

Edinburgh Research Explorer

A Functionality-Based Runtime Relocation System for Circuits
on Heterogeneous FPGAs

Citation for published version:
Arslan, T, Enemali, GI & Adetomi, A 2018, 'A Functionality-Based Runtime Relocation System for Circuits
on Heterogeneous FPGAs', IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5,
pp. 612-616. https://doi.org/10.1109/TCSII.2018.2826014

Digital Object Identifier (DOI):
10.1109/TCSII.2018.2826014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Circuits and Systems II: Express Briefs

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. May. 2024

https://doi.org/10.1109/TCSII.2018.2826014
https://doi.org/10.1109/TCSII.2018.2826014
https://www.research.ed.ac.uk/en/publications/2b558f3f-ad42-4c89-a923-094b5b649664

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS VOL. XX, NO. Y, MAY 2018

A Functionality-Based Runtime Relocation System for Circuits on

Heterogeneous FPGAs

Abstract—Runtime Relocation of circuits on FPGAs have been

proposed for achieving many desirable features including fault tolerance,

defragmentation and system load balancing. However, the changes in the

architectural composition of FPGAs has made relocation more challenging

mainly because FPGAs have become more heterogeneous. Previous and

state-of-the-art circuit relocation systems on FPGAs have relied only on

direct bitstream relocation which requires the source and destination

resource layouts to be the same, as well as access to the design bitstream

for manipulation. Hence, their efficiency on modern heterogeneous chips

greatly reduces, and mostly cannot be applied to encrypted bitstreams of

intellectual property (IP) blocks. In this paper, we present a circuit

relocator which augments direct bitstream relocation with a functionality-

based relocation scheme. We demonstrate the feasibility of the proposed

technique using a CORDIC application and show that an average of over

2.6-fold increase in number of relocations can be obtained compared to

only direct bitstream relocation at expense of a small memory overhead

and manageable relocation time for this case study.

Index Terms—Bitstream Relocation, FPGA, Reconfigurable

Hardware, Relocation, Look-up-table, Heterogeneous.

I. INTRODUCTION AND RELATED WORKS

Field Programmable Gate Arrays (FPGAs) have gained increasing

popularity in many domains, including consumer electronics,

aerospace and defense, scientific instruments, autonomous vehicles

and various video processing applications [1] [2]. In embedded

systems, they have continued to be popular because of their unique

combination of performance and flexibility. One very key feature of

modern FPGAs is that circuits (or a subset of circuit(s)) configured on

them could be removed when not needed to make room for other

circuits or to modify the functionality of the system, a feature called

dynamic partial reconfiguration (DPR). In addition, circuits could be

moved from one location to another on the FPGA, a process termed

relocation. Relocation of circuits on FPGA chips is beneficial for many

reasons. Three important ones are: to circumvent permanent damages

on chips and consequently improve fault tolerance of critical

applications in hostile environments such as space [3], to achieve

defragmentation of the chip area [4] and to maintain a desired thermal

distribution on the chip [5]. Reconfigurable Operating Systems (ROS)

have been proposed to manage relocation and other activities on FPGA

chips in runtime, especially in embedded systems which are often self-

contained. An integral part of an ROS is a relocation manager which

coordinates the repositioning of circuits on the chip.

 A major condition that needs to be satisfied for relocation of a

circuit to be possible in runtime is that the resource composition of the

original location for which the circuit was synthesized should be the

same as the intended destination location. That is, the source and

destination are required to have identical chip area, not only in size, but

also in the type, number and order of the resources they contain. This

condition was easily satisfiable in older versions of FPGAs which were

essentially homogeneous. Modern FPGA chips, in a bid to improve

performance and lower power consumption, have hard blocks such as

memory blocks (BRAMs) and digital signal processors (DSPs)

sandwiched between the conventional Configurable Logic Blocks

(CLBs) [6]. In addition, these BRAMs, DSPs and CLBs sometimes

have different orientations (left and right) which differ in routing types

as in the Xilinx 7 series FPGAs. Thus, FPGAs have become

increasingly heterogeneous, and hence places greater restrictions on

the relocation of circuits. The result of this increase in heterogeneity is

that the number of relocations possible for typical circuits has reduced

with newer generations of FPGAs. Figure 1 illustrates this point. The

figure shows that while on a homogeneous chip the circuit on LOC 1

could be relocated to 2 additional identical locations (LOC 2 and LOC

3), no identical location can be found on the heterogeneous chip.

Most of the circuit relocation systems present in the literature still

demand that identical location(s) must exist on chip before any form of

circuit relocation is possible [5] [7] [8] [9] [10]. They address only

direct bitstream placement and relocation and do not provide any

means of relocating circuits to non-identical locations. In [11], the

authors reported a technique that successfully relocated a design

bitstream synthesized for a location containing a set of CLBs and an

unused DSP to another location with same CLB layout but with an

unused BRAM replacing the DSP. However, the technique is based on

online editing of configuration bitstreams which could be time

consuming. In addition, the routing between the DSP and BRAM are

required to be identical, which is not the case in recent FPGA

architectures like the Xilinx 7 series. In an earlier work [10], we

presented a scheme addressing placement and relocation of circuits on

heterogeneous chips using only direct bitstream placement. That work

focused on optimizations to improve place-ability of circuits in run-

time by carefully selecting synthesis locations at design time and

minimizing fragmentation in runtime. It does not present any means of

dealing with circuit placement on non-identical locations, and thus is

completely different from the focus of this paper. Hence, we consider

the work presented in this paper as novel, as we are not aware of any

other report in the literature, including any of our own previous works,

on circuit relocation on FPGAs based on functionality.

In this paper, we propose a relocation manager to improve the

number of relocations for a circuit on heterogeneous FPGAs. The

proposed relocator augments bitstream relocation with a functionality-

based relocation. The functionality-based relocation presented in this

work relies on the technique of replicating the functionality of a circuit

with a look-up-table or a memory block in runtime for selected circuits.

The basic idea is shown in figure 2.

LOC 1 LOC 2 LOC 3

LOC 1

CLB BRAM DSP

 (a) (b)

Godwin Enemali, Adewale Adetomi, and Tughrul Arslan, Senior Member, IEEE

Manuscript received February 27, 2018; revised April 6, 2018. Accepted

April 7, 2018. Date of current version April 8, 2018. This brief was

recommended by Deputy Editor-in-Chief Jose de la Rosa (Corresponding

Author: Godwin Enemali)

G. Enemali, A. Adetomi, and T. Arslan are with the School of

Engineering, University of Edinburgh, Edinburgh, United Kingdom, (e-

mail: g.enemali@ed.ac.uk)

Fig. 1. Number of relocations on homogeneous and heterogeneous

FPGAs

a) Upto 2 relocations are possible b) No relocation is possible

Enemali et al.: A Functionality-Based Relocation System for Circuits on Heterogeneous FPGAs

Fig. 2. Transformation of logic block to memory block

In this paper, the main distinct contributions are:

 A technique of relocation for relocating circuits to a location

with non-identical resources based on functionality.

 Implementation of runtime circuit relocator, combining

bitstream relocation and the proposed functionality-based

relocator, with a practical case study.

The rest of this paper is organized as follows: section II discusses

the proposed system architecture and presents the details of the

relocation flow proposed. Implementation details of the proposed

design is presented in section III, in addition to a case study application.

Experimental results are presented and discussed in section IV, and

section V gives a conclusion.

II. SYETEM OPERATION AND ARCHTECTURE

Our complete relocation flow occurs in two stages: first the

possibility of relocating a circuit by direct bitstream is evaluated and in

cases when this is not possible or leads to undesirable effects,

functionality-based relocation is resorted to. The proposed

functionality-based relocation is done when an exact matching position

for the circuit’s original bitstream is either not available, or would lead

to undesirable effects, such as increased fragmentation of the chip area.

Our flow for relocating circuits by direct bitstream can be found in [10].

The following description will focus on the functionality-based

relocation aspect. A circuit to be relocated using this technique has its

computation results memorized during its normal operation. A

bitstream of an LUT or memory resource template is pre-synthesized

and stored in an off-chip memory at design time. When relocation is

required in runtime, a destination location is configured with the

bitstream template, and its memory content filled with the outputs of

the original circuit previously memorized.

The operational flow of the relocation mechanism is shown in

figure 3. When a request is received to relocate a circuit (after attempts

to find an exact location for the original bitstream on the chip is found

to be infeasible or unprofitable), a duration evaluator carries out a

check to see if the timing constraints associated with the relocation

request can be met.

Next, an area check is done to find a suitable location for a pre-

synthesized memory template. The details of the time required for a

relocation procedure is given in section II.B below while Section II.C

explains the procedure for the area check. If both checks are successful,

then the relocation request is accepted and executed in 3 additional

steps:

i) The outputs of the circuit not present in memory are

computed and saved

ii) A memory template is configured on the chip

iii) Data is copied from the original circuit’s memory unto the

already configured template.

These operations are managed by various units of a relocation

module discussed below. The architectural composition of the proposed

relocation module consists of an Output Memorizer, Duration

Evaluator, and Area Finder.

A. Output Memorizer

The output memorizer basically saves the results of computations

of selected circuits in memory in runtime. Thus, it connects to the

circuits whose outputs it memorizes. It has 3 units: task memory,

evaluation logic (which we shall memo logic) and output memory.

These are shown in figure 4. The task memory saves the list of circuits

which are currently configured on the FPGA chip and are potentially

relocatable by functionality. The memo logic manages the conversion

of the raw inputs to address values, determines if the output for an input

has been previously saved and switches mode to save the current output

of the application when it has not been saved previously. Each circuit

has a unique identifier (Circuit ID) which corresponds to its address in

the task memory (Base_Addr). The memo-logic has a fixed 3 clock

cycle overhead when operating in CHECK mode where it verifies if an

input has been previously saved, and an overhead of 2 clock cycles

when in SAVE mode where it saves an output unto its output memory

if not already saved. Basically, the fixed number of clock cycles is

achieved by concatenating the inputs of a circuit into a unique address

value (Base_Addr + offset), with Base_Addr being the start of the

memory location assigned to the circuit and offset determined using

information on the circuit’s input and tolerance. Hence, our proposed

technique is based on memory space reservation (since each input

translates to a unique address) rather than a greedy search procedure,

where a series of values from memory are compared against the current

input. In CHECK mode, the memo-logic operates in parallel with the

operation of the original circuit, and thus does not add any pre-

processing overhead to circuits which take at least 3 clock cycles for

their normal operations. In SAVE mode (executed only when an input

has not been previously saved in memory), 2 post-processing clock

cycles are needed.

The output memory contains the results of computations. An

application with multiple outputs have these outputs concatenated and

saved at an address. The least significant bit (LSB) of each output

memory location is reserved to be checked for validity of the value

stored at that address as shown in figure 5. This bit is checked to

determine if results of a computation are available in memory or not. A

value of ‘1’ at that location indicates that a previous value has been

saved and is valid and a ‘0’ means that valid output is missing for this

input and the original circuit would have to compute it.

To compute missing outputs in runtime after a request to relocate a

circuit is received, the memo logic iterates through the LSBs of the

section of its own output memory dedicated to memorizing the circuit’s

outputs. The LSB of a missing output has a value of ‘0’. The address

indices (which corresponds to inputs) of missing outputs are then each

decoupled and fed into the original circuit as inputs for it to compute

corresponding outputs. It is worth re-stating that the LSBs of the output

memory are used to keep track of valid outputs. This is because in

reconfigurable computing, the functionality of a circuit could be

changed in runtime, for example, when a part of that circuit is

reconfigured with a different functionality in runtime using DPR. Under

such conditions, the memo logic refreshes previously computed outputs

by resetting the LSBs of the output locations to ‘0’.

The sizes of the task and output memories of the Output memorizer

are determined by the number of relocatable circuits on the chip, the

sum of the number of inputs of the constituent circuits and the tolerance

of the circuits. By tolerance, we mean permissible variation in a circuit’s

outputs. Since this technique requires that space be reserved for all

potential outputs, its memory overhead could be a major bottleneck for

large port width applications that require numerous distinct outputs to

be saved. Hence, we acknowledge that to keep the memory requirement

reasonable, the port width of the circuits which can be relocated using

this mechanism must be small, or if the port width is large, then the

application tolerance must be large as well. Moreover, the functionality-

based relocation proposed in this work is only applicable to circuits

which are referentially transparent – that is, circuits implementing

systems that produce the same set of outputs for the same set of inputs.

Delay

Block

Memory

Inputs

Logic

Block

Outputs

Address
(Inputs

collection)

Outputs

Enemali et al.: A Functionality-Based Relocation System for Circuits on Heterogeneous FPGAs

Area

Check

Duration

Check

Report

Success

Configure

Template

Copy

Data

Compute

Missing

Outputs

Success

Failure

FailureSuccess

Decline

Request

Stop

Configure

Bitstream

SuccessFailure

Success

Failure

Start

DBR

Check

FBR

Check

Fig. 3. Operational flow of proposed functionlaity based relocation system

Memo

 Logic

Output

Memory

Task

Memory

Data Input

Data Output

Mode

Task ID

Task Base

Address

Done

Output Data

Base_Addr

+ offset

Fig. 4. Architectural overview of the output memorizer

Fig. 5. Data distribution in output memory of output memorizer

Circuits whose current outputs depend on some internal states, or are

determined by factors other than the current input(s) are not directly

relocatable by the technique proposed in this work. Nevertheless, there

are many applications which can profit from the proposed scheme even

with these limitations. Three Examples are: an RGB to YCrCb colour

conversion circuit which is widely used in computer graphics, CORDIC

circuits designed to compute the trigonometry of angular inputs, and

multiplier circuits which form basis for many other applications.

B. Duration Evaluator

This unit checks if the requested relocation can be completed

within the time constraint associated with the request. Its architecture

consists of an LUT RAM which contains the essential parameters of

the circuits, including the duration associated with the circuit’s

operations such as configuration time, number of clock cycles for

computation of outputs (e) as well as duration of data transfer from the

output memorizer’s memory to a memory template. The time constraint

of a relocation request is evaluated using (1). The term 𝑅𝑡 in (1) is the

total time required for relocation, 𝐶𝑡 is the greater of the time required

for the memory template to be configured on the chip and the area finder

module to execute; and 𝑒 is the time required to compute a missing

output of the circuit(s) to be relocated, with 𝑛 being the number of the

missing (yet to be saved) outputs. 𝑀𝑡 is time required for the memorized

memory content to be transferred to the template. It is worth noting that

the operation of the area finder and the computation of the missing

outputs of a circuit to be relocated are done in parallel, thus 𝐶𝑡 in (1)

takes the value of the greater of time required to complete these two

operations. 𝑒 is initially measured at design time like the configuration

duration of the circuit. However, since 𝑒 depends on the architecture and

functionality of a circuit, when these are changed by DPR, its new value

is measured (by observing the duration required by the updated circuit

to change a set of inputs into outputs) and updated in runtime.

𝑅𝑡 = ∑ 𝑒𝑖
𝑛
𝑖=0 + 𝐶𝑡 + 𝑀𝑡 (1)

C. Area Finder

The area evaluator basically checks if there is an area on the chip

for a template to be placed on. It has access to a RAM containing the

state of the chip (State Memory), as well as a memory containing all

the potential locations of the template. The State Memory represents

the state of all resources on the chip by an M x N Matrix, where M and

N are respectively the number of rows and column in the device. An

available resource is represented by a ‘0’ and a used or damaged

resource by a ‘1’. Thus, each element in the matrix define the state of

a specific reconfigurable resource on the chip. A scan function is used

to check the availability of potential locations for the circuit in the light

of the current state of the chip. Further details of the scan procedure

can be seen in [10].

Finally, it is worth stating that the memory template consists of a

generic memory block capable of holding all potentially required

output data of the circuit(s) it is designed to replace. It also contain

associated logic to manage functionalities such as memory read and

delay management. Its memory size is determined like the output

memory of the output memorizer discussed in section II.A. The delay

management block manages the difference between the timing

behavior of the memory template and the original circuit so as to

maintain the timing characteristics of the entire system. It does this by

delaying the asserting of ‘done’ by the difference in the number of

clock cycles between the operation of the memory template and that of

the original circuit.

III. IMPLEMENTATION DETAILS

A. Case Study Application

We implemented a CORDIC application using Xilinx IP blocks.

The application consists of 3 independent circuits: Square Root, Sin/Cos

trigonometric operations and the hyperbolic tangent (Tanh) computing

circuits. CORDIC was chosen as it is an important algorithm for various

mathematical functions [12]. Details of the circuits’ operations as well

as their data format can be found in [13]. We created a custom wrapper

for the circuits to make it compatible with our relocation model. Each

circuit was optimized to take an 8-bit 𝐷𝑎𝑡𝑎𝐼𝑛 and produce an 8-bit

𝐷𝑎𝑡𝑎𝑂𝑢𝑡 and 𝑎𝑝_𝑑𝑜𝑛𝑒 signal. We synthesized the application and its

components, along with a top wrapper module using Xilinx Vivado

suite for the Xilinx xc7a35tcpg236-1 FPGA chip. The top wrapper

includes a 𝑇𝑎𝑠𝑘𝐼𝑑 signal that is used to select a particular circuit. Table

I shows the resource utilization of the circuits, while table II shows the

number of clock cycles for each operation. The partial bitstream of the

application is 140kB in size.

B. Relocation Module

The relocation module comprising of an output memorizer,

duration checker and area finder described in section II was

implemented using Xilinx Vivado 15.1 design tools. Its resource

utilization is shown in table III. A total of 66 LUTs, 58 Flip flops and

a single 18kb BRAM were used on the xc7a35tcpg236-1 chip. It is

Output Memory Data (n-bits)

Circuit output result

(n – 1) bits

Base_addr

+ offset

Valid Bit

(LSB)

Enemali et al.: A Functionality-Based Relocation System for Circuits on Heterogeneous FPGAs

worth noting that the size of memory used is dependent on the

application. We chose an 18kb memory because it is sufficient to save

all the outputs of our target case study application. The relocation

module connects to the inputs and outputs of application(s) to

memorize new computations by the application. It is also worth noting

that practical relocation techniques require access to the configuration

memory of the FPGA, as well as a means of communication between

a relocated module and other parts of the chip. Thus, a self-

reconfiguration controller [14] with the required access to the

configuration memory was instantiated. The controller is used for

configuring the chip, as well as copying of data between block

memories of the relocation module and the relocated module via the

configuration layer. To address the need of a communication technique

that supports relocation, we adopted the technique described in [15]
which makes use of those clock buffers not used by applications for

on-chip communication. Our case study application used a single

global clock buffer (BUFG) out of the 32 available on the

xc7a35tcpg236-1 for clock network delivery. Thus, the remaining 12

horizontal clock buffers (BUFH) and 2 multi-regional clock buffers

(BUFMR) per clock region present on the chip are available for on-

chip communication without any conflict with our case study

application or relocation management module. The technique is used

to maintain communication between the relocated circuits and other

circuits on the chip and/or the FPGA ports.

Next, a memory template for relocation was implemented. This

template reserves 10kB of memory and manages the delay of the

application it replaces. This memory size was determined by the

maximum memory requirement of the circuits whose functionality it is

intended to replace. The actual resource utilization of the memory

template on the target FPGA is 14 LUTs, 21 Flip flops, and 18kb RAM

and it has a 2-clock cycle delay. The bitstream size of template is

76.9kB. The delay mechanism is used to ensure that the relocated

equivalent does not alter the timing of the relocated application so as

not to lose synchronization with the entire system.

TABLE I.
RESOURSE UTILIZATION OF A CORDIC CIRCUIT CASE-STUDY APPLICATION

Circuits LUTs
Memory

LUTs
Flip Flops BRAM

Square Root 71 1 100 -

Sine/ Cosine 277 4 307 -

Hyperbolic

Tangent
1583 4 2218 -

Wrapper + All

modules
2226 13 2920 -

Memo Block
Template

14 14 21 1

TABLE II.

LATENCY OF CORDIC CIRCUIT CASE-STUDY APPLICATION

Circuits Clock Cycles (e)

Square Root 15

Sine/ Cosine 19

Hyperbolic Tangent 56

Wrapper + All modules NA

Memo Block Template 2

TABLE III.

RESOURSE UTILIZATION OF PROPOSED RELOCATION MODULE

Unit LUT FF BRAM

Output Memorizer 10 11 1

Duration Checker 36 30 -

Area Finder 20 17 -

Total 66 58 1

IV. RESULTS AND DISCUSSION

At runtime, we initiated a relocation request when 50% of the

outputs of the application have been saved by the output memorization

module. The floor-plan of the application required 8 contiguous CLB

columns on the xc7a35tcpg236-1 chip, which occur only once on that

chip. Hence, only a functionality-based relocation was possible. The

timing constraint associated with the relocation request was such that

the relocation was required to take a maximum of 1ms. The total time

duration for the relocation was measured as 306.80µs at 100MHz, with

configuration of memory template taking 82.30µs, computation of

missing outputs taking 175.36µs and copying of data from

memorization unit memory to the template taking 49.14µs. We also

measured the worst-case relocation duration for this module as

361.86µs and best case as 131.44µs. This was done by generating

relocation requests when 0% (worst case) and 100% (best case)

respectively of the outputs have been saved. The time required for

configuration of the memory template and copying of data is constant

for an application, irrespective of when a relocation request is received.

Figure 6 shows floorplan of the original circuit and relocated equivalent.

We also observed the outputs of both the original circuit and the

relocated equivalent for the same inputs. The results were the same for

both circuits – in both cases, the value of 𝐷𝑎𝑡𝑎_𝑜𝑢𝑡 when the 𝑎𝑝_𝑑𝑜𝑛𝑒

signal goes high is the same. This is shown in figure 7. In addition, we

evaluated the improvement in the number of possible relocations

brought about by incorporating the proposed technique into the state-of-

the-art direct bitstream relocation technique. Table IV shows the result

for different Xilinx FPGA chips. As shown, the proposed technique

leads to a significant improvement in the number of relocations. For the

chips compared, an average of about 36 more relocations (an increase

of over 260%) of the case study circuits could be obtained using the

proposed technique. This is a great advantage in applications which aim

to improve reliability by circumventing permanent damage on the chip

such as in space applications. It means that augmenting the traditional

bitstream relocation with the proposed functionality-based technique

would significantly improve the fault tolerance of a design.

As already noted in section II and in the relocation case study used,

our relocator resorts to a functionality-based relocation when the

bitstream of the original design cannot be placed on a matching location

on the chip, leads to undesired effects or where access to the location

information of the bitstream is not possible (such as encrypted
bitstreams). The technique is especially suitable on modern

heterogeneous FPGA chips, such as the Xilinx 7 Series and Ultra-scale

FPGAs, which are rich in memory resources, many of which are

sometimes unused. We have also noted in section II that relocation by

functionality is only applicable to circuits with low port width. This is

due to its large memory overhead, which does not scale well with port

width. To this end, it is important to re-state that the relocator system

which we present is also capable of bitstream relocation for circuits

which cannot be memorized.

In addition, we compared the time overhead of direct bitstream

relocation and our proposed functionality-based relocation. Table V

shows the relocation time for both techniques for 3 different circuits:

CORDIC [13], RGB to YCrCb colour converter [16] and a multiplier

circuit [17]. All the circuits were implemented using Xilinx IPs from

Xilinx Vivado 15.1 for the xc7a35tcpg236-1 chip. As shown,

functionality-based relocation technique has a larger time overhead than

direct bitstream relocation for a majority (2 out of 3) of the cases. For

example, direct bitstream relocation duration for a 12-bit RGB to

YCrCb colour converter circuit would only require 174.46µs as against

a minimum of 326.15µs required for the functionality-based technique.

It is worth noting that the relocation time for the functionality-based

technique is proportional to the port width of the circuit. Hence, for the

CORDIC circuit with 10-bits inputs, its relocation time is smaller than

direct bitstream relocation. With increase in port width, the relocation

time for direct bitstream relocation has better performance. A major

disadvantage of functionality-based relocation technique is that it does

not scale well with increase in port width. In fact, the memory

requirement doubles for each bit increase in port width. However, since

Enemali et al.: A Functionality-Based Relocation System for Circuits on Heterogeneous FPGAs

direct relocation is impossible in certain cases such as for encrypted

bitstreams and when an identical location is not present on the chip,

servicing relocation requests whose time constraint can be satisfied in

those cases is always an advantage. Therefore, it is an added layer of

advantage to relocate circuits by functionality whenever direct bitstream

relocation is impossible or leads to undesired effects.

Finally, the size of the additional memory template bitstream

required for functionality-based relocation is only 55% of that of the

original circuits’ in our case study. Hence, in terms of additional

memory required, the functionality-based technique would be better

compared to having to store multiple bitstreams of the original circuit,

not to mention that since it is an empty memory template most of the

bits in its bitstreams are ‘0’s and would be much smaller when

compressed compared to the original circuit’s bitstream.

Fig. 6. Floor plan of the CORDIC application and its relocated equivalent

circuit on xc7a35tcpg236-1

 (a)

(b)

Fig. 7. Output waveforms of Original and Funtionality-based relocated

circuits. a) Original CORDIC circuit b) Relocated Equivalent

TABLE IV.

COMPARISON OF NUMBER OF POSSIBLE RELOCATIONS OF PROPOSED

TECHNIQUE WITH STATE OF THE ART SCHEME

Target Chip State-of-the-Art Proposed

Artix-7 (xc7a35tcpg236-1) 1 8

Kintex-7(xc7k325tffg900c-2) 19 64

Virtex-7 (xc7vx485tffg1761c-2) 21 77

Total 41 149

TABLE V.

COMPARISON OF RELOCATION TIME OVERHEAD OF DIFFERENT RELOCATION

TECHNIQUES

Circuit
Port

Width
Direct

Bitstream
Functionality-

based (best case)
Functionality-

based (worst case)

CORDIC 10 369.02 131.44 361.86

RGB to

YCrCb
12 174.46 326.15 367.63

Multiplier 16 92.54 774.88 1430.26

V. CONCLUSION

In this paper, we have presented a runtime circuit relocation system

which can relocate circuits on FPGAs based on functionality, in

addition to the state-of-the-art direct bitstream relocation. The

additional functionality-based relocation capability is based on

replicating the functionality of the original circuit by memorizing

previous computation results of circuits. The technique is applicable to

applications that are referentially transparent and have low port widths.

We have demonstrated its feasibility using a set of CORDIC circuits

and shown that it has potentials to greatly increase the average number

of relocations (over 2.6-times increase for our case study), while

incurring only small additional bitstream storage overhead (only 55%)

and manageable relocation time. In our future work we hope to explore

the possibility of using compression and hashing mechanisms to extend

the proposed technique to circuits with larger port width as well as

examine test circuits with outputs dependent on internal states.

REFERENCES

[1] P. D. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P. Manneback, ‘A

Multi-Resolution FPGA-Based Architecture for Real-Time Edge and Corner

Detection’, IEEE Trans. Comput., vol. 63, no. 10, pp. 2376–2388, Oct. 2014.

[2] P. D. Possa, S. A. Mahmoudi, N. Harb, and C. Valderrama, ‘A new self-adapting

architecture for feature detection’, in 22nd International Conference on Field

Programmable Logic and Applications (FPL), 2012, pp. 643–646.

[3] X. Iturbe, A Ebrahim, K. Benkrid, C. Hong, T. Arslan, J. Perez, D. Keymeulen,

M. D. Santambrogio, ‘R3TOS-Based autonomous fault-tolerant systems’, IEEE
Micro, vol. 34, no. 6, pp. 20–30, Nov. 2014.

[4] G. Enemali, A. Adetomi, and T. Arslan, ‘A placement management circuit for

efficient real-time hardware reuse on FPGAs targeting reliable autonomous

systems’, in Proc. 50th IEEE International Symposium on Circuit and Systems

(ISCAS), 2017, pp. 1 – 4.

[5] C. Beckhoff, D. Koch, and J. Torresen, ‘Portable module relocation and

bitstream compression for Xilinx FPGAs’, in proc. International Conf on Field

Programmable Logic and Applications (FPL), 2014, pp. 1–8.
[6] I. Kuon and J. Rose, ‘Measuring the gap between FPGAs and ASICs’, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 203–215,

Feb. 2007.

[7] J. A. Clemente, J. Resano, C. Gonzalez, and D. Mozos, ‘A hardware

implementation of a run-time scheduler for reconfigurable systems’, IEEE

Trans. Very Large Scale Integr. VLSI Syst., vol. 19, no. 7, pp. 1263–1276, Jul.

2011.
[8] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruckert, ‘Design

optimizations for tiled partially reconfigurable systems’, IEEE Trans. Very

Large Scale Integr. VLSI Syst., vol. 19, no. 6, pp. 1048–1061, Jun. 2011.

[9] X. Iturbe, Khaled Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, T.

Arslan, and J. Perez, ‘R3TOS: A novel reliable reconfigurable real-time

operating system for highly adaptive, efficient, and dependable computing on

FPGAs’, IEEE Trans. Comput., vol. 62, no. 8, pp. 1542–1556, Aug. 2013.

[10] G. Enemali, A. Adetomi, and T. Arslan, ‘Expanding the un-usable area strategy
for improved utilization of reconfigurable FPGAs’, in proc. 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 139–144.

[11] T. Becker, W. Luk, and P. Y. Cheung, ‘Enhancing relocatability of partial

bitstreams for run-time reconfiguration’, in proc. 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines, (FCCM), 2007, pp. 35–

44.

[12] H. T. Nguyen, X. T. Nguyen, and C. K. Pham, ‘A Low-Power Hybrid Adaptive

CORDIC’, IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 4, pp. 496–

500, Apr. 2018.
[13] Xilinx, ‘CORDIC v6. 0 LogiCORE IP Product Guide’. [Online] Available:

https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/

pg105-cordic.pdf [Accessed 29-Oct-2017].

[14] A. Adetomi, G. Enemali, and T. Arslan, 'A fault-tolerant ICAP controller with a

selective-area soft error mitigation engine', in proc. 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 192-199.
[15] A. Adetomi, G. Enemali, and T. Arslan, 'Relocation-aware communication

network for circuits on Xilinx FPGAs', in proc. 2017 International Conference

on Field Programmable Logic and Applications (FPL), 2017, pp. 1-7.

[16] Xilinx, ‘RGB to YCrCb Color-Space Converter v7.1 LogiCORE IP Product

Guide’. 2015. [Online] Available:

https://www.xilinx.com/support/documentation/ip_documentation/v_rgb2ycrcb

/v7_1/pg013_v_rgb2ycrcb.pdf [Accessed 20-Oct-2017].
[17] Xilinx, ‘Multiplier v12.0 LogiCORE IP Product Guide’. 2015. [Online]

Available:

https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v1

2_0/pg108-mult-gen.pdf [Accessed 29-Oct-2017].

Original

Circuit

Relocated

Equivalent

