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Abstract

This paper investigates social influences on attitudes to risk and reanalyses how
risk taking varies with relative position and inequality. Individuals with low ini-
tial wealth, about to participate in a tournament with richer opponents, may take
fair gambles even though they are risk averse in both consumption and tournament
rewards. It is shown that this risk taking decreases in the inequality of initial en-
dowments, but in contrast it increases in the inequality of tournament rewards.
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1 Introduction

There is a long tradition of treating risk attitudes as exogenous and fixed. However,
there is now much empirical evidence that choices under uncertainty are subject both to
systematic variation and to social influence. For example, recent research by Falk et al.
(2015) finds that risk taking is higher in countries with higher inequality. Further, there
is substantial evidence that risk taking is influenced by relative position, with those who
are behind others in tournament situations willing to take on more risk, both in sports
(Genakos and Pagliero, 2012) and in finance (Brown et al., 1996; Dijk et al., 2014).1

Theoretical explanations of social influence on risk attitude are scarce but include
Robson (1992, 1996), Becker et al. (2005), Ray and Robson (2012). However, one of
the central predictions of the existing literature is that risk taking is increasing in wealth
equality. This is both counter-intuitive and lacks empirical support. Existing models also
suggest that the highest level of risk taking should be by those in middle of the wealth
distribution. Again this runs against the evidence noted above for risk taking by those at
the back of the field.

This paper tries to reconcile theory with the evidence by analysing the role of re-
ward inequality in a tournament setting. A large population starts with different levels of
wealth and compete for multiple, ranked rewards. These can be interpreted as represent-
ing different levels of status or different matching outcomes. In this strategic situation,
an individual’s indirect utility function can be convex in initial wealth and thus for stan-
dard theoretical reasons he will be willing to take fair gambles before the tournament.
Importantly, these implied risk attitudes are not fixed but rather vary with the degree of
competition, which itself is determined by two different forms of inequality - inequality
in initial endowments and inequality in the tournament rewards. For example, the gap
between the best and worst rewards could be small or large. This is the first study to
study systematically the effect of reward inequality on risk taking.

Specifically, I show that under a simple symmetry condition the lowest ranked in society
will be risk loving. Thus, it can explain why those who are behind others would be willing
to take on more risk. Further, under appropriate regularity assumptions on the utility
function related to the concept of prudence, I find that risk-taking behaviour is increasing
in inequality of final rewards, even though it is decreasing in the inequality of initial wealth.

Finally, I consider the maximum level of sustainable wealth equality. Robson (1992)
introduces the concept of a stable distribution of wealth, a distribution such that there
is no incentive to gamble. Concentrating on the most equal stable distribution, I show
that it depends on the distribution of rewards, with more equal distributions of rewards
supporting a more equal distribution of wealth. Thus, in contrast to earlier findings by
Becker et al. (2005) and Ray and Robson (2012), the most equal stable distribution of
wealth can be arbitrarily equal, if rewards are sufficiently equally distributed.

1A wider experimental literature on social influence on decision making under uncertainty is surveyed
in Trautmann and Vieider (2012).
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The basic intuition for risk taking is that an individual who has an endowment that is
low relative to his rivals can expect only a low reward from participating in the tournament,
even if his initial wealth is high in absolute terms. Thus, the marginal value of doing better
in the tournament can be arbitrarily high - the individual is “desperate”. Consequently, the
individual’s indirect utility will be convex in present wealth, giving an incentive to gamble.
More generally, either an increase in inequality of rewards or a decrease in inequality of
endowments will increase the competitiveness of the tournament and increase the incentive
to gamble.

This model can provide a theoretical mechanism which would support the apparent
positive empirical relationship between inequality and risk-taking behaviour, but the cau-
sation flows in a different way than is normally assumed. High reward inequality induces
greater risk-taking behaviour which increases the minimum level of wealth inequality that
is compatible with stability. Thus, wealth inequality and risk taking are jointly caused by
another factor - reward inequality. It remains true that, as with the previous literature,
greater wealth inequality, considered in itself, reduces risk taking. Nonetheless, the over-
all relationship between risk taking and inequality of wealth can be positive if differences
in reward inequality across societies are greater than cross-country differences in initial
wealth inequality.

This paper is certainly not the first to consider the relationship between risk taking and
relative concerns. However, while there a wider literature on status and relative concerns,
the number of works considering the effect on risk taking is quite small, including Robson
(1992, 1996), Harbaugh and Kornienko (2000), Cole et al. (2001), Becker et al. (2005),
Ray and Robson (2012). This paper differs from this existing literature in two main ways.
First, as noted above, existing models suggest that risk taking should be increasing in
equality, a result that seems to run counter to intuition and to evidence. In particular,
a recent and comprehensive cross-country study of risk attitudes is found in Falk et al.
(2015) who examine data on 80,000 subjects from 76 countries surveyed using a common
methodology. Risk taking was elicited both by a mixture of quantitative questions, a
series of five binary choices between a fixed lottery and varying sure payments, and a self-
assessment question. They find that such risk taking is higher in more unequal countries.
Second, previous theoretical work considers only inequality in wealth but not inequality
in rewards.

Fang and Noe (2016) also consider how tournaments affect risk taking but in a some-
what different framework. Hopkins and Kornienko (2010) introduces the distinction be-
tween endowment and reward inequality but, as with the vast majority of work on relative
concerns, do not consider risk taking. The previous study closest to the current work is
Robson (1996). He considers a model where men care about relative wealth because of
the possibility of polygyny: high relative wealth means that a man can attract multiple
partners. This gives men an incentive to gamble. In current terminology, men face greater
reward inequality than women. But the general relationship between reward inequality
and risk taking is not explored.

2



2 A Status Tournament

The base model is similar to that found in Frank (1985), Hopkins and Kornienko (2004)
and Becker, Murphy and Werning (BMW) (2005), but here is modified to allow for reward
inequality to vary. A large population of agents compete in a tournament with a range of
ranked rewards that could represent either different levels of status or of marriage oppor-
tunities. Agents make a strategic decision over how to allocate their endowment between
performance in the tournament and private consumption. As BMW first discovered, this
situation can lead to individuals being willing to take fair gambles if they are offered before
the tournament. This is because the utility function implied by equilibrium behaviour in
the tournament can be convex in initial endowments, even though an individual has prefer-
ences that are concave in both consumption and rewards. The model is solved backwards.
This section analyses the tournament stage of the game. The next section looks at the
implied incentives to take gambles prior to the tournament.

I assume a continuum of agents. The game begins with each being allocated a different
endowment of wealth z with endowments being allocated according to the publicly known
distribution G(z) on [z, z̄] with z > 0. The distribution G(z) is twice differentiable with
strictly positive density g(z).

Next, and before the tournament, individuals may have an incentive to gamble with
their wealth. It is assumed that a range of fair gambles are offered each in the form of
a continuous density over a bounded interval. As Ray and Robson (2012) suggest, these
gambles could be lotteries in the common meaning of the term or, more generally, entry
into risky occupations or making risky investments.

One would expect that gambles are taken until the market clears in the sense that
the distribution of wealth is such that no-one wishes to gamble further. Stable wealth
distributions that give no incentive to gamble are characterised in Section 4. However, in
this section I analyse the tournament taking place with the initial wealth distribution G(z).
The point is that it is the anticipation of taking part in a tournament when the distribution
of wealth is not stable which gives the incentive to take risks. It is thus necessary to model
the hypothetical possibility of playing the tournament under the initial non-stable wealth
distribution in order to understand risk attitudes. Thus, in the rest of this section G(z)
refers to the initial distribution of endowments.2

In the tournament itself, agents make a simultaneous decision on how to divide their
wealth z between performance x and consumption c, with x + c = z. Performance has
no intrinsic utility, but rewards s are awarded on the basis of performance, with the
best performer receiving the highest reward, and in general, one’s rank in performance
determining the rank of one’s reward. A specific interpretation in BMW and Hopkins and

2If gambles are taken then the tournament may be contested with a distribution that is different from
the initial distribution G(z), even if G(z) determined those risk attitudes. This is not a major concern
because, first, the focus here is on risk attitudes not the tournament itself; second, the distribution is
arbitrary and so it does not matter if it changes, because the resulting stable distribution retains suitable
properties - stable distributions are continuous (Robson, 1992) and smooth (see the online appendix).
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Kornienko (2004) is that x represents expenditure on conspicuous consumption, and s is
the resulting status. An alternative, first due to Cole et al. (1992), is that s represents the
quality of a marriage partner achieved. Relating this to evolutionary considerations, the
range of rewards in a society which permits a high degree of polygyny would be wider than
in a society in which strict monogamy is enforced. Whatever the interpretation, what is
important here is that there is a schedule of rewards or status positions available, which
are assigned by performance in the tournament. In contrast, regular consumption c is
supplied by a competitive market at a constant price.

In any case, it is assumed that all individuals have the same preferences over consump-
tion c and status or rewards s,

U(c, s) (1)

where U is a strictly increasing, strictly concave, three times differentiable function with
Uc, Us > 0, and Ucc, Uss < 0. So, agents are risk averse with respect to both consumption
and status. I also assume that Ucs ≥ 0, so that the case of additive separability Ucs = 0 and
status and consumption being positive complements Ucs > 0 are both included. As BMW
stress, it is when Ucs > 0, strict complementarity between rewards and consumption, that
the results on risk taking are strongest. Note that x does not appear in the utility function
and thus represents a pure cost to the individual. The amount spent on x could represent
conspicuous consumption, labour effort or resources devoted to fighting or lobbying.

The order of moves is, therefore, the following:

1. Agents receive their endowments z. Because the distribution of wealth G(z) is com-
mon knowledge, they therefore know their relative position in the field of competitors.

2. Agents are offered fair gambles which they are free to accept or to reject.

3. Agents commit a part x of their after gambling wealth z to performance in the
tournament.

4. Each agent receives a reward s, the value of which is determined by performance in
the tournament.

5. Agents consume their remaining endowment c = z − x and their reward s, receiving
utility U(c, s).

To this point, the model is identical to that of BMW (and very similar to that of
Hopkins and Kornienko, 2004). However, here I follow Hopkins and Kornienko (2010) in
assuming that the rewards or status positions of value s have an arbitrary publicly known
distribution with a twice differentiable distribution function H(s) on [s, s̄], with s > 0, and
strictly positive density h(s). BMW assume that H(s) is fixed as a uniform distribution
on [0,1]. As they point out, for the existence of equilibrium, this represents a harmless
normalisation. However, this clearly prevents the major exercise here: identifying the
change of behaviour arising from changes in the distribution of rewards.
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Rewards or status are assigned assortatively according to rank in performance, with
the highest performer receiving the highest reward and the lowest performer the lowest
reward. Let F (x) be the distribution of choices of performance. One’s position in this
distribution will determine the award achieved. Precisely, an individual who chooses a
performance level x will receive a reward

S(x, F (·)) := H−1
(
θF (x) + (1− θ)F−(x)

)
(2)

where F−(x) = limξ↑x F (ξ) and for some θ ∈ (0, 1). The role of the parameter θ is to
break potential ties that would occur if a mass of agents were to choose the same level
of performance. For example, if a mass of agents chose the same performance, this rule
would be consistent with the corresponding range of rewards being equally distributed
amongst those agents.3 However, if all contestants choose according to a continuous strictly
increasing strategy x(z), then, first, F (x) = F−(x) for all x, and, second, F (x(z)) = G(z).
Together, this implies, H(s) = F (x) = G(z), one holds the same rank in endowments,
performance and in reward achieved, or

S(x, F (x)) = H−1(F (x)) = H−1(G(z)) := S(z). (3)

We can call S(z) the reward or status function, as in a monotone equilibrium, it represents
the relationship between initial endowment and the reward or status achieved.

Importantly, the reduced form equilibrium utility given a monotone equilibrium per-
formance function x(z) will then be

U(z) = U(z − x(z), S(z)). (4)

We will see that this function U(z) can be convex, even given our concavity assumptions
on U(c, s). Therefore, agents would accept a fair gamble over their endowment, if such a
gamble was offered before the tournament.

If all agents follow a monotone strategy x(z), then an individual with endowment z
should choose x(z). If she considers deviating to a different level of performance x(ẑ), she
will have no incentive to do so if

−x′(ẑ)Uc(z − x(ẑ), S(ẑ)) + S ′(ẑ)Us(z − x(ẑ), S(ẑ)) = 0. (5)

Setting x(ẑ) = x(z) and rearranging, we have

x′(z) =
Us(z − x(z), S(z))S ′(z)

Uc(z − x(z), S(z))
. (6)

The solution to the above differential equation with boundary condition,

x(z) = 0 (7)

3Note that F (x) and F−(x) are only distinct when a positive mass of agents choose the same per-
formance x̂. Denote r̄ = F (x̂) and r = F−(x̂) then the average value of rewards ranked between r and

r̄ is v =
∫ r̄

r
H−1(r) dr/(H(r̄) − H(r)) and by the mean value theorem there is a θ ∈ (0, 1) such that

H−1(θF (x) + (1− θ)F−(x)) = v.
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will determine the equilibrium strategy. The proof (in the Appendix) shows that despite
the possibility of the equilibrium utility function U(z) being convex, individual utility is
pseudoconcave in performance x so that the first order condition (5) above does represent
a maximum.

Proposition 1. There exists a unique solution x(z) to differential equation (6) with bound-
ary condition (7). This is the unique symmetric equilibrium to the tournament.

Having established the framework of the tournament, the next step is to proceed in
solving backwards. The next section considers the risk attitudes of agents who are about
to participate in the tournament.

3 Implied Risk Attitudes

The main focus of this paper is to examine the risk attitudes implied by participation
in the status tournament. As described in the previous section, an individual with initial
endowment z will anticipate equilibrium utility U(z) = U(z−x(z), S(z)), where x(z) is the
equilibrium choice of performance and S(z) = H−1(G(z)) is the reward function. If this
function is convex for some range of endowments z, then individuals with endowments in
that range would take fair bets if such bets were offered to them prior to the tournament.
The analysis in this section focuses on the question as to when in fact this function will
be convex.

We have by the envelope theorem U ′(z) = Uc(z − x(z), S(z)) and

U ′′(z) = Ucc(z − x(z), S(z))(1− x′(z)) + Ucs(z − x(z), S(z))S ′(z), (8)

on (z, z̄), where x′(z) is as given in the differential equation (6). Perhaps more usefully, to
clarify the different potential effects on risk attitudes, one can decompose the expression
(8) into (suppressing arguments)

U ′′(z) = Ucc + UcsS
′(z)− x′(z)Ucc = Ucc + S ′(z)

(
Ucs −

UccUs
Uc

)
(9)

which not only separates the negative and positive elements, but also the traditional and
non-traditional parts. The first part Ucc is negative and reflects risk aversion towards reg-
ular consumption. The second and third give the competitive aspect which is positive. By
inspection one can immediately see that U ′′(z) will be positive, even though the traditional
term Ucc < 0, if either x′(z) or S ′(z) is sufficiently large.4 Note that S ′(z) = g(z)/h(S(z)).
Thus, BMW’s result that equality in endowments would lead agents to be willing to ac-
cept lotteries follows quite directly. If the distribution of endowments G(z) is strongly

4One might think that risk taking would be related to S′′(z), specifically whether the distribution of
rewards is convex. But, because of the envelope theorem, U ′(z) does not depend on S′(z) and so U ′′(z)
does not depend on S′′(z) but on S′(z).
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unimodal, then its density g(z) will have a very high value at and around its mode. Thus,
BMW’s focus on wealth alone predicts risk taking typically will be highest at middling
levels of wealth.

Turning to the impact of rewards on risk attitudes, one can immediately see that the
effect will largely be opposite to that of endowments. An increase in inequality of rewards
will tend to lower its density h(s) which lead to more risk taking, because as noted above
risk taking is increasing in S ′(z) = g(z)/h(S(z)). Reward inequality thus leads to risk
taking, endowment inequality to risk aversion.

However, the problem in obtaining unambiguous global results on risk attitudes is that
changes in either rewards or endowment inequality have additional effects. First, there are
wealth effects, having a higher or lower reward or endowment in itself may change one’s
risk attitude. Second, changes in inequality affect everyone’s incentives to compete in the
tournament, and higher performance in the tournament means lower consumption. This
tends to increase risk aversion through the conventional channel, lowering Ucc if (plausibly)
Uccc is positive.

I start with a basic characterisation result. Because risk attitudes depend both on
the distribution of rewards and of initial endowments, a natural benchmark is where the
two distributions are equal, so that S(z) = H−1(G(z)) = z and S ′(z) = 1. It is also
relatively a plausible case as if both distributions are unimodal (as is typical for many
empirical distributions) then this assumption would be approximately correct. What is
important about equal distributions for the results below is that it implies that S ′(z) = 1.
Thus, differences in means or scale between the distributions would not change the result.
However, previewing results from the next section, if the distribution of endowments were
significantly more unequal than the distribution of rewards so that S ′(z) < 1, risk taking
would be less likely to hold. Unfortunately, even with equal distributions, it is not possible
to obtain a global result on risk attitudes except for the two special cases considered here
- precisely because of the opposing effects of endowments and rewards.

Proposition 2. Let the distribution of endowments G(·) and the distribution of rewards
H(·) be identical. Assume either that preferences are separable so that Ucs = 0 or that
preferences are Cobb-Douglas so that U(c, s) = cαsβ, then there is at most one such point
ẑ such that U ′′(ẑ) = 0. If there is such a crossing point ẑ, then U ′′(z) > 0 for z ∈ (z, ẑ)
and U ′′(z) < 0 for z ∈ (ẑ, z̄). If preferences are symmetric so that Uc(y, y) = Us(y, y),
then, the poorest individuals will be risk loving. That is, there will be a ẑ ∈ (z, z̄] such that
U ′′(z) > 0 on (z, ẑ).

This result implies that, under these utility specifications, there are only three possible
configurations for risk preferences. Either everyone is risk taking or all are risk averse, or
the poor are risk taking and the rich are risk averse (see the function UA in Figure 1 in
Section 3.1 below for example). Example 1 below shows that all three such configurations
are possible. In the last case, then the mass of middle-ranked individuals will be risk
loving with respect to losses, and risk averse with respect to gains, which is reminiscent of
prospect theory. The final part of the proposition is a sufficient condition for low status
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Figure 1: Illustration of Proposition 3: A’s reward function SA is steeper than SB leading
to A’s equilibrium utility function UA being convex at low levels of wealth. Typically, UA
is lower and performance xA is higher with more unequal rewards.

individuals to be risk loving - that is, to rule out the less interesting case where all are risk
averse.5

It is worth remarking that our finding that the poorest can be the most risk taking
is contrast to the results of BMW, Robson (1992) and Ray and Robson (2012) who find
support for the Friedman-Savage conjecture that risk taking is greatest at middle incomes.
However, an empirical study of demand for lottery tickets in the United States, one example
of risk taking, found that demand is highest at low incomes (Clotfelter et al., 1999). Haisley
et al. (2008) in a laboratory study find that demand for lottery tickets increases when
subjects perceived their incomes to be relatively low.

3.1 Effects of Greater Inequality: Rewards vs Endowments

Let us now move to a principal question in this paper, the relationship between risk
attitudes and inequality in rewards. Specifically, it is possible to show that making rewards
more unequal leads to more risk-taking behaviour. With more inequality, low-ranked
competitors face lower rewards and all face higher incentives to compete in the tournament.
Both factors encourage risk taking. It is also important to verify BMW’s claim that in
contrast increases in the dispersion of initial wealth should reduce the desire to gamble.
The basic thrust of their claims are supported in a new result given below.

5Another sufficient condition for risk taking (but which does not require the two distributions to be
equal) is that the minimum reward is sufficiently low.
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Suppose that the distributions of rewards differ across two societies A and B for exoge-
nous reasons, giving rise to the distributions HA(s) and HB(s) respectively. I then see how
these differences affect risk attitudes. Some notion of a distribution being more dispersed
than another is needed. I use a strong version of the dispersive order. Specifically, I say
that a distribution HA is strictly larger in the dispersive order than a distribution HB, or
HA >d HB if

hA(H−1A (r)) < hB(H−1B (r)) for all r ∈ [0, 1]. (10)

The original definition of this stochastic order (Shaked and Shanthikumar, 2007, pp148-
9) has the same condition but with a weak inequality, and on (0,1). A simple example
of distributions satisfying this stronger condition would be any two uniform distributions
where one distribution has support on a strictly longer interval than the other (see Hopkins
and Kornienko (2010) for further examples and discussion). This is consistent with a form
of mean preserving spread on rewards. For example, two uniform distributions having the
same mean but with HA having a wider support would be suitable.

Further, to see how risk attitudes vary with changes in initial endowments and in
rewards some additional assumptions on the third derivatives of the utility function are
necessary. This should not be surprising. In the standard theory of risk attitudes, such
assumptions are often necessary for comparative statics. For example, for an individual to
have declining absolute risk aversion (DARA), the third derivative of the utility function
must be positive (“prudence”). Thus, I introduce a set of assumptions which are related
to having DARA with respect to consumption risk.6

A1: Uccc(c, s) ≥ 0 and Uccs(c, s), Ucss(c, s) ≤ 0.

A2: The ratio Ucc(c, s)/Uc(c, s) is non-decreasing in c and in s; equivalently Uccc(c, s)Uc(c, s)−
U2
cc(c, s) ≥ 0 and Uccs(c, s)Uc(c, s)− Ucs(c, s)Ucc(c, s) ≥ 0.

A3: The ratio Ucc(c, s)/Ucs(c, s) is non-decreasing in c; equivalently Uccc(c, s)Ucs(c, s) −
Ucc(c, s)Uccs(c, s) ≥ 0.

Note that all these properties are satisfied by Cobb-Douglas, cαsβ, and CES, (cρ+sρ)1/ρ,
utility functions for α, β, ρ ∈ (0, 1). In terms of the economic interpretation of these
conditions, clearly, A1 represents “prudence”, that is a positive third derivative, with
respect to consumption. Similarly, A2 mirrors the DARA assumption for risk preferences
with a single variable (that in current notation −U ′′(z)/U ′(z) is decreasing in z). That
is, conventional absolute risk-aversion with respect to consumption Ucc/Uc approaches risk
neutrality (becomes less negative) as consumption or rewards rise. A3 is similar in that
risk aversion with respect to consumption does not grow in absolute size compared to the
cross term Ucs as consumption rises.

6These assumptions are principally used in obtaining comparative statics results on the level of absolute
risk aversion AR(z) and were chosen for reasons of plausibility and to generalise Cobb-Douglas and
CES preferences. Since DARA implies that low wealth individuals will be the most risk averse, these
assumptions if anything make the results below more difficult to show.
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Greater dispersion in rewards will lead to a steeper reward function, see for example
panel 1 of Figure 1. Consider the expression (8), then one can see there will be a direct and
positive effect on U ′′(z) from the rise in the slope of the reward function S ′(z). Second,
low-ranked competitors will get lower rewards (SA(z) < SB(z) for low endowment levels),
increasing the marginal value of rewards Us. But there are further effects through the
competitive response - competitors will put more resources into performance and both
performance x(z) and its slope x′(z) will rise. Unfortunately these multiple changes make
finding a global result very difficult as higher performance and thus lower consumption
typically increases risk aversion, so for many the overall effect will be ambiguous. The
poor will definitely become more risk loving, as the consumption of the poorest is tied
down by the boundary condition (7) which is unchanged. Thus, it is possible to obtain
the following result: greater inequality of rewards causes the poor to be more risk taking.
This is shown both in terms of the sign of the second derivative U ′′(z) and in terms of the
implied level of absolute risk aversion, AR(z) = −U ′′(z)/U ′(z).

Proposition 3. Assume A1-A3 and that U ′′B(z) ≤ 0 on (z, z + ε) for some ε > 0.
(a) Suppose that the distribution of rewards in society A is strictly more dispersed than
in B, HA >d HB, and the minimum reward is lower sA ≤ sB. Then the poor in A
are more risk loving. That is, there will be a ẑ ∈ (z, z̄] such that U ′′A(z) > U ′′B(z) and
ARA(z) < ARB(z) for all z ∈ (z, ẑ).
(b) Suppose that the distribution of initial endowments in society A is strictly more dis-
persed than in B, GA >d GB, and the minimum endowment is lower zA ≤ zB. Then the
poor in A are more risk averse. That is, there will be a r̂ ∈ (0, 1] such that U ′′A(G−1A (r)) <
U ′′B(G−1B (r)) and ARA(G−1A (r)) > ARB(G−1B (r)) for all r ∈ (0, r̂).

See Figure 1 for an illustration of the first result. In the first panel the reward function
S(z) is plotted against wealth. The dispersion order implies that A’s reward function
SA is everywhere steeper than SB. The second panel illustrates typical results on how
performance responds to the greater level of competition implied by greater inequality of
rewards. While there are no such results in this paper, Hopkins and Kornienko (2010)
already have shown that greater dispersion of rewards induce higher performance and a
decrease in utility for most, and sometimes for all, individuals. See also Example 1 below.
The third panel shows the main result of Proposition 3: higher reward inequality can
change the risk attitudes of those at the bottom from risk averse to risk taking.

The intuition for the second result is that a greater concentration of endowments makes
a tournament more competitive as competitors are more evenly matched. Consider, for
example, a foot race with a very diverse field. There the fast runners will not have to exert
themselves too much in order to win the race ahead of their slower rivals. Mathematically,
the S ′(z) term in the expression for risk aversion (8) is equal to g(z)/h(S(z)) so that a
lower endowment density g(z) directly leads to lower risk taking. Lower ranked agents will
also have lower wealth in the more unequal society - this will also make them more risk
averse, given our DARA-like conditions in Assumptions A1-A3. Further, just as in the
previous section, there are other factors to consider, because this change in inequality will
also change competitive behaviour in the tournament. Nonetheless, as BMW supposed,
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greater dispersion of wealth can lower individuals’ willingness to gamble. Note that as
the comparison is across endowment distributions with different supports, risk attitudes
are compared at constant ranks - a method that is discussed at much greater length in
Hopkins and Kornienko (2010).

3.2 Cobb-Douglas

In this section, for concreteness we look at Cobb-Douglas preferences, for which closed form
solutions for equilibrium behaviour and preferences are possible. Suppose U(c, s) = cαsβ.
Let γ = β/α. Then,

x′(z) = γ
S ′(z)

S(z)
(z − x) (11)

with again x(z) = 0. This differential equation has an explicit solution, so one can calculate

x(z) = z −
sγz +

∫ z
z
Sγ(t)dt

Sγ(z)
, c(z) =

sγz +
∫ z
z
Sγ(t)dt

Sγ(z)
, U(z) =

(
sγz +

∫ z

z

Sγ(t)dt

)α
.

Thus, with some manipulation,

U ′(z) = αcα−1(z)Sβ(z), U ′′(z) = cα−2(z)Sβ−1(z) (βc(z)S ′(z)− α(1− α)S(z)) . (12)

When G(·) = H(·) so that S(z) = z, and given the boundary condition c(z) = z, we have
risk taking at the bottom if β > α(1−α). That is, the parameter β just has to be not too
small relative to α; for example, if α = 1/2 then β must be only bigger than 1/4.

Example 1. Suppose rewards are uniform on [ε, 1− ε] and wealth is uniform on [1, 5] and
α = β so that γ = 1. We have then

S(z) = ε+
1− 2ε

4
(z − 1)

and

U(z) =

(
ε+

∫ z

1

ε+
1− 2ε

4
(t− 1)dt

)α
=

(
(z − 1)2 + 2ε(−1 + 6z − z2)

8

)α
Take, for example, α = 0.4. With a relatively equal distribution of rewards/status SB,
for example with ε = 0.25, all agents are risk averse. However, rewards are more unequal
in A with ε = 0.1. Then, UA(z) is convex on [1,2.44) and is concave on (2.44, 5]. See
Figure 1. That is, take an individual with an endowment of about 2.5, then that individual
will be risk loving with respect to losses and risk averse with respect to gains. Note that
A’s equilibrium utility UA(z) is everywhere lower than UB(z) and equilibrium performance
xA(z) is everywhere higher (xB = (z−1)/2 and xA = (z2−1)/(2z−1)). We can also verify
that more dispersed wealth makes agents more risk averse. Keeping rewards dispersed with
ε = 0.1 but making wealth also more dispersed, so for example wealth is now uniform on
[0.5, 5.5], utility will return to being concave at all wealth levels.
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4 Reward Equality and Stable Wealth Distributions

We have seen that anticipated participation in a tournament can give individuals an in-
centive to take gambles. BMW, following Robson (1992), consider distributions of wealth
that in contrast are stable in the sense that given such a distribution, no agent wishes to
gamble and therefore the distribution of wealth does not change. Stable distributions can
also be seen as clearing the market for gambling. If the initial wealth distribution was
not stable, then there would be an incentive to gamble until the redistribution of wealth
resulting from gambling made it stable.7

Note that there will generally be many wealth distributions that are stable. Thus,
BMW focus on the stable wealth distribution (which they call the “∗ allocation”) that
induces risk neutrality at all levels of wealth.8 Distributions that are less dispersed than
the stable distribution will induce gambling (something that we formalise below). Thus,
this stable distribution represents an upper bound on sustainable equality of wealth.9 So,
let us call it the most equal stable distribution or MESD. I start with formal definitions.

Definition 1. A stable wealth distribution is a distribution of wealth G(z) such that, for
a given distribution of rewards, equilibrium utility U(z) is concave for all z in the support
of the distribution G(z).

Definition 2. Consider the set of stable distributions for a fixed average wealth level µ.
The most equal stable distribution MESD is a stable wealth distribution G∗(z) such that
U ′′(z) = 0 for all z in its support.

The first result in this section gives an important reason it should indeed be called the
most equal stable distribution. Any distribution that is even locally more equal is unstable.
In contrast, any distribution such that U ′′(z) is strictly negative could be subject to an
increase to equality without becoming unstable.

Proposition 4. Any distribution of wealth Ĝ(z) that is locally less dispersed than the
MESD G∗(z) is not stable. That is, if ĝ(z) > g∗(z) on an interval (z1, z2) but ĝ(z) = g∗(z)
on [z, z1] then Û ′′(z) > 0 on (z1, z1 + ε) for some ε > 0.

Now, if one sets the expression for U ′′(z) in (8) to zero, this leads to the following
differential equation (suppressing arguments)

S ′(z) =
UcUcc

UsUcc − UcUcs
= φ(c(z), S(z)) (13)

7This approach is not entirely satisfactory in that it does not provide an explicit strategic analysis of
the decision to gamble. That is, it does not specifically analyse the game implied by all players choosing
gambles, knowing others are making that choice. However, it is the approach taken in the literature
following from Robson (1992). Further, a strategic analysis would be technically challenging, though see
Cole et al. (2001) and Fang and Noe (2015) for some work in this direction.

8They show that marginal utility having a constant value λ, or U ′(z) = Uc(c(z), S(z)) = λ in current
notation, is also a solution to the problem of a utilitarian social planner.

9Another reason to focus on this particular stable distribution is given in Ray and Robson (2012) who
show that in dynamic model the steady-state distribution of wealth will be equivalent to the most equal
stable distribution.
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Figure 2: Illustration of Proposition 5: A’s reward function SA is steeper than SB. To
maintain risk neutrality, the MESD in A, G∗A, must be more dispersed than the MESD in
B, G∗B, with minimum wealth zA being lower and maximum wealth z̄A being higher than
in B.

with boundary condition S(z) = s.10 Using this differential equation (13) and the differ-
ential equation (6) for equilibrium performance, one can write a new differential equation
for equilibrium consumption,

c′(z) =
UcUcs

UcUcs − UsUcc
= ψ(c(z), S(z)). (14)

Given the boundary condition (7) for equilibrium performance, the boundary condition for
the above equation will be c(z) = z. A solution of the two equations simultaneously will
provide the MESD. Specifically, the MESD G∗(z) is defined as G∗(z) = H(S∗(z)), where
S∗(z) is the solution to the equation (13).

One can draw the following comparative statics result. The MESD moves with the
distribution of rewards. If rewards become more (less) equal, the minimum level of wealth
inequality falls (rises) in the sense of second order stochastic dominance.

In what follows, it is assumed that there are different distributions of rewards in so-
cieties A and B, HA(s) and HB(s) respectively. Under each distribution of rewards, we
calculate S∗i (z) for i = A,B, the associated reward function that induces risk neutrality
at all wealth levels. I find that a greater dispersion in rewards necessitates a greater dis-
persion in wealth in order to maintain risk neutrality. An example is illustrated in Figure
2.

Proposition 5. Assume that the distribution of rewards HA is more dispersed than HB,
HA >d HB, that the minimum reward is lower or sA < sB, that the maximum reward is

10Results on differentiability and uniqueness of S(z) can be found in the supplementary materials.
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higher s̄A > s̄B, assume the mean reward and mean initial endowments are the same in A
and B, and assume A1-A3. Then, A’s MESD wealth distribution, G∗A, is more dispersed
in terms of second order stochastic dominance than the MESD in B, G∗B.

This has an important implication. If we consider a sequence of distributions of rewards
each progressively more equal than the previous, then the corresponding distributions of
wealth would also become progressively more equal. Thus, despite the earlier results of
BMW and Ray and Robson (2012), it is thus possible to sustain an equal society, even in
the presence of status competition, provided there is an equality in terms of status rewards
in society.

Finally, one can combine Propositions 3 and 5 to arrive at the following corollary that
is extremely important for understanding the empirical implications of these theoretical
results. Define the overall wealth distribution to be any combination of the initial wealth
distribution G(z) and its corresponding MESD G∗(z). For example, the young in society
would have their initial endowments, whilst the distribution of wealth amongst old, those
who have already gambled, is determined by the MESD. Then, consider two societies where
there is no difference between them in terms of average endowment or average reward, but
levels of inequality can vary.

Corollary 1. (a) Take two societies A and B that have the same initial distribution of
endowments G(z) but A’s rewards are more dispersed, HA >d HB. Hence, the MESD in A
is more unequal in terms of second order stochastic dominance by Proposition 5 and there
is more risk taking in A by Proposition 3. Thus, the cross-society correlation between risk
taking and inequality of overall wealth is positive.
(b) Take two societies A and B that have the same distribution of rewards H(s) but A’s
initial endowments are more dispersed, GA >d GB. The MESD in A and B will be the same
and there is more risk taking in B by Proposition 3. Thus, the cross-society correlation
between risk taking and inequality of overall wealth is negative.

Simply put, this suggests that if differences in reward inequality across societies are
greater than differences in inequality in initial endowments, then risk taking can be more
common in societies with greater wealth inequality. But, if this is reversed, so that differ-
ences in wealth inequality are bigger, then there can be a negative relationship between
risk taking and wealth inequality across countries.

4.1 Cobb-Douglas

Assume Cobb-Douglas preferences U(c, s) = cαsβ, then the differential equations (13) and
(14) become respectively

S ′(z) =
α(1− α)S(z)

βc(z)
; c′(z) = α.
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This implies that performance and consumption are linear in wealth, specifically x(z) =
(1− α)(z − z) and c(z) = αz + (1− α)z. This in turn can be used to solve for S∗(z):

S∗(z) = A[c(z)](1−α)/β = A(αz + (1− α)z)(1−α)/β,

where A is a constant of integration. One can check that this implies U(z) = Aβc(z) which
is linear as required.

Example 2. Assume that rewards are distributed uniformly on [ε, 1− ε]. Assume further
that α = β = 1/2 (of course, this means that the utility function is not strictly concave,
but as we will see it makes everything conveniently linear). Then, given mean wealth of
1/2, the unique distribution G∗(z) that solves for S∗ is

G∗(z) =
(1− ε)z − ε/2

1− 2ε
.

That is, it is uniform on [ε/(2(1− ε)), (2− 3ε)/(2(1− ε))]. We have

S∗(z) = (1− ε)z + ε/2, U∗(z) =
ε/2 + (1− ε)z√

2(1− ε)
.

Clearly, a decrease in ε makes the distribution of rewards more dispersed. It will also
make the equilibrium distribution of wealth G∗(z) more dispersed. Equally, a more equal
distribution of rewards, implies a more equal stable distribution of wealth. Indeed, as
ε approaches 1/2, then both the distribution of rewards and the distribution of wealth
become entirely concentrated at 1/2.

5 Conclusions

This paper has reexamined the link between inequality and risk taking behaviour. While
risk taking is predicted to be decreasing with initial wealth inequality, it is also predicted
to be increasing with inequality in rewards. I also give conditions under which those with
low initial wealth, those at the back of the field before the tournament, will be risk taking.

The idea that low ranked agents may have an incentive to gamble has an apparent
similarity to the idea of “gambling for resurrection”, in which agents who are near to
bankruptcy have an incentive to gamble because any downside losses would be truncated.
See, for example, Gollier et al. (1997). However, none of the results in this paper depend
on any such mechanism. Here agents will take fair bets, even though they will have to suffer
the downside in full.11 Clearly, if limited liability were a possibility, then the incentive to
gamble would be increased.

Should such risk taking be encouraged? This paper has no formal results on welfare.
The main reason is that results in this direction already exist. As is well known, in

11It is true that the reward level cannot fall below the minimum s and in that sense there is a form of
limited liability. The main results here do not depend on this.
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tournaments like this all competitors can be made better off by a social planner simply
imposing the rewards assortatively, which prevents wasteful competition. The implications
of this policy for risk taking are straightforward: without the tournament there would be
no additional competitive incentive to take risk, and risk attitudes would be determined
by underlying preferences which are assumed risk averse.

A remaining puzzle is what exactly is predicted relationship between inequality and
risk taking. This paper shows that greater inequality in wealth reduces risk taking but
also that greater reward inequality increases it. The results on stable wealth distributions
provide a condition under which overall relationship between inequality and risk taking will
be positive. If differences in reward inequality across societies are greater than differences
in inequality in initial endowments, then risk taking will be greater in societies with greater
wealth inequality.

There are particular grounds for hope for empirical work if reward inequality can be sep-
arately identified. The current model requires a distribution of rewards or status outcomes
that is exogenous and independent of the distribution of wealth. Marriage arrangements
are one example of how rewards could vary in this way. Further, while the underlying
causation for these differing customs may be economic, such institutions change slowly
and most individuals would plausibly take them as fixed, and thus an analyst can hope to
treat them as exogenous. That is, if long run social arrangements (“culture”) cause risk
taking that results in inequality in wealth, then there is a hope for meaningful empirical
testing. This is a fascinating possibility which merits further investigation.

Appendix

Proof of Proposition 1: This proof follows that of Proposition 1 of Hopkins and Ko-
rnienko (2004). A sketch is as follows. Given Ucs ≥ 0, best replies are (weakly) increasing
in z. Given the tie breaking rule (2), a symmetric equilibrium strategy must in fact be
strictly increasing. If the equilibrium strategy is strictly increasing then it can be shown to
be continuous and, furthermore, differentiable. Thus, it satisfies the differential equation
(6). This has a unique solution by the fundamental theorem of differential equations.

It is also worth emphasising that the first order condition (5) is a maximum (de-
spite the equilibrium utility function U(z) potentially being convex), as if all others
adopt the proposed equilibrium strategy, an agent’s utility is pseudoconcave in x for
each individual. That is, U(z − x,H−1(F (x))) is increasing in x for x less than the
equilibrium choice x(z) and is decreasing in x for x greater than x(z). That is, util-
ity U(z − x,H−1(F (x))) is pseudoconcave in performance x. To show this, if all agents
adopt a strictly increasing strategy x(z) then an individual’s utility can be written as
U(z−x,H−1(F (x))) and ∂U/∂x = −Uc(z−x,H−1(F (x)))+Us(z−x,H−1(F (x)))f(x)/h(·).
Then, one has ∂2U/∂x∂z = −Ucc + Ucsf(x)/h(·) > 0. Take x̆ < x(z) and let z̆ be such
that x(z̆) = x̆, so that z̆ < z. Hence, for any x̆ < x(z), dU(z − x̆, H−1(F (x̆)))/dx ≥
dU(z̆− x̆, H−1(F (x̆)))/dx = 0. Thus, utility is increasing in x for x below the equilibrium
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choice x(z). A similar argument can establish that it is decreasing in x for x above x(z).

Finally, the boundary condition (7) must hold as the agent with lowest wealth z in a
symmetric equilibrium has status S(z) = s and thus chooses performance x to maximise
U(z − x, s). Clearly, the optimal choice of performance for the agent with wealth z is
zero.

Proof of Proposition 2: If G(·) = H(·) then S(z) = z and S ′(z) = 1. Consider any
point ẑ such that U ′′(ẑ) = 0. Then, in the additively separable case, applying S ′(z) = 1
to (8), one has U ′′(ẑ) = Ucc(1 − x′(ẑ)) = 0. Thus, it holds that 1 − x′(ẑ) = c′(ẑ) = 0. If
U ′′′(ẑ) < 0, then there can only be a single crossing of the zero line by U ′′(z) and from
above. One has U ′′′(ẑ) = Uccc

′′(ẑ) given c′(ẑ) = 0. Given c′(ẑ) = 0 and U ′′(ẑ) = 0, one has
c′′(ẑ) = −Uss/Uc > 0 so that Uccc

′′(ẑ) < 0. The result is established.

Turning to the Cobb-Douglas case, one can see that after some calculation that U ′′(z) =
0 if c(z)/z = α(1−α)/β. One can then calculate U ′′′(ẑ), given U ′′(ẑ) = 0, as cα−2(ẑ)ẑβ−1(βc′(ẑ)−
α(1− α)). Further, if U ′′(ẑ) = 0, then c′(ẑ) = 1− β/α× c(z)/z = α, so that U ′′′(ẑ) < 0 if
α + β < 1, which holds by assumption because U(c, s) = cαsβ is assumed concave.

Finally, given the initial condition that x(z) = 0, then one has

U ′′(z+) = Ucc(z, z)

(
1− Us(z, z)

Uc(z, z)

)
+ Ucs(z, z) = Ucs(z, z) > 0,

with the last step following from the symmetry assumption.

Proof of Proposition 3: One has from (7) that c(z) = z, so that from (8) it follows that
the right derivative of U ′′(z) at z is

U ′′(z+) = Ucc(z, s)(1− x′(z+)) + Ucs(z, s)S
′(z+) (15)

and from (6) that the right derivative of x(z) at z is

x′(z+) =
Us(z, s)S

′(z)

Uc(z, s)
. (16)

It can be calculated that

∂x′(z+)

∂s
=
UssUc − UcsUs

U2
c

S ′(z+) < 0. (17)

This implies that x′(z+) is monotone in s.

(a) First, consider the difference in dispersion of rewards. The second derivative (from
the right) of the utility function for the poorest agent is U ′′(z+) = Ucc(z, s)(1− x′(z+)) +
Ucs(z, s)S

′(z+) and the first is U ′(z+) = Uc(z, s). Because c(z) = z and for the moment
holding S(z) = s constant, the only way that either U ′′(z+) or AR(z+), i.e. AR(z)
evaluated at z using right derivatives, can change is in terms of S ′ and x′. The dispersive
order, by its definition (10), implies that hA(H−1A (r)) < hB(H−1B (r)) for r ∈ [0, 1]. Now,
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S ′(z) = g(z)/h(S(z)) = g(z)/h(H−1(r)). Thus, given g(z) is the same, the dispersive
order implies that S ′A(z) > S ′B(z) for all z ∈ [z, z̄]. It is easy to verify that if S ′(z+) is
higher then so will x′(z+) as given in (16). Thus, both S ′(z+) and (z+) are also higher

leading to an increase in U ′′(z+) and a decrease in AR(z+), holding s constant.

Second, consider the difference in s. One has, keeping S ′(z+) constant,

∂U ′′(z+)

∂s
= Uccs(1− x′(z+)) + UcssS

′(z+)− ∂x′(z+)

∂s
Ucc,

which, given A1, is certainly negative where x′(z+) < 1. From (17), x′(z+) is monotone
in s. Thus, as noted, there must be a value s0 such that if s = s0 then x′(z+) = 1. If,
as assumed, sB is such that U ′′(z+) ≤ 0, then sB > s0 and x′(z+) ≤ 1. If also sA > s0,
then it follows that in A U ′′(z+) will be greater than in B, as U ′′(z+) is monotone in s on
(s0, sB). If sA ≤ s0, then U ′′(z+) is greater in A. Turning to AR(z), one has suppressing
arguments,

∂AR(z+)

∂s
= −((1− x′)Uccs + UccsS

′ − Ucc∂x′/∂s)Uc − Ucc (Ucc(1− x′) + UcsS
′)

U2
c

, (18)

which is positive given assumption that U ′′(z+) < 0 so that x′ ≤ 1, the earlier finding that
∂x′/∂s < 0, and A1. Thus, the effect on U ′′(z+) and AR(z+) of a decrease in s is positive
and negative respectively.

(b) We again consider U ′′(z+) as given in (15) and show that U ′′(z+A) < U ′′(z+B). First,
by the dispersive order we have gA(zA) = gA(G−1A (0)) < gB(G−1B (0)) and so S ′(z+A) =
gA(zA)/h(s) < gB(zB)/h(s) = S ′(z+B) and thus the greater dispersion in itself decreases
U ′′(z+). Second, we have to consider the effect of the change in wealth as by assumption
zA ≤ zB. The effect from wealth will also be negative if the following holds

Uccc(1− x′(z+)) + UccsS
′(z+)− ∂x′(z+)

∂z
Ucc > 0 (19)

From (16) it can be calculated that, holding S ′(z+) constant,

∂x′(z+)

∂z
=
UscUc − UccUs

U2
c

S ′(z+) > 0. (20)

However, the possibility that Uccs < 0 means that the inequality (19) may not hold. But
if U ′′(z+) ≤ 0 then x′(z+) < 1 and S ′(z+) ≤ −(1 − x′(z+))Ucc/Ucs. Thus, the left hand
side of (19) is greater or equal than

(1− x′(z+))(Uccc − Uccs
Ucc
Ucs

)− ∂x′(z+)

∂z
Ucc.

Given A3, it follows that Uccc−UccsUcc/Ucs ≥ 0 and the inequality (19) holds. Thus, both
the effect from lower wealth and higher dispersion lead U ′′(z+) to decrease. U ′′A(G−1A (r))
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will be lower on an interval (0, r̂) by continuity. Turning to AR(z), we have suppressing
arguments

∂AR(z+)

∂z
=

(x′ − 1)(UcccUc − U2
cc) + UcUcc∂x

′/∂z + S ′(UccUcs − UccsUc)
U2
c

, (21)

which is negative given (20), and A2. Thus, the decrease in z raises AR(z+).

Proof of Proposition 4: Second, start with a distribution of wealth G∗(z) such that
U ′′(z) = 0 on its support [z, z̄]. Then suppose there is a local decrease in dispersion
of wealth so that ĝ(z) > g∗(z) on an interval (z1, z2) but ĝ(z) = g∗(z) on [z, z1]. Thus
because g∗(z) is unchanged on [z, z1] we have x̂(z1) = x(z1) and Û ′′(z1) = U ′′(z1) = 0.
However, the increase in ĝ on (z1, z2) requires (generically) that ĝ′(z1) = Ĝ′′(z1) > G∗′′(z1).
Since by definition S(z) = H−1(G(z)), and H(s) is unchanged, we have Ŝ ′′(z1) > S ′′(z1).
Differentiating x′(z) as given in (6), one obtains that x′′(z) is increasing in S ′′(z) (but its
other arguments x′(z1), S

′(z1), S(z1) and x(z1) are unchanged). Thus, x̂′′(z1) > x′′(z1).
Differentiating U ′′(z) a further time, it is easy to verify that U ′′′(z) is increasing in both
x′′(z) and S ′′(z) - again its other arguments are unchanged. So we have Û ′′′(z1) > U ′′′(z1) =
0. So Û ′′(z) > 0 on (z1, z1 + ε) for some ε > 0. So, as claimed, the wealth distribution
Ĝ(z) is not stable.

Proof of Proposition 5: By the dispersive order we have hA(H−1A (r)) < hB(H−1B (r)).
Together with our other assumptions on minimum and maximum rewards, it implies that
HA(s) and HB(s) are single crossing, with a unique reward ŝ such that HA(ŝ) = HB(ŝ) = r̂.

I first establish that zA < zB, the minimum MESD wealth level is lower in A. Suppose
not so that zA ≥ zB. Then as solutions (c(z), S(z)) to the differential equation system
cannot cross on the (c, S) plane, given our initial conditions that cA(zA) = zA ≥ zB =
cB(zB) we have cA > cB for a fixed level of S. Thus, given ∂φ(c, s)/∂c < 0, as shown in
(23), we would have S ′A(z) < S ′B(z) at any potential point of crossing of SA(z) and SB(z)
(graphed alone as a function of z). Since we have SA(zA) = sA < sB = SB(zB), SA would
never in fact cross SB so that SA(z) < SB(z) everywhere.

If indeed SA(z) < SB(z) everywhere, I show that the implied wealth distributions,
G∗A(z) = HA(SA(z)) and G∗B(z) = HB(SB(z)) do not have the same mean, which is a
contradiction. We look at the inverse distribution functions G−1i (r) on (0, r̂). Since we
have G−1A (0) = zA ≥ zB = G−1B (0), at the first crossing G−1A (r) must cross G−1B (z) from
above, but, because S ′(z) = g(z)/h(S(z)), setting z = G−1(r), we have from (13),

gi(G
−1
i (r)) = hi(H

−1
i (r))φ(c(G−1i (r)), H−1i (r))

for i = {a, p}. Now, hA(·) < hB(·) by the dispersive order. Further,

∂φ(c, s)

∂c
=
−UcUcsU2

cc + U3
ccUs − U2

c (UcccUcs − UccUccs)
(UsUcc − UcUcs)2

< 0, (22)

(this follows from the assumptions A1 and A3) but also we have from A1,

∂φ(c, s)

∂s
=
U2
c (UcssUcc − UccsUcs) + U2

cc(UsUcs − UcUss)
(UsUcc − UcUcs)2

> 0.
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Now, because we have cA > cN and for r ∈ (0, r̂), H−1A (r) < H−1B (r), it follows that
gA(G−1A (r)) < gB(G−1B (r)). But the slope of G−1i (r) is 1/gi(G

−1
i (r)). So a G−1A (r) crossing

G−1B (z) from above is not possible. Finally, for r ≥ r̂ we have, HA(s) < HB(s), so
that given SA(z) < SB(z) we have HA(SA(z)) = G∗A(z) < G∗B(z) = HB(SB(z)). So, if
SA(z) < SB(z) everywhere, then G−1A (r) > G−1B (r) and G∗A(z) < G∗B(z) everywhere, and
the two distributions cannot have the same mean.

So, we have zA < zB, the minimum MESD wealth level is lower in A. Given that
solutions (c(z), S(z)) to the differential equation system cannot cross on the (c, S) plane,
given our initial conditions cA(zA) = zA, SA(zA) = sA and cB(zB) = zB, SB(zB) = sB
respectively, one has either cA < cB for a given level of S or cA > cB. If the latter, then
by the above argument SA(z) and SB(z) would never cross, so it must be that cA < cB
at a fixed level of s. Turning to solutions SA(z) and SB(z) graphed as a function of z
alone, points of crossing of SA(z) and SB(z) are possible. However, because cB > cA and
φ(c, s)/∂c < 0 (as shown previously), then S ′A(z) > S ′B(z) at any such crossing. Thus,
there is at most one crossing where SA(z) = SB(z). There must be a crossing by the above
argument that if SA(z) < SB(z) everywhere, the implied wealth distributions cannot have
the same mean. Hence there is a unique crossing.

But this also implies that the inverses of SA(z) and SB(z) are also single crossing.
That is, the two functions G−1A (HA(s)) = S−1A (s) and G−1B (HB(s)) = S−1B (s) are single
crossing, with G−1A (HA(ŝ)) = ẑ = G−1B (HB(ŝ)). But if the inverse of the distribution
functions are single-crossing then so are distribution functions G∗A(z) and G∗B(z) with
clearly G∗A(z) > G∗B(z) on (zA, ẑ) and G∗A(z) < G∗B(z) on (ẑ, z̄A). Single crossing of this
form with an equal mean implies second order stochastic dominance (Wolfstetter, 1999,
Proposition 4.6).
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Supplementary Content: Online Appendix. This provides some additional results
that characterise further the Most Equal Stable Distribution (MESD) introduced in Section
4 of the main paper.

Proposition A. First, any MESD G∗(z) is differentiable and without gaps in its support.
Second, for a given distribution of rewards H(s), there is a unique solution (c∗(z), S∗(z))
to the simultaneous differential equation system (c′, S ′) as defined by (13) and (14), such
that U(z) = U(c∗(z), S∗(z)) is linear in z for all z ∈ [z, z̄] so that U ′′(z) = 0 for all wealth
levels in (z, z̄). Third, assume A1-A3. Then, for fixed mean wealth µ, there is a unique
distribution of wealth G∗(z) such that H−1(G∗(z)) = S∗(z).

Proof: First, suppose G∗(z) is not differentiable at some point ẑ then, without loss of
generality, assume that limz↓ẑ g(z) = g(ẑ+) > g(z) for all z in some interval (z0, ẑ). Then,
S ′(ẑ+) > S ′(ẑ−). Thus, because U ′′(z) is increasing in S ′(z) (see (8)) and is otherwise
continuous, one has that U ′′(ẑ−) < U ′′(ẑ+). Clearly, it is not possible for both U ′′(ẑ+) = 0
and U ′′(ẑ−) = 0. Thus, the first result is proved. Now, suppose that g(z) = 0 on
some interval [z1, z2] on the interior of [z, z̄]. Because it has been shown that G∗(z) is
differentiable, S ′(z2) = g(z2)/h(H−1(G(z2))) = 0. Then, as S ′(z2) = 0 and thus x′(z+2 ) = 0,
one has U ′′(z+2 ) < 0. Thus, this distribution does not induce U ′′(z) = 0 on its support.

Second, the definition of the differential equation (13), the solution (c∗(z), S∗(z)) im-
plies that U ′′(c∗(z), S∗(z)) = 0. Thus, U(z) is linear as U ′(z) = Uc > 0. Such a solution
must exist by the fundamental theorem of differential equations because both (13) and
(14) are continuously differentiable and bounded. The solution is unique for a given ini-
tial condition, that is, for a given minimum wealth level z. That is, there is a family of
distributions 〈Gi〉 that each satisfy H−1(Gi(z)) = S∗(z), each corresponding to a different
level of minimum wealth zi.

Third, I prove that in this family, average wealth µ is strictly increasing in z. The
equation system (c′, S ′) as defined by (13) and (14) is autonomous, that is a function of
c and S alone and only a function of z through c and S. It thus follows by fundamental
theory of differential equations, that two solution curves (c(z), S(z)) cannot cross on the
(c, S) plane. So, given two solutions with initial conditions (zi, s) and (zj, s) for some
zi < zj, it follows that cj > ci for any given value of S. Now consider the two associated
solutions for rewards, Si(z) and Sj(z) on the (z, S) plane. I claim there is no value of z
such that Si(z) = Sj(z). Suppose not, then because Si(zi) = Sj(zj) = s and zj > zi, at
the first such crossing Sj must cross Si from below. But from (13) one has,

∂φ(c, s)

∂c
=
−UcUcsU2

cc + U3
ccUs − U2

c (UcccUcs − UccUccs)
(UsUcc − UcUcs)2

< 0, (23)

(this follows from A1 and A3) and as cj > ci, we have S ′i > S ′j at such a point of crossing.
Thus, such a crossing is not possible and so, given distinct initial values of endowments
zj > zi, it must hold that Si(z) < Sj(z) for all z. Hence, for a fixed H(s), we have
Gj(z) = H−1(Sj(z)) < H−1(Si(z)) = Gi(z). That is, Gj(z) stochastically dominates Gi(z)
and µj > µi. This implies, that for any given level of average wealth µ, there exists a
unique z such that the mean of G∗(z) is µ.


