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The carbon chain-selective adenylation enzyme TamA: the missing 
link between fatty acid and pyrrole natural product biosynthesis. 

P. M. Marchetti, V. Kelly, J. P. Simpson, M. Ward and D. J. Campopiano 

The marine bacterium Pseudoalteromonas tunicata produces the bipyrrole antibiotic tambjamine YP1. This natural product 

is built from common amino acid and fatty acid building blocks in a biosynthetic pathway that is encoded in the tam operon 

which contains 19 genes. The exact role that each of these Tam proteins plays in tambjamine biosynthesis is not known. 

Here, we provide evidence that TamA initiates the synthesis and controls the chain length of the essential tambjamine fatty 

amine tail. Sequence analysis suggests the unusual TamA is comprised of an N-terminal adenylation (ANL) domain fused to 

a C-terminal acyl carrier protein (ACP). Mass spectrometry analysis of recombinant TamA revealed the surprising presence 

of bound C11 and C12 acyl-adenylate intermediates. Acylation of the ACP domain was observed upon attachment of the 

phosphopantetheine (4’-PP) arm to the ACP. We also show that TamA can transfer fatty acids ranging in chain length from 

C6-C13 to an isolated ACP domain. Thus TamA bridges the gap between primary and secondary metabolism by linking fatty 

acid and pyrrole biosynthetic pathways.

Introduction 

Natural products have long been excellent sources of drugs with 

natural product based treatments comprising over 50% of small 

molecules approved for medical use in the last 35 years1. The 

tambjamines (1, Fig. 1) are a family of yellow-pigmented natural 

products isolated from various marine organisms2,3 that display 

antimicrobial2,4, antimalarial5 as well as mammalian cytotoxic 

activity4,6–8. They contain a core bipyrrole structure that allows 

anion coordination and transport9,10 as well as DNA 

intercalation11. In addition, their essential hydrocarbon tail is 

thought to facilitate their crossing of cell membranes12. These 

properties suggest that tambjamines have promising, broad, 

clinical potential against various diseases including cystic 

fibrosis, where natural ion transporters are impaired9. 

 To date, the most hydrophobic natural tambjamine that has 

been characterised is tambjamine YP113 (2, Fig. 1). It is also the 

only tambjamine whose biosynthetic gene cluster from 

Pseudoalteromonas tunicata has been identified14 (Fig. S1). The 

YP1 cluster is proposed to contain 19 open reading frames 

(ORFs) that encode enzymes which assemble the bipyrrole 

product from amino acid and fatty acid building blocks (Fig. S2, 

Table S1). The majority of these enzymes have been assigned 

putative functions based on the biosynthesis of various natural 

products, including a similar class of molecules, the tri-pyrrole 

containing prodiginines15,16. Biosynthesis of the YP1-specific tail 

was thought to culminate in a long chain amine (3, Fig. 1) which 

attaches to the bipyrrole ring system by an enamine linkage. 

However, the exact details of how this functionality is produced 

has not been explored.  

 Kjelleberg and colleagues postulated that the amine tail is 

derived from C12 lauric acid14. In P. tunicata this is likely to be 

produced by the fatty acid synthase (FAS) machinery17,18. The 

YP1 biosynthetic pathway then harnesses the FAS output and 

converts it to a long chain amine. This can be achieved by the 

commonly used mechanism of fatty acid activation, namely; the 

adenylation of the acid using ATP, followed by reaction with 

coenzyme A (CoASH) to generate a thioester intermediate (Fig. 

S3). Previously it was predicted that this transformation is 

carried out by AfaA, a fatty acid CoA ligase (FACL) from outside 

the Tam cluster. The resulting C12-CoA thioester intermediate 

would then be subjected to downstream processing by Tam 

cluster enzymes to eventually yield the amine (3, Fig. 1). 

 

 

Figure 1. General structure of the bipyrrole core of the tambjamines (1, R represents acyl 

chains ranging from C2 to C12), structure of tambjamine YP1 (2) and structure of the 

proposed amine intermediate that forms the tambjamine YP1 tail (3). 
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Figure 2. Proposed pathway for the formation of the tambjamine YP1 C12 amine tail in P. tunicata. This begins with acyl-adenylate formation catalyzed by the N-terminal TamA 

adenylation domain (ANL, blue) and transfer of the fatty acid to the acyl carrier protein (ACP) domain (purple) which has been converted to the phosphopantetheine (4’-PP) form by 

a 4’-PP transferase (PPT) using coenzyme A (CoASH). The TamA-bound acyl-thioester is then dehydrogenated by TamT (dehydrogenase, DH) and thioester reduction and 

transamination is catalyzed by the bifunctional TamH (thioester reductase, TR, transaminase, TA) which releases the long chain amine (the order of the TamT and TamH reactions is 

unknown). 

Results and Discussion 

We were surprised that the proposed adenylation enzyme 

for this reaction (AfaA) was located outwith the Tam cluster. 

Our revisiting of the cluster led us to an ORF with a previously 

un-ascribed function, tamA, which we hypothesised could fulfil 

this role. Domain assignment and sequence alignment of the 

encoded ~75kDa protein using BLAST19 suggested that it is 

comprised of two fused domains; an N-terminal adenylation 

enzyme (ANL, ~65 kDa)20,21 and a C-terminal acyl-carrier protein 

(ACP, ~10 kDa, Figure 2 and Figure S4)22,23. Therefore, we 

hypothesised that TamA catalyses ATP-dependent activation of 

lauric acid to generate lauryl-adenylate, which it then uses to 

deliver C12 to the 4’-phosphopantethiene (4’-PP) arm of the C-

terminal ACP domain (Fig. 2). This pathway has the advantage 

over the CoASH-dependent pathway by keeping the fatty acid 

thioester intermediate covalently protein-bound and siphoning 

it from the fatty acid pool for subsequent biosynthetic steps. 

The C12 thioester is predicted to be further modified by 

dehydrogenation by the FAD-dependent enzyme TamT, that 

installs the 3, 4 double bond (Table S1). Finally, the bifunctional 

TamH is thought to catalyse the unusual reduction and 

amination to yield a C12 amine. The C-terminal domain, a 

predicted reductase, initiates the two-step reaction by 

generating a C12 aldehyde and the N-terminal domain catalyses 

the amino acid dependent transamination24,25. The resultant 

amine (3, Fig. 1) can finally be condensed with the bipyrrole 

backbone to form tambjamine YP1 (Fig. S2). 

Recombinant P. tunicata TamA was prepared from E. coli 

with an N-terminal 6xHis affinity tag26 (Fig. S5). It was purified 

to homogeneity by standard nickel affinity and gel filtration 

chromatography which showed it to be monomeric (Fig. S5). 

The mass (75271±2 Da) of the purified TamA was determined 

by denaturing liquid chromatography electrospray ionization - 

mass spectrometry (LC ESI-MS, Fig. 3a and Fig. S6). This is 

consistent with the predicted value (75270 Da) of the apo-

protein lacking the 4’-PP post-translational modification on the 

serine residue of the ACP domain. We employed the commonly 

used Bacillus subtilis Sfp/CoASH system in an effort to convert 

the apo-TamA ACP domain to the holo-form27,28. However, the 

expected mass shift that accompanies the addition of a 4’-PP 

(340 Da) was not observed (Fig. 3b). Instead, the observed mass  

 

Figure 3. Denaturing mass spectrum over the charge states 60+ to 58+ of (a) apo-
TamA and (b) holo-TamA showing a mass difference of 513 Da. The native mass 
spectrum (c) of TamA as-purified shows two species for each charge state (18+ to 
16+). The higher abundance species is consistent with a TamA:acyl-adenylate 
bound complex. 
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difference (Δ513±3 Da) is 173 Da larger than anticipated. This 

mass suggested that the TamA ACP domain had undergone 

some form of acylation as well as 4’-PP modification. For this to 

occur in the absence of any fatty acid in the Sfp/CoASH reaction, 

we hypothesised that the recombinant TamA was isolated with 

a bound acyl-adenylate. Thereafter, upon 4’-PP modification 

with Sfp, the TamA ANL domain would catalyse transfer of the 

acyl chain from the already present acyl-adenylate to the newly-

formed holo-ACP domain. 

 To determine if an acyl-adenylate was non-covalently bound 

in the as-purified TamA, we employed native mass 

spectrometry that we recently used to observe a 

BioW/pimeloyl-adenylate complex29. Fig. 3c shows the native 

MS of TamA directly after purification with two species 

observed over three charge states (18+ to 16+) with nominal 

masses of 75800 and 75280 Da. The average mass difference of 

these species (~520 Da) is close to the calculated mass of the 

expected C12 lauryl-adenylate (529 Da). Although this native 

MS method is not accurate enough to determine the exact mass 

of the bound molecule30 it does confirm the presence of a non-

covalently bound species. We attempted to remove the acyl-

adenylate from the protein active site by incubating it overnight 

with CoASH and then repeating the native MS. However, there 

was no change in the mass spectrum suggesting that CoASH is 

not a substrate for the TamA ANL. 

 Based on the YP1 structure we expected TamA to utilise C12 

fatty acids as substrates. However, the mass we observed of the 

4’-PP modified and acylated full length TamA was not consistent 

with a C12 thioester attached to the ACP domain. Attachment 

of a C12 fatty acid should result in a mass increase of 522 Da 

(182 Da larger than 4’-PP) but the mass shift we observed was 

513 Da (173Da larger than 4’-PP, Fig. 3b). Since this does not 

correspond to the mass of any unsaturated fatty acids, we 

postulated that this species could be holo-TamA modified by a 

mixture of fatty acid thioesters. The small mass shifts expected  

 

Figure 4. Denaturing MS analysis of the 7+ charge state of (a) holo-TamA ACP 
domain and (b) holo-TamA ACP after incubation with apo-TamA. 

from fatty acids of similar length may not resolve due to the 

large size and high charge state of the full length protein.  

To improve the resolution of the MS analysis, we sought to 

capture the fatty acid moiety on a smaller ACP protein. So, 

guided by our domain analysis, the predicted ACP portion of the 

enzyme was expressed and purified (Fig. S7). LC ESI-MS analysis 

revealed that the ACP domain was isolated in the apo-form 

(predicted mass = 10967.5 Da, observed mass = 10967.1±0.2 Da, 

Fig. S8). Quantitative conversion to the holo-ACP form was 

achieved with the Sfp/CoASH system (predicted mass = 11307.8 

Da, observed mass = 11307.6±0.1 Da, Fig. 4a). This holo-ACP 

domain was subsequently incubated with full length, as-purified 

apo-TamA (with acyl-adenylate(s) bound) to attempt the 

thiolation reaction in trans – in effect an intermolecular, trans-

thioesterification. LC ESI-MS analysis of this reaction revealed 

the appearance of two new acyl-ACPs. These correspond to the 

addition of 168.1±0.2 and 182.1±0.4 Da respectively (Fig. 4b) 

and these mass differences are consistent with the attachment 

of a C11 and C12 fatty acid to the holo-ACP (predicted mass, 

168.3 and 182.3 Da respectively). Although the presence of a 

C11 fatty acid is unexpected since only the C12 form of YP1 has 

been reported for P. tunicata, other organisms produce 

tambjamines with varying acyl chain lengths2,4. In the E. coli host 

we presume the enzyme has picked up the C11 and C12 forms 

from the endogenous fatty acid pool. This data also shows that 

the catalytic TamA ANL domain is able to transfer acyl chains to 

an isolated ACP.  

 This convenient transfer reaction was used to determine the 

fatty acid chain length specificity of the ANL domain. Holo-TamA 

produced after 4’-PP modification of the as-purified TamA was 

incubated with different fatty acids, Mg2+, ATP and the holo-

TamA ACP domain. LC ESI-MS analysis of the ACP domain 

showed the extent of acylation for a range of fatty acids 

between C2 and C16 (Fig. 5, Table S2). The data reveals that 

TamA is able to utilise fatty acids from C6-C13 (the C14 form is 

barely detectable) however, conversion to the acylated form is 

highest for C12. The efficiency of the reaction drops off 

substantially outwith the C12-C13 substrates suggesting a very 

specific substrate pocket in the ANL active site. In order to test 

the specificity of the ANL domain towards other ACPs, E. coli 

ACP (Fig. S9) was also used in the assay in place of the 

standalone TamA ACP domain. However, TamA is unable to 

transfer the C12 fatty acid to E. coli ACP suggesting a highly 

specific recognition between the ANL and ACP domains (Fig. 

S10). It would be interesting to explore this specificity further 

with a range of ACPs from different species 22,23. 

 With convincing data supporting acylation of TamA we 

wanted to clearly assign the site of 4’-PP attachment. The 

unusual TamA ACP domain contains two conserved DSV 4’-PP 

motifs22,23 but the TamA sequence analysis suggests that the 

second DSV motif (residues 621-623) is the most likely site of 

modification. Holo-TamA was denatured and digested with 

trypsin and the resulting peptide mixture was analysed by ESI-

MS. Masses for the acylated 4’-PP peptides were not observed, 

potentially due to the instability of the thioester bond under the 

denaturation conditions. However, a peptide mass consistent 

with the 4’-PP on residue S622 was observed and subjected to  
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Figure 5. Denaturing ESI-MS analysis of the 7+ charge state of the holo-TamA ACP domain after incubation with holo-TamA, Mg2+, ATP and fatty acids ranging in length from C2-C16. 

The values of the deconvoluted masses are described in Table S2.  

MS/MS analysis. A combination of  4’-PP ejection31 and peptide 

sequencing confirmed S622 as the site of the 4’-PP modification 

(Fig. S11). 

 Diffraction quality crystals of recombinant TamA have not 

been obtained so we used homology modelling to give some 

insight into the TamA structure. The ANL domain displays 

highest similarity (~30%) to fatty acid AMP-ligases (FAALs, Fig. 

S12)32–35 which activate fatty acids for transfer to the terminal 

4’-PP thiol of a separate ACP. FAALs are homologous to FACLs 

but are unable to use free CoASH as a substrate. CoASH is in fact 

blocked from binding by an insertion loop common to all FAALs, 

that acts as a gatekeeper to the active site, released upon ACP 

binding35. However, the structural model could not be built 

using these enzymes as there are no reported structures of 

either a FAAL-ACP fusion or a FAAL in complex with its cognate 

ACP. 

 Nonetheless, TamA is a member of the Type I fold of the ANL 

enzyme superfamily which includes firefly luciferases, acyl-CoA 

synthetases and the adenylation domains of nonribosomal 

peptide synthetases (NRPS). Since it shares ~20% sequence 

identity with both NRPS ANL and peptide carrier protein (PCP) 

domains a model of the TamA structure was built with Phyre236 

software using four homologous NRPS enzyme sequences (Fig. 

S13, 14)37–41. The model displays the canonical Type I ANL fold 

as well as the recognizable four-helical bundle of the carrier 

protein domain with the 4’-PP modification on S622 located22,23. 
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This working model allows us to identify residues potentially 

involved in substrate binding and catalysis. 

Conclusions 

In conclusion, we have provided evidence that allows us to 

assign an important function to the previously uncharacterized 

TamA from the tambjamine biosynthetic pathway. Throughout 

isolation the recombinant enzyme stabilizes a mixture of C11 

and C12 fatty acid adenylates. We have also shown that the ANL 

domain is able to catalyse adenylation and thiolation reactions 

on its fused ACP partner as well as transferring fatty acids of 

various chain lengths to its separate ACP domain. Since C12 is 

the reported chain length of tambjamine YP1, we postulate that 

TamA initiates the synthesis of the essential amine chain. With 

the acylated forms of TamA in hand, we can now explore their 

interactions with the subsequent enzymes, TamT and TamH, in 

the biosynthetic pathway. Since TamA links fatty acid and 

pyrrole biosynthesis, our work lays the foundations for 

engineering this enzyme to guide production of novel 

tambjamines with enhanced biological activity. 
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