

Edinburgh Research Explorer

Redundancy Network Design for an Aircraft Door Management
System

Citation for published version:
Schäfer, L, Garcia Quiles, S, Mitschke, A & Srithammavanh, V 2018, 'Redundancy Network Design for an
Aircraft Door Management System', Computers and Operations Research, vol. 94, pp. 11-22.
https://doi.org/10.1016/j.cor.2018.02.005

Digital Object Identifier (DOI):
10.1016/j.cor.2018.02.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computers and Operations Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. Apr. 2024

https://doi.org/10.1016/j.cor.2018.02.005
https://doi.org/10.1016/j.cor.2018.02.005
https://www.research.ed.ac.uk/en/publications/22f0ca20-d331-4a41-829c-e7b85b6eb06a

Redundancy Network Design

for an Aircraft Door Management System

Lukas Schäfer1,∗, Sergio Garćıa1,
Andreas Mitschke2, Vassili Srithammavanh3

1School of Mathematics, University of Edinburgh
2AIRBUS Group Innovations, Germany
3AIRBUS Group Innovations, France

Abstract

The door management system (DMS) is a safety system in an aircraft which checks if all doors are properly
closed and the cabin is correctly pressurized. As for every critical system in an aircraft, it has to meet some
safety regulations and it should be designed optimally in terms of weight, cost, or power consumption. This
paper studies the problem of designing a DMS optimally as per the previous objectives while guaranteeing
that there is redundancy, that is, the DMS is functional even if one of its components is not working.
We call this new problem the DMS problem with redundancy. First, we propose a new MILP model for
the DMS problem which includes redundancy, but the model turns out to be too difficult to be solved
efficiently. In order to improve computational performance, a specialized branching rule and a heuristic
are proposed. Computational tests are run for example instances of the DMS problem by implementing
these new rules in CPLEX. It could be seen that the solving time through the new branching rule and
heuristic can be significantly reduced.

Keywords: Mixed integer linear programming; Aircraft architecture; Redundancy; Branch-and-bound

1 Introduction

Redundancy and reliability are important topics in system engineering. In particular, many safety-critical
systems exist in aircraft architecture, such as fly-by-wire, actuation and door management systems (DMS),
that require redundancy, that is, the DMS is functional even if one of its components is not working. In this
paper we propose for the first time in the literature an MILP formulation to design the DMS of an aircraft
while optimizing a certain criterion (e.g., cost or weight of the system) and then we propose an algorithm
to solve the model in an exact way. Going into more specific details of the problem, a DMS checks the
status of doors and locks, and sends their status information to on-board computers and pressurization
regulators in the aircraft. Figure 1 shows a simple DMS with one door. As every safety system, it has
to adhere to safety and architectural restrictions and regulations. One of the most important regulations
is that the system must be k-redundant, which means that for every task of the system (for example,
checking the status of doors and locks) it has k disjoint subsystems that can fulfil the task.
As shown in Figure 2, in a usual DMS we have multiple doors. For every door, the system has to check
if the door is closed and locked. Furthermore, it has to send this status information through certain
units to on-board computers and also from these on-board computers to outflow valves which control the
pressurisation of the aircraft. For our purposes, we will see the gathering of status information for a door
and its data transfer to an on-board computer as one function of the DMS and the data transfer from the
on-board computer to outflow valves as another function. These functions are implemented in the system
through sets of units with cable connections between them.

∗Corresponding author at: University of Edinburgh, College of Science and Engineering, School of Mathematics,
James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United
Kingdom. E-mail address: lukas.schaefer@ed.ac.uk

1

mailto:lukas.schaefer@ed.ac.uk

Figure 1: DMS for one door. Figure 2: Example space for the DMS

Therefore, we have a DMS with multiple doors, two functions for each door and both functions have to
be k-redundant per door. Our goal is to design a system meeting these constraints for which a certain
objective is minimum: cost, weight, power consumption, or a weighted sum of them.
To build an MILP formulation for the DMS problem, first we have to consider one main architectural
restriction. This restriction is that there are only specific locations in an aircraft where units can be
installed for the DMS and also only certain cable ways are available. For our formulation, we will see these
locations and possible cable connections as a directed graph G = (N,A). Figure 3 shows a set of possible
locations for units and its corresponding graph. Not all possible connections are shown in the figure, since
otherwise the graph would be to complicated to look at.

1

10 11 12 13

14 15

16 17

18 19

20 21

2 3 4 5 6 7 8 9

Figure 3: View of a set of locations and connections and their corresponding graph.

Therefore, the design for the DMS network is a subgraph G′ of G. We will refer to the DMS network as
the overall system. But to formulate our problem we cannot only look at the overall system. We have to
look at every function which must be k-redundant in the graph. As mentioned before, functions are sets of

2

units and cable connections that fulfil a certain task. Hence, we can also see every function as a subgraph
of G′. In the following, we refer to these subgraphs as subsystems.
Hence, k-redundancy for the functions means to have k node/arc-disjoint paths between the start and end
units of the function, that is, start and end nodes are shared, but no other element is. We can see it either
as node-disjoint or as arc-disjoint, because both give the same result. k node/arc-disjoint path problems
have been widely researched ([9, 7, 13, 3, 4, 6]) and they have been applied in many fields, as for example
routing ([10, 12]) and social networks ([5, 11]).
The problem studied in this paper is not a mere case of the previous problems. It is not a k node/arc-
disjoint path problem, but it has one for every subsystem. Furthermore all subsystems are part of the
overall system and do not have to be pairwise disjoint. Also, only the start and end unit of the paths are
fixed, but these can be installed at different possible nodes (locations).
In this paper, we formulate the problem as an MILP and solve it using a branch-and-bound algorithm
([14]). During the computational tests, we noticed that the standard branching rules implemented in
CPLEX (e.g. pseudo cost [2], strong branching [2]) do not work well and, hence, specialized branching
rules need to be introduced. Neither CPLEX default heuristics work efficiently for the problem. This is a
fact already seen in other papers [8]. Here, we will introduce our own specialised branching rule in which
the main idea is to branch first on the overall system structure. Furthermore, we will also introduce a
heuristic to find good integer solutions fast.
The rest of the paper is organized as follows: First, the MILP formulation is given in Section 2. Our
specialized branching rule is discussed in Section 3 and a heuristic algorithm is proposed in Section 4.
A computational study given in Section 5 shows the performance of our solution method compared to
general methods for different instances of the DMS problem. The instances range from two doors to four
doors with two to three paths. The performance shows that the branching rule and the heuristic that we
introduce contribute to solve the problem much more efficiently. Finally, some conclusions and further
perspectives are given in Section 6.

2 The DMS problem with redundancy formulation

As mentioned before, in an aircraft only certain locations are available for installing units and there is also
a limited number of possible cable connections. These locations and possible connections can be seen as
a directed graph G = (N,A). To write the formulation concisely, we need the following notation. We first
define the sets needed.

2.1 Sets

First, we need to list which unit types can be placed at which locations. Note also that a certain type
of unit may come in different models: for example, a switch with 24 ports or one with 16 ports. This
information is contained in the following sets:

• U , is the set of different unit types.

• U i, i ∈ N , is the set of different unit types that can be put at position i.

• Nu, u ∈ U , is the set of different locations where a unit of type u can be set.

• Mu, u ∈ U , is the set of different models available for unit type u.

In Figure 4 we can see an example of these sets.

Figure 4: Example for sets U , U i, and Nu.

Because most architectural and safety restrictions, which will be formulated as constraints, are given for
the different functions, we define subsets of U , N , and A for each of these different functions. For the

3

DMS problem, let D be the set of doors, let F be the set of functions, and let P = {1, . . . , k} be the set
of disjoint paths needed. We then define the following sets:

• Uf ⊂ U, f ∈ F , is the set of unit types that can be used for function f .

• Nf = {i ∈ N | Uf ∩ U i 6= ∅}, f ∈ F , is the set of locations that can be used for function f .

• Nu
f = {i ∈ Nf | u ∈ U i}, f ∈ F, u ∈ Uf , is the set of locations that can be used for function f and

unit u.

• U i
f = {u ∈ Uf | u ∈ U i}, f ∈ F, i ∈ Nf , is the set of unit types that can be used at location i for

function f .

• Af = {(i, j) ∈ A | i, j ∈ Nf}, f ∈ F , is the set of connections (arcs) that can be used for function f .

• Fu = {f ∈ F | u ∈ Uf}, u ∈ U , is the set of functions that can use a unit of type u.

In the following, if the subscript f ∈ F or superscript u ∈ U, i ∈ N is missing, it means it is the union over
the missing index. For example Uf =

⋃
i∈N U i

f .
There are architectural constraints that restrict which units can be connected for a function f ∈ F or even
which units must have a connection from another unit. The following sets contain this information:

• Cf (u), f ∈ F, u ∈ Uf , is the set of unit types to which a unit of type u can connect to for function f .

• C+
f (u), f ∈ F, u ∈ Uf , is the set of unit types to which a unit of type u must connect to for

function f .

• C−f (u), f ∈ F, u ∈ Uf , is the set of unit types from which a unit of type u must have a connection
from for function f .

• W i
f (u) = U i

f ∩Cf (u), is the set of unit types that can be set at location i and can have a connection
from a unit of type u for function f .

Additional sets that contain information for the architectural restrictions on the functions are:

• U b
f , f ∈ F, is the set of unit types that are not a start or end unit type for function f .

• Us,e = { (sf , ef) | sf , ef ∈ Uf are a start unit and an end unit for some f ∈ F}, is the set of pairs
of start and end units for functions.

• V +
f (i) := {k ∈ Nf : (i, k) ∈ Af}, i ∈ Nf , is the set of locations that location i can connect to for

function f ∈ F .

• V −f (i) := {k ∈ Nf : (k, i) ∈ Af}, i ∈ Nf , is the set of locations that location i can connect from for
function f ∈ F .

• V +
f (i, u) = V +

f (i) ∩ {k ∈ N | W k
f (u) 6= ∅} is the set of locations that location i can connect to and

where units can be placed to which unit u can be connected to.

• V −f (j, û) = V −f (j) ∩ {k ∈ N | {u ∈ Uk
f | û ∈ Cf (u)} 6= ∅} is the set of locations that location j can

have a connection from and where units can be placed from which unit û can be connected from.

Lastly, we need to define the following sets, which are needed for the branching rule explained in Section 3.

• U+
f =

{
u ∈ Uf : Cf (u) ∩

(⋃
f ′∈F\{f} Cf ′(u)

)
= ∅
}

,f ∈ F , is the set of units which cannot connect

to the same units for other functions f̂ ∈ F\{f} as for f ∈ F . It is a subset of Uf .

• U−f =
{
u ∈ Uf :

{
u : u ∈ Cf (u) and u ∈

⋃
f ′∈F\{f} Cf ′(u)

}
= ∅
}

, f ∈ F , is the set of units which

cannot connect from the same units for other functions f̂ ∈ F\{f} as for f ∈ F . It is a subset of
Uf .

• E+
f (u) =

{
û ∈ Uf | u ∈ C+

f (û)
}
, f ∈ F, u ∈ U+

f , is the set of units that must connect to unit u for

function f .

• E−f (u) =
{
û ∈ Uf | u ∈ C−f (û)

}
, f ∈ F, u ∈ U−f , is the set of units that must connect from unit u

for function f .

Note that, E+
f (u) = ∅ for f ∈ F, u ∈ Uf\U+

f and E−f (u) = ∅ for f ∈ F, u ∈ Uf\U−f .

4

2.2 Parameters

Beside the previous sets, we also need to define the following parameters which contain information about
architectural restrictions on the units.

• Eum, number of ports available on a unit of type u and model m,

• Ein
fu, maximum number of connections that may come into a unit of type u for function f ,

• Eout
fu , maximum number of connections that may go out of a unit of type u for function f ,

• T f,out
u , number of connections that have to leave a unit of type u. Note that this value is equal

to |C+
f (u)|,

• T f,in
u , number of connections that have to come into a unit of type u. Note that this value is equal

to |C−f (u)|.

2.3 Decision variables

We will now define the decision variables. First, we need variables that represent the overall system. These
are assignment variables that represent which unit model is installed at which location and variables that
represent which cable connections are used.

• tium ∈ {0, 1}, i ∈ N, u ∈ U i, m ∈ Mu, is a binary variable that takes value 1 if unit type u and
model m is set at location i and 0 otherwise.

• xij ∈ {0, 1}, (i, j) ∈ A, is a binary variable that takes value 1 if locations i and j are connected,
that is, if arc (i, j) is used.

• xijuû ∈ {0, 1}, (i, j) ∈ A, u ∈ U i, û ∈ W j(u), is a binary variable that takes value 1 if locations i
and j are connected and units u and û are installed at i and j, respectively. It is 0 otherwise.

We need the same kind of variables for every path in a subsystem. Let (d, f, p) ∈ D×F ×P refer to path p
of the subsystem for function f and door d. The required decision variables for every (d, f, p) ∈ D×F ×P
are:

• tdfpiu ∈ {0, 1}, i ∈ Nf , u ∈ U i
f , a binary variable that takes value 1 if a unit of type u is installed at

location i, and

• xdfpijuû ∈ {0, 1}, (i, j) ∈ Af , u ∈ U i
f , û ∈ W

j
f (u), a binary variable that takes value 1 if locations i

and j are connected and unit u and û are installed at i and j, respectively. It is 0 otherwise.

These variables are enough to write our model. But for the new branching rule and pruning rule, we also
need the following decision variables:

• tu ∈ {0, 1, . . . , |Nu|}, u ∈ U i, which is the total number of units of type u used,

• tum ∈ {0, 1, . . . , |Nu|}, u ∈ U i, m ∈Mu, which is the total number of units of type u and model m
used,

• tfu ∈ {0, 1, . . . , |Nu|}, f ∈ F, u ∈ U i
f , which is the total number of units of type u used for function f ,

• tfiu ∈ {0, 1}, f ∈ F, u ∈ U i
f , which takes value 1 if a unit of type u is used for function f at location i,

and 0 otherwise.

2.4 Constraints

Here we describe the constraints of the model. With the overall system and the subsystems, we have two
levels of decision variables which have to be synchronized. For example, if a unit or cable connection is
installed in the overall system, there has to be a subsystem which uses it. And also the other way around, if
a unit or cable connection is used for a subsystem, it has to be installed in the overall system. Constraints
(1) to (4) force this synchronization. Furthermore, constraints (2) and (4) also impose that the subsystems
have k node/arc-disjoint paths. Constraint (1) forces at least one subsystem to use a unit u at location i
if it is located there in the overall system.

∀i ∈ N, ∀u ∈ U i : ∑
m∈Mu

tium ≤
∑

d∈D p∈P,
f∈F (u)

tdfpiu , (1)

5

Constraint (2) forces at least one subsystem to use a connection (i, j) if it is used in the overall system.

∀(i, j) ∈ A :

xij ≤
∑

d∈D, p∈P,
f∈F | (i,j)∈Af ,

u∈Ui
f
, û∈Wj

f
(u)

xdfpijuû, (2)

Constraint (3) forces the overall systems to locate a unit u at location i if it was used in at least one
subsystem. Furthermore, it imposes that the subsystems have k node-disjoint paths.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀f̂ ∈ Fu :

∑
m∈Mu

tium ≥ tdfpiu +
∑

p̂∈P\{p}

tdp̂f̂iu , (3)

Constraint (4) forces the overall systems to use connection (i, j) if it was used in at least one subsystem.
Furthermore, it imposes that the subsystems have k arc-disjoint paths.

∀d ∈ D, ∀f ∈ F, ∀(i, j) ∈ Af , ∀u ∈ U i, ∀û ∈W j(u) :

xijuû ≥
∑
p∈P

xdfpijuû. (4)

Through these constraints (1) to (4) , the binary requirement on tium and xijuû variables can be lifted and
changed to be continuous in [0, 1].
We also have to synchronize the decision variables on the same level. For example, in the overall system
we have the decision variables xijuû and xij , both of which have the information on whether the cable
connection between locations i and j is used. Constraints (5) to (7) synchronize the decision variables of
the overall system.

∀(i, j) ∈ A : ∑
u∈Ui,

û∈Wj(u)

xijuû = xij , (5)

∀(i, j) ∈ A, ∀u ∈ U i : ∑
û∈W j(u)

xijuû ≤
∑

m∈Mu

tium, (6)

∀(i, j) ∈ A, ∀û ∈ U j : ∑
u∈Ui | û∈C(u)

xijuû ≤
∑

m∈Mu

tjûm. (7)

Constraints (8) to (11) are the flow constraints for the different subsystems. Constraint (8) imposes that
no more than the maximum number of connections Eout

fu can go out of unit u at location i for a function
f ∈ F in a subsystem and synchronizes the arc and location variables of the subsystems.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, i ∈ Nf , ∀u ∈ U i
f :

∑
j∈V +

f
(i,u),

û∈Wj
f
(u)

xdfpijuû ≤ E
out
fu t

dfp
iu , (8)

6

Constraint (9) imposes the same as (8), but for connections arriving at a location.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, j ∈ Nf , ∀û ∈ U j
f :∑

i∈V−
f

(j,û),

u∈Uf | û∈Cf (u)

xdfpijuû ≤ E
in
fut

dfp
jû . (9)

Constraint (10) imposes that the flow arrives. If a unit u at location i is used for a subsystem, at least
T f,in
u connections have to arrive at location i for the subsystem. Constraint (11) imposes that the flow

continues. This means that if a unit u at location i is used for a subsystem, at least T f,out
u connections

have to leave location i for the subsystem.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F,∀i ∈ Nf :∑
u∈(Ub

f∪{ef})∩U
i
f

T f,in
u tdfpiu ≤

∑
`∈V−

f
(i), u∈(Ub

f
∪{ef})∩U

i
f
,

û∈Uf | u∈Cf (û)

xdfp`iûu, (10)

∑
u∈(Ub

f∪{sf})∩U
i
f

T f,out
u tdfpiu ≤

∑
`∈V +

f
(i), u∈(Ub

f
∪{sf})∩U

i
f
,

û∈W`
f
(u)

xdfpi`uû. (11)

Constraint (12) makes sure that the number of available ports for connections is not exceeded.

∀i ∈ N, ∀u ∈ U i : ∑
`∈V−(i,u),

û∈U` | u∈C(û)

x`iûu +
∑

`∈V +(i,u),

û∈Wk(u)

xi`uû ≤
∑

m∈Mu

tiumEum. (12)

To have k paths in every subsystem, constraint (13) imposes that a start unit and an end unit are installed
for all k paths for every function.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀uf ∈ {sf , ef} : ∑
i∈N

uf
f

tdfpiuf
= 1. (13)

In some cases, specific functions have to be connected. This means that, for example, the end unit of a
function f1 has to be also the start unit of another function f2. Therefore, we need for some f1, f2 ∈ F
that

∀i ∈ Nef1 ,∀d ∈ D, ∀p ∈ P with ef1 = sf2 :

tdf1pief1
= tdf2pisf2

. (14)

Further architectural restrictions are given by (15) and (16). Constraint (15) means that if a unit u is
installed, then it connects to all unit types it has to connect to.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f , ∀û ∈ C

+
f (u) :

tdfpiu ≤
∑

j∈V +
f (i)∩N û

f

xdfpijuû. (15)

Constraint (16) means that if a unit u is installed, then it has a connection from all unit types it has to
have a connection from.

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀j ∈ Nf , ∀u ∈ U j
f , ∀û ∈ C

−
f (u) :

tdfpju ≤
∑

i∈V −f (j)∩N û
f

xdfpijûu. (16)

7

Finally, we have that at most one unit is installed at any location.

∀i ∈ N : ∑
u∈Ui,
m∈Mu

tium ≤ 1. (17)

Until now, we gave an MILP formulation for a general network system with multiple sets of functions and
k-redundancy for functions. The following constraint is specific for the DMS problem with redundancy
and is a safety requirement. In the DMS we always have two unit types named outflow valve (OVF) and
outflow valve control unit (OCU). The requirement is that every OVF must have at least a connection
from two different OCUs in the overall system. This is imposed through constraint (18):

∀i ∈ NOV F : ∑
m∈MOV F

xi(OV F)m ≤
∑

j∈NOCU∩V −(i)

2xji(OCU)(OV F). (18)

2.5 Tightening constraints

With constraints (1)-(17) we have a valid formulation for the DMS problem with redundancy. Furthermore,
we could reduce the number of decision variables constraints by aggregating the decision variables xijuû
to xij and still have a valid MILP model for the DMS problem. But we noted during our research that
this model was not useful as we encountered large gaps between the LP relaxation and the MILP solution
which lead to long computational times. Therefore, this model is not included in this paper.
The following constraints (19)-(22) strengthen the previous model (1)-(17), but they are not necessary
for the DMS problem to be well modeled. Constraints (19) and (20) strengthen the flow of the different
paths in the subsystems through sets C+

f (u) and C−f (u) and the parameters Ein
fu and Eout

fu . C+
f (u) and

C−f (u) are the sets that contain information on which unit must connect to which unit and which unit

must connect from which other unit,respectively. Furthermore, Ein
fu and Eout

fu are the parameters that
contain the information what the maximum number of connections arriving or leaving a unit u is for
function f ∈ F .

∀d ∈ D, ∀p ∈ P, ∀f ∈ F, ∀u ∈ Uf : ∑
û∈{u | u∈C+

f
(u)},

i∈Nû
f

tdfpiû ≤ E
in
fu

∑
i∈Nu

f

tdfpiu (19)

∑
û∈{u | u∈C−

f
(u)},

i∈Nû
f

tdfpiû ≤ E
out
fu

∑
i∈Nu

f

tdfpiu (20)

Constraints (21) and (22) synchronize decision variable sets tium and xij .

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {ef}) ∩ U i :

∑
m∈Mu

tium ≤
∑

`∈V −(i,u)

x`i (21)

∀i ∈ N ∀u ∈ (Ub ∪
⋃

f∈F {sf}) ∩ U i :

∑
m∈Mu

tium ≤
∑

`∈V +(i,u)

xi`. (22)

The utility of constraints (19)-(22) was tested and the results can be seen in Table 2 in Section 5. It can
be clearly seen that the additional constraints reduce the gap significantly and help to solve the problem
faster.

8

2.6 Synchronization constraints for branching variables

The following constraints impose the synchronization between decision variables tium and tdfpiu with the

branching variables tu, tum, t
f
u, and tfiu.

∀u ∈ U, ∀m ∈Mu : ∑
i∈Nu

tium = tum, (23)

∀u ∈ U : ∑
m∈Mu

tum = tu, (24)

∀d ∈ D, ∀f ∈ F, ∀i ∈ Nf , ∀u ∈ U i
f : ∑

p∈P
tdpfiu ≤ tfiu, (25)

∀f ∈ F, ∀u ∈ Uf : ∑
i∈Nf

tfiu = tfu. (26)

2.7 Objective functions

We introduce here several possible objective functions. The following parameters are used:

• cum: cost of a unit of type u ∈ U and model m ∈MU in Euro,

• c0: cost of cable per meter in Euro,

• wum: weight of a unit of type u ∈ U and model m ∈MU in grams,

• w0: weight of cable per meter in grams,

• powum: power usage of a unit of type u ∈ U and model m ∈MU in kWh,

• `ij : distance between position i and j in meters,

• γc, γw, γpow: weight for the respective parameter in a combination of different objectives.

The different objective functions that we consider for minimization are the following:

1. Total of weight and cost (obj1):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium (cum + wum)

+
∑

(i,j)∈A

xij`ij (c0 + w0) , (27)

2. Total number of units placed (obj2):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium

 , (28)

3. Total length of cable used (obj3):

min
∑

(i,j)∈A

xij lij , (29)

4. Weighted total of weight, cost, and power (obj4):

min

∑
i∈N

∑
u∈Ui,
m∈Mu

tium (γccum + γwwum + γpowpowum)

+
∑

(i,j)∈A

xij`ij (γcc0 + γww0) . (30)

9

3 Branching rule

In this section we introduce a problem specific branching rule that will allow us to solve our problem
much more efficiently. In the literature, see [2], branching is usually done on decision variables which
must have an integer value but which have a fractional value for the linear relaxation of the current node.
Computational tests have shown that this strategy is not efficient for the DMS problem. Therefore in the
new branching rule that we propose here:

• Whenever possible, we branch on the decision variables chosen among tu, tum and tfu.

• We are allowed to choose them even if they have an integer value for the linear relaxation of the
node that is being considered.

• If no suitable decision variable is found among tu, tum and tfu, general branching rules of CPLEX
are used.

In the following, all variables with a star ∗, e.g. t∗um, are the values of those variables for the linear
relaxation at the current node.
The new branching rule branches first on the decision variables tu and tum to have tu fixed to a value
and to have all tum integer feasible.The objective functions are all mainly based on cost, weight or power
usage of installed units and cables in the overall system and the number of cables is strongly linked to the
number of installed units. Because of this and by having the variables tu fixed and tum integer feasible,
we have small gaps between lower and upper bound of the objective value in the branch-and-bound tree.
With the smaller gaps and by using a efficient heuristic, pruning becomes more efficient during branching.
Afterwards it branches on the decision variables tuf to have them equal to their lower bounds tf,lbu in the
linear relaxation of the nodes in the branching tree. The decision variables tuf have to be equal to their
lower bound to decide if it is necessary to branch on integer feasible decision variables tum or not.
In the solution of a linear relaxation, there is no guarantee that the redundancy requirement will be met.
For example, the solution of a linear relaxation can have

tdfp,∗iu = tdfp̂,∗iu = 0.5

with d ∈ D, f ∈ F, i ∈ Nf , u ∈ U i
f , p, p̂ ∈ P and p 6= p̂. Because of this, a node may have a combination

of units given by tu and tium that do not provide enough ports for every unit type. A small example is
given in Appendix A. It is very hard to prune such nodes through normal branching and no cuts where
found to prevent such nodes from occurring. Therefore, by having the decision variables tu fixed, tuf equal
to its lower bound and tium integer feasible, we can test for a unit type u, whose ports are all used in the
linear relaxation, if the combination of units at the current node can have a feasible integer solution. We
will refer to this test as validity test. A node is valid if it can provide enough ports at every unit to obtain
an integer feasible solution.
Through the previous branching, we have obtained that tubu = tlbu for all u ∈ U , and that tf,∗u = tf,lbu for all
f ∈ F . To test the validity of a unit u and the current combination of units installed, we need the sets
E+

f (u) and E−f (u) which were defined in Section 2.1.

Let u be the unit type for which we do the validity test. Because tubu = tlbu , tf,∗u = tf,lbu for all f ∈ F

and constraints (15) and (16) hold, we know that at least
∑

f∈F
∑

û∈E+
f (u) t

f,lb
û connections have to arrive

through and
∑

f∈F
∑

û∈E−f (u) t
f,lb
û have to leave the units u installed in the overall system. Through the

values t∗u, m ∈ MU , we can build all possible combinations of connections that can arrive at the units
u and leave from u for the different functions and check if they are feasible. If it is shown that not one
combination is feasible, then the unit type failed the validity test and we branch on a variable tum with
tum ≤ t∗um − 1 and tum ≥ t∗um + 1. This does not cut off any valid integer feasible solution. The validity
test is made for all unit types u whose ports are all used in the linear relaxation.
If no u ∈ U fails the validity test, we do not branch on integer feasible tum variables, and standard
branching rules implemented in the solver are used. The branching rule is summarized in Algorithm 1.

10

Algorithm 1 Branching rule

Require: LP Relaxation (t∗, x∗)
for u ∈ U do

if t∗u integer infeasible then
Branch on tu with tu ≥ dt∗ue and tu ≤ bt∗uc

else if t∗um integer infeasible then
Branch on tum with tum ≥ dt∗ume and tum ≤ bt∗umc

else if t∗u 6= tlbu then
Branch on tu with tu ≥ t∗u and tu ≤ t∗u − 1

else if t∗u 6= tubu then
Branch on tu with tu ≥ t∗u + 1 and tu ≤ t∗u

else if tf,∗u 6= tf,lbu then
Branch on tfu with tfu ≥ dtf,∗u e and tfu ≤ dtf,∗u e − 1

end if
end for
for u ∈ U do

if u fails validity test then
Choose m ∈ MU with t∗um ≥ 1 and branch with tum ≤ t∗um − 1 and tum ≥ t∗um + 1, while
remembering that tum is integer feasible.

end if
end for
if No decision variable was chosen for branching then

Use CPLEX standard branching rules
end if

4 Heuristic

The formulation for the DMS problem has many binary variables. Furthermore, in most of the constraints
in the model which involve sums of binary variables, most of the variables have values much smaller than
0.5. In most general heuristics, e.g. feasibility pump [1], we cannot deal efficiently with such a problem
and they result in long heuristic times and poor feasible solutions.
Therefore, we propose the following heuristic whose aim is to provide fast good feasible solutions, which
will help us to solve the DMS problem in an exact way much more efficiently. The idea of the algorithm
is to start with a path of a subsystem and to find an integer feasible solution for it. Afterwards we move
to another path of a subsystem. After all paths are made integer feasible, we have also an integer feasible
overall system.
Let S = {(d, f, p) ∈ D × F × P} be the set of all paths. To decide with which path to start, we calculate

vdfp =

 ∑
xdfp
ijuû 6=0

(
1− xdfp,∗ijuû

)
·
∑

xdfp
ijuû 6=0

1

 (31)

for all (d, f, p) ∈ S where −xdfp,∗ijuû are the variable values of the linear relaxation. We call vdfp violation

of the path. Let (d̂, f̂ , p̂) be the path with the smallest violation. To obtain an integer feasible solution

for decision variables of (d̂, f̂ , p̂), we look at the connection variables xd̂f̂ p̂ijuû. We define 1 − xd̂f̂ p̂ijuû as the
violation of the variable. Now we choose the least violated variable and set it to 1. Afterwards, we solve
the new problem and choose the new least violated variable. If all connection variables of the path are
binary feasible, which means that they have value 0 or 1, then all location variables of this path are binary
feasible because of the synchronization constraints. Now that this path is integer feasible, we choose the
new least violated path and repeat this procedure until all the paths are feasible for the integer problem.
When every path is feasible, we have feasible subsystems, but the overall system may still have infeasible
variables. Constraint 3 synchronizes the decision variables of the subsystems with the overall system. But
because on the left hand side we have a sum over the models of the unit, the decision variables still tium
of the overall system still can be fractional in the linear relaxation even though all subsystem variables
are integer feasible. Therefore, if we have several variables tium > 0 for a unit u and location i, we choose
the model m ∈ MU with the most ports Eum for unit u, set tium to 1 and solve the linear relaxation.
This is repeated until all variables tium are integer feasible. By proceeding in this way we obtain a feasible
solution that in most cases is better than the solutions obtained by standard heuristics implemented in

11

CPLEX. Particularly, the greater the cardinality of D, F or P is, the better our heuristic works when
compared to CPLEX heuristics. Our heuristic is shown in pseudo-code in Algorithm 2.

Algorithm 2 Model Heuristic

Require: LP Relaxation (t∗, x∗), K = number of violated variables,
Kf = number of violated variables on flow level f , S = {(d, f, p) ∈ D × F × P}
while Kf 6= 0 do

vdfp =
(∑

xdfp
iuû 6=0

(
1− xdfp,∗ijuû

)
·
∑

xdfp
iuû 6=0

1
)

(d, f, p)∗ = arg min(d,f,p)∈S{vdfp}
S = S\{(d, f, p)∗}
K(d,f,p)∗ = number of violated variables in the (d, f, p)∗ subsystem

Let V(d,f,p)∗ be the set of all x
(dfp)∗

ijuû variables in subsystem (d, f, p)∗

while K(d,f,p)∗ 6= 0 do

x̂ = arg min{x(dfp)
∗,∗

ijuû − 1}
Set x̂ = 1 and solve LP
V(d,f,p)∗ = V(d,f,p)∗\{x̂}

end while
end while
while K 6= 0 do

(̂i, û) = arg mini∈N,u∈U,m∈Mu{|tium − 0.5|}
m̂ = arg maxm∈M û{Eûm}
Set t̂iûm̂ = 1 and solve LP

end while

5 Computational Results

We carry out a computational study to analyse the performance of our new branching rule and heuristic.
We run the same instances using CPLEX with and without them. The problem instances differ in the
number of doors, number of disjoint paths required, configurations of the locations and objective functions.
The instances are artificial but they were built based on data provided by AIRBUS Group. As mentioned
in the introduction, we have two functions in the DMS and therefore F = {F1, F2}. The first function is
the information flow from two sensors at a door to a controller (CPIOM) and the second function is the
information flow from that controller to an outflow valve. Also, the controller used in both functions has
to be the same for a door and therefore constraint (14) is used.
The DMS has 8 unit types: door (DO), latch &lock sensor (LLS), closed sensor (CS), outflow valve (OVF),
outflow valve control unit (OCU), remote data concentrator (RDC), CPIOM, switch (SWT). We also have
the following unit sets:

• Us,e = {s1 = DO, s2 = CPIOM, e1 = CPIOM, e2 = OV F},

• Ub = {LLS,CS,OCU,RDC, SWT},

• U1 = {DO,LLS,CS,RDC,CPIOM,SWT},

• U2 = {OV G,OCU,RDC,CPIOM,SWT}.

Except for the door, all units are available in different models . For example, there can be various kinds
of RDC models with different costs, weights or number of ports.
In Table 1, the size of the model for different instances is shown. It includes the number of potential
locations, variables, integer variables, binary variables, and constraints. For the two door instances, a more
complex configuration of locations was used which resulted in a higher number of continuous variables. The
more complex configuration of locations was not used for more doors to avoid having too large problems
which were impossible to solve.

12

Doors Locations Continuous Binary Integer Constraints
Variables Variables Variables

2 66 3149 13038 21 14020
3 90 1772 21648 21 23468
4 91 1820 27226 21 29262

Table 1: Size of the problems for different number of doors and locations.

In the computational tests, a total of 5 different cost and weight sets were used and a time limit of 4 hours
was set. All computations were done with a Four Intel Xeon E5-2680 v3 2.5GHz, 192Gb RAM and CPLEX
12.5.1. Furthermore, implementation of the branching rule and heuristic where done in C++. Also, all
available cuts in CPLEX were disabled because computational tests showed that they are not efficient for
this problem. The problem instances in the tables have the names i(d, p, loc, u, `) with d the number of
doors, p the number of paths, loc the number of locations in the configuration of the space, and ` the
number of the cost and weight set.
In Table 2, we solve the DMS problem with redundancy formulation with and without constraints (19)-
(22). Column “Objective Function” refers to which objective function was used, zMIP is the MIP optimal
value of the instance, zLP is the optimal value for the linear relaxation at the root node, Gap is the gap
at the root node and Time is the solution time in seconds.

Without With

Instance Objective zMIP zLP Gap Time zLP Gap Time
Function

i(2, 2, 66, 1) obj1 2721.92 2608.06 4.18 14400 2721.92 0.00 20
i(2, 2, 66, 1) obj2 22.00 17.00 22.73 14400 22 .00 0.00 19
i(2, 2, 66, 1) obj3 32.00 26.00 18.75 14400 32 .00 0.00 22
i(2, 2, 66, 1) obj4 4127.88 3847.19 6.80 14400 4127.88 0.00 16
i(2, 2, 66, 2) obj1 2539.91 2473.28 2.62 14400 2539.91 0.00 13
i(2, 2, 66, 3) obj1 2257.46 2173.33 3.73 14400 2257.46 0.00 11
i(2, 2, 66, 4) obj1 2871.12 2728.16 4.98 14400 2871.12 0.00 13
i(2, 2, 66, 5) obj1 3721.74 3592.35 3.48 14400 3721.74 0.00 17

i(2, 3, 66, 1) obj1 4082.88 3912.09 4.18 14400 4082.88 0.00 98
i(2, 3, 66, 1) obj2 32.00 24.50 23.44 14400 32.00 0.00 177
i(2, 3, 66, 1) obj3 48.00 39.00 18.75 14400 48.00 0.00 94
i(2, 3, 66, 1) obj4 6191.82 5770.78 6.80 14400 6191.82 0.00 110
i(2, 3, 66, 2) obj1 3809.86 3709.93 2.62 14400 3809.86 0.00 290
i(2, 3, 66, 3) obj1 3386.19 3260.00 3.73 14400 3386.19 0.00 144
i(2, 3, 66, 4) obj1 4306.68 4092.24 4.98 14400 4306.68 0.00 167
i(2, 3, 66, 5) obj1 5582.60 5388.54 3.48 14400 5582.60 0.00 197

i(3, 2, 90, 1) obj1 2731.00 2608.50 4.49 14400 2731.00 0.00 57
i(3, 2, 90, 1) obj2 27.00 18.00 33.33 14400 27.00 0.00 72
i(3, 2, 90, 1) obj3 4.000 30.00 25.00 14400 40.00 0.00 164
i(3, 2, 90, 1) obj4 4182.22 3854.49 7.84 14400 4182.22 0.00 148
i(3, 2, 90, 2) obj1 2545.63 2473.28 2.84 14400 2545.63 0.00 252
i(3, 2, 90, 3) obj1 2262.84 2173.33 3.96 14400 2262.84 0.00 117
i(3, 2, 90, 4) obj1 2876.44 2728.16 5.15 14400 2876.44 0.00 355
i(3, 2, 90, 5) obj1 3731.41 3592.36 3.73 14400 3731.41 0.00 183

i(3, 3, 90, 1) obj1 4096.50 3912.75 4.49 14400 4096.50 0.00 758
i(3, 3, 90, 1) obj2 39.00 25.50 34.62 14400 39.00 0.00 2248
i(3, 3, 90, 1) obj3 60.00 45.00 25.00 14400 60.00 0.00 1952
i(3, 3, 90, 1) obj4 6273.33 5781.73 7.84 14400 6273.33 0.00 3486
i(3, 3, 90, 2) obj1 3818.45 3709.93 2.84 14400 3818.45 0.00 4437
i(3, 3, 90, 3) obj1 3394.27 3260.00 3.96 14400 3394.27 0.00 1792
i(3, 3, 90, 4) obj1 4314.66 4092.24 5.15 14400 4314.66 0.00 1218
i(3, 3, 90, 5) obj1 5597.12 5388.54 3.73 14400 5597.12 0.00 3008

i∗(3, 2, 90, 1) obj1 2829.00 2608.50 7.79 14400 2731 .00 3.46 14400

13

i∗(3, 2, 90, 1) obj2 27.00 18.00 33.33 14400 27.00 0.00 62
i∗(3, 2, 90, 1) obj3 40.00 30.00 25.00 14400 40.00 0.00 59
i∗(3, 2, 90, 1) obj4 4182.22 3854.49 7.84 14400 4182.22 0.00 144
i∗(3, 2, 90, 2) obj1 2644.33 2473.28 6.47 14400 2545.63 3.73 14400
i∗(3, 2, 90, 3) obj1 2336.34 2173.33 6.98 14400 2262.84 3.15 14400
i∗(3, 2, 90, 4) obj1 2886.24 2728.16 5.48 14400 2876.44 0.34 14400
i∗(3, 2, 90, 5) obj1 3869.73 3592.36 7.17 14400 3731.41 3.57 14400

i(4, 2, 91, 1) obj1 2838.08 2626.22 7.46 14400 2740.08 3.45 14400
i(4, 2, 91, 1) obj2 32.00 27.00 15.63 14400 32.00 0.00 752
i(4, 2, 91, 1) obj3 48.00 42.00 12.50 14400 48.00 0.00 855
i(4, 2, 91, 1) obj4 4236.56 3955.87 6.63 14400 4236.56 0.00 65
i(4, 2, 91, 2) obj1 2650.06 2484.73 6.24 14400 2551.36 3.72 14400
i(4, 2, 91, 3) obj1 2341.73 2184.09 6.73 14400 2268.23 3.14 14400
i(4, 2, 91, 4) obj1 2891.56 2738.80 5.28 14400 2881.76 0.34 14400
i(4, 2, 91, 5) obj1 3879.41 3611.71 6.90 14400 3741.09 3.57 14400

Average Computing times 14400 3492

Table 2: Analysis of constraints (19)- (22)

It is evident that the use of constraints (19)- (22) helps considerably to solve the DMS problem formulation.
In most of the cases, we were able to find an optimal solution at the root node whereas, when we did not
use them, we were not able to solve the problem in 4 hours. Nevertheless, there are some instances which
we cannot solve within the time limit even with the use of these constraints. It must be noted that for
all instances that could not be solved to optimality, the MILP optimal solution was found as best upper
bound but the gap could not be closed to prove optimality and the lower bound did not improve after the
root node.
In the following, we compare solving the problem with standard solver CPLEX, referred to as “Standard”
in Table 3 and CPLEX with the new branching rule and heuristic, referred to as “Proposed”. In both
cases, as mentioned earlier, the solver cuts were disabled. To compare the performance, Table 3 shows
the different instances, objective function used, linear relaxation value (zLP) at the root node, gap in %
and the times, respectively. Independently on whether optimality is achieved or not, zlb and zub show the
best lower bound and the best upper bound when the run stops. If zub is in bold face, it means that the
optimal solution was found.

Standard Proposed

Instance Objective zLP Gap Time zlb zub Time zlb zub
Function

i(2, 2, 66, 1) obj1 2721.92 0.00 20 2721.92 2721.92 22 2721.92 2721.92
i(2, 2, 66, 1) obj2 22.00 0.00 19 22.00 22.00 24 22.00 22.00
i(2, 2, 66, 1) obj3 32.00 0.00 22 32.00 32.00 20 32.00 32.00
i(2, 2, 66, 1) obj4 4127.88 0.00 16 4127.88 4127.88 22 4127.88 4127.88
i(2, 2, 66, 2) obj1 2539.91 0.00 13 2539.91 2539.91 29 2539.91 2539.91
i(2, 2, 66, 3) obj1 2257.46 0.00 11 2257.46 2257.46 29 2257.46 2257.46
i(2, 2, 66, 4) obj1 2871.12 0.00 13 2871.12 2871.12 27 2871.12 2871.12
i(2, 2, 66, 5) obj1 3721.74 0.00 17 3721.74 3721.74 27 3721.74 3721.74

i(2, 3, 66, 1) obj1 4082.88 0.00 98 4082.88 4082.88 69 4082.88 4082.88
i(2, 3, 66, 1) obj2 32.00 0.00 177 32.00 32.00 99 32.00 32.00
i(2, 3, 66, 1) obj3 48.00 0.00 94 48.00 48.00 94 48.00 48.00
i(2, 3, 66, 1) obj4 6191.82 0.00 110 6191.82 6191.82 66 6191.82 6191.82
i(2, 3, 66, 2) obj1 3809.86 0.00 290 3809.86 3809.86 91 3809.86 3809.86
i(2, 3, 66, 3) obj1 3386.19 0.00 144 3386.19 3386.19 223 3386.19 3386.19
i(2, 3, 66, 4) obj1 4306.68 0.00 167 4306.68 4306.68 72 4306.68 4306.68
i(2, 3, 66, 5) obj1 5582.6 0.00 197 5582.6 5582.6 87 5582.6 5582.6

i(3, 2, 90, 1) obj1 2731.00 0.00 57 2731.00 2731.00 60 2731.00 2731.00
i(3, 2, 90, 1) obj2 27.00 0.00 72 27.00 27.00 84 27.00 27.00
i(3, 2, 90, 1) obj3 40.00 0.00 164 40.00 40.00 68 40.00 40.00
i(3, 2, 90, 1) obj4 4182.22 0.00 148 4182.22 4182.22 47 4182.22 4182.22

14

i(3, 2, 90, 2) obj1 2545.63 0.00 252 2545.63 2545.63 70 2545.63 2545.63
i(3, 2, 90, 3) obj1 2262.84 0.00 117 2262.84 2262.84 73 2262.84 2262.84
i(3, 2, 90, 4) obj1 2876.44 0.00 356 2876.44 2876.44 65 2876.44 2876.44
i(3, 2, 90, 5) obj1 3731.41 0.00 183 3731.41 3731.41 68 3731.41 3731.41

i(3, 3, 90, 1) obj1 4096.5 0.00 758 4096.5 4096.5 168 4096.5 4096.5
i(3, 3, 90, 1) obj2 39.00 0.00 2248 39.00 39.00 303 39.00 39.00
i(3, 3, 90, 1) obj3 60.00 0.00 1952 60.00 60.00 218 60.00 60.00
i(3, 3, 90, 1) obj4 6273.33 0.00 3486 6273.33 6273.33 171 6273.33 6273.33
i(3, 3, 90, 2) obj1 3818.45 0.00 4437 3818.45 3818.45 243 3818.45 3818.45
i(3, 3, 90, 3) obj1 3394.27 0.00 1792 3394.27 3394.27 241 3394.27 3394.27
i(3, 3, 90, 4) obj1 4314.66 0.00 1217 4314.66 4314.66 233 4314.66 4314.66
i(3, 3, 90, 5) obj1 5597.12 0.00 3008 5597.12 5597.12 244 5597.12 5597.12

i∗(3, 2, 90, 1) obj1 2731.00 3.46 14400 2731.00 2829.00 203 2829.00 2829.00
i∗(3, 2, 90, 1) obj2 27.00 0.00 62 27.00 27.00 83 27.00 27.00
i∗(3, 2, 90, 1) obj3 40.00 0.00 59 40.00 40.00 66 40.00 40.00
i∗(3, 2, 90, 1) obj4 4182.22 0.00 144 4182.22 4182.22 57 4182.22 4182.22
i∗(3, 2, 90, 2) obj1 2545.63 3.73 14400 2545.63 2644.33 240 2644.33 2644.33
i∗(3, 2, 90, 3) obj1 2262.84 3.15 14400 2262.84 2336.34 228 2336.34 2336.34
i∗(3, 2, 90, 4) obj1 2876.44 0.34 14400 2876.44 2886.24 243 2886.24 2886.24
i∗(3, 2, 90, 5) obj1 3731.41 3.57 14400 3731.41 3869.73 271 3869.73 3869.73

i(4, 2, 91, 1) obj1 2740.08 3.45 14400 2740.08 2838.08 264 2838.08 2838.08
i(4, 2, 91, 1) obj2 32.00 0.00 752 32.00 32.00 122 32.00 32.00
i(4, 2, 91, 1) obj3 48.00 0.00 855 48.00 48.00 77 48.00 48.00
i(4, 2, 91, 1) obj4 4236.56 0.00 65 4236.56 4236.56 68 4236.56 4236.56
i(4, 2, 91, 2) obj1 2551.36 3.72 14400 2551.36 2650.06 329 2650.06 2650.06
i(4, 2, 91, 3) obj1 2268.23 3.14 14400 2268.23 2341.73 271 2341.73 2341.73
i(4, 2, 91, 4) obj1 2881.76 0.34 14400 2881.76 2891.56 279 1 2891.561 2891.56
i(4, 2, 91, 5) obj1 3741.09 3.57 14400 3741.09 3879.41 323 3879.41 3879.41

Average Computing times 3492 131

Table 3: With and without new branching rule and heuristic

For the instances with two doors and two paths, the general solver is slightly better in all in-
stances except one. But with more doors or paths, the new method obtains better solution times.
Therefore, for larger instances our proposed method performs much better. Particularly, it can
solve many instances that the general solver cannot solve within the time limit of 4 hours. These
are the instances where a gap between linear relaxation at the root node and optimal solution
still exists.

6 Conclusions

In this paper we have proposed for the first time in the literature an MILP formulation to design
the DMS of an aircraft while optimizing a certain criterion (e.g., cost or weight of the system).
It is a network system with multiple functions and k-redundancy for the functions.
Because the MILP formulation is not easily solvable with a standard solver like CPLEX, we
introduced a new branching rule and we proposed a heuristic. Both are specialized for the model
and through computational tests we were able to see that the DMS problem with redundancy can
be solved much more efficiently. Problem instances which could not be solved in several hours
can now be solved in minutes by using the new branching rule and heuristic.
Regarding future research, it must be noted that both functions in the DMS transport data
through a hardware network system. In the current model, the speed of the data transportation
was not considered. But the speed of the data through the system is also important in safety
systems. Therefore, further research should include adding these requirements to the model.
The corresponding constraints will be non-linear, which is a considerable increase in difficulty.
Another aspect for future research is to consider reliability on the network system by giving to

15

each of the components a certain failure probability and then include in the model constraints
that guarantee that the failure probability of the system does not exceed a certain threshold.
Difficulties not only arise because non-linear constraints have to be added, but also because the
number of constraints and variables will increase considerably.

Acknowledgements

The research of Sergio Garćıa has been funded by Fundación Séneca (project 19320/PI/14). Lukas
Schäfer is funded by an EPSRC Industrial CASE studentship in partnership with Airbus Group.

References

[1] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization,
4(1):77–86, 2007.

[2] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42–54, 2005.

[3] T. Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathematics,
85(2):113–138, 1998.

[4] T. Gomes, J. Craveirinha, and L. Jorge. An effective algorithm for obtaining the minimal cost
pair of disjoint paths with dual arc costs. Computers & Operations Research, 36(5):1670–
1682, 2009.

[5] M. Grötschel, C. Monma, and M. Stoer. Design of survivable networks. In Network Models,
volume 7 of Handbooks in Operations Research and Management Science, pages 617–672.
Elsevier, 1995.

[6] L. Guo, H. Shen, and K. Liao. Improved Approximation Algorithms for Computing k Dis-
joint Paths Subject to Two Constraints, pages 325–336. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[7] F. Iqbal and F. A. Kuipers. Disjoint paths in networks. Wiley Encyclopedia of Electrical
and Electronics Engineering, pages 77–86, 2015.

[8] J. Kalvenes, J. Kennington, and E. Olinick. Base station location and service assignments
in W–CDMA networks. INFORMS Journal on Computing, 18(3):366–376, 2006.

[9] F. Kuipers. An overview of algorithms for network survivability. ISRN Communications and
Networking, 2012:1–19, 2012.

[10] Z. Liang, W. A. Chaovalitwongse, M. Cha, and S. B. Moon. Redundant multicast routing in
multilayer networks with shared risk resource groups: Complexity, models and algorithms.
Computers & Operations Research, 37(10):1731–1739, 2010.

[11] I. Rodŕıguez-Mart́ın, J. Salazar-González, and H. Yaman. A branch-and-cut algorithm for
two-level survivable network design problems. Computers & Operations Research, 67:102–
112, 2016.

[12] F. S. Salman, R. Ravi, and J. N. Hooker. Solving the capacitated local access network design
problem. INFORMS Journal on Computing, 20(2):243–254, 2008.

[13] J. Suurballe. Disjoint paths in a network. Networks, 4:125–145, 1974.

[14] L. A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Optimization.
Wiley, 1998.

16

A Negative validity example

In this example, we have |D| = 3, |P | = 2 and |F | = 2. There are four different unit types
U = {U1, U2, U3, U4}. A unit of type U1 cannot be used for different doors. All needed infor-
mation of the units is given in Table 4 and 5 for functions f1 and f2, respectively.

Unit types Model Eum Ein
fu Eout

fu T f,in
u T f,out

u C+
f (u) C−f (u)

U1 M1 2 1 1 1 1 {U2} ∅
U2 M1 4 1 1 1 1 {U3} ∅
U2 M2 5 1 1 1 1 {U3} ∅
U3 M1 8 1 1 1 1 ∅ ∅

Table 4: Unit parameters and corresponding sets for function f1.

Unit types Model Eum Ein
fu Eout

fu T f,in
u T f,out

u C+
f (u) C−f (u)

U2 M1 4 1 1 1 1 ∅ {U3}
U2 M2 5 1 1 1 1 ∅ {U3}
U3 M1 8 1 1 1 1 ∅ ∅
U4 M1 4 1 1 1 1 ∅ {U2}

Table 5: Unit parameters and corresponding sets for function f2.

Tables 8 to 12 give a feasible linear relaxation solution for the small example and Figure 5
illustrates it in a graph. To distinguish the different functions in Figure 5 we have used thicker
arrows for function f2. As can be seen, 2-redundancy is not given and constraint (12) is fully
satisfied for units of type U2. Even though the system is feasible in the linear relaxation, for this
combination of units there are no cable connections which are feasible in the integer formulation
and unit type U2. If such a case as here is discovered through the validity test, we can then
branch on the corresponding tum variables. In this example, we would branch with tU2,M1 ≥ 3
and tU2,M1 ≤ 1 or tU2,M2 ≥ 2 and tU2,M2 ≤ 0.

U1,Loc. 4

U1,Loc. 5

U1,Loc. 1

U1,Loc. 3

U1,Loc. 2

U1,Loc. 6

U2,Loc. 8

U2,Loc. 9

U2,Loc. 7

U3,Loc. 10

U3,Loc. 11

U4,Loc. 13U4,Loc. 12

D1 F1 P1

D1 F1 P2

D2 F1 P1

D2 F1 P2

D3 F1 P1

D3 F1 P2

Figure 5: Illustration of liner relaxation solution. Solution can be found in Tables 9 and 10.

17

i 1 2 3 4 5 6 7 8 9 10 11 12 13
u U1 U1 U1 U1 U1 U1 U2 U2 U2 U3 U3 U4 U4

ti,u,M1 1 1 1 1 1 1 0 1 1 1 1 1 1
ti,u,M2 0 0 0 0 0 0 1 0 0 0 0 0 0

Table 6: Linear relaxation solution values for location variables of the overall system.

i 1 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9
j 7 8 7 8 7 9 8 9 7 8 9 10 11 10 11 10 11
u U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U2 U2 U2 U2 U2 U2

û U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U2 U3 U3 U3 U3 U3 U3

xijuû 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 1

Table 7: Linear relaxation solution values for connection variables of the overall system.

i 7 7 8 8 9 9 10 10 10 11 11 11
j 12 13 12 13 12 13 7 8 9 7 8 9
u U2 U2 U2 U2 U2 U2 U3 U3 U3 U3 U3 U3

û U4 U4 U4 U4 U4 U4 U2 U2 U2 U2 U2 U2

xijuû 1 0 0 0.5 0 0.5 1 0 0 0 0.5 0.5

Table 8: Linear relaxation solution values for connection variables of the overall system.

i u td1,f1,p1 td1,f1,p2 td2,f1,p1 td2,f1,p2 td3,f1,p1 td3,f1,p2

1 U1 1 0 0 0 0 0
2 U1 0 1 0 0 0 0
3 U1 0 0 1 0 0 0
4 U1 0 0 0 1 0 0
5 U1 0 0 0 0 1 0
6 U1 0 0 0 0 0 1
7 U2 0.5 0.5 0.5 0 0.5 0
8 U2 0.5 0.5 0 0.5 0.5 0
9 U2 0 0 0.5 0.5 0 1

10 U3 1 0 1 0 1 0
11 U3 0 1 0 1 0 1

Table 9: Linear relaxation solution values for location variables and function f1.

18

i j u û xijuû xd1,f1,p1 xd1,f1,p2 xd2,f1,p1 xd2,f1,p2 xd3,f1,p1 xd3,f1,p2

1 7 U1 U2 0.5 0.5 0 0 0 0 0
1 8 U1 U2 0.5 0.5 0 0 0 0 0
2 7 U1 U2 0.5 0 0 0 0 0 0
2 8 U1 U2 0.5 0 0.5 0 0 0 0
3 7 U1 U2 0.5 0 0 0.5 0 0 0
3 9 U1 U2 0.5 0 0 0.5 0 0 0
4 8 U1 U2 0.5 0 0 0 0.5 0 0
4 9 U1 U2 0.5 0 0 0 0.5 0 0
5 7 U1 U2 0.5 0 0 0 0 0.5 0
5 8 U1 U2 0.5 0 0 0 0 0.5 0
6 9 U1 U2 1 0 0 0 0 0 1
7 10 U2 U3 0.5 0.5 0 0.5 0 0.5 0
7 11 U2 U3 0.5 0 0.5 0 0 0 0
8 10 U2 U3 0.5 0.5 0 0 0 0.5 0
8 11 U2 U3 0.5 0 0.5 0 0.5 0 0
9 10 U2 U3 0.5 0 0 0.5 0 0 0
9 11 U2 U3 1 0 0 0 0.5 0 1

Table 10: Linear relaxation solution values for connection variables.

i u td1,f1,p1 td1,f1,p2 td2,f1,p1 td2,f1,p2 td3,f1,p1 td3,f1,p2

7 U2 0.5 0.5 0.5 0 0.5 0
8 U2 0.5 0.5 0 0.5 0.5 0
9 U2 0 0 0.5 0.5 0 1

10 U3 1 0 1 0 1 0
11 U3 0 1 0 1 0 1
12 U4 1 0 1 0 1 0
13 U4 0 1 0 1 0 1

Table 11: Linear relaxation solution values for location variables and function f2.

i j u û xd1,f1,p1 xd1,f1,p2 xd2,f1,p1 xd2,f1,p2 xd3,f1,p1 xd3,f1,p2

7 12 U2 U4 1 0 1 0 1 0
7 13 U2 U4 0 0 0 0 0 0
8 12 U2 U4 0 0 0 0 0 0
8 13 U2 U4 0 0.5 0 0.5 0 0.5
9 12 U2 U4 0 0 0 0 0 0
9 13 U2 U4 0 0.5 0 0.5 0 0.5

10 7 U3 U2 1 0 1 0 1 0
10 8 U3 U2 0 0 0 0 0 0
10 9 U3 U2 0 0 0 0 0 0
11 7 U3 U2 0 0 0 0 0 0
11 8 U3 U2 0 0.5 0 0.5 0 0.5
11 9 U3 U2 0 0.5 0 0.5 0 0.5

Table 12: Linear relaxation solution values for connection variables for function f2.

19

	Introduction
	The DMS problem with redundancy formulation
	Sets
	Parameters
	Decision variables
	Constraints
	 Tightening constraints
	 Synchronization constraints for branching variables
	Objective functions

	Branching rule
	 Heuristic
	Computational Results
	Conclusions
	References
	Negative validity example

