, sensors and
instrumentations developed for combustion diagnosis, with particular
emphasis on a series of spatially-resolved LAS techniques with their
recent applications on obtaining high-fidelity measurement results
with minimal intrusion to the practical combustors. Along the way, we
note some challenges and requirements for further development of
the LAS-based combustion diagnosis.

Introduction

Combustion has been playing a significant role in producing thermal and kinetic energy
from last century and is expected to be a main energy source for the next several decades.
However, combustion emits pollutants inevitably, such as CO, NO, and SO,, which severely
damage global environment and human health. In the technological aspects, various efforts
have been made to minimize environmental disruption due to the combustion (1, 2). One
aspect is adopting clean fuels, such as H, and CH,, instead of coal and fossil fuels (3).
Another and most important aspect is effectively utilizing the fuels and improving combus-
tion efficiency (4). Therefore, flame characteristics such as temperature, multi-species con-
centrations and pressure are necessary to be monitored and used as feedbacks to actively
adjust the combustion conditions in practical combustion processes.

In the recent decades, the non-intrusive laser spectroscopic techniques have been
extensively applied to combustion diagnosis in reactive flows (5-10). Some representative
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techniques mainly include laser absorption spectroscopy (LAS) (11-14), laser induced fluo-
rescence (LIF) (15, 16), laser induced breakdown spectroscopy (LIBS) (17, 18), photoacoustic
spectroscopy (PAS) (19, 20) and coherent anti-Stokes Raman scattering (CARS) (21-23).
With respect to the target physical parameters and measurable dimensions illustrated in
Table 1, each of these laser spectroscopic techniques has its superiority and feasibility to spe-
cific applications in the field of combustion research. To be specific, LAS is implemented by
monitoring the absorbance while the laser wavelength is scanned over a certain spectral range
for an absorbing species. Line-of-sight LAS has been validated to quantitatively measure the
path-averaged temperature, species concentrations, pressure and velocity in the combustion
fields (11). Spatially resolved 1D and 2D distributions of the parameters in the reacting flows
are enabled by the combination of LAS and hard-field tomography (24). When the target spe-
cies is excited by a laser beam, LIF is implemented by detection of the spontaneous emission
of radiation, i.e. fluorescence, which is a measure of the population density of the target species
(15). By forming the exciting laser beam into a sheet, a strong feature of easily imaging the 2D
fluorescence intensity in the plane of the sheet makes LIF one of the most popular method,
named as planar laser induced fluorescence (PLIF), for combustion diagnosis (25). By rapidly
scanning a laser sheet across a flow field of interest, 3D LIF have been realized and applied to
image droplet combustion and propellant combustion (26). However, quantitative measure-
ment by PLIF is difficult due to the quenching effect that modifies the fluorescence intensity
by depopulating the excited molecular states. LIBS is a powerful tool to measure the pointwise
temperature and species concentration of very small-sized samples. For a typical LIBS experi-
mental setup, a pulsed laser beam is focused to a spot on the sample and heats it to a very high
temperature that breaks the sample into atoms and ions. When the atoms and ions re-com-
bine, they emit an element-specific radiation that can be used to derive quantitatively the ele-
mental composition in the measurement volume (17, 18). In addition, cold and hot gases are

Table 1. Comparison between representative laser spectroscopic techniques.

Spectroscopic techniques Target physical parameters Measurable dimensions Available laser sources

LAS e Temperature o Path-averaged e Semiconductor lasers
e Species concentration ® 1D/2D (LAS tomography) o HeNe laser
® Pressure
o Velocity
LIF e Temperature, o Pointwise o Nd:YAG laser
® Species concentration o Path-averaged o Argon-ion laser
e Pressure e 2D LIF (PLIF) o Dye laser
o Velocity e 3D LIF o CO, laser
e Excimer laser
LIBS o Temperature, o Pointwise o Nd:YAG laser
® Species concentration ® Ruby laser
e CO, laser
o N, laser
o Excimer laser
PAS e Species concentration e Local (within the gas cell) e Semiconductor lasers
o Aerosol o long range (with DPAS) e CO, laser
o HeNe laser
CARS e Temperature, o Pointwise o Nd:YAG laser
e Species concentration e 2D o Dye laser

e Pressure
o Velocity

o ns/ps/fs-lasers
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distinguished by the breakdown threshold, which is a function of the gas density (27). PAS is
the measurement of the absorbed photon energy by means of its heat and hence the sound
produced in the sample. The absorption of the modulated or pulsed radiation energy, repre-
sented by photons, produces heat in the sample. Therefore, the temperature changes periodi-
cally giving rise to a pressure wave, which is typically detected by a microphone or quartz
tuning forks. The measurable dimensions with respect to PAS is typically limited in the gas
cell that serves as a resonant cavity for sound waves (20). To realize long-range gas detection,
the dynamic photoacoustic spectroscopy (DPAS) was developed by optical scanning large vol-
umes of air (28). In addition, calibration is usually required for quantitative measurement by
PAS due to the signal dependencies on hardware components (7). Using the resonant four-
wave mixing, CARS has been proved to realize pointwise measurement of temperature, spe-
cies concentration, pressure and velocity with high signal-to-noise ratios. The coherent laser
signal employed by CARS leads to increase the sensitivity to trace quantities, but decrease the
sensitivity to collisional quenching (21). By combining phase matching and detection schemes
with the femtosecond excitation of Raman coherences, 2-dimensional CARS (2D-CARS)
technique was proposed to realize planar temperature and chemical imaging (29). To catego-
rize these laser spectroscopic techniques, the main limitation of LIBS is the lack of spatial reso-
lution. Although DPAS can realize the spatially resolved gas monitoring, its temporal
resolution is at a level of minutes that cannot meet the ms-level monitoring in turbulent com-
bustion. PLIF and CARS require sophisticated and high-power laser sources and accurate
alignments of the laser beams that are generally realized by elaborate optics layouts. As a
result, the combustors should be significantly modified to achieve 2-axis or through optical
accesses that withstand the pressure rise and temperature of the combustion process. These
requirements often make LIF and CARS less applicable for in situ and real-time monitoring of
practical combustors that are operated in harsh environments, e.g. with dust and strong
mechanical vibration. LAS utilizes fiber optics to emit and collect thin pencil-beams in the
region of interest. In this way, the optical windows can be made very small and discontinuous
around the perimeter of the combustor, in any arrangement that complies with the opera-
tional requirement of the combustor (30). This gives rise to a significant superiority of LAS
that the sensor can be embedded in practical combustors with minimal intrusions. Therefore,
LAS is most promising to be applied to the combustion diagnosis of steel engines in the practi-
cal operating conditions (31).

As shown in Figure 1, gas molecules can be fingerprinted in the near- and mid-infrared
bands using their absorption characteristics arising from rovibrational transitions and com-
bination bands (32, 33). The general principle of LAS is to use these absorption

-H,0 o, co CH,
NC ), NO S0,

2

Linestrength [cm™/atm]

Wavelength [pum]

Figure 1. Fingerprinted gas molecules in the IR absorption spectrum at 1000 K.
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characteristics for qualitative and quantitative gas analysis and identification. The concept of
LAS was first introduced in 1970s and demonstrated to be feasible in measuring concentra-
tions of IR-active species (34, 35). As an accurate, sensitive and fast-response optical modal-
ity, LAS exhibits significant advantages of measuring multiple combustion parameters, such
as species concentrations, temperature, pressure, etc., in situ and in real time. From 1990s,
the rapid technological advances of the room-temperature tunable laser sources have accel-
erated the development of LAS (36, 37). In this period, the tunable laser sources with differ-
ent spectrum ranges, linewidths, output power and wavelength tuning ranges were invented
and gradually became commercially available (38, 39). Typical types of the tunable laser
sources employed in LAS mainly include near-infrared lasers, e.g. tunable diode lasers
(TDLs) (40), vertical cavity surface emitting lasers (VCSELs) (41) and Fourier-domain
mode-locked (FDML) lasers (42, 43), and mid-infrared lasers, e.g. interband cascade lasers
(ICLs) (44, 45) and quantum cascade lasers (QCLs) (46, 47). Table 2 shows the main types
and the corresponding features of the commercially available tunable laser sources. The
parameters in the table are typical values for different types of laser sources. The laser sour-
ces could perform better with customized designs for specific applications. Nowadays, the
tunable laser sources are compact, reliable and relatively cheap, and thus make LAS widely
applied to combustion diagnosis in various areas, such as engines monitoring and design
(43, 48-51), gas phase analysis in shock tubes (52-55) and power plant exhaust monitoring
(56-58).

Targeting the combustion fields with different characteristics, a variety of LAS techniques
have arisen in the recent decades. Line-of-sight LAS techniques, mainly classified as direct
absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS), were
introduced to monitor combustion parameters that are constants or can be approximated as
constants along the laser path (35, 59). To fulfill the increasing demand for monitoring non-
uniform flow fields, LAS was further combined with 1- and 2-dimensional tomography sen-
sors (24, 60, 61). In this way, spatially-resolved distributions of the combustion parameters
can be successfully retrieved from the projections obtained by discrete laser beams from dif-
ferent views. This characteristic makes the LAS tomographic techniques most promising for
in situ combustion diagnostics of engine and power plant where the measurement can only
be implemented with limited optical accesses. Many efforts have been made from both the
theoretical and experimental aspects to improve the reconstruction fidelity. Furthermore,
novel sensors and instruments have been designed for reliable and accurate LAS
measurements.

The applications of LAS have been reviewed by many researchers from different aspects.
For instance, an earlier review by Allan elaborated the basic theory for LAS, typical sensor
configurations and their applications in measurement of reactive flows and flame (13).

Table 2. Main features of typical types of tunable laser sources employed in LAS.

Laser types Spectrum range Linewidth Output power Wavelength tuning ranges
TDLs ~760 nm-3 um 1-10 MHz 5-50 mW 1-3cm™!

VCSELs 650-1600 nm 1-30 MHz 0.5-5 mW 7-8cm™’

FDML lasers 1300-1550 nm Order of GHz 3-100 mW Upto 150 cm™'

ICLs 2.9-6 um 1-10 MHz 1-10 mW Upto20cm™

QCLs 6-20 um 1-5 MHz 1-500 mW Upto20cm™'
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Martin reviewed the near-infrared diode laser sources and the specific techniques associated
with LAS in chemical process and environmental air monitoring (62). Hanson et al. sum-
marized the LAS strategies and sensors in shock tube diagnosis for studies of combustion
chemistry (53). Bolshov et al. presented an overview of the state of the art of tunable diode
laser-based sensors and their applications in measurements of temperature, species concen-
trations and pressure in harsh environments (63). Most recently, Goldenstein et al. not only
thoroughly explained the underlying fundamentals of infrared LAS, but also documented
the status of infrared LAS sensors and their roles in studying combustion science and char-
acterizing the combustion-based systems (11). Cai et al. provided an extensive review of the
mathematical foundations, experimental demonstration and practical application of tomo-
graphic absorption spectroscopy for the study of gas dynamics and reactive flows (24).

In this review, we aim at charting the milestones in the evolution of LAS from the view-
points of key principles, sensors and instrumentations developed for combustion diagnosis.
The review begins with introducing and particularly emphasizing the breakthroughs of line-
of-sight (LOS) LAS techniques for measuring the uniform gas-dynamic properties over the
past decades. Then, we mainly focus on a series of spatially-resolved LAS techniques with
novel design of sensors and instrumentations, as well as with their most recent applications
in diagnosing non-uniform flow fields. The review finally ends with a summary and a brief
outlook for future development of the LAS techniques.

Line-of-sight LAS techniques

The line-of-sight (LOS) LAS techniques mainly target quantitative determination of the gas-
dynamic properties for uniform combustion. According to the wavelength tuning schemes
of the laser sources, the LOS LAS techniques are generally classified as DAS and WMS. Each
scheme can be realized by either fixed- or scanned-wavelength approach. The fixed-wave-
length approach is implemented by measuring the peak of the absorption lines, while the
scanned-wavelength approach is realized by tuning the laser wavelength over the selected
absorption transition. In general, the fixed-wavelength approach is able to provide an
extremely high temporal resolution at a level of MHz, which is sometimes required for ana-
lyzing highly turbulent flows in the applications such as pulse detonation engines and shock
tubes (64-66). However, the temperature and driving current of the tunable laser sources
have to be precisely controlled to maintain the wavelength to the absorption peaks. In addi-
tion, two laser paths, with and without absorption, are required in the experiments if the col-
lisional broadening effect of the spectrum is unknown. In contrast, the scanned-wavelength
approach is more robust and accurate as it minimizes the impact of laser wavelength drift
on the measurements. Therefore, this section reviews the key issues and significant advances
with respect to scanned-wavelength DAS and WMS approaches.

Direct absorption spectroscopy (DAS)

As the most straightforward LAS technique, DAS was first introduced in early 1970s and
have been successfully applied to combustion diagnosis during the recent decades (35).
Nowadays, DAS is still widely used in many fields because of its irreplaceable advantages of
easy implementation, free of calibration and high temporal resolution (49, 67-70). When a
well collimated laser at central frequency v [cm™'] enters a gas sample with a total path
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length of L [cm], a proportion of light is absorbed and the wavelength-dependent transmis-
sion coefficient T, is described as

L
Ty = (%) =exp < - P/ Xabs(x)S(T(x))¢vdl> ) (1)
0/ vy 0

where I, and I, are the transmitted and incident laser intensities, respectively. P [atm] is the total
pressure, T(x) [K] the local temperature, X(x) the local mole fraction of the absorbing species, ¢,
[cm] the lineshape function and S(T) [cm™%atm '] the temperature-dependent line strength of the
transition. Given a uniform flow field over the laser path, the absorbance «, is defined as

o= —m(f—f> = PXuS(T), L. )
0/ y

The scanned-wavelength DAS approach is implemented by acquiring the entire absorption fea-
ture through laser wavelength tuning over the target absorption transition. As shown in Figure 2, a
polynomial baseline fit to the non-absorbing wings of transmitted laser intensity is first performed
to extrapolate incident laser intensity in the absorbing frequency region (71). The absorbance is
then acquired by taking the ratio between the incident and transmitted laser intensity.

Because the lineshape function ¢, is normalized so that [ j:: ¢,dv = 1, the integrated
absorbance area A of the transition, which is defined as the area underneath the absorption
lineshape function, is given by

oo
A= / o, dv=PX,S(T)L. (3)
— o0
Well known as the 2-color strategy, the ratio of the integrated absorbance areas at two
transitions, noted as A; and A,, can be expressed as a function of the path-averaged tempera-
ture in Eq. (4). Then, the partial pressure of the target gas, i.e. PX,;, can be obtained from
the integrated absorbance A, and the known $;(T):

A PXpS(DL _ Si(T)

R = — = = .
PAST A, T PXueSo(TYL ~ Sy(T)

(4)

The prerequisite of realizing scanned-wavelength DAS technique is obtaining the non-
absorbing baseline. For the LAS measurements in engines applications, collisional broadening
caused by high pressure make the determination of the non-absorbing baseline impossible
(7). Furthermore, the nearby absorption lines may severely overlap with each other and can-
not be decomposed even with the multi-peak Voigt lineshape fitting. Therefore, the DAS tech-
nique mainly targets the combustion fields with pressure generally lower than 1 atm.

o
o

A1 H i _E A
ramp L] L 3
current  laser 1 target gas  detector” |

wavenumber

Figure 2. Schematic of the scanned-wavelength DAS.
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Selection of absorption transitions and realization

One key point in the scanned-wavelength DAS technique is the appropriate selection of absorp-
tion transitions, which contributes to a better accuracy and sensitivity of the absorption measure-
ment (72-76). With respect to the 2-color strategy, the line pair should be selected in
consideration of moderate peak values of the absorbance, sufficiently different lower state energies
E”, and interference-free nearby transitions (73, 76). In general, the 2-color strategy is realized by
two independent lasers using multiplexing schemes, e.g. time division multiplexing (TDM) and
wavelength division multiplexing (WDM). Each of the lasers covers one transition of interest.
With respect to the TDM scheme, the driving current of each laser is intermittently scanned by
the ramp signal and set under the lower working threshold during a period (77, 78). As shown in
Figure 3(a), the phase difference of the double-channel scanning signal is 180°. By combining the
two lasers with a fiber-coupler, the absorption signals for the two transitions can be obtained by a
photodiode detector. In contrast, the two lasers are scanned simultaneously and combined with
the fiber-coupler for the WDM scheme. As shown in Figure 3(b), the transmitted lasers for the
two transitions at different wavelengths are separated into different detectors after striking a grat-
ing (79, 80). Compare with the TDM scheme, WDM doubles the temporal resolution at the cost
of one more detector. Furthermore, a significant improvement on the temperature sensitivity can
be realized by scanning the wavelength over multiple absorption transitions. The broad spectral
coverage facilitates the optimization of the sensitivity in different temperature ranges and used to
be fitted against spectral databases for determination of combustion parameters (48, 81, 82).

Lineshape fitting and hardware implementation

In general, the raw absorbance is inevitably contaminated with background noise, which
results in inaccurate calculation of the flow parameters from the integration of the raw
absorbance. Therefore, a key procedure in the scanned-wavelength DAS approach is to
reduce the negative influence background noise by fitting the Voigt lineshape of the absorp-
tion features. In general, influenced by the Gauss full width at half-maximum (FWHM) wg
and the Lorentz FWHM wy, the Voigt lineshape function ¢(v) is given by

2 [In2a [T exp(—)?)
= —/—= —= 5
R e B o 12 ©
where
2v/In2(v — 2uvIn2

a=vln2&,w= n2(v VO),y: uvans (6)

wG wG wa

laser 1 laser | detector 1

A w1 .
g fiber | ~111 A fiber /I/l/] \/
~1_~| coupler s Byl 111 | coupler 7/
’”—‘ target gas detector ’I—’ target gas grating
N 2

laser 2 laser 2

(a) (b)

detector2 777

Figure 3. Realization of the 2-color DAS approach using (a) time division multiplexing and (b) wavelength
division multiplexing.
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As the analytic form of the Voigt function in Eq. (5) is unavailable, several numerical
approaches were proposed to approximate the true Voigt function (83, 84). However, these
numerical approaches are rather complicated and resources-consuming, which limits their
applications in combustion scenarios with the requirements of measuring the flow parameters
in situ and in real time. The Voigt parameter a describes the profile of the lineshape. It can be
seen from Figure 4 that, when a > 10, the Voigt profile becomes a Lorentzian profile, while that
becomes a Gaussian profile for a < 0.01. In case of 0.01 < a < 10, each combination of a and w
determines a point in the Voigt profile. Based on this approximation, Xu et al. demonstrated
the high-precision on-line Voigt lineshape fitting for real-time scanned-wavelength DAS mea-
surement in a system-on-chip (85). A look-up table, which depends on a and w, was established
by taking the required accuracy of the DAS measurement into consideration, and the Voigt line-
shape was rapidly and accurately calculated by the digital signal processor (DSP).

Wavelength modulation spectroscopy (WMS)

The background noise always contaminates the detector signal and becomes more significant in
case of harsh environments with strong turbulent flows, mechanical vibrations and light scatter-
ing. At the cost of decreasing temporal resolution, some efforts seek to increase the signal to
noise ratio by averaging the detector signal in a sequence of scanning periods
(86, 87). Induced by beam steering and background light scattering, baseline fluctuation com-
monly exists in the whole measurement period, and thus invalidates the average-based attempts.

WMS is a sensitive and robust technique for measuring the combustion parameters with
good noise-tolerant characteristics (88-90). As shown in Figure 5, the exciting current of the
laser diode is generally driven by the superposition of a low frequency signal (ramp signal as
an example) and a high frequency sinusoidal signal. The modulated laser frequency v(t) can
be expressed as

v(t) =V + acos(2ft), (7)

where V is the scanning laser frequency, a and f,, the modulation amplitude and modulation
frequency, respectively.

== == Voigt profile (a=0.01)
1.0} Voigt profile (a=1) ]
------ Voigt profile (a=10)
-=-= Gaussian profile
0.8 ---=-- Lorentzian profile
)
= 06} .
X
=
T 04} b
02 1
0.0
-10 10

Figure 4. Comparison of normalized Voigt lineshape with normalized Gaussian and Lorentzian lineshapes.
The figure has been reprinted with permission from Xu et al., 2014. Copyright © (2014) AIP Publishing (85).
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The incident laser intensity I(¢) is modeled by
I(t) = Io[1 + i1cos2afint + ¢1) + ircos(drtft + @,)], (8)

where 1, is the average laser intensity at center frequency ¥, i, the amplitude of linear
intensity modulation (IM), ¢; the phase shift between the frequency modulation (FM) and
IM, i, the amplitude of non-linear IM with phase shift ¢, (91).

The transmission coefficient 7(v) becomes an even function in 2mf,,t, which can be
expanded into Fourier cosine series:

n=+ oo

(¥ + acos2uf,t + ) = Z H, (¥, a)cos(n-2mfyt), 9)
n=0

where H, (¥, a) are the nth order harmonic coefficients given by

1 +
Hy(V,a) = E/ T(V + acosb)-do, (10)

/g

1 +
H,(v,a)= —/ T(V + acosh)-cosnd-do. (11)
T )_

b/

Followed by lock-in detection, the harmonics of the modulation frequency are extracted
and used to infer the flow parameters. As the background noise is generally with relatively
low frequencies, the WMS technique increases the signal to noise ratio to a large extent.

WMS-2f method
Reid and Labrie first introduced the concept of WMS and noted that the lineshapes of very
weak absorption lines can be captured from the measurement of second-harmonic (2f) of
the modulation frequency, known as the WMS-2f method, without a zero-absorption base-
line (59). This feature makes the WMS-2f method robust for many realistic high-pressure
combustors, in which the highly pressure-broadened lines increase the difficulty of accurate
baseline fitting when using DAS approach.

By multiplying the detector signal with a sinusoidal reference signal at 2f,,, the absolute
magnitude of the second-harmonic of the modulated absorption signals, noted as Rys

=
=
=0
7
N = : =
ramp ki ()= s ” i1 2 | Lock-in
€ ‘ ' - * detection time
+ laser 1 target gas  detector =
sinusoid ] time 2
S
&

time

Figure 5. Schematic of the scanned-wavelength WMS.
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isolated by the lock-in device is given by
Ry = ng + Y7, (12)

where X,rand Yyrare the X and Y components of the second-harmonic signals expressed by

Xop = Gly Hy+ L H, +H o Ho+
¥= | + 5( 1+ Hs)cosp, +ix | Ho+ B Cos¢;, |, (13)
GI, [i H
Yo = — TO [51 (H, — Hs)sing, + i <H0 — 7“) sinq)z}, (14)

where G is the electro-optical gains of the detection system.
The magnitude of the absorption-based 2f signal, noted as S5 is calculated by

Sy =/ (X = XG>+ (Yo — Y2, (15)

where ng and Ygf represent the X and Y components of 2f signal without absorption.

For the small modulation depth, the laser intensity modulation can be neglected, i.e.
i, = 0. If the phase shift between the FM and IM ¢, is further assumed to be x, Eq.
(15) becomes

GI, i
Sy = TO H, — El(H1 +H;)|. (16)

Since H; and H; are odd functions, they are zero at the line center in the case of
isolated and symmetric absorption features. The 2f peak height at the line center is free
from the interference caused by the amplitude modulation distortions. For optically
thin samples, generally o, < 0.05, the second-order harmonic coefficient can be simpli-
fied as

PXS(T)L [F7
b4

H,(v,a) = ¢(v + acosh)-cos26-db. (17)

-7

As noted by Liu et al, the gas temperature can be inferred from the ratios of 2f peak
heights from two transitions, generally named as 2f peak ratio thermometry (92), as follows:

+7
S T 7, + acosh)-cos260-do
Ratio _ L)Hy(vy) o(@S(T) o $1(v1 + acost)-cos -
I L Hy () =

To(v2)S2(T) ¢, (V5 + acost)-cos26-do

-7

Obviously, Ry is not only a function of S(T), but also a function of the line shape
function ¢ that is modeled by the pressure and gas concentration. Therefore, the
dependence of Ratio, on the absolute temperature values should be calibrated based
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on HITRAN/HITEMP spectral databases with measured pressure and a nominal
expected value of gas concentration. In practice, WMS-2f method is more suitable to
infer the temperature changes and flame fluctuations instead of calculating the absolute
temperature values. More complicated calibration is needed for measuring gas concen-
tration by scaling 2f signal units to the hardware-related parameter G (93). Further-
more, the optimum detection of broadened absorption spectra requires large
modulation depths. Liu et al. provided a strategy to optimally select the modulation
depth with highly broadened and congested spectra (94). However, the large modula-
tion depths led to more pronounced non-ideal laser effects such as non-linear intensity
modulation and FM/IM phase shift. In this case, absorption-based 2f signal S,; cannot
be simplified as Eq. (16), which, to some extent, invalidates the theory of 2f peak ratio
thermometry.

Owing to the high SNR performance and high pressure applicability of the WMS-2f
method, it has stimulated many practical applications since its invention. Philippe and
Hanson determined the temperature and pressure of transient flows generated in a
shock tube by fitting the experimental lineshapes to theoretical 2f lineshapes (95). In
this study, velocity was also derived from the measurement of the Doppler shift of the
absorption lines recorded with 2f detection. With a single laser that covers two adjacent
oxygen transitions, Silver et al. employed the WMS-2f method for gas detection in
microgravity (96). By detecting the 2f peak heights of H,O transitions near 1.4 pum, Li
et al. monitored the thermoacoustic instability and lean blowout of propane/air flames
in a swirl-stabilized combustor (97).

Calibration-free WMS-2f/1f method
For WMS measurement in harsh environments, the difficulty of scaling 2f signal units to G is
increased by the non-absorption transmission loss, which is caused by laser intensity fluctua-
tions due to scattering, beam steering and window fouling. The solution is to normalize the
2f signal with first-harmonic (1f) signal, referred to as the calibration-free WMS-2f/1f
method (91, 98, 99).

Using the same procedures as Eqgs. (12)-(14), the magnitude of 1f signal can be calculated
by

Ryp= /X + Y}, (19)
where the components of 1f signal, X;rand Y;5 can be expressed by

X GTO . H2 i2
= H; +i | Hy+ > cosg; + E(Hl + Hs)cosg, |, (20)

GI H. i
Ylf = — TO |:11 (H() — 72> Sin(pl + Ez(Hl - H3)Sin(p2:| . (21)
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As both the harmonics of the 2f and 1f signals are proportional to the hardware-related
parameter G, the 1f-normalized 2f signal, noted as S, 5 is independent of G and given by

2 2
X\ _ (X Yo\ _ (Y
)=l % mall B el Bl Bl B P (22)
Ryf le Ryf le

where RY, is the absorption-free 1f signal. In this way, the gas parameters can be directly

obtained from the comparison between the simulations and measurements without scaling

between the two. For optically thin samples (o, < 0.05), the peak value of S,/ obtained
using small modulation depth can be simplified as

Sof =

PXpsS(T)L [T
S /1f — peak = “115771() ¢V + acosh)-cos20-d6. (23)
1 -7

For optically thick conditions, simulations must be performed as close to the expected
condition as possible due to breakdown of the linear approximation of Eq. (2). Iteration may
be required to draw the simulations acceptably close to an unknown measurement condition
(98). In addition, Peng et al. employed a second-order Taylor series to approximate laser
transmission and measured the gas concentrations in case of o, > 0.05 (100). Lan et al.
employed the ratios of the 2™ and 4™ harmonics at the line center to measure the linewidth
for optically thick conditions, which was applied in the WMS-2f/1f method to detect pres-
sure and gas concentration (101).

At high-pressure conditions where absorption features are significantly broadened, over-
modulation with modulation index m>2.2 reduces the WMS-2f/1f measurement uncertainty
induced by pressure deviation between the simulated and experimental conditions (102,
103). In case of large modulation index, the laser parameters, i.e. i}, i, ¢; and ¢, in Eq. (8),
are needed to be carefully characterized to obtain more accurate interpretation of the 1f-nor-
malized 2f spectra. Following the general theory of Kluczynski and Axner (104), Li et al.
extended the WMS model to account for real diode laser performance with the non-ideal
laser effects, and demonstrated the extended model by probing pressure-broadened water
vapor features near 1388 nm with a near-IR diode laser (91).

When compared with WMS-2f method, the calibration-free WMS-2f/1f method
shows better applicability to monitor practical combustors where quantitative measure-
ment of the gas properties is highly desired. Chao et al. demonstrated the WMS-2f/1f
method for continuous monitoring CO in the boiler exhaust of a pulverized-coal-fired
power plant up to temperatures of 700 K (57). Schultz et al. developed a sensor based
on WMS-2f/1f method to measure temperature and H,O column density in a hydro-
gen-fueled model scramjet combustor (54, 105). These quantitative and in situ measure-
ments not only provide direct evidences of the suitability for WMS-2f/1f method in
harsh environments, but also show great potential for optimization of the combustion
efficiency in a combustor control system.

Fitting of the WMS-nf/1f method
Although calibration-free measurement of gas properties can be implemented by pick-
ing the peak value of the WMS-2f/1f signal, it may suffer from two disadvantages. First,
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in case of large modulation depth and optically thick, simulations based on HITRAN
must be performed close to the expected condition, which are difficult to be predicted
in real conditions. Second, although the analytic model of laser intensity is character-
ized in Eq. (8), other optical components in the apparatus may produce uncertainties
in the WMS background signals, and thus produce error in WMS-2f/1f measurement
results.

To mitigate the problems mentioned above, an innovative strategy, referred as fitting of
the WMS-nf/1f method, was developed by simulating the WMS-nf/1f signals and fitting
them to the measured ones (106-108). Figure 6 shows the flow chart of fitting the WMS-nf/
1f. The basic steps of the method are listed as follows:

(1) By assuming vy, A, wg and w;, the wavelength-dependent simulated absorbance Sa(v)
can be obtained from Eq. (2) based on the HITRAN/HITEMP spectral database.

(2) The time-dependent simulated absorbance Sa(v(t)) is obtained with the analytic
expression for the laser wavelength versus time v(f) in hand.

guess parameters,
e.g. vo, A, wg, wi

HITRAN/HITEMP > simulated absorbance

s al(v)
laser wavelength N simulated absorbance
vs time w(¢) vs time Sa(v(t))

absorption-free laser Beer—Lambert
>

intensity "7(z) relation
measured transmitted simulated transmitted
intensity 10) intensity ST

lock-in at nf,,

lowpass lowpass
filter filter
measured simulated
WMS-nf1 1f MS,1 WMS-nf1f S,

calculation of sum-of-squared error
between MSnﬂl rand SS,U,;I f

NO

converged?

YES

calculation of gas properties
from best-fit parameters

Figure 6. Flowchart of fitting the WMS-nf/1f method.
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Table 3. Comparison of scanned-wavelength LOS LAS techniques.

Sensing strategy

Benefits

Limitations

DAS o Absolute measurement of T and X without o Invalid with broadened lineshape caused
calibration by high pressure and temperature
e Accurate for measuring strong absorbance o Low SNR for measuring weak absorbance
(o, < 5%)
o Ease of operation
WMS-2f e Good noise-tolerant characteristics for o Calibration needed to scale the

. ok
measuring low absorbance

o Suitable for broadened lineshape in case of
high pressure and temperature™”

simulations based on HITRAN/HITEMP
databases to the measured 2f signal units

o Careful selection of modulation depth in
case of unknown pressure

CF-WMS-2f/1f

o Free of calibration for hardware-related
parameters”

e Resistant to laser transmission variations
caused by beam-steering, scattering, etc.”

o Predetermination of the complex laser
characteristics

o Simulations must be performed close to
the expected condition for optically thick
conditions

Fitting of CF-
WMS-nf/1f

o Avoiding the characterization of laser
intensity in its response to scanning and
modaulating the injection-current

o Valid at any optical depth, modulation
index, and at all WMS-nf,,, harmonics

e Absorption-free laser intensity versus time
needs to be characterized

“*Benefits for all the WMS methods.
*Benefits for CF-WMS-2f/1f and fitting of CF-WMS-nf/1f.

(3) The incident laser intensity MI(t) is measured in the absence of the absorption species. Given
M].(f) and See((1)), the simulated transmitted laser intensity SI(f) can be calculated by

L) ="y (t)-e (24)

(4) The laser penetrates the target species and the transmitted laser intensity “I(t) is

measured.

(5) The digital lock-in and low-pass filter are used to obtain the 1f normalized nf signals of
SI,(t) and MI,(t), noted as SSzf,lf and MSZf,lf, respectively. By least-squares fitting SSZﬂlf
to MS,,5 the parameters vy, A, wg and w;, can be obtained, from which the gas proper-
ties are finally inferred.

The use of MIy(#) for simulation not only avoids characterizing the complex analytic
model of laser intensity in its response to scanning and modulating the injection-current,
but also accounts for any wavelength-dependent transmission of other optical components
in the apparatus. Furthermore, the availability of this method with any optical depth and
modulation index make it an attractive strategy for combustion diagnosis in harsh environ-
ments such as shock tubes (109), scramjet combustors (110, 111), detonation engines (50)
and coal gasifiers (112-114). A comparison of various scanned-wavelength LOS LAS techni-
ques is presented in Table 3 to clearly show their benefits and limitations.

Line-of-sight measurements in non-uniform conditions

Traditional LOS LAS techniques are typically employed to measure the path-averaged com-
bustion parameters. However, non-uniform distributed characteristics of the combustion
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fields extensively exist due to heat transfer with the side walls, cold boundary layers, and gas
diffusion. Many researchers sought to evaluate the influences of the non-uniform field on
the LOS measurements results. For instance, Ouyang and Varghese proposed an energy-
temperature curve method to estimate the boundary-layer effects and chose absorption tran-
sitions to calculate absolute H,O concentration (115). Wang et al. introduced a tempera-
ture-insensitive strategy to remotely acquire the CO concentration along the laser path with
non-uniform temperature distribution (116). Smith et al. least-squares fitted the path-inte-
grated scanned WMS-2f/1f spectrum to the simulated one to infer the integrated absorbance
areas, by which the path-averaged temperature and H,O mole fraction were calculated
assuming a uniform line-of-sight measurement (117). Given two transitions with their
line strengths linearly depending on the temperature over the domain of the temperature
non-uniformity, Goldenstein et al. developed a 2-color absorption spectroscopy strategy for
measuring the column density and density-weighted path-average temperature of the
absorbing species in non-uniform gases (118). The ratio of integrated absorbance areas at
two transitions was given by

T, +0b
rR= M2 ;02

S k) (25)
my Tn,- + b1
where m and b are constants that linearize S(T) at each transition as
STy =mT+by, S$AT)=mT+ by, (26)

where #; is the number density of the absorbing species. The density-weighted path-average

L
/ Tﬂidl
— JO

temperature, T,,, was defined as
nl = L .
/ I’l,‘dl
0

With T, in hand, the column density along the laser path in the non-uniform condition
can be inferred from

~l

27)

L
Niz/ n;dl= é . (28)
0 S(Tni)

This strategy was validated and applied in the experiments with hypersonic propulsion
facilities. Although above attempts took the non-uniform field into consideration, they were
unable to acquire the spatially-resolved distributions of combustion parameters along the
laser path.

By measuring multiple absorption transitions of a single species, the equation set that
reflects the non-uniformity of the flow field can be established, by which the temperature
probability distribution density can be extracted using the LOS LAS technique provided that
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the partial pressure along the laser path can be regarded as a constant:

Si(Ty)  Si(Tr) -+ Si(Ty) (PXL), Ay
(T S(Tr) -+ S(Ty) (PXL), Ay

: =] . |, (m>n) (29)
Sm(Tl) Sm(TZ) e Sm(Tn) (PXL)n Am

To demonstrate this strategy, Sanders et al. reconstruct the temperature distribution
of atmospheric-pressure air in 200-700 K with “two-value” and linear temperature dis-
tributed paths, respectively (119). Liu et al. retrieved two-value and parabolic-like tem-
perature distribution based on multiple absorption transitions using temperature
binning method. To some extent, these two attempts are able to acquire the tempera-
ture information with a relatively simple temperature profile (120). However, the gen-
eral temperature profiles are not simply confined to two-value and parabolic-like cases.
Meanwhile, the partial pressure cannot always be assumed to be a constant in practice.
The spatially-resolved non-uniform distributions of the combustion parameters along
the laser path can be measured when a priori information, such as the fitted profile
function of the combustion field (121) and the temperature distribution tendency
(122). The latter one provides a more general solution for retrieving the spatially-
resolved flame parameters as the practical combustion fields cannot commonly
described by fitting trapezoid or Boltzmann profiles. The temperature distribution ten-
dency can be obtained through CFD simulation or several single-point thermocouple
measurements. By equally dividing the measurement path into n sections, non-linear
regularization method implemented by the simulated annealing algorithm can be
employed to find an optimum solution of temperature distribution in Eq. (29). With
the temperature distribution in hand, the partial pressure distribution can be retrieved
by linear regularization methods.

One-dimensional LAS tomography

For some combustors such as the flat flame burner and the rocket propeller, the
distributions of the combustion parameters over the cross-sections of the flame are
rotationally symmetric, or, to some extent, can be simplified as rotationally symmetric
(123, 124). In this case, LOS LAS measurements along arbitrary orientations are
equivalent. By establishing Abel’s integral equation, LOS LAS can be combined with
1-dimensional tomographic techniques (125), referred as 1-dimensional LAS tomogra-
phy (1D-LAST) hereafter, to reconstruct the rotationally symmetric distributions of the
combustion parameters.

As the Abel’s integral equation is established by parallel projections, most 1D-LAST tech-
niques were realized by using parallel-beam illuminations (96, 126-128). In general, a con-
centric circles-based model and a coordinate system are established, as shown in Figure 7(a).
The origin of the coordinate system is at the center of the flame with radius R. The flame is
discretized into N equal-spaced concentric circles. The interval of two adjacent concentric
circles is Ar = R/(N—0.5). The radius of the ith concentric circleis r;, = iAr,i=1, ..., N. As
the flame is rotationally symmetric, the density of the integrated absorbance a(r;) in the ith
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circle are uniform and can be expressed as

a(r;) = P(r))-S[T (r)]-X(r;). (30)

N parallel laser beams, with interval Ar, penetrate the cross-section of the flame along the
direction of positive y-axis. The coordinate of the intersection of the ith laser beam and x-
axis is x; = iAr, i = 1, ..., N. Therefore, the relationship between the integrated absorbance
area A(x;) and a(r;) can be given by the Abel’s integral equation:

N rj+Ar/2
Ax)=2Y" [
j=i rj’—Ar/Z,j>i i

IO 31)

where a(r;) can be solved by using 1-dimensional tomographic algorithms (125). By retriev-
ing a(r;) at two transitions, the radial distributions of the combustion parameters can be
obtained using the 2-color strategy.

Many previous works sought help from mechanical movements to achieve the parallel-
beam illumination in the 1D-LAST system. Villarreal et al. set up a frequency-resolved 1D-
LAST system by fixing the laser beam and attaching the burner on a translation stage. The
burner moved into or out of the optical path to acquire parallel projection data (126).
Instead of moving the burner, Guha et al. parallel swept the laser beam to the burner surface
with a periscope mounted on a rotation stage and a single detector, both of which are posi-
tioned in the focal points of a pair of parabolic mirrors (128). The outstanding feature of
above systems is the high spatial resolution, which is determined by the step distance of the
movable stage. However, the structures of above 1D-LAST systems are rather complicated
and difficult to realize on-line flame monitoring. To balance the system complexity and the
spatial resolution, Liu et al. proposed a resolution-doubled 1D-LAST technique and sensor
using one view of multiple parallel laser beams (129), as shown in Figure 7(b). With the
designed geometry of the parallel laser beams, a doubled tomographic resolution of Ar/2
was realized when the interval of two neighboring parallel laser beams was Ar.
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Figure 7. lllustration of (a) the parallel-beam geometry for 1D-LAST and (b) layout of the resolution-dou-
bled 1D-LAST sensor. The figure has been reprinted with permission from Liu et al., 2015. Copyright ©
(2015) Springer Nature (129).
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To realize the parallel-beam illumination, each laser beam is generally generated using a col-
limated lens. In contrast, the fan-beam illumination is much easier to generate using a well-col-
limated laser penetrates through a cylindrical lens. Therefore, to simplify the optics structure of
the 1D-LAST system, the fan-beam illumination can be used instead of the parallel-beam illu-
mination. The 1D-LAST system conceptually based on the fan-beam illumination was system-
atically introduced in (130). After transforming the fan-beam geometry to equivalent parallel-
beam geometry with a 2-step interpolation (131), the rotationally symmetric distributions of
temperature and gas concentration can be retrieved using 1-dimensional tomographic algo-
rithms. Most recently, the fan-beam 1D-LAST system was employed to monitor swirling
flames generated from a model swirl injector (132). As shown in Figure 8, the optical system
was sufficiently simplified by introducing a fan-beam illumination and a linear detector array
consisting 12 equally-spaced photodetectors. The thermal expansion over the cross-sections of
interest in the swirling flame can be inferred from the reconstructed temperature profiles.

It is also worth mentioning that the stability of 1-dimensional tomographic algorithms largely
depends on the spatial resolutions of the 1D-LAST sensors. As the Abel’s integral equation is the
first kind Volterra integral equation, it is inherently ill-posed and sensitive to noise-contaminated
projection data (133). To achieve higher spatial resolutions, the target domain should be discre-
tized into a larger number of concentric circles, i.e. unknown variables. The increasing number
of unknown variables leads to a severely ill-posed problem, in which small perturbations on the
projection data will be magnified and cause large errors on the reconstruction results. To treat
these problems, regularization methods are good candidates. Daun et al. introduced a method
based on Tikhonov regularization for solving the 1-dimensional tomographic problems for
retrieving rotationally symmetric combustion parameters (127, 134). Hinging on choosing a suit-
able regularization parameter, Tikhonov regularization generates a well-posed problem that
approximates the original ill-posed problem with a very small residual.

Two-dimensional LAS tomography

The increasing demands for monitoring more complicated and asymmetric combustion fields
stimulate the development of 2-dimensional LAS tomographic techniques in the recent decade.
From the mathematical formulation of the tomographic problems, the existed 2-dimensional
LAS tomographic techniques can be generally classified as linear and non-linear LAS tomogra-
phy, respectively. Based on a brief introduction of the model establishment, we mainly focus

(a) cylindrical rE)\Lf)&ictt:c:tlars (b) 1800
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Figure 8. Application of the fan-beam 1D-LAST sensor on monitoring swirling flames. (a) shows the 3D
sketch of the 1D-LAST sensor; (b) shows the reconstructed temperature profiles at different heights above
the nozzle. The figure has been reprinted with permission from Liu et al., 2017. Copyright © (2017) IOP
Publishing (132).
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on the efforts made to improve the reconstruction fidelity and develop instrumentations aim-
ing at realization of reliable and accurate measurements on practical combustors.

Linear LAS tomography

As indicated by its name, the linear LAS tomography is realized by solving the linear
equation set, i.e. Ax = b, that forms the absorption-based tomographic problem (61).
In principle, the mathematical formulation for linear LAS tomography is similar to the
computer tomography that has been extensively employed in clinical diagnosis (131,
135). However, a complete and regular sampling used in the computer tomography is
impractical for LAS tomography by taking the structure and reliability of the combus-
tor into consideration. Both an efficient tomographic algorithm and a reasonable beam
arrangement contribute to improving the quality of the tomographic images and thus
making the linear LAS tomography competitive to be employed in on-line and in situ
combustion diagnosis.

Model establishment

For the tomographic analysis, the region of interest (ROI) is discretized into N cells, as
shown in Figure 9. In each cell, the flame parameters such as pressure P, temperature T and
gas concentration X are assumed to be constant. According to Eq. (3), the sampled inte-
grated absorbance A, ; obtained from the ith laser beam can be expressed as

N

N
Avi=Y ayLly=»_ [PS(D)X], Ly, (32)

j=1 =1

where i and j are the indices of the laser beams and the grids, a,,; the density of the integrated
absorbance in the jth grid, L;; the absorption path length of the ith laser beam within the jth
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Figure 9. Geometric description of a line-of-sight LAS measurement in the linear LAS tomographic problem.
The figure has been reprinted with permission from Liu et al., 2018. Copyright © (2018) IEEE (177).
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grid. In general, Eq. (32) can be compactly rewritten as
Ax=D, (33)

where A is the M x N matrix that represents the chord lengths of all the beams within each
cell, x the N x 1 vector of a,; to be reconstructed and b the M x 1 vector of sampled A,,;,
respectively. By performing the tomographic reconstruction at two pre-selected transitions,
i.e. v; and v,, the temperature T; in the jth cell is reconstructed from the ratio of the recon-
structed a,, ; and a,, ; in the jth cell using the 2-color strategy. Then, the partial pressure,
i.e. [PX],, is calculated with T} in hand.

In general, the quality of a tomographic image is evaluated by both the accuracy and
spatial resolution (136). The former indicates the closeness of the tomographic image
to the true one, while the latter refers to the fineness of the tomographic image. For
linear LAS tomography, the quality of tomographic image can be improved mainly
from two aspects, i.e. efficient tomographic algorithms and optimized layout of laser
beams.

Tomographic algorithms

Depending on the numbers of ray measurements M and discretized cells N in the ROI, the
linear LAS tomography gives rise to a “full-rank” or “deficient-rank” ill-posed problem
shown in Figure 10 (137). The former case arises mainly in laboratory studies with high
degrees of optical access when the axial and angular projection dimensions are densely sam-
pled, that is, Eq. (33) is overdetermined due to the condition of Rank(A) > N. In majority,
the optical access is severely limited by taking the endurable high pressure and temperature
of the combustor into account. Due to limited number of ray measurements, the linear LAS
tomography gives rise to a rank-deficient problem, i.e. Rank(A) < N.

Tomographic algorithms for treating full-rank but ill-posed problem. The filtered back-pro-
jection (FBP) algorithm that is commonly used based on the analytical solution of the Radon
transform (138). Given a continuum of acquisition positions, the FBP reconstruction can be
done by applying a row-wise convolution with a selectable kernel to the raw data. However,
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Figure 10. Beam density with respect to (a) full-rank and (b) deficient-rank ill-posed problems.
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the FBP is less feasible in LAS tomography since complete and regular sampling is difficult to
realize in practice (139). In contrast, algebraic reconstruction technique (ART) is more suit-
able for dealing with incomplete and irregular sampling (140-142), since ART uses multiple
repetitions in which the current solution converges toward a better solution. As the simplest
form of the iterative reconstruction algorithms, ART based on Kaczmarz’ method is solved
by (143)

b— ATx*
—— A,
Al

Xtl=xF41 (34)

where x* is the reconstructed density of the integrated absorbance at the kth iteration, A the
relaxation parameter. When applying ART to an inverse problem with noise-contaminated
data, the solution converges very quickly toward a good approximation of the exact solution,
and begins to deviate due to its semi-convergence property. Therefore, the convergence
should be monitored and a reliable stopping criterion is necessary for ART to stop the itera-
tions at some point (144, 145). To achieve a faster convergence of volumetric images towards
a stable solution, a variant of the ART, named as simultaneous ART (SART), performs
updates for complete raw data projections (146). A relaxation factor is necessary in SART to
keep the noise low and to reduce problems with streak artifacts. More applications of ART
in the linear LAS tomographic measurements can be found in (144, 147-153).

Moreover, by using a singular value decomposition of the ill-conditioned matrix A, we
can obtain

A=USVT, (35)

where UeRM * M and VeRY * ¥ are orthonormal matrices, and SER™ * ¥ is a diagonal
matrix containing the singular values arranged in decreasing order, {0}, 03, ..., on}. The
least-squares solution of Eqn. (33) can be obtained by

X= ]—Vj, (36)

where u; and v; are the jth column vectors of U and V, respectively. In practice, the ray meas-
urements are contaminated with noise, in which case, b = b¥*®" 4+ §b, where b™*" = Ax***,
Then, Eq. (36) can be written as

N uTbexact

N
X=XexaCt+(SX=Z JO.' Vj+z

j=1 J j=1

uchSb
0j

The small singular values amplify the second term of Eqn. (37). In other words, the solu-
tion suffers from a large variations using traditional constrained linear least-square method,
even if smalls perturbation is added to the measurements, éb. These problems can be sup-
pressed by using regularization methods (154, 155), such as Truncated Singular Value
Decomposition (TSVD) and standard Tikhonov regularization.
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Tomographic algorithms for treating rank-deficient ill-posed problem. With respect to the
tomographic algorithms for treating deficient-rank problem, the last N-M singular values in the
orthonormal matrices are zero, and the physical solution of Eqn. (33) is given by

uij N
ot > G, (38)
j=M+1

M
X=XLS+XnuH=§
=1

where {C;, j = M+1, ..., N} are an underdetermined set of scalars. The exact solution x has two
components: the unique solution x"* belonging to the range of A that satisfies Ax = b, and an
infinite set of solutions x™ from the null space of A, x™Ie{x|Ax = 0}. However, the “true” x™!
cannot be retrieved from the ray measurements.

The limited ray measurements b must be supplemented with a prior information by
taking the physical attributes of the target field into consideration. Many reconstruction
techniques incorporate a prior information (sample-based or temporal prior informa-
tion) through the Bayesian formulation (137, 156, 157). In general, a prior information
such as smoothness of the subject and non-negativity constraint can be combined with
the incomplete data to improve the image quality (158). The smoothing process pro-
vides the regularization necessary to render the inherently ill-posed problem tractable,
while the non-negativity constraint maintains physically meaningful parameters. The
first-order Tikhonov regularization spans the null space of A with a smoothing matrix
L, which approximates the directional derivatives (155, 158). For a Cartesian grid, L is
defined as

1 if i =
Lj=< —1/k if ineighboursj, (39)
0 otherwise

and Lx = 0 is satisfied by any uniform x. Therefore, x can be resolved by

BL}X_ [EH

where the 1 weighs the smoothness prior and the information contained in the ray meas-
urements. It should be noted that the traditional 1 selection method such as the L-curve
criterion presumes the least-square solution is the correct with noise-free data (159), that
is, x° = x*°*_which is not satisfied by the rank-deficient problem. Daun et al. introduced
a A selection method based on the singular value decomposition of the augmented matrix
[A; AL] in Eq. (40), and further demonstrated its good solution accuracy in the rank-defi-
cient problem (158).

In addition, the modified Landweber algorithm has been found robust in obtaining a sta-
ble solution of the inverse problem with limited views and a small number of ray measure-

ments (60, 160). By taking the gradient of the least-squares objective function [|Ax—b||?

X; =argmin ,  s.t.x>0, (40)
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with respect to x, it is given in an iterative form as
X1 =xF 4 AT (b — AX5), (41)

The modified Landweber algorithm has gained widespread applications in linear LAS
tomography by taking the smoothness of the subject and the value constraints into account
(30, 161-165). A filter that uses a window of a specific size can be applied in order to regular-
ize the solution and provide a degree of smoothing for obtaining an expected image resolu-
tion. By this mechanism, the estimate of each pixel value is determined by the value of the
neighboring pixels within the filter window. The relaxation parameter plays an important
role in obtaining an accurate and stable solution. Instead of using the training strategy to
determine a fixed relaxation parameter, a “line search” strategy can be employed to compute
the relaxation parameter in each iteration. It has been proved that the “line search” strategy
is effective to make the solution to converge fast and improve the efficiency of the modified
Landweber algorithm (166).

Beam optimization

For regular beam arrangements, i.e. parallel (58, 144, 161, 163, 167) and fan-shaped
(150, 164, 168, 169) beam arrangements, the measurement space should be sampled
evenly in spatial and angular dimensions to achieve the best image reconstruction
results. Subject to the limits imposed by the physical size of the collimators and detec-
tors, regular beam arrangements are often impractical in particular applications such as
a multi-cylinder engine and a gas turbine engine (31, 170). To visualize the properties
of any beam geometry, Terzija et al. first introduced sinogram space with one linear
variable, s, and one angular variable, 6 (162). As shown in Figure 11, each beam can be
represented by a single point (s, #) in the sinogram space, where s is the length of its
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Figure 11. Beam arrangements and the corresponding sinogram plots. Beam arrangements are for (a) 32
beams with regular geometry, (b) 32 beams with unoptimized irregular geometry and (c) 27 beams with
optimized irregular geometry. The figure has been adapted with permission from McCann et al., 2015.
Copyright © (2015) Elsevier (61).
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perpendicular distance from the origin when drawn in normal Cartesian coordinates
and 6 is the angle that it subtends to the vertical Cartesian axis. In this way, the sensi-
tivity coverage of irregular beam arrangements can be inferred from plotting the posi-
tions of all the laser beams in the sinogram space. Laser beams that penetrate similar
regions of physical space become repeated measurements of a single point in the sino-
gram space. Therefore, maximization of the discrepancy between these points would
improve data gathering capability and thus the reconstruction accuracy.

Furthermore, a more systematic approach for predicting the performance of a beam
arrangement was proposed based on the mathematical properties of the resolution matrix
(171). The corresponding Euler equation for Eq. (33) is

(ATA+L"L)x=A"D, (42)
and can be solved directly by
xi = (ATA+L"L) " 'ATb = A'D. (43)

If is separated into the exact and noise components, i.e. b = b + §b = Ax™*" + §b,
Eq. (43) becomes

X, = A#Axexact + A#8b — Rxexact + A#5b7 (44)
where R = A”A is the resolution matrix. The reconstruction error is defined by
5x =x; — x¥ = (R — [)x™*" 4 A*6b, (45)

where I is the identity matrix. It can be seen that the reconstruction error is subject to
the regularization error, i.e. (R—I)x™*“, and the error caused by perturbations in the
data, i.e. A*Sb, respectively. In tomographic problems with limited projections, 8x is
dominated by (R—I)x™*®" as the solution x; is robust to b over a wide range of /.
That is to say, the beams should be arranged to minimize the Frobenius norm of
(R—1I) described by

F(W) =|R(W) —1||3, (46)

where W contains the information of (s, #) coordinates in the sinogram plot. Using a
genetic algorithm, the beam arrangement can be optimized by solving

W* =arg min[F(W)]. (47)

With respect to the above method, the resolution matrix is derived by incorporation
of a priori information. When a priori information is not easily available, Yu et al.
recently proposed a beam optimization method based on orthogonality between rows
of the weight matrix A (172). The orthogonal degree (OD) between the ith and jth laser
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beams is defined by

ArA;
OD;j= — 21—, (48)
1Al l14;]

A zero value of OD; ; denotes the ith and jth laser beams are orthogonal, while the value of
OD;; is unity or close to unity means the two beams providing the same or very similar spa-
tial information. A matrix containing the OD values of all beam pairs, named as MOD, is
given by

1 OD1,2 te ODl,k
ODZ,I 1 T ODZ,k
MOD(W)= | L : (49)
ODyy ODy; -+ ODgg |

To avoid redundant beams, every element in MOD should be small, which gives rise to
the definition of the cost function for the minimization problem by

FMOD(lI’) = max[MOD(‘I’) — I], (50)

where max[-] returns the maximum element of the matrix. The minimization problem can
be solved using a standard global optimizer such as the simulated annealing algorithm (173).

Design of tomographic sensors and systems

To obtain the ray measurements from different views, some previous implementations rely
on beam scanning, e.g. either rotating the probing beams or translating the target (149, 150,
174). Figure 12 shows two representative implementation of the lab-scale LAS tomographic
sensors based on beam scanning. To increase the temporal resolution of these tomographic
system, Wang et al. captured the projections by simultaneously rotating four laser beams on
the rotating platforms (149). However, the mechanical movements inevitably undermine the
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Figure 12. Schematics of two lab-scale LAS tomographic sensors implemented by (a) mechanical move-
ments and (b) solid-state beam deflectors. The figure has been reprinted with permission from Tsekenis
et al., 2017. Copyright © (2017) IEEE (175).
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Figure 13. Implementation of the tomographic sensors with (a) 32 parallel laser beams. The figure has
been reprinted with permission from Wright et al., 2005. Copyright © (2005) OSA Publishing (161) and (b)
27 irregular optical paths that were applied to combustion diagnosis in the multi-cylinder automotive
engines. The figure has been reprinted with permission from Wright et al., 2010. Copyright © (2010) Elsev-
ier (30).

temporal resolution which is also crucial for the monitoring of high speed flows. To rapidly
scan the laser beam in the ROI without any mechanical movement, the solid-state beam
deflectors were introduced recently to realize tomographic reconstruction with high tempo-
ral and spatial resolutions. The laser beam can be deflected with an angle of 216 mrad at a
speed of 90 kHz using an electro-optic deflector (175). Combined with additional optical ele-
ments, different optical access strategies can be created based on the deflected laser beam.

The solutions for rank-deficient problems, such as the first-order Tikhonov regularization
and modified Landweber algorithm, give rise to many linear LAS tomography measurements
with limited number of laser beams (30, 161, 163-166, 169). Compared with the beam scan-
ning manners, the stationary tomographic sensor not only enhances the temporal resolution,
but also greatly reduces the uncertainty introduced by the beam movements and greatly
improves the reliability. As shown in Figure 13, Wright et al. demonstrated high-speed
tomographic imaging of hydrocarbon vapor distribution and mixing within the combustion
chamber with 32 parallel laser beams (161, 176) and 27 irregular optical paths (30), respec-
tively. These sensors were applied to combustion diagnosis in the multi-cylinder automotive
engines to understand the mixing and reaction processes. Particularly, the sensor with 27
optical paths carried optical fibers and collimators embedded on a unique Optical Access
Layer (OPAL), which offered minimal modification of engine form and function.

As shown in Figure 14, Liu et al. developed a fan-beam LAS tomographic sensor
with 60 projections and simultaneously reconstructed the 2-dimensional distributions
of temperature and H,O concentration with a high spatial resolution of 7.8 mm (164).
Most recently, the newly developed highly spatially-resolved sensor was employed to
monitor the dynamic cross-sectional behavior of swirling flames. Particularly, the devel-
oped sensor was applied to capture dynamically the process of blowout of the swirling
flame, illustrating that the sensor can provide firsthand and reliable visual data to help
prevent the flame from lean-blowout (177).

Image reconstruction with limited number of laser beams makes the parallel data acquisi-
tion (DAQ) system easier to be implemented in practical applications, and, therefore, the
high temporally-resolved LAS tomographic system becomes a reality. A parallel high-speed
DAQ for LAS tomography can be established in two main approaches, i.e. assembly of com-
mercial instruments and custom-made compact reconfigurable instruments. In most cases,
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Figure 14. Stationary fan-beam LAS tomographic sensor with its applications on monitoring the dynamic
cross-sectional behavior of swirling flames. (a) Schematics of the fan-beam sensor with 60 projections. (b)
Installation of the sensor above the nozzle of the model swirl injector. (c) Instantaneous tomographic
images of temperature over the cross-section of the swirling flame at a height of 2 cm above the nozzle
during the blowout event. The figure has been reprinted with permission from Liu et al., 2018. Copyright
© (2018) IEEE (177).
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flame generated by a Bunsen burner at 8 kfps. The figure has been reprinted with permission from Jing et
al,, 2017. Copyright © (2017) IEEE (179).
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the commercial DAQ units were adopted. For instance, a 16-laser-beam LAS tomography
system was developed with HIOKI commercial instruments that enable to generate 1k
frames of tomographic images per second (178). The National Instruments digital DAQ
cards were used to parallel sample the absorption signal with respect to the OPAL (30).
Recently, parallel DAQ units with memory chips were recently designed to collect 60 chan-
nels of absorption light intensity data (179). As shown in Figure 15, compact and integrated
electronic circuits that contain a central processing unit, laser control units, and parallel
DAQ units were developed with a shared-bus interconnection. Based on the stationary fan-
beam LAS tomographic sensor, the temporal resolution of fan-beam LAS tomographic sys-
tem was reconfigurable from 1k to 8k frame per second (fps).

Non-linear LAS tomography

Motivated by the advancements in broadband laser sources and related wavelength-multiplex-
ing technologies, the non-linear LAS tomographic methods were proposed by rapidly obtain-
ing absorption information over a wide spectral range (180). The central idea is to increase the
spectral sampling through broadband wavelength sweeping so that the deficiencies in spatial
sampling can be alleviated. As introduced previously, the linear LAS tomography reconstructs
the distributions of absorbance for individual transitions, which are linearly related to the ray
measurements from multiple views and used to further infer the distributions of combustion
parameters. Different from the linear LAS tomography, the non-linear LAS tomography
achieves that directly by solving a set of non-linear equations with these parameters involved.

Model establishment

The physical and mathematical background of the non-linear LAS tomographic techniques
has been detailed in (24, 181-183). Here, we provide a brief summary of the physics and
mathematics to facilitate the discussion in the rest of the paper. Figure 16 shows the mathe-
matical formulation of the hyperspectral tomography (HT) problem. A jth laser beam with
tunable wavelengths covering multiple transitions penetrates the ROI with absorbing species,
and results in a projection spectrum, i.e. the absorbance p(l;, 1) with 1 indicating the swept
wavelength. That is to say, the absorbance at a certain wavelength, e.g. 4;, contains contribu-
tions not only from /; itself, but also from the other transitions centered at different
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Figure 16. The mathematical formulation of the hyperspectral tomography problem. The figure has been
adapted with permission from Ma et al., 2009. Copyright © (2009) OSA Publishing (180).
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wavelength, e.g. 1; 1, ;41 and 4;,,. The peak of the absorbance at 4; is expressed by

P2y = @ (Ty, Xg, P = Y~ SCh, Ty)- Xk — 4i, Ty, Xg, Po)-Py-d,  (51)
q q k

where g is the index of the cell penetrated by the jth laser beam. a@i is the absorbance in the
gth cell at 4;. T,, X, and P, are the temperature, concentration and pressure in the gth cell,
respectively. A is the center wavelength of the kth contributing transition. A is the cell spac-
ing.

This inverse problem of reconstructing T, X, and P, is cast into an algebraic non-linear
minimization problem with a cost function defined as

J 1
D(Tqvxqqu) = Z Z [1 _pC(lj7/1i7 Tq;anPq)/pm(lj;/li)]zv (52)

j=t1i=1

where ] and I represent the total number of laser beams and the peak wavelengths, respec-
tively. p,,(l;/;) is the measured projection for the jth laser beam at A;, while p (I, 4;, Ty, X
P,) is the computed projection based on reconstructed T,, X, and P,. It can be seen that the
function D represents the closeness between the reconstructed and actual distributions of
temperature, concentration and pressure. The reconstructed distributions are sought to min-
imize the difference between the projections computed based on them and the measured
projections.

As the linear LAS tomography relies on the integrated line-of-sight measurements, only
the DAS can be incorporated in the tomographic techniques. Although WMS is superior to
DAS with respect to sensitivity and noise resistance, it is inapplicable for the linear LAS
tomography due to its non-linear nature based on harmonic detection. Non-linear LAS
tomography creates an irreplaceable advantage by combining WMS theory and facilitates
the application in harsh environments (184). The WMS-2f/1f signal from the transitions
with different temperature dependence can be incorporated in the non-linear LAS tomo-
graphic problem, from which the temperature, species concentrations and pressure can be
directly modeled. In this case, the cost function D is given by

J 2
D(Ty Xy, P = D0 S [ 1= 530 hs s Ty Xs Py) 353,052

j=1i=1

(53)

where Sy g and S)f i are the calculated and measured 1f-normalized 2f signals, respec-
tively.

To alleviate the ill-posed nature of this non-linear optimization problem, regularization is
also applied to the minimization problem by characterizing the smooth distributions of com-
bustion parameters in the gas flow. With respect to the smoothness regularization, the cost
function can be modified as

F= D(Tq,Xq, Pq) + VT'RT(Tq) + VX'RX(Xq) + VP'RP(Pq)v (54)

where Ry, Rx and Rp are the smoothness regularization factors, yr, yx and yp are weighting
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Control Room

(a)

Figure 17. Application of the HT sensor at the exhaust stream of a J85 engine. (a) Overview of the experi-
mental setup with a 30-beam HT sensor. (b) Photograph of the optical test section hardware overlaid by a
sample tomographic reconstruction to illustrate the location of the flow field. The figure has been
reprinted with permission from Ma et al., 2013. Copyright © (2013) OSA Publishing (187).

parameters employed to scale the magnitudes of Ry, Rx and Rp, respectively. More details on
determining the optimal regularization parameters in the non-linear LAS tomography can
be found in (185). Therefore, the non-linear LAS tomography problem is described by a
combination of the closeness between the reconstructed and the actual distributions and the
smoothness regularization factors. The simulated annealing algorithm (SA) has been proved
to be suitable for the optimization of the non-linear LAS tomography problem (173). As
detailed in (186), some variants of the SA algorithm were also proposed to reduce the
computational cost.

System design and applications

The first experimental demonstration of the non-linear LAS tomography was carried out by
using a prototype sensor on a near-adiabatic, atmospheric-pressure laboratorial Hencken
burner (180). The temperature and H,O concentration in seven discretized zones of the
Hencken burner were reconstructed using six fiber-coupled laser beams, which were gener-
ated using a fiber Fabry-Perot tunable filter laser with wavelength tuning over 1333-
1377 nm at a repetition rate of 200 Hz. Up to now, the most representative application of
the non-linear LAS tomography is the combustion diagnosis of an aero-propulsion engine
(General Electric J85) shown in Figure 17 (187). With a time-division-multiplexed combina-
tion of three FDML laser sources, the output laser can sweep over 10 cm™" at a repetition
rate of 50 kHz. The laser system, labeled as TDM 3-FDML in Figure 17, was operated from
the facility control room and 60-m-long optical fibers were used to transmit the laser to the
engine location. A 4 x 32 multiplexer located near the engine was used to combine and split
the three laser signals into 32 independent outputs. A customer-built tomography frame
with 15 horizontal and 15 vertical laser beams was mounted at the exit plane of the exhaust
nozzle. With a 36.3 mm beam spacing, the 2-dimensional distributions of temperature and
H,O concentration were simultaneously reconstructed with a temporal resolution of 50 kHz
at 225 spatial grid points.

Discussions
The non-linear LAS tomography is superior to the linear LAS in three main aspects. First,
the number of projections can be reduced due to the availability of absorption information



APPLIED SPECTROSCOPY REVIEWS 31

at multiple wavelengths. This essential advantage makes the non-linear LAS tomography
more attracting for application in combustors with limited optical access. Second, employ-
ment of broadband frequency-agile laser sources contributes to a high-repetition-rate wave-
length sweep, and thus a high temporal resolution, which facilitates tomographic
measurements in the combustion fields with strong turbulence. Third, the non-linear LAS
tomography maintains good sensitivity in a wide range of temperature with appropriate
selection of multiple transitions, and thus makes the inverse problem more stable and insen-
sitive to measurement noises.

Although non-linear LAS tomography has many advantages, it is less competitive
than linear LAS tomography in the aspects of system realizability and real-time perfor-
mance. Compared with the linear LAS tomographic system that requires generally nar-
rowband laser diodes with a tunable frequency range 1-2 cm™' and a photodiode
detector with a moderate bandwidth, e.g. 10-50 MHz, the non-linear LAS tomographic
system requires expensive broadband light sources and large-bandwidth photodiode
detectors to sample numerous absorption features with a high repetition rate. For
instance, the laser output from a supercontinuum laser source with an ultra-high repe-
tition rate on the order of MHz requires the bandwidth of the photodiode detector up
to 10 GHz (188, 189). A higher bandwidth of the photodiode detector leads to a
smaller active area and thus reduces the efficiency of the laser sources. In addition,
complex calculations are needed to fit broadband absorption spectra when implement-
ing the non-linear LAS tomography (190), which are far beyond the handling capacity
of a system-on-chip and should be carried out off-line using a more powerful com-
puter. It is impractical to employ a non-linear LAS tomography in combustion scenar-
ios such as thermal power plants and incinerator facilities, in which the combustion
processes are highly demanded to be observed in real time and adjusted actively. A
comparison of linear and non-linear LAS tomographic techniques in the aspects of the-
ory and system implementation is shown in Table 4.

Last but not least, parallel laser beams with orthogonal views were used for image recon-
struction in many non-linear LAS tomographic methods. The maximum number of grids
equals to the multiplication by the numbers of horizontal and vertical laser beams. Indeed,
employment of the multiple transitions contributes to a larger number of projections, which,
to some extent, alleviates the deficiencies in spatial sampling. However, the measurement
accuracy can be hardly improved with even larger number of transitions if the optimal tran-
sitions for a given temperature range have already been included (191). In this case, addi-
tional spatial samples from other angular views or more beam arrangements are necessary
to further improve the quality of the tomographic image.

Summary and outlook

Combustion diagnosis plays an important role in better understanding the thermal pro-
cesses and improving the combustion efficiency. LAS has been proved to be a reliable,
accurate, sensitive and fast-response optical modality for combustion diagnosis. The
rapid technological advances of small-size and narrow-linewidth tunable laser sources
accelerate the development of LAS techniques in the recent decades. Nowadays, com-
mercially available tunable laser sources can cover a wide spectral range, which provide
LAS measurements with higher sensitivity for combustion-like temperature
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measurement and lower lower-limit of concentration measurement. This review pre-
sented the development of LAS from the viewpoints of techniques, sensors and instru-
mentations when applied to combustion diagnosis.

LOS LAS techniques have been widely employed to monitor the uniform combustion
fields when the parameters along the laser path are constants or can be approximated
as constants. DAS can be easily implemented to measure absolute flame parameters
with relative low pressure. In a harsh environment with elevated pressure and strong
turbulence, WMS techniques show good noise-tolerant characteristics for measuring
low absorbance. For practical combustors such as shock tubes, pulse denotation engines
and scramjet combustors, LOS LAS sensors present good reliability for in situ combus-
tion diagnosis.

To satisfy the increasing demands for measurements in complicate and turbulent flow
fields, the LAS techniques gradually evolve from the path-averaged to spatially-resolved
measurement. Along the way, novel sensors and instrumentations have been designed to
increase the accuracy and suitability of the LAS techniques for practical applications. LOS
measurements with multiple transitions reflect the non-uniform information of a combus-
tion fields along the laser path. One-dimensional LAS tomography is capable of monitoring
rotationally symmetric flames. Particularly, the most promising results have been obtained
by 2-dimensional LAS tomography in reconstruction of the non-uniform distributions of
combustion parameters.

For a better understanding of the combustion processes, it is necessary to measure
more species among the combustion intermediates and products in the future research.
Therefore, a deeper exploration on the spectroscopic database will be required to obtain
accurate distributions of parameters for these species. In addition, developments in fun-
damental optics and optical engineering will improve the performance of laser sources,
particularly the mid-infrared laser sources, in many aspects such as high-power laser
output, high stability in wavelength tuning and multi-wavelength coverage, etc. Regard-
ing the state-of-the-art in the LAS tomography, future analytical model should be
established to evaluate the dependence of the reconstruction fidelity on the intensive-
ness of sampled transitions and effectiveness of beam arrangement. Furthermore, solu-
tions will be customized to design the tomographic sensors with suitable spatial and
temporal resolutions for the targeted combustors. Under the operating conditions of
elevated temperature and pressure, many efforts should be made to focus on maintain-
ing the stability of the combustors by appropriate tomographic sensor design with min-
imal intrusions.
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