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Abstract 15 

The environmental sustainability of acid mine drainage (AMD) treatment at semi-industrial 16 

scale is examined by means of the life cycle assessment (LCA) methodology. An integrated 17 

process which includes magnesite, lime, soda ash and CO2 bubbling treatment was employed 18 

to effectively treat, at semi-industrial scale, AMD originating from a coal mine in South 19 

Africa. Economic aspects are also discussed. AMD is a growing problem of emerging 20 

concern that cause detrimental effects to the environment and living organisms, including 21 

humans, and impose on development, health, access to clean water, thus also affect economic 22 

growth and cause social instability. Therefore, sustainable and cost effective treatment 23 

methods are required. A life cycle cost analysis (LCCA) revealed the viability of the system, 24 

since the levelized cost of AMD treatment can be as low as R112.78/m
3
 (€7.60/m

3
 or 25 

$9.35/m
3
). Moreover, due to its versatility, the system can be used both at remote locales, at 26 

stand-alone mode (e.g. using solar energy), or can treat AMD at industrial scale, thus 27 

substantially improving community resilience at local and national level. In terms of 28 

environmental sustainability, 1.18Pt or 29.6 kg CO2eq are emitted per treated m
3
 AMD or its 29 

environmental footprint amount to 2.96 Pt/m
3
. South Africa’s fossil-fuel depended energy 30 

mix and liquid CO2 consumption were the main environmental hotspots. The total 31 

environmental footprint is reduced by 45% and 36% by using solar energy and gaseous CO2, 32 

respectively. Finally, AMD sludge valorisation, i.e. mineral recovery, can reduce the total 33 

environmental footprint by up to 12%. 34 

 35 

 36 

Keywords: wastewater treatment; water management; scenario analysis; Acid rock drainage 37 

(ARD); hazardous wastes; SimaPro 38 
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1. Introduction 39 

Access to clean water is a basic human right, and one of the cornerstones of 40 

environmental protection in Europe (Eurostat, 2017). Water is critical for sustaining 41 

ecosystems, plays a fundamental role in the climate regulation cycle and is also the primary 42 

requirement for human survival and socioeconomic development (Eurostat, 2017; Naidoo, 43 

2016). Even though clean water access is taken for granted in the developed world this is not 44 

the case for developing countries, which are struggling to keep economic growth but often at 45 

the expense of environmental protection and water quality. South Africa is a developing 46 

country that faces water scarcity issues. On top of this, its water systems are severely harmed 47 

by different forms of pollution, including  acid mine drainage (AMD) (Naidoo, 2016). AMD, 48 

also known as acid rock drainage (ARD), is a common problem at mine sites, primarily at 49 

abandoned ones, and one of the main environmental challenges facing the mining industry 50 

worldwide (Council for Geoscience, 2010; Johnson and Hallberg, 2005). It is mainly 51 

produced from the bio-hydro-geochemical weathering of pyrite and other reactive sulphide 52 

bearing minerals, when exposed to oxidising conditions (Masindi et al., 2017). AMD 53 

emanating from active or abandoned mines and from mine wastes are often net acidic. These 54 

effluents pose an additional risk to the environment, since they often contain elevated 55 

concentrations of metals (iron, aluminium and manganese, and possibly other heavy metals) 56 

and metalloids (Johnson and Hallberg, 2005). South Africa has a long history in mining and 57 

its economy is still largely driven by a strong mining industry, nonetheless growing evidence 58 

suggest that its water resources have been grossly impacted by AMD (Council for 59 

Geoscience, 2010; Naidoo, 2016).  60 

Α wide array of treatment methods, such as ion-exchange, adsorption, bio-sorption, 61 

chemical-neutralising agents, coagulation and precipitation, have been proposed for AMD 62 

treatment (Johnson and Hallberg, 2005; Masindi et al., 2017). In general, treatment methods 63 
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can be divided into those that use either chemical or biological mechanisms and they can be 64 

further classified as i) active (they require continuous inputs of neutralisation materials, such 65 

as magnesite, periclase, brucite, lime, hydrated lime, and limestone, to sustain the process), ii) 66 

passive (they require relatively little resource input once in operation and could involve the 67 

use of wetland, reactive barriers and lime drains), or iii) integrated (i.e. they entail the 68 

combination of both) (Johnson and Hallberg, 2005; Masindi, 2017). The most widespread 69 

method for AMD neutralization is active treatment, involving addition of an alkaline material 70 

(chemical-neutralising agent such as magnesite, lime, calcium carbonate, sodium carbonate, 71 

sodium hydroxide, and magnesium oxide and hydroxide) that will raise the pH, accelerate 72 

ferrous iron rate of chemical oxidation (to this end active aeration or additional chemical 73 

oxidising agent are also required) and cause many of the metals present in solution to 74 

precipitate as hydroxides and carbonates (Johnson and Hallberg, 2005). Lime treatment is the 75 

most commonly used active treatment method, due to its high efficiency and low cost 76 

(Potgieter-Vermaak et al., 2006).  77 

Even though treatment efficiencies of the available AMD methods are well-78 

established and explored (e.g. (Johnson and Hallberg, 2005; Potgieter-Vermaak et al., 2006), 79 

this is not the case for their environmental sustainability, where only a few cases dealing with 80 

the environmental sustainability of AMD treatment systems are available (Hengen et al., 81 

2014; Tuazon and Corder, 2008). Therefore, herein a full life cycle assessment (LCA) of a 82 

typical AMD treatment method is carried out, using primary life cycle inventory (LCI) data 83 

collected from a semi-industrial AMD treatment plant. The goal is to assess the 84 

environmental sustainability of a typical AMD treatment process, identify environmental 85 

hotspots and identify avenues to improve its environmental sustainability, such as resource 86 

extraction from AMD sludge. Also, economic and social aspects regarding the sustainability 87 

of the treatment system are discussed. 88 
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 89 

2. The case study 90 

Acid mine drainage (AMD) was collected from a coal mine in Mpumalanga Province, 91 

South Africa, and was transferred to the premises of the Council for Scientific and Industrial 92 

Research (CSIR), Pretoria campus, South Africa, for treatment. The raw mine water was 93 

initially colourless, but after reacting with atmospheric air it turned red (Figure 1), due to the 94 

oxidation of ferrous to ferric ions. The AMD tetrahedron in Figure 1b shows all relevant 95 

components that contribute to this process. Co-existence of raw mine water, atmospheric 96 

oxygen, sulphide minerals (as a source of iron) and waterborne bacteria (to accelerate the 97 

reactions) can lead to the production of AMD (Pondja, 2017). 98 

 99 

A Β 
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100 

 101 
Figure 1. AMD effluent coming out of an underground pit, when it is initially colourless (A) and after being 102 

oxidised by atmospheric air in the presence of sulphide minerals and waterborne bacteria (B), gradually turns to 103 

red (C). 104 

As far as its physical and chemical characteristics are concerned, the AMD under 105 

study is very acidic with pH 2, and contains high amounts of sulphate, Fe, Al and Mn, Mg 106 

and Ca (Table 1).  107 

Table 1: AMD physicochemical characteristics, before and after treatment (data taken from (Masindi, 2017). 108 

Parameters Initial concentration Treated effluent 

pH  2 7.5 

Acidity (mg/L CaCO3) 800 ≤ 0.01 

Alkalinity (mg/L CaCO3)  <5 80 

Aluminium (mg/L Al)  300 ≤ 0.01 

C 
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Calcium (mg/L Ca)  300 ≤ 0.01 

Electrical Conductivity (mS/m [25°C]) 600 200 

Iron (mg/L Fe) 8,000 ≤ 0.01 

Magnesium (mg/L Mg) 300 0.5 

Manganese (mg/L Mn) 75 ≤ 0.01 

Sodium (mg/L Na) ≤ 0.01 5 

Sulphate (mg/L SO4) 30,000 50 

Total Dissolved Solids  3,500 1,000 

Total Hardness (mg/L) 2,000 200 

 109 

As shown in Figure 2 the AMD treatment system comprises the following four 110 

discrete process steps: (1) neutralization of AMD and partial removal of sulphates achieved 111 

by using calcined cryptocrystalline magnesite (magnesite treatment); (2) addition of 112 

limestone to reduce water hardness and residual sulphate as gypsum (limestone treatment); 113 

(3) soda ash addition to reduce residual Ca and hardness (soda ash treatment); (4) CO2 114 

bubbling to correct the pH to 7.5 and recover limestone (CO2 bubbling).  The main products 115 

of this treatment process comprise the treated AMD effluent and the produced sludge. The 116 

latter is typically discarded for landfilling, but it can be also valorized as will be discussed in 117 

the sensitivity analyses section. As shown in Table 1, the system is capable of providing a 118 

high quality treated water output, which meets South Africa’s water quality standards to be 119 

safely returned to nature, or used for industrial and agricultural purposes (DWAF, 1996).  120 
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 121 

Figure 2: Flow diagram of the semi-industrial AMD treatment unit under study and possible scenarios for the 122 
disposal/treatment of the treated effluent and the AMD sludge. 123 

 124 

The aforementioned system was designed, constructed, and commissioned at the 125 

premises of CSIR Pretoria campus, South Africa, where it operates at semi-industrial scale 126 

and is able to effectively treat 3.5 m
3
 of AMD daily (Figure 3). 127 

At the time of writing, a reverse osmosis (RO) followed by chlorination tertiary 128 

treatment system is under testing in order to explore the possibility to produce drinking water; 129 

a viable product for South African rural communities. All process steps take place in the 130 

same reactor (i.e. clarifier), since each process step has to be completed before moving on to 131 

the next step. This reduces the system’s initial capital expenditure and less space is occupied, 132 

i.e. land use is minimized. 133 
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 134 
Figure 3: The semi-industrial AMD treatment unit in operation at the premises of CSIR Pretoria campus, South 135 
Africa.  136 

 137 

 A detailed discussion regarding the four process steps under study can be found  in 138 

Masindi (2017.  For the magnesite treatment stage 10 kg of magnesite per m
3
 of AMD are 139 

added to the clarifier, shown in Figure 2 and Figure 3. The mixture is agitated for 60 minute 140 

and then it is left for another 60 minute to settle, where solid precipitates are gravity settled. 141 

Then, the magnesite treated AMD is transferred to a holding tank and the sludge is 142 

transferred to a separate tank (sludge tank). In this stage Fe-species can be recovered from the 143 

sludge. For the limestone treatment stage, the magnesite-treated effluent is recycled back to 144 

the clarifier and 10 kg/m
3
-AMD of limestone are added into it. The mixture is then agitated 145 

for 60 minute and is left for another 60 minute unstirred, to allow solid precipitates to settle. 146 

The magnesite/limestone treated AMD and the sludge are transferred back to the holding and 147 

the sludge tank, respectively. In this stage, residual Ca (gypsum) and Mg (brucite) can be 148 

recovered from the sludge. For the soda-ash treatment stage, the effluent is recycled back to 149 

the clarifier and 4 kg/m
3
-AMD of soda ash are added, following the same procedure (i.e. 60 150 

minute agitation, 60 minute settling and sludge removal). Finally, in the CO2 bubbling stage 151 
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the magnesite/limestone/soda-ash treated AMD is recycled back to the clarifier, where CO2 is 152 

bubbled (45 L/min) until the pH reaches 7.5. Similarly, the effluent is left for 60 minute to 153 

settle and then is transferred to the treated effluent tank, while the sludge is collected to the 154 

sludge tank (Figure 2 and Figure 3).  155 

 156 

3. Goal and scope and system boundaries 157 

The purpose of this assessment is to identify the environmental performance and the 158 

main environmental hotspots of a robust AMD treatment method, as well as identify 159 

environmental saving avenues through scenario/sensitivity analyses. To this end, primary LCI 160 

data were collected from a semi-industrial AMD treatment plant (Figure 3) and simulated 161 

using the LCA methodology. Since, AMD constitute an environmental problem of emerging 162 

concern in South Africa, and beyond, the results of this work are of interest to researchers, 163 

decision and policy makers, as well as the mining and water/wastewater industry, which all 164 

constitute the intended audience of this work.  165 

In order to quantify the environmental performance of the system 1 m
3
 of effluent 166 

generated by the AMD reactor was set as the functional unit. Therefore, input and output data 167 

were normalized per m
3
 of effluent water treated by AMD reactor. Furthermore, the 168 

attributional (ALCA) approach was used, since it estimates the environmental impacts of a 169 

product/system attributed to the delivery of a specified amount of the functional unit 170 

(Chatzisymeon et al., 2016), which is the case here. 171 

The environmental modelling was carried out using the SimaPro 8 software package, 172 

based on the LCA methodology as set in ISO 14040 and 14044 (ISO, 2006a; ISO, 2006b). 173 

The time-related coverage of this work refers to present, i.e. 2018, while its geographical 174 

coverage is South Africa and areas that are affected by AMD pollution. Moreover, average 175 
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technology was assumed and a single-issue (IPCC 2013) and a multi-issue (ReCiPe2016) life 176 

cycle impact assessment (LCIA) method were used, the latter by employing the Hierarchist 177 

perspective. It should be noted that there might be some limitations of applying the ReCiPe 178 

method, since this was first developed in and for the European context (Adiansyah et al., 179 

2017a). Nevertheless, the updated version of ReCiPe, i.e. ReCiPe2016, which was used in 180 

this work, provides characterisation factors that are representative for the global instead of the 181 

European scale, while maintaining the possibility for a number of impact categories to be 182 

adapted at a country or continental scale (Huijbregts et al., 2017). 183 

In Figure 4 the system boundaries, which define the smallest elements (i.e. unit 184 

processes) for which input and output data are quantified in the LCI and are included in the 185 

LCA are presented (ISO, 2006b). All four AMD treatment steps, along with their main inputs 186 

and outputs are included in the system boundaries. For the AMD treatment plant, a useful 187 

lifetime of 20 years was taken into account, which is in line with relevant literature (e.g. 188 

(Foteinis et al., 2018; Ioannou-Ttofa et al., 2016; Ioannou-Ttofa et al., 2017)). AMD 189 

transportation from Mpumalanga coalmine to the semi-industrial treatment plant, i.e. CSIR 190 

Pretoria campus premises, South Africa, is external to the system boundaries, since future 191 

treatment systems are expected to be built near the AMD sources. Furthermore, since this is a 192 

cradle to gate LCA the final use of treated water is external to the system boundaries. The 193 

reason is that depending on the final use, e.g. disposal in natural water bodies, irrigation, or 194 

drinking water production, a different environmental burden/benefit would be ascribed to 195 

each route, thus making the LCA specific for the chosen route. Moreover, the infrastructure 196 

required, i.e. reinforced concrete slabs to accommodate the treatment systems, piping, as well 197 

as land use were into account separately, i.e. a sub-system for infrastructure was created.  198 
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 199 

Figure 4: The system boundaries (shown with dashes) of the AMD treatment system. 200 

 201 

4. Life cycle inventory (LCI) 202 

As mentioned above, primary LCI data for the system under study (i.e. semi-industrial 203 

AMD treatment plant) were collected from its construction and operation phase in CSIR 204 

Pretoria campus, South Africa. Table 2 summarizes the LCI that were used in this work, 205 

normalized per functional unit, i.e. the effective treatment of 1 m
3
 of AMD. It has to be noted 206 

that the clarifier and tanks under study, as well as the pumps and the propeller were not 207 

identified in SimaPro’s proprietary LCI databases, and thus literature data were used as 208 

proxies. Specifically, for the pumps that are required to transfer the effluent between tanks 209 

and the clarifier LCI data from (Xylem Inc, 2011) were used and re-scaled according to their 210 

rated power output (0.75 kW). It has to be noted that magnesite, limestone and soda ash are 211 

inserted in the system in a slurry form, i.e. semi-liquid mixture of the chemical with water, 212 

and each require 10 minute pumping from their storing tank to the clarifier. Furthermore, it 213 

takes 30 minute to move the effluent from the clarifier to the holding tank and another 30 214 
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minute to move it back to the clarifier. The sludge is much thicker and therefore it takes 10 215 

minute to transfer it from the clarifier to the sludge tank. For the propeller, LCI data were 216 

taken from (Sulzer Ltd, 2013) and re-scaled to fit the desirable rated output (3 kW). In each 217 

of the above treatment step mixing (propeller) lasts for 60 minute. Moreover, according to 218 

their manufacturer the clarifier and the tanks under study are made from linear low-density 219 

polyethylene (LLDPE), while their life span is at least 10 years (JoJo Tanks Ltd, 2017). 220 

Therefore, literature data for LLDPE tanks (Shah et al., 2016) were used, while it was 221 

assumed that the tanks and the clarifier will be replaced once during the pilot unit lifespan of 222 

20 years. For the diffuser used for CO2 bundling LCI data were taken from the literature 223 

(Ioannou-Ttofa et al., 2016), assuming that its main material is Polyvinyl chloride (PVC). 224 

Piping comprised high-density polyethylene (HDPE) pipes (~ 20 m total length) and was 225 

taken from Ecoinvent database. The chemicals that are used to drive the process were taken 226 

directly from Ecoinvent, apart from magnesite which LCI was taken from the literature 227 

(Cherubini et al., 2008). Moreover, a mean transportation distance of 40 km was ascribed to 228 

all construction materials and system inputs, except from AMD transportation which is 229 

outside of the system boundaries. Finally, it was assumed that 40 m
2
 of industrial land will be 230 

occupied throughout the treatment plant life span. 231 

Table 2: The LCI of the semi-industrial treatment plant for the treatment of 1 m
3
 AMD 232 

Process Main parts - 

chemical reagents 

Value LCI data reference 

Infrastructure 

Land use Industrial land 40 m
2
 CORINE 121a 

Transportation Euro 4 lorry 40 km Ecoinvent 3.3 

Piping HDPE 20 years Industry data 2.0 

Clarifier LLDPE 10 years (Shah et al., 2016) 

Holding tank LLDPE 10 years (Shah et al., 2016) 
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Magnesite treatment 

Propeller 3 kW 60 min (Sulzer Ltd, 2013) 

Pumping 0.75 kW 80 min (Xylem Inc, 2011) 

Magnesite MgCO3  10 kg/m
3
 (Cherubini et al., 2008) 

Electricity South African mix 4 kWh/m
3 

Ecoinvent 3.3 

Limestone treatment 

Propeller 3 kW 60 min (Sulzer Ltd, 2013) 

Pumping 0.75 kW 80 min (Xylem Inc, 2011) 

Limestone  10 kg/m
3
 Ecoinvent 3.3 

Electricity South African mix 4 kWh/m
3 

Ecoinvent 3.3 

Soda ash treatment 

Propeller 3 kW 60 min (Sulzer Ltd, 2013) 

Pumping 0.75 kW 80 min (Xylem Inc, 2011) 

Soda ash MgCO3  4 kg/m
3
 Ecoinvent 3.3 

Electricity South African mix 4 kWh/m
3 

Ecoinvent 3.3 

CO2 bubbling 

Pumping 0.75 kW 70 min (Xylem Inc, 2011) 

CO2 Diffuser EPDM 10 years (Ioannou-Ttofa et al., 2016) 

Carbon dioxide  CO2 45 L/min Ecoinvent 3.3 

Electricity South African mix 0.875 kWh/m
3 

Ecoinvent 3.3 

Treated effluent tank LLDPE 10 years
 

(Shah et al., 2016) 

Outputs 

Treated AMD effluent (water) 0.97 m
3
/m

3
 - 

Fe (taken as iron sulfate) 2 kg/m
3
 Ecoinvent 3.3 

Gypsum 5 kg/m
3
 Ecoinvent 3.3 

Brucite (taken as magnesium oxide) 1 kg/m
3
 Ecoinvent 3.3 

Limestone 3 kg/m
3
 Ecoinvent 3.3 

5. Life cycle impact assessment (LCIA) 233 
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The life cycle impact assessment (LCIA) associates the collected LCI data with 234 

specific environmental impacts and damages and also attempts to understand those 235 

impacts/damages (ISO, 2006b). Here, a single-issue, i.e. IPCC 2013 for a timeframe of 100 236 

years, and a multi-issue, i.e. ReCiPe, LCIA methods were used. IPCC 2013 compares 237 

processes based on CO2 equivalent (CO2eq) emissions, i.e. total greenhouse gas (GHG) 238 

emissions, used to measure Global Warming Potential (GWP), which is a standard indicator 239 

of environmental relevance. This is also included in ReCiPe's midpoint impact category 240 

“Climate Change”, but using a single-issue method allows a more direct dissemination of the 241 

results to the general public (Foteinis et al., 2018). ReCiPe can express results both at 242 

midpoint, where environmental impacts are examined earlier in the cause-effect chain, and 243 

endpoint level, where environmental impacts are examined at the end of the cause-effect 244 

chain (Ioannou-Ttofa et al., 2016). The midpoint approach provides a robust understanding of 245 

the environmental performance of the AMD treatment pilot-unit, but results are hard to 246 

communicate to the general public. The endpoint or damage-oriented approach, can translate 247 

environmental impacts into issues of concern, such as human health, natural environment and 248 

natural resources, but it is associated with higher levels of statistical uncertainty due to data 249 

gaps and assumptions stacking up along the cause-effect chain. Nonetheless, endpoint results 250 

are easier to communicate to decision- and policy-makers and the general public 251 

(Chatzisymeon et al., 2016).  252 

At midpoint level ReCiPe comprises the following impact categories: climate change 253 

(CC), ozone depletion (OD), terrestrial acidification (TA), freshwater eutrophication (FE), 254 

marine eutrophication (ME), human toxicity (HT), photochemical oxidant formation (POF), 255 

particulate matter formation (PMF), terrestrial ecotoxicity (TET), freshwater ecotoxicity 256 

(FET), marine ecotoxicity (MET), ionising radiation (IR), agricultural land occupation 257 

(ALO), urban land occupation (ULO), natural land transformation (NLT),water depletion 258 
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(WD), mineral resource (metal) depletion (MRD), fossil fuel depletion (FD). In order to reach 259 

endpoint, ReCiPe converts and aggregates most of the midpoint impact categories into the 260 

following damage categories: i) damage to human health, covering climate change, ozone 261 

depletion, toxicity, and human health associated with PM10 and ozone; ii) damage to 262 

ecosystem diversity, covering climate change, acidification, toxicity, and land-use; and iii) 263 

damage to resource availability, covering mineral resource depletion, and fossil fuel depletion 264 

(Adiansyah et al., 2017a; Foteinis et al., 2018). In order to obtain a holistic understanding of 265 

the environmental performance of the AMD treatment system under study, both midpoint and 266 

endpoint approaches were used. Moreover, the Hierarchist perspective (H) was employed by 267 

using the normalisation values of the world and average weighting (i.e. world ReCiPe H/A).  268 

6. Economic analysis 269 

A useful tool to assess economic sustainability the life cycle cost analysis (LCCA), 270 

i.e. the cost of an asset, or its parts throughout its life cycle, while fulfilling the performance 271 

requirements. Construction costs, maintenance costs, operational costs, occupancy costs, end-272 

of-life costs and non-construction costs are usually included in LCCA (Zhong and Wu, 273 

2015). In this study, an economic evaluation of the prototype AMD treatment system, based 274 

on the LCCA methodology, was carried out. In the analysis, the initial capital expenditure 275 

(CAPEX) for setting up the system, as well as maintenance and operating expenses (OPEX) 276 

were taken into account.  277 

It has to be noted that the analysis was focused on accounting for the operating cost, 278 

which represent the majority of financial input of the AMD treatment unit, and only under the 279 

present conditions, i.e. not accounting for inflation. This analysis intends to act as a screening 280 

tool to assess the economic viability of the system under study, rather than specify possible 281 

options and provide information about costs and benefits in present monetary value such as in 282 
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benefit-cost analysis (BCA). For example, treating AMD reduces sulfate waterborne 283 

emissions and therefore minimizes the environmental impact on (eco)toxicity and on 284 

freshwater and marine eutrophication. In addition, water and land conservation and GHG 285 

reduction could be achieved, which lead to monetary benefits (Adiansyah et al., 2017b). 286 

Nonetheless, calculating the monetary benefits of AMD treatment is beyond the goals and 287 

scope of this work, and could be addressed in future studies.  288 

7. Results and discussion 289 

7.1 Carbon footprint  290 

Total carbon equivalent (CO2eq) emissions were estimated using the IPPC 2013 LCIA 291 

method for 100 years timeframe and it was found that the effective treatment of 1 m
3
 of 292 

AMD emits 29.6 kg CO2eq. Regarding the contribution of each process step, it was found that 293 

CO2 bubbling had the highest score (13 kg CO2eq), followed by soda ash treatment (6.9 kg 294 

CO2eq), magnesite treatment (5.04 kg CO2eq) and limestone treatment (4.54 kg CO2eq). The 295 

main environmental hotspot was identified as electricity consumption (14.5 kg CO2eq), 296 

followed by the liquid CO2 input for the bubbling process (11.8 kg CO2eq). Soda ash and 297 

magnesite, as materials, had a lower carbon footprint, 2.41 and 0.558 kg CO2eq respectively. 298 

The remaining inputs (e.g. Tovex explosive for magnesite and limestone mining and concrete 299 

for the system base) had a very low to negligible score. Therefore, the main contributors to 300 

the total carbon footprint are electricity consumption from South Africa’s fossil fuel-301 

depended energy mix (49.2 %), followed by the liquid CO2 input (40%) and soda ash 302 

(8.16%), as shown in Figure 5. 303 
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 304 

Figure 5: The main contributors to carbon emissions in kg CO2eq per m
3 
of treated AMD.   305 

7.2 ReCiPe LCIA method 306 

7.2.1 ReCiPe results at midpoint 307 

LCA findings are first presented at midpoint level, using ReCiPe’s LCIA 308 

characterisation model and then results are normalized using the world’s reference 309 

inventories. Figure 6 shows the contribution of all process sub-systems to each of the 310 

ReCiPe’s 18 midpoint impact categories (characterisation). It is observed that the treatment 311 

step that has the highest contribution to all impact categories is the CO2 bubbling stage. 312 

Magnesite, limestone, and soda ash treatment yielded comparable scores to most impact 313 

categories, while infrastructure (i.e. land use, concrete slab/foundations and piping) has a 314 

very low to miniscule contribution to all impact categories (Figure 6).  315 

The high scores (from 25% - 85%) of the CO2 bubbling stage are attributed to the 316 

high liquid CO2 amounts required to drive the process, while electricity for water pumping 317 

required in this step had a much lower contribution. CO2 is mainly generated as a by-product 318 

from various industrial production processes, primarily from ammonia or hydrogen 319 

production, and almost half of the amount produced is used directly in its gaseous form in the 320 



19 
 

close neighbourhood, mainly to produce urea or methanol. If gaseous CO2 is sourced directly 321 

from another production process it could be assumed that it will be free of any environmental 322 

burden (Althaus et al., 2007). On the other hand, liquid CO2, which is the most commonly 323 

bought and sold form of CO2, is associated with environmental burdens since energy and 324 

resources are required for CO2 extraction and purification (Althaus et al., 2007). Here, liquid 325 

CO2, originating from ammonia production, was assumed to be used in the bubbling stage. It 326 

should be mentioned that if gaseous CO2 could be sourced for future industrial scale AMD 327 

treatment plants the total environmental footprint of the process could be further reduced. 328 

This scenario is examined in the sensitive analyses section.  329 

 330 

Figure 6: Contribution of the main process steps to ReCiPe's midpoint impact categories for the treatment of 1 331 
m

3
 of AMD. 332 

Since the electricity inputs during the first three steps are the same, their differences 333 

in each midpoint impact categories is attributed to the chemical reagents, i.e. magnesite, 334 

limestone, and soda ash as materials, utilized in each step. The higher contribution (ranging 335 

between 9% - 32%) of the soda ash step is attributed to the sodium carbonate, i.e. soda ash, 336 

input require to drive this process step. Soda ash is mainly produced by the Solvay process, 337 

also called ammonia soda process (Mahida Prashantsinh et al., 2015), and hence soda ash 338 

(light grade) manufactured from this process was taken into account here. The Solvay process 339 

uses salt (NaCl) and limestone as raw materials and involves several treatments to produce 340 
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soda ash and therefore various emissions and environmental impacts are generated (Mahida 341 

Prashantsinh et al., 2015). As a result, the estimated CO2eq emissions for the production of 342 

one tone of soda ash to be between 2 and 4 tons, depending on the energy source used 343 

(Nazari and Sanjayan, 2016). On the other hand, magnesite (4% - 23%) and limestone (2% - 344 

21%) can be obtained directly through mining and refining and therefore are associated with 345 

lower carbon footprints, compared to soda ash (Cherubini et al., 2008; Nazari and Sanjayan, 346 

2016), and this is reflected in Figure 6. Finally, the low contribution of the infrastructure in 347 

all impact categories is mainly attributed to: (i) the high life span of the concrete 348 

slab/foundations and piping (20 years) (ii), its main inputs are not associated with hazardous 349 

or carcinogenic emissions and (iii) land use is not extensive since all main treatment steps are 350 

carried out in the same reactor (clarifier).  351 

In order to get a better idea of the relative magnitude of each treatment step, results 352 

were normalised using the world’s reference inventories (i.e. the world normalisation factors 353 

were used) and are shown in Figure 7. Normalisation is an optional step of the LCIA, which 354 

transforms the results by dividing each impact category with a corresponding reference value 355 

(ISO, 2006b). By doing so, results are compared with reference values and the magnitude of 356 

each impact is identifyed. The most affected impact categories are, from higher to lower 357 

scores, MET, FET, FE and HT, while the impact categories TA, FD, PMF, CC yielded much 358 

lower (an order of magnitude) normalised scores. The remaining midpoint impact categories 359 

yield very low to miniscule normalised scores (Figure 7).  360 
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 361 

Figure 7: Normalised ReCiPe’s midpoint results using the world’s reference inventories for the effective 362 
treatment of 1 m

3
 of AMD. 363 

The high scores in the (eco)toxicity (MET, FET and HT) and eutrophication (FE) 364 

impact categories are attributed to the mining of the chemical reagents and of the fossil fuels 365 

required for electricity generation (South Africa's energy mix is dominated by fossil fuels, 366 

mainly coal  (Papadaki et al., 2017)). It has to be noted that CO2 harvesting and purification 367 

require large amounts of energy (Althaus et al., 2007), in this case electricity from fossil 368 

fuels. Therefore, the chemical reagents and particularly fossil fuel mining exposes previously 369 

buried coal minerals to both oxygen and water, thus releasing, through waterborne emissions, 370 

mine-derived sulfate salts. Sulfate emissions could disrupt water balance and ion exchange 371 

processes, thus causing aquatic organisms to live under stress or even death (Zhao et al., 372 

2017). Moreover, magnesite, limestone and fossil fuel extraction and transportation, as well 373 

as soda ash production and fossil fuel refining and combustion release toxic materials, such 374 

as heavy metals, sulphurous compounds and polycyclic aromatic hydrocarbons (PAHs) to the 375 

environment, thus also affecting the (eco)toxicity impact categories (Ioannou-Ttofa et al., 376 

2016).  377 

As far as the FE impact category is concerned, mining activity is an increasingly 378 

important stressor for freshwater ecosystems, since sulfate can co-vary with other 379 

environmental parameters, such as nitrogen and phosphorus, and impact aquatic organisms. 380 
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The reason is that the introduction of sulfates in natural water matrices, through mining 381 

activities, can increase the availability of nitrogen and phosphorus through internal 382 

eutrophication (Zhao et al., 2017). Also, fossil fuel combustion lead to nitrogen oxides 383 

emissions which impact ME (Ioannou-Ttofa et al., 2017). Marine ecosystems are affected to a 384 

much lower degree, compared to freshwater ecosystems, since they are in general more 385 

resilient to eutrophication and lower quantities of direct and indirect (e.g. from fossil fuel 386 

burning) nitrogen emissions are attributed to the system under study (limestone used in the 387 

treatment system is assumed to be recovered and/or properly disposed, thus it does not reach 388 

the sea).  389 

Lastly, the less affected midpoint impact categories, i.e. TA, FD, PMF and CC, are 390 

mainly affected by mining activities and fossil fuel extraction and burning. The latter directly 391 

affect CC and TA, while also releases particulate matter and leads to their depletion, thus 392 

affecting PMF and FD impact categories, respectively (Foteinis et al., 2018).  393 

7.2.2 ReCiPe results at endpoint 394 

Figure 8 shows ReCiPe’s weighted results at endpoint level (Hierarchist perspective 395 

using the normalisation values of the world with the average weighting set). Weighting is an 396 

optional step in the LCIA, after normalisation, where results are multiplied by weighting 397 

factors corresponding to each impact category. Weighted results can be then aggregated into 398 

a single score, in order to access the total environmental footprint of the effective treatment of 399 

1 m
3
 of AMD. It was found that the weighted damage to human health exhibits the highest 400 

score (1.92 Pt), followed by the damage to resources availability (0.932 Pt), while the damage 401 

to ecosystem diversity has the lower score (0.109 Pt). Therefore, the aggregated score is 402 

found to be 2.96 Pt per m
3
 of AMD. The high scores of the first two damage categories are 403 

attributed to electricity consumption and to the mining/processing of the chemical reagents 404 
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added in each treatment step. Similarly to IPCC 2013, the treatment step that has the highest 405 

aggregated score is CO2 bubbling (1.19 Pt), followed by soda ash (743 mPt), magnesite (526 406 

mPt), and limestone treatment (479 mPt). Moreover, the main environmental hotspot was 407 

identified to be electricity from South Africa’s fossil-fuel depended energy mix (1.51 Pt or 408 

51.1% of the total environmental footprint). From it, 35.5% or 1.05 Pt is attributed to 409 

stirring/propelling and the remaining 15.8% or 0.468 Pt to water pumping. The second 410 

environmental hotspot was identified as the liquid CO2 input (1.08 Pt or 36.4%), followed by 411 

soda ash, as a material (276 mPt or 9.33%). The remaining chemical reagents had a lower 412 

contribution, i.e. magnesite 58.7 mPt or 1.99%, and limestone 11.7 mPt or ~0.4%. Due to 413 

their high life span, the CO2 diffuser, the propeller and the pumps had a miniscule 414 

contribution (<0.1%), while the tanks, including the clarifier, contribute 3.72 mPt or 0.126% 415 

in total. Finally, the infrastructure contributes 0.44% on the total environmental footprint, 416 

with the majority of those impacts attributed to the reinforced concrete used to construct its 417 

base (i.e. pipping and land use had a miniscule contribution).  418 

 419 

Figure 8: Contribution of the main process steps on the aggregated total environmental footprint of the process.  420 

 421 

 422 

 423 
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 424 

7.3 Sensitivity/scenario analyses  425 

7.3.1 Source and form of CO2  426 

The liquid CO2 used in the bubbling stage was found to be the main environmental 427 

hotspot of the system. This, is attributed to the large quantities required and to the energy and 428 

resources that are required for CO2 extraction, purification, liquefaction, and storage  429 

(Althaus et al., 2007). Therefore, a sensitivity analysis concerning the source and form of 430 

used CO2 was carried out. To be more specific, the use of processed CO2 in liquid form 431 

versus raw gaseous CO2 harvested as a process by-product was studied. This scenario was 432 

explored based on the fact that the system can directly use gaseous CO2 produced as a by-433 

product from various industrial production processes, such as ammonia and hydrogen 434 

production, or even sourcing it from a power plant’s flue gas, if such facilities are in the close 435 

proximity. In these cases, since the gaseous CO2 is produced as a by-product of another 436 

engineering process, it could be assumed that it will be free of any environmental burden 437 

(Althaus et al., 2007), thus improving the system’s overall environmental sustainability. 438 

A scenario dealing with directly using gaseous CO2 that derives as produced as a by-439 

product, e.g. flue gas, was examined. If environmental burden-free gaseous CO2 is fed into 440 

the bubbling stage, then the environmental footprint is reduced by ~36%, i.e. 1.88 Pt instead 441 

of 2.96 Pt when using liquid CO2.  442 

7.3.2 Renewable energy to power the treatment system 443 

The second environmental hotspot of the system was identified as the electricity 444 

consumption from South Africa’s fossil energy mix, which is attributed to the high share of 445 

fossil fuels, mainly coal (Papadaki et al., 2017). Therefore, using an electricity mix solely 446 

comprising renewable energy sources (RES) could reduce the system’s overall environmental 447 
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footprint. In this work the use of solar energy (3 KWp single-Si panels photovoltaic (PV) 448 

systems), an abundant and readily available RES in South Africa, was examined. It was 449 

found that when using solar energy the system’s environmental sustainability is substantially 450 

improved. Specifically, its total environmental footprint is reduced from 2.96 Pt per m
3
 to 451 

1.64 Pt per m
3
. Therefore, the introduction of RES, in this case solar energy, can reduce the 452 

total environmental footprint by ~45%. Moreover, a third and practically feasible scenario is 453 

to combine the use of RES (i.e. solar energy) and gaseous CO2 in the same AMD treatment 454 

system. In this case the total environmental footprint of the system is minimized, from 2.96 Pt 455 

per m
3
 in the initial scenario (i.e. current operating conditions) to 0.559 Pt per m

3
, and is 456 

drastically reduced by ~81%, reaching an overall high environmental sustainability.  457 

7.3.3 Resource recovery from AMD sludge  458 

Finally, the last scenario examined is AMD sludge valorisation, i.e. the recovery of 459 

resources that are contained in the generated AMD sludge. Resource recovery from AMD 460 

sludge has recently attracted attention, as this could be a promising strategy to reduce AMD 461 

treatment overall cost (e.g. see (Masindi, 2017)). Nonetheless, this entails further AMD 462 

sludge processing and energy inputs and therefore it could be associated with high 463 

environmental impacts that could render sludge valorisation unattractive, from the 464 

environmental perspective. For this reason, a screening, in terms of environmental relevance, 465 

for each recovered resource was carried out, by using the substitution approach. The concept 466 

behind substitution is that the production of a co-product by the system under study causes 467 

another production process in another system to be avoided, which results to avoided 468 

emissions, resource extractions, etc. (Wardenaar et al., 2012).  469 

In order to extract the targeted resources from each sludge stream chemical reagents 470 

are required (Bailey et al., 2016), but most importantly large amounts of energy are required, 471 
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since the sludge needs to be dried at 105°C for 24 hrs. In this work a typical laboratory oven 472 

(EcoTherm Economy) was used and the resources that can be extracted per m
3
 AMD are Al, 473 

Ca, Fe, Mg and Mn. Here we examine the effect of one of the main input of the extraction 474 

process, i.e. the sludge drying, to identify if sludge valorisation can mitigate the 475 

environmental footprint of the examined AMD treatment process. Even though, the 476 

extraction procedure is more complicated and requires further processing, we estimated that 477 

the additional environmental burdens of the sludge valorisation are compensated by the fact 478 

that here sludge drying was achieved by a laboratory oven (industrial ovens require much less 479 

energy input). Future works could deal with the exact environmental performance of the most 480 

promising recourses to be recovered.  481 

Regarding this scenario, since the oven is not included in SimaPros’s proprietary 482 

databases, LCI from literature were used as proxies (Jungbluth, 1997). Electricity was 483 

assumed to originate from South Africa’s energy mix. When simulating the environmental 484 

impact of the drying process and the avoided emissions, resource extractions, etc. attributed 485 

to each recovered resource the following were observed: For the magnesite treatment sludge 486 

stream, it was found that the environmental gains of Fe (assumed to be recovered as iron 487 

sulfate, instead of iron oxide/hydroxide) can slightly exceed the environmental impacts of 488 

electricity consumption of the drying process (i.e. the total environmental footprint can be 489 

reduced by 0.09 Pt or by about 3%). When, recovery of gypsum and brucite (assumed to be 490 

recovered as magnesium oxide)  from the limestone treatment step was examined, a higher 491 

reduction on the total environmental footprint was observed. Specifically, a 0.27 Pt or about 492 

9% reduction of the total environmental footprint could be achieved from gypsum but mainly 493 

from brucite recovery. Finally, it was found that the environmental gains of limestone 494 

recovery did not exceed the environmental impacts of electricity consumption of the drying 495 

process. Therefore, alternative routes (e.g. disposal) for the sludge generation during the last 496 
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two treatment stages should be considered. Overall, it was found that sludge valorisation 497 

could reduce the total environmental footprint of the AMD treatment process by up to 12%. 498 

Hence, results indicate that sludge valorisation could be a promising strategy to offset the 499 

environmental impacts of AMD treatment and improve its overall environmental 500 

sustainability.  501 

7.4 Economic analysis 502 

Regarding the life cycle cost analysis (LCCA), results were promising. Table 3 503 

summarizes all inputs, i.e. chemical reagents and electricity, that contributed to the process 504 

operating costs. Specifically, it was found that the initial capital expenditure for setting up the 505 

system was very low, since it only comprises two linear low-density polyethylene (LLDPE) 506 

tanks, one LLDPE clarifier, the piping, the pumps and the stirrer. Moreover, the capital cost 507 

(20 years life span) was estimated at ~R200,000 (€13,500 or $16,500, exchange rate taken at 508 

January 2018), which when normalized per treated m
3
 AMD is miniscule, i.e. R7.78 (€0.52 or 509 

$0.65) per m
3
 AMD. Therefore, the economic evaluation was focused on accounting for the 510 

operating cost, i.e. chemical reagents and electricity, of the AMD treatment unit. Table 3 511 

summarizes the capital and operating costs, which contributed towards the system’s total 512 

cost. The normalized operating cost of the AMD treatment unit was found to be R105 (€7.08 513 

or $8.71) per m
3
 AMD. Therefore, the levelized cost for the treatment of 1 m

3
 AMD is 514 

R112.78 (€7.60 or $9.35), with operating costs being the main contributors (i.e 6.90%), 515 

compared to the capital cost (i.e. 93.10%).  516 

It has to be noted that if AMD is left untreated it could have large economic impacts, 517 

since it could cause detrimental effects to the environment and living organisms, including 518 

humans, and impose on development, health, access to clean water, thus stressing social 519 

sustainability. The proposed treatment system can address, at least partly, the growing 520 

problem of AMD pollution and improve community resilience at local (the system can 521 
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operate off-grid in remote areas) and national level. It can also support other important 522 

functions, such as agriculture, thus improving economic sustainability. 523 

 524 

Table 3: Economic evaluation of the AMD treatment process capital (CAPEX) and operating expenditure 525 
(OPEX) 526 

Input Unit cost  Quantity  Total costs (Rand) 

Initial capital expenditure (CAPEX) required for infrastructure 

50 mm PVC Ball Valve R 403.00 10 R 4,030.00 

154 ml Oatey PVC Cement glue R 155.00 6 R 930.00 

PVC Adapter 50×63 mm 1/2" R 38.00 15 R 570.00 

PVC Adapter 50 mm 1/2" R 63.00 6 R 378.00 

PVC Union Plain 50 mm R 75.40 10 R 754.00 

50 mm PVC Elbow 16 bar R 67.00 30 R 2,010.00 

50 mm PVC T-piece 16 bar R 72.50 15 R 1,087.50 

Thread Sealing Tape 19mm×30m R 25.80 3 R 77.40 

Tank Connector 50 mm R 95.90 5 R 479.50 

Tap 25 mm R 45.50 6 R 273.00 

PVC Pipe 50 mm R 37.50 30 R 1 125.00 

Tank (replaced once) R 10,000.00 6 R 60,000.00 

Clarifier, mixer and stand  R 90,000.00 1 R 90,000.00 

Concrete slab R 15,000.00 1 R 15,000.00 

Contingency cost   R 22,007.00 

Total CAPEX R 198,721.00 

Levelised CAPEX per m
3
 R 7.78 

Operating expenditure (OPEX) required for chemical reagents and energy inputs 

AMD, R/m
3
 R 0.00 3500 R 0.00 

Material, R/ton    

Magnesite R 1,000 45 R 45.00 

Lime R 2,000 2.5 R 5.00 

Soda Ash R 3,500 15 R 52.50 
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 527 

On average, renewable energy technologies are more expensive than the conventional 528 

technology on an levelised cost of electricity (LCOE) basis (Jahed et al., 2016). However, 529 

these costs depend on the specific technology, power rating and various others parameters. 530 

For example, (Ross et al., 2016) estimated that the present LCOE of producing electricity 531 

using a solar photovoltaic (PV) system in South Africa ranges from R0.915 to R2.07 per 532 

kWh. This cost is sensitive to changes in the discount rate, the level of insolation at the 533 

location where the panels will be placed, the initial cost of the system and the efficiency of 534 

the panel (Ross et al., 2016). Overall, this cost is comparable or cheaper (see Table 3) than 535 

the cost of purchasing electricity from ESKOM, the state owned enterprise that generates 536 

approximately 95% of the electricity used in South Africa (Ross et al., 2016). Therefore, it is 537 

inferred that solar energy could be an economically feasible electricity source for AMD in 538 

South Africa. Also, the current cost of electricity from solar PV systems suggest that the 539 

AMD treatment system could viably operate off-grid, with the addition of a power bank (e.g. 540 

see (Foteinis et al., 2018)), since it is estimated that low to no additional costs would be 541 

incurred per treated m
3
 of AMD. In this case, however, the total electricity cost would have to 542 

be paid upfront, i.e. the CAPEX would be higher, but operating costs would be minimized.  543 

8. Conclusions 544 

The environmental sustainability of a typical AMD treatment method was examined 545 

by means of the life cycle assessment (LCA) methodology. Actual life cycle inventory (LCI) 546 

CO2 R 8,000 20 R 160.00 

Electricity, R/kWh    

Pump (0.75 kW) R 1.41-2.21 16.5 R 24.26 

Agitator (3 kW) R 1.41-2.21 3 R 80.85 

Total OPEX/m
3
 R 105 
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data were directly sourced from a semi-industrial AMD system, treating real effluent 547 

collected from a coal mine in Mpumalanga Province, South Africa. Economic aspects were 548 

also discussed. AMD is a common problem at mine sites, primarily at abandoned ones, while 549 

in water scarce countries, such as South Africa, health and socioeconomic concerns render 550 

AMD sustainable treatment imperative. If left untreated AMD can cause detrimental effects 551 

to the environment and living organisms, including humans, and impose on development, 552 

health, access to clean water, thus stressing social sustainability. The proposed treatment 553 

system can address, at least partly, the growing problem of AMD pollution and improve 554 

community resilience at local (the system can operate off-grid in remote areas) and national 555 

level. It can also support other important functions, such as agriculture, thus improving 556 

economic sustainability. The systems has an overall low levelized cost per m
3
 AMD, i.e. 557 

R112.78/m
3
 (€7.60/m

3
 or $9.35/m

3
), which is expected to reduce at industrial level, where 558 

economies of scales exist, and if gaseous CO2 can be sourced by a nearby source, e.g. flue 559 

gas.  560 

The system was found to have an overall high environmental footprint (29.6 kg CO2e 561 

or 2.96 Pt per treated m
3
 AMD), which is mainly attributed to electricity consumption from 562 

South Africa’s fossil-fuel depended energy mix and liquid CO2 consumption. The 563 

introduction of renewable energy, i.e. solar energy, and directly sourcing gaseous CO2 from 564 

other production process, e.g. flue gas, can axe the total environmental footprint by up to 565 

81%. AMD sludge valorisation, i.e. mineral recovery, can also be used as a strategy to 566 

mitigate AMD’s environmental footprint, but more research is needed.  567 
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