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A Functionality-Based Runtime Relocation System for Circuits on 

Heterogeneous FPGAs 
 

Abstract—Runtime Relocation of circuits on FPGAs have been 

proposed for achieving many desirable features including fault tolerance, 

defragmentation and system load balancing. However, the changes in the 

architectural composition of FPGAs has made relocation more challenging 

mainly because FPGAs have become more heterogeneous. Previous and 

state-of-the-art circuit relocation systems on FPGAs have relied only on 

direct bitstream relocation which requires the source and destination 

resource layouts to be the same, as well as access to the design bitstream 

for manipulation. Hence, their efficiency on modern heterogeneous chips 

greatly reduces, and mostly cannot be applied to encrypted bitstreams of 

intellectual property (IP) blocks. In this paper, we present a circuit 

relocator which augments direct bitstream relocation with a functionality-

based relocation scheme. We demonstrate the feasibility of the proposed 

technique using a CORDIC application and show that an average of over 

2.6-fold increase in number of relocations can be obtained compared to 

only direct bitstream relocation at expense of a small memory overhead 

and manageable relocation time for this case study. 

Index Terms—Bitstream Relocation, FPGA, Reconfigurable 

Hardware, Relocation, Look-up-table, Heterogeneous. 

I. INTRODUCTION AND RELATED WORKS 

Field Programmable Gate Arrays (FPGAs) have gained increasing 

popularity in many domains, including consumer electronics, 

aerospace and defense, scientific instruments, autonomous vehicles  

and various video processing applications [1] [2]. In embedded 

systems, they have continued to be popular because of their unique 

combination of performance and flexibility. One very key feature of 

modern FPGAs is that circuits (or a subset of circuit(s)) configured on 

them could be removed when not needed to make room for other 

circuits or to modify the functionality of the system, a feature called 

dynamic partial reconfiguration (DPR). In addition, circuits could be 

moved from one location to another on the FPGA, a process termed 

relocation. Relocation of circuits on FPGA chips is beneficial for many 

reasons. Three important ones are: to circumvent permanent damages 

on chips and consequently improve fault tolerance of critical 

applications in hostile environments such as space [3], to achieve 

defragmentation of the chip area [4] and to maintain a desired thermal 

distribution on the chip [5]. Reconfigurable Operating Systems (ROS) 

have been proposed to manage relocation and other activities on FPGA 

chips in runtime, especially in embedded systems which are often self-

contained. An integral part of an ROS is a relocation manager which 

coordinates the repositioning of circuits on the chip. 

 A major condition that needs to be satisfied for relocation of a 

circuit to be possible in runtime is that the resource composition of the 

original location for which the circuit was synthesized should be the 

same as the intended destination location. That is, the source and 

destination are required to have identical chip area, not only in size, but 

also in the type, number and order of the resources they contain. This 

condition was easily satisfiable in older versions of FPGAs which were 

essentially homogeneous. Modern FPGA chips, in a bid to improve 

performance and lower power consumption, have hard blocks such as 

memory blocks (BRAMs) and digital signal processors (DSPs) 

sandwiched between the conventional Configurable Logic Blocks 

(CLBs) [6]. In addition, these BRAMs, DSPs and CLBs sometimes 

have different orientations (left and right) which differ in routing types 

as in the Xilinx 7 series FPGAs. Thus, FPGAs have become 

increasingly heterogeneous, and hence places greater restrictions on 

the relocation of circuits. The result of this increase in heterogeneity is 

that the number of relocations possible for typical circuits has reduced 

with newer generations of FPGAs. Figure 1 illustrates this point. The 

figure shows that while on a homogeneous chip the circuit on LOC 1 

could be relocated to 2 additional identical locations (LOC 2 and LOC 

3), no identical location can be found on the heterogeneous chip.  

Most of the circuit relocation systems present in the literature still 

demand that identical location(s) must exist on chip before any form of 

circuit relocation is possible [5] [7] [8] [9] [10]. They address only 

direct bitstream placement and relocation and do not provide any 

means of relocating circuits to non-identical locations. In [11], the 

authors reported a technique that successfully relocated a design 

bitstream synthesized for a location containing a set of CLBs and an 

unused DSP to another location with same CLB layout but with an 

unused BRAM replacing the DSP. However, the technique is based on 

online editing of configuration bitstreams which could be time 

consuming. In addition, the routing between the DSP and BRAM are 

required to be identical, which is not the case in recent FPGA 

architectures like the Xilinx 7 series. In an earlier work [10], we 

presented a scheme addressing placement and relocation of circuits on 

heterogeneous chips using only direct bitstream placement. That work 

focused on optimizations to improve place-ability of circuits in run-

time by carefully selecting synthesis locations at design time and 

minimizing fragmentation in runtime. It does not present any means of 

dealing with circuit placement on non-identical locations, and thus is 

completely different from the focus of this paper. Hence, we consider 

the work presented in this paper as novel, as we are not aware of any 

other report in the literature, including any of our own previous works, 

on circuit relocation on FPGAs based on functionality. 

In this paper, we propose a relocation manager to improve the 

number of relocations for a circuit on heterogeneous FPGAs. The 

proposed relocator augments bitstream relocation with a functionality-

based relocation. The functionality-based relocation presented in this 

work relies on the technique of replicating the functionality of a circuit 

with a look-up-table or a memory block in runtime for selected circuits. 

The basic idea is shown in figure 2. 
 

LOC 1 LOC 2 LOC 3
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CLB   BRAM  DSP  
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Fig. 2. Transformation of logic block to memory block 

In this paper, the main distinct contributions are: 

 A technique of relocation for relocating circuits to a location 

with non-identical resources based on functionality.  

 Implementation of runtime circuit relocator, combining 

bitstream relocation and the proposed functionality-based 

relocator, with a practical case study. 

The rest of this paper is organized as follows: section II discusses 

the proposed system architecture and presents the details of the 

relocation flow proposed. Implementation details of the proposed 

design is presented in section III, in addition to a case study application. 

Experimental results are presented and discussed in section IV, and 

section V gives a conclusion. 

II. SYETEM OPERATION AND ARCHTECTURE 

Our complete relocation flow occurs in two stages: first the 

possibility of relocating a circuit by direct bitstream is evaluated and in 

cases when this is not possible or leads to undesirable effects, 

functionality-based relocation is resorted to. The proposed 

functionality-based relocation is done when an exact matching position 

for the circuit’s original bitstream is either not available, or would lead 

to undesirable effects, such as increased fragmentation of the chip area. 

Our flow for relocating circuits by direct bitstream can be found in [10]. 

The following description will focus on the functionality-based 

relocation aspect. A circuit to be relocated using this technique has its 

computation results memorized during its normal operation. A 

bitstream of an LUT or memory resource template is pre-synthesized 

and stored in an off-chip memory at design time. When relocation is 

required in runtime, a destination location is configured with the 

bitstream template, and its memory content filled with the outputs of 

the original circuit previously memorized.  

The operational flow of the relocation mechanism is shown in 

figure 3. When a request is received to relocate a circuit (after attempts 

to find an exact location for the original bitstream on the chip is found 

to be infeasible or unprofitable), a duration evaluator carries out a 

check to see if the timing constraints associated with the relocation 

request can be met. 

Next, an area check is done to find a suitable location for a pre-

synthesized memory template. The details of the time required for a 

relocation procedure is given in section II.B below while Section II.C 

explains the procedure for the area check. If both checks are successful, 

then the relocation request is accepted and executed in 3 additional 

steps: 

i) The outputs of the circuit not present in memory are 

computed and saved 

ii) A memory template is configured on the chip 

iii) Data is copied from the original circuit’s memory unto the 

already configured template.  

These operations are managed by various units of a relocation 

module discussed below. The architectural composition of the proposed 

relocation module consists of an Output Memorizer, Duration 

Evaluator, and Area Finder.  

A. Output Memorizer 

The output memorizer basically saves the results of computations 

of selected circuits in memory in runtime. Thus, it connects to the 

circuits whose outputs it memorizes. It has 3 units: task memory, 

evaluation logic (which we shall memo logic) and output memory. 

These are shown in figure 4. The task memory saves the list of circuits 

which are currently configured on the FPGA chip and are potentially 

relocatable by functionality. The memo logic manages the conversion 

of the raw inputs to address values, determines if the output for an input 

has been previously saved and switches mode to save the current output 

of the application when it has not been saved previously. Each circuit 

has a unique identifier (Circuit ID) which corresponds to its address in 

the task memory (Base_Addr). The memo-logic has a fixed 3 clock 

cycle overhead when operating in CHECK mode where it verifies if an 

input has been previously saved, and an overhead of 2 clock cycles 

when in SAVE mode where it saves an output unto its output memory 

if not already saved. Basically, the fixed number of clock cycles is 

achieved by concatenating the inputs of a circuit into a unique address 

value (Base_Addr + offset), with Base_Addr being the start of the 

memory location assigned to the circuit and offset determined using 

information on the circuit’s input and tolerance. Hence, our proposed 

technique is based on memory space reservation (since each input 

translates to a unique address) rather than a greedy search procedure, 

where a series of values from memory are compared against the current 

input. In CHECK mode, the memo-logic operates in parallel with the 

operation of the original circuit, and thus does not add any pre-

processing overhead to circuits which take at least 3 clock cycles for 

their normal operations. In SAVE mode (executed only when an input 

has not been previously saved in memory), 2 post-processing clock 

cycles are needed.  

The output memory contains the results of computations. An 

application with multiple outputs have these outputs concatenated and 

saved at an address. The least significant bit (LSB) of each output 

memory location is reserved to be checked for validity of the value 

stored at that address as shown in figure 5. This bit is checked to 

determine if results of a computation are available in memory or not. A 

value of ‘1’ at that location indicates that a previous value has been 

saved and is valid and a ‘0’ means that valid output is missing for this 

input and the original circuit would have to compute it. 

To compute missing outputs in runtime after a request to relocate a 

circuit is received, the memo logic iterates through the LSBs of the 

section of its own output memory dedicated to memorizing the circuit’s 

outputs. The LSB of a missing output has a value of ‘0’. The address 

indices (which corresponds to inputs) of missing outputs are then each 

decoupled and fed into the original circuit as inputs for it to compute 

corresponding outputs. It is worth re-stating that the LSBs of the output 

memory are used to keep track of valid outputs. This is because in 

reconfigurable computing, the functionality of a circuit could be 

changed in runtime, for example, when a part of that circuit is 

reconfigured with a different functionality in runtime using DPR. Under 

such conditions, the memo logic refreshes previously computed outputs 

by resetting the LSBs of the output locations to ‘0’. 

The sizes of the task and output memories of the Output memorizer 

are determined by the number of relocatable circuits on the chip, the 

sum of the number of inputs of the constituent circuits and the tolerance 

of the circuits. By tolerance, we mean permissible variation in a circuit’s 

outputs. Since this technique requires that space be reserved for all 

potential outputs, its memory overhead could be a major bottleneck for 

large port width applications that require numerous distinct outputs to 

be saved. Hence, we acknowledge that to keep the memory requirement 

reasonable, the port width of the circuits which can be relocated using 

this mechanism must be small, or if the port width is large, then the 

application tolerance must be large as well. Moreover, the functionality-

based relocation proposed in this work is only applicable to circuits 

which are referentially transparent – that is, circuits implementing 

systems that produce the same set of outputs for the same set of inputs.  
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Fig. 3. Operational flow of proposed functionlaity based relocation system 
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Fig. 4. Architectural overview of the output memorizer 

 

 

  

Fig. 5. Data distribution in output memory of output memorizer 

Circuits whose current outputs depend on some internal states, or are 

determined by factors other than the current input(s) are not directly 

relocatable by the technique proposed in this work. Nevertheless, there 

are many applications which can profit from the proposed scheme even 

with these limitations. Three Examples are: an RGB to YCrCb colour 

conversion circuit which is widely used in computer graphics, CORDIC 

circuits designed to compute the trigonometry of angular inputs, and 

multiplier circuits which form basis for many other applications. 

B. Duration Evaluator 

This unit checks if the requested relocation can be completed 

within the time constraint associated with the request. Its architecture 

consists of an LUT RAM which contains the essential parameters of 

the circuits, including the duration associated with the circuit’s 

operations such as configuration time, number of clock cycles for 

computation of outputs (e) as well as duration of data transfer from the 

output memorizer’s memory to a memory template. The time constraint 

of a relocation request is evaluated using (1). The term 𝑅𝑡 in (1) is the 

total time required for relocation, 𝐶𝑡 is the greater of the time required 

for the memory template to be configured on the chip and the area finder 

module to execute; and 𝑒 is the time required to compute a missing 

output of the circuit(s) to be relocated, with 𝑛 being the number of the 

missing (yet to be saved) outputs. 𝑀𝑡 is time required for the memorized 

memory content to be transferred to the template. It is worth noting that 

the operation of the area finder and the computation of the missing 

outputs of a circuit to be relocated are done in parallel, thus 𝐶𝑡 in (1) 

takes the value of the greater of time required to complete these two 

operations. 𝑒 is initially measured at design time like the configuration 

duration of the circuit. However, since 𝑒 depends on the architecture and 

functionality of a circuit, when these are changed by DPR, its new value 

is measured (by observing the duration required by the updated circuit 

to change a set of inputs into outputs) and updated in runtime. 
 

𝑅𝑡 = ∑ 𝑒𝑖
𝑛
𝑖=0 +  𝐶𝑡 +  𝑀𝑡                                                     (1) 

C. Area Finder 

The area evaluator basically checks if there is an area on the chip 

for a template to be placed on. It has access to a RAM containing the 

state of the chip (State Memory), as well as a memory containing all 

the potential locations of the template. The State Memory represents 

the state of all resources on the chip by an M x N Matrix, where M and 

N are respectively the number of rows and column in the device. An 

available resource is represented by a ‘0’ and a used or damaged 

resource by a ‘1’. Thus, each element in the matrix define the state of 

a specific reconfigurable resource on the chip. A scan function is used 

to check the availability of potential locations for the circuit in the light 

of the current state of the chip. Further details of the scan procedure 

can be seen in [10]. 

Finally, it is worth stating that the memory template consists of a 

generic memory block capable of holding all potentially required 

output data of the circuit(s) it is designed to replace. It also contain 

associated logic to manage functionalities such as memory read and 

delay management. Its memory size is determined like the output 

memory of the output memorizer discussed in section II.A. The delay 

management block manages the difference between the timing 

behavior of the memory template and the original circuit so as to 

maintain the timing characteristics of the entire system. It does this by 

delaying the asserting of ‘done’ by the difference in the number of 

clock cycles between the operation of the memory template and that of 

the original circuit.  

III. IMPLEMENTATION DETAILS 

A. Case Study Application 

We implemented a CORDIC application using Xilinx IP blocks. 

The application consists of 3 independent circuits: Square Root, Sin/Cos 

trigonometric operations and the hyperbolic tangent (Tanh) computing 

circuits. CORDIC  was chosen as it is an important algorithm for various 

mathematical functions [12]. Details of the circuits’ operations as well 

as their data format can be found in [13]. We created a custom wrapper 

for the circuits to make it compatible with our relocation model. Each 

circuit was optimized to take an 8-bit 𝐷𝑎𝑡𝑎𝐼𝑛 and produce an 8-bit 

𝐷𝑎𝑡𝑎𝑂𝑢𝑡 and 𝑎𝑝_𝑑𝑜𝑛𝑒 signal. We synthesized the application and its 

components, along with a top wrapper module using Xilinx Vivado 

suite for the Xilinx xc7a35tcpg236-1 FPGA chip. The top wrapper 

includes a 𝑇𝑎𝑠𝑘𝐼𝑑 signal that is used to select a particular circuit. Table 

I shows the resource utilization of the circuits, while table II shows the 

number of clock cycles for each operation. The partial bitstream of the 

application is 140kB in size. 

B. Relocation Module 

The relocation module comprising of an output memorizer, 

duration checker and area finder described in section II was 

implemented using Xilinx Vivado 15.1 design tools. Its resource 

utilization is shown in table III. A total of 66 LUTs, 58 Flip flops and 

a single 18kb BRAM were used on the xc7a35tcpg236-1 chip. It is 

Output Memory Data (n-bits) 

Circuit output result 

(n – 1) bits 

Base_addr 

+ offset 

Valid Bit 

(LSB) 
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worth noting that the size of memory used is dependent on the 

application. We chose an 18kb memory because it is sufficient to save 

all the outputs of our target case study application. The relocation 

module connects to the inputs and outputs of application(s) to 

memorize new computations by the application. It is also worth noting 

that practical relocation techniques require access to the configuration 

memory of the FPGA, as well as a means of communication between 

a relocated module and other parts of the chip. Thus, a self-

reconfiguration controller [14] with the required access to the 

configuration memory was instantiated. The controller is used for 

configuring the chip, as well as copying of data between block 

memories of the relocation module and the relocated module via the 

configuration layer. To address the need of a communication technique 

that supports relocation, we adopted the technique described in [15] 
which makes use of those clock buffers not used by applications for 

on-chip communication. Our case study application used a single 

global clock buffer (BUFG) out of the 32 available on the 

xc7a35tcpg236-1 for clock network delivery. Thus, the remaining 12 

horizontal clock buffers (BUFH) and 2 multi-regional clock buffers 

(BUFMR) per clock region present on the chip are available for on-

chip communication without any conflict with our case study 

application or relocation management module. The technique is used 

to maintain communication between the relocated circuits and other 

circuits on the chip and/or the FPGA ports. 

Next, a memory template for relocation was implemented. This 

template reserves 10kB of memory and manages the delay of the 

application it replaces. This memory size was determined by the 

maximum memory requirement of the circuits whose functionality it is 

intended to replace. The actual resource utilization of the memory 

template on the target FPGA is 14 LUTs, 21 Flip flops, and 18kb RAM 

and it has a 2-clock cycle delay. The bitstream size of template is 

76.9kB. The delay mechanism is used to ensure that the relocated 

equivalent does not alter the timing of the relocated application so as 

not to lose synchronization with the entire system.  

  

TABLE I.   
RESOURSE UTILIZATION OF A CORDIC CIRCUIT CASE-STUDY APPLICATION  

Circuits LUTs 
Memory 

LUTs 
Flip Flops BRAM 

Square Root 71 1 100 - 

Sine/ Cosine 277 4 307 - 

Hyperbolic 

Tangent 
1583 4 2218 - 

Wrapper + All 

modules 
2226 13 2920 - 

Memo Block 
Template 

14 14 21 1 

 
TABLE II.   

LATENCY OF CORDIC CIRCUIT CASE-STUDY APPLICATION 

Circuits Clock Cycles (e) 

Square Root 15 

Sine/ Cosine 19 

Hyperbolic Tangent 56 

Wrapper + All modules NA 

Memo Block Template 2 

 
TABLE III.   

RESOURSE UTILIZATION OF PROPOSED RELOCATION MODULE 

Unit LUT FF BRAM 

Output Memorizer 10 11 1 

Duration Checker 36 30 - 

Area Finder 20 17 - 

Total 66 58 1 

IV. RESULTS AND DISCUSSION 

At runtime, we initiated a relocation request when 50% of the 

outputs of the application have been saved by the output memorization 

module. The floor-plan of the application required 8 contiguous CLB 

columns on the xc7a35tcpg236-1 chip, which occur only once on that 

chip. Hence, only a functionality-based relocation was possible. The 

timing constraint associated with the relocation request was such that 

the relocation was required to take a maximum of 1ms.  The total time 

duration for the relocation was measured as 306.80µs at 100MHz, with 

configuration of memory template taking 82.30µs, computation of 

missing outputs taking 175.36µs and copying of data from 

memorization unit memory to the template taking 49.14µs. We also 

measured the worst-case relocation duration for this module as 

361.86µs and best case as 131.44µs. This was done by generating 

relocation requests when 0% (worst case) and 100% (best case) 

respectively of the outputs have been saved. The time required for 

configuration of the memory template and copying of data is constant 

for an application, irrespective of when a relocation request is received. 

Figure 6 shows floorplan of the original circuit and relocated equivalent. 

We also observed the outputs of both the original circuit and the 

relocated equivalent for the same inputs. The results were the same for 

both circuits – in both cases, the value of 𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 when the 𝑎𝑝_𝑑𝑜𝑛𝑒 

signal goes high is the same. This is shown in figure 7. In addition, we 

evaluated the improvement in the number of possible relocations 

brought about by incorporating the proposed technique into the state-of-

the-art direct bitstream relocation technique. Table IV shows the result 

for different Xilinx FPGA chips. As shown, the proposed technique 

leads to a significant improvement in the number of relocations. For the 

chips compared, an average of about 36 more relocations (an increase 

of over 260%) of the case study circuits could be obtained using the 

proposed technique. This is a great advantage in applications which aim 

to improve reliability by circumventing permanent damage on the chip 

such as in space applications. It means that augmenting the traditional 

bitstream relocation with the proposed functionality-based technique 

would significantly improve the fault tolerance of a design. 

As already noted in section II and in the relocation case study used, 

our relocator resorts to a functionality-based relocation when the 

bitstream of the original design cannot be placed on a matching location 

on the chip, leads to undesired effects or where access to the location 

information of the bitstream is not possible (such as encrypted 
bitstreams). The technique is especially suitable on modern 

heterogeneous FPGA chips, such as the Xilinx 7 Series and Ultra-scale 

FPGAs, which are rich in memory resources, many of which are 

sometimes unused. We have also noted in section II that relocation by 

functionality is only applicable to circuits with low port width. This is 

due to its large memory overhead, which does not scale well with port 

width. To this end, it is important to re-state that the relocator system 

which we present is also capable of bitstream relocation for circuits 

which cannot be memorized.  

In addition, we compared the time overhead of direct bitstream 

relocation and our proposed functionality-based relocation. Table V 

shows the relocation time for both techniques for 3 different circuits: 

CORDIC [13], RGB to YCrCb colour converter  [16] and a multiplier 

circuit [17]. All the circuits were implemented using Xilinx IPs from 

Xilinx Vivado 15.1 for the xc7a35tcpg236-1 chip. As shown, 

functionality-based relocation technique has a larger time overhead than 

direct bitstream relocation for a majority (2 out of 3) of the cases. For 

example, direct bitstream relocation duration for a 12-bit RGB to 

YCrCb colour converter circuit would only require 174.46µs as against 

a minimum of 326.15µs required for the functionality-based technique. 

It is worth noting that the relocation time for the functionality-based 

technique is proportional to the port width of the circuit. Hence, for the 

CORDIC circuit with 10-bits inputs, its relocation time is smaller than 

direct bitstream relocation. With increase in port width, the relocation 

time for direct bitstream relocation has better performance. A major 

disadvantage of functionality-based relocation technique is that it does 

not scale well with increase in port width. In fact, the memory 

requirement doubles for each bit increase in port width. However, since 
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direct relocation is impossible in certain cases such as for encrypted 

bitstreams and when an identical location is not present on the chip, 

servicing relocation requests whose time constraint can be satisfied in 

those cases is always an advantage. Therefore, it is an added layer of 

advantage to relocate circuits by functionality whenever direct bitstream 

relocation is impossible or leads to undesired effects.  

Finally, the size of the additional memory template bitstream 

required for functionality-based relocation is only 55% of that of the 

original circuits’ in our case study. Hence, in terms of additional 

memory required, the functionality-based technique would be better 

compared to having to store multiple bitstreams of the original circuit, 

not to mention that since it is an empty memory template most of the 

bits in its bitstreams are ‘0’s and would be much smaller when 

compressed compared to the original circuit’s bitstream.  
 

 

 
Fig. 6. Floor plan of the CORDIC application and its relocated equivalent 

circuit on xc7a35tcpg236-1 
 

 
   (a)  
 

 
(b) 

Fig. 7. Output waveforms of Original and Funtionality-based relocated 

circuits. a) Original CORDIC circuit b) Relocated Equivalent 

 

TABLE IV.   

COMPARISON OF NUMBER OF POSSIBLE RELOCATIONS OF PROPOSED 

TECHNIQUE WITH  STATE OF THE ART SCHEME 

Target Chip State-of-the-Art Proposed 

Artix-7 (xc7a35tcpg236-1) 1 8 

Kintex-7(xc7k325tffg900c-2) 19 64 

Virtex-7 (xc7vx485tffg1761c-2) 21 77 

Total 41 149 

TABLE V.   

COMPARISON OF RELOCATION TIME OVERHEAD OF DIFFERENT RELOCATION 

TECHNIQUES 

Circuit 
Port 

Width 
Direct 

Bitstream 
Functionality-

based (best case) 
Functionality-

based (worst case) 

CORDIC 10 369.02 131.44 361.86 

RGB to 

YCrCb  
12 174.46 326.15 367.63 

Multiplier  16 92.54 774.88 1430.26 

V. CONCLUSION 

In this paper, we have presented a runtime circuit relocation system 

which can relocate circuits on FPGAs based on functionality, in 

addition to the state-of-the-art direct bitstream relocation. The 

additional functionality-based relocation capability is based on 

replicating the functionality of the original circuit by memorizing 

previous computation results of circuits. The technique is applicable to 

applications that are referentially transparent and have low port widths. 

We have demonstrated its feasibility using a set of CORDIC circuits 

and shown that it has potentials to greatly increase the average number 

of relocations (over 2.6-times increase for our case study), while 

incurring only small additional bitstream storage overhead (only 55%) 

and manageable relocation time. In our future work we hope to explore 

the possibility of using compression and hashing mechanisms to extend 

the proposed technique to circuits with larger port width as well as 

examine test circuits with outputs dependent on internal states. 
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