Differential Enzymatic 16O/18O Labeling for the Detection of Cross-Linked Nucleic Acid-Protein Heteroconjugates

Citation for published version:

Digital Object Identifier (DOI):
10.1021/acs.analchem.7b01625

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Analytical Chemistry

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Differential Enzymatic $^{16}\text{O}/^{18}\text{O}$ Labelling for the Detection of Cross-Linked Nucleic Acid-Protein Heteroconjugates

Fiona J. Flett †, Timo Sachsenberg‡, Oliver Kohlbacher†‡, C. Logan Mackay § and Heidrun Interthal †
† Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, Scotland, UK
‡ Center for Bioinformatics, Quantitative Biology Center and Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany § School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland, UK
‖ Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany

ABSTRACT: Cross-linking of nucleic acids to proteins in combination with mass spectrometry permits the precise identification of interacting residues between nucleic acid-protein complexes. However, the mass spectrometric identification and characterisation of cross-linked nucleic acid-protein heteroconjugates within a complex sample is challenging. Here we establish a novel enzymatic differential $^{16}\text{O}/^{18}\text{O}$ labelling approach, which uniquely labels heteroconjugates. We have developed an automated data analysis workflow based on OpenMS for the identification of differentially isotopically labelled heteroconjugates against a complex background. We validated our method using synthetic model DNA oligonucleotide-peptide heteroconjugates which were subjected to the labelling reaction and analysed by high resolution FT-ICR mass spectrometry.

UV cross-linking in combination with mass spectrometry is a powerful technique which can be applied to nucleic acid-protein complexes in order to identify proteins, peptides and the amino acids involved in intermolecular interactions within nucleic acid-protein complexes. Non-covalent nucleic acid-protein interactions are firstly stabilized by UV cross-linking to form covalent heteroconjugates. Following protease and nuclease digestion and an enrichment step, such heteroconjugates can then be characterised by mass spectrometry to identify the cross-linked peptides and amino acids. However, the mass spectrometric identification of cross-linked nucleic acid-protein heteroconjugates within a complex mixture is still challenging and cannot be performed by conventional MS search engines. Here we introduce a novel sequential differential enzymatic $^{16}\text{O}/^{18}\text{O}$ isotope labelling strategy which has been designed to facilitate the mass spectrometric identification of oligonucleotide-peptide heteroconjugates, allowing them to be readily distinguished from non-cross-linked peptides and their detection can be easily automated.

Normally following UV cross-linking, heteroconjugates are digested with trypsin resulting in a mixture of oligonucleotide-peptide heteroconjugates and non-cross-linked peptides and oligonucleotides. To establish this method we have used synthetic model DNA oligonucleotide-peptide heteroconjugates, labelled them using our differential labelling approach described in Figure 1 and, then analysed them by high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Firstly, heteroconjugates are labelled by post-digestion trypsin catalysed labelling in the presence of either $^{16}\text{O}_2$ or $^{18}\text{O}_2$. During this step, heteroconjugates are differentially labelled at the C-terminus of the peptide moiety with $^{16}\text{O}_2$/$^{18}\text{O}_2$. Non-cross-linked peptides are also labelled, therefore to clearly identify heteroconjugates, a second labelling step is required. Nuclease P1 digestion in the presence of either $^{16}\text{O}_2$ or $^{18}\text{O}_2$ allows heteroconjugates to be uniquely labelled with either $^{16}\text{O}_2$/$^{18}\text{O}_2$ at the 5’ phosphate of the remaining DNA moiety. Following the two step labelling approach, $^{16}\text{O}_3$ (I, isotopomers) and $^{18}\text{O}_3$ (I, isotopomers) differentially labelled samples are mixed 1:1 and analysed by LC/MS. The differentially labelled heteroconjugates are unambiguously identified by the presence of a characteristic doublet, in which the monoisotopic peaks are clearly separated by 6 Da.

![Figure 1](image)

Figure 1. Sequential differential enzymatic $^{16}\text{O}/^{18}\text{O}$ labelling of nucleic acid-peptide heteroconjugates. Oligonucleotide-peptide heteroconjugates are first labelled by trypsin in $^{16}\text{O}_2$ or $^{18}\text{O}_2$, to label the C-terminus of the peptide moiety with $^{16}\text{O}_2$ or $^{18}\text{O}_2$. Heteroconjugates are then digested and labelled using nuclease P1 to label the 5’ monophosphate of the DNA moiety with $^{16}\text{O}_3$ or $^{18}\text{O}_3$. Samples are then combined 1:1 and analysed by LC/MS. The resulting heteroconjugates are labelled with $^{16}\text{O}_3$ or $^{18}\text{O}_3$, which appear as a characteristic doublet of I, and I, isotopomers, separated by 6 Da. Amino acids are depicted as green circles, an
oligonucleotide as a black line, and a single nucleoside 5' monophosphate as a single small grey circle.

In addition, we have developed an OpenMS data analysis pipeline in which the detection of 6 Da doublets is automated, therefore allowing the easy identification of differentially labelled nucleic acid-peptide heteroconjugates within a LC/MS data set. Thus a complete workflow for the labelling and detection of nucleic acid-peptide heteroconjugates is illustrated which is applicable to any nucleic acid-protein cross-linking study.

MATERIALS AND METHODS

Chemicals, Solvents and Reagents

All chemicals, solvents and reagents were purchased from Sigma-Aldrich or Fisher Scientific. For mass spectrometry, solvents were of LC/MS grade or higher. For all stable isotope labelling experiments,

\[\text{H}_2\text{O} \]

was purchased from BaseClick, Germany. Where

\[\text{F} \]

was 4-azidophenylalanine, was purchased from Eurogentec, UK. For heteroconjugates

\[\text{HC20} \]

was 4, 1

2

\[\text{HC20} \]

and 50 mM

\[\text{NH}_4\text{HCO}_3 \]

in 50 mM

\[\text{NH}_4\text{HCO}_3 \]

was added to a final concentration of 1 mM. Samples were then reduced to dryness using a speed vac and digested with nuclease P1 as described above but in 50

\[\mu \text{L} \]

(10

\[\mu \text{M} \]

for titanium dioxide heteroconjugate enrichment, samples were acidified by 2% formic acid, then loaded onto gelerader tip microcolumns packed in-house with titanium dioxide (TiO2 Sachtopore NP 5

\[\mu \text{M} \]

/300A) and washed 3 times with 30

\[\mu \text{L} \]

of 2% formic acid (diluted in

\[\text{H}_2\text{O}/\text{H}_2\text{SO}_4 \]

). Samples were eluted with 20

\[\mu \text{L} \]

of 1% ammonia into 10% formic acid, then reduced to dryness and reconstituted in 50

\[\mu \text{L} \]

for mass spectrometry, ion data analysis pipeline of H
difficultly labelled samples, containing 5

\[\mu \text{M} \]

of each heteroconjugate, were combined immediately prior to analysis by monolith-HPLC/ESI-FT-ICR-MS in positive mode.

FT-ICR Mass Spectrometry

Analysis was performed using reverse-phase high performance liquid chromatography (RP-HPLC) using an U3000 HPLC system (Dionex, UK) coupled to the standard electrospray source (Bruker Daltonics) and a Solarix FTICR mass spectrometer equipped with a 12 T superconducting magnet (BrukerDaltonics). Acquisition of LC/MS data was controlled by HyStar, version 3.4, build 8 (Bruker Daltonics).

For analysis of labelled HC20-A in negative mode, analysis was performed as described previously.

For analysis of nuclease P1 digested and labelled, RP-HPLC was performed using a monolith column (500

\[\mu \text{M} \]

x 50 mm pepswift poly(styrene/divinyl benzene) (PSDVB) column, Thermo Finnigan, USA). Ten

\[\mu \text{L} \]

of 10

\[\mu \text{M} \]

for mass spectrometry, ion accumulation times were typically 0.3 s. Ions were trapped using a 6

\[\text{cm} \times 10 \text{ cm} \]

Infinity cell. Each individual LC/MS spectrum was the sum of two acquisitions. Transient data size was typically 1 or 2 Mword for each acquisition, and sine-hell multiplication apodization was applied to each transient during FT-MS postprocessing. All mass spectra were analyzed using DataAnalysis software version 4.1 SR1 build 362.7 (Bruker Daltonics).

OpenMS Data Analysis Pipeline

Data was exported to mzML files using CompassXport 3.0 (Bruker Daltonics). The mzML files formed the input for the data analysis pipeline outlined in Figure 2. To reduce the impact of low intensity signals on doublet detection, a signal processing step was performed that retains the highest intensity mass peak in a sliding window of size 0.2 Thomson using the OpenMS tool SpectraFilterWindowMower. In the

50 mM NH4HCO3, in either 16O or 18O. Trypsin catalysed labelling of all samples was then performed as described above, in 50

\[\mu \text{L} \]

(10

\[\mu \text{M} \]

of each heteroconjugate and 10, 20 or 50

\[\mu \text{M} \]

pre-digested BSA). Following trypsin labelling samples were incubated at 100°C for 10 min and phenylmethylsulfonyl fluoride was added to a final concentration of 1 mM. Samples were then reduced to dryness using a speed vac and digested with nuclease P1 as described above but in 50

\[\mu \text{L} \]

(10

\[\mu \text{M} \]

). Heteroconjugates were analysed in positive mode as described previously.

For all heteroconjugates the 20-mer oligonucleotide (5’GTAGAGGATCTAAAGACXT-Biotin-TEG3’), where X was 5-ethyl-2-deoxyuridine (5EdU), was purchased from BaseClick, Germany. For heteroconjugate HC20-A, the peptide (LDIAFGTF*ATK), where F* was 4-azidophenylalanine, was purchased from Eurogentec, UK. For heteroconjugates HC20-B, HC20-C and HC20-D, peptides B (LDNAHFL*GDATK), C (LDFAHFL*GDATK) and D, (LDNSHF*GDATK) were synthesised in-house. For click chemistry, the Oligo-Click Kit was used as per the manual (BaseClick, Germany) and as described previously.

Trypsin Catalysed Labelling of HC20-A

Two reactions were set up in parallel to label HC20-A with either 16O or 18O. Prior to labelling, 500 pmol of HC20-A was washed in 3 x 10

\[\mu \text{L} \]

and buffer B, and

\[\text{HC20} \]

was reconstituted in 50

\[\mu \text{L} \]

containing 50 mM

\[\text{NH}_4\text{HCO}_3 \]

and 10 mM CaCl2 and 2

\[\mu \text{g} \]

trypsin (Sequencing Grade Modified Trypsin, Promega, 1

\[\mu \text{g} \]

stock dissolved in 50

\[\mu \text{M} \]

NH4HCO3). Reactions were incubated at 37°C for 5 hours. Then 10

\[\mu \text{L} \]

of each reaction was analysed by RP-HPLC/ESI-FT-ICR-MS in negative mode as described previously for HC20-A.

Nuclease P1 Labelling of HC20-A

Two reactions were set up in parallel to digest and label HC20-A with either 16O or 18O. Prior to labelling, 200 pmol of HC20-A was washed as described above. For labelling, HC20-A was reconstituted in 20

\[\mu \text{L} \]

(10

\[\mu \text{M} \]

containing 50

\[\mu \text{M} \]

and 0.1 units nuclease P1 (N8630, Sigma-Aldrich, 250 units dissolved in 1

\[\mu \text{L} \]

). Reactions were incubated at 50°C for 30 min then 10

\[\mu \text{L} \]

of each reaction was analysed individually by monolith-HPLC/ESI-FT-ICR-MS in positive mode as described below.

Differential Sequential Labelling of Heteroconjugates

All labelling reactions were set up in parallel for

\[\text{H}_2\text{SO}_4 \]

and

\[\text{H}_2\text{O}_2 \]

or, samples containing the indicated mixtures of HC20-A, HC20-B, HC20-C and HC20-D, in molar ratios of 1:1, 1:2 or 1:5 with BSA tryptic peptides (10

\[\mu \text{M} \]

BSA pre-digested) in
second step of the pipeline, we configure the tool FeatureFinderMultiple to detect eluting species exhibiting the characteristic 6 Da shift with m/z tolerance set to 5 ppm. The FileFilter tools then discarded all detected singlets and only doublets were retained. The list of 6 Da doublets is then exported to a tabular text file using the TextExporter tool.

Figure 2. Overview of the data processing pipeline. Raw data is exported and input into the automated OpenMS data processing workflow (shaded boxes). Each node corresponds to an OpenMS pipeline tool (name in italic letters) that performs a distinct data processing step. Detected doublets are then written as tabular file and can be inspected using a spreadsheet application.

RESULTS

Trypsin-Catalysed Labelling of Heteroconjugates

Serine proteases including trypsin, LysC and GluC, can catalyse the incorporation of two 18O atoms at the carboxyl-terminus of a proteolytic peptide in the presence of the heavy isotopic form of water H$_2^{18}$O. For 18O labelling, proteolytic digestion can be decoupled from enzyme catalysed oxygen exchange, which offers the advantage that both reactions can be performed separately. Therefore post digestion trypsin catalysed oxygen exchange can be optimised to promote the incorporation of two 18O atoms and achieve a high labelling efficiency, which is required for the differential labelling strategy.

To demonstrate efficient post-digestion trypsin-catalysed 18O labelling of DNA-peptide heteroconjugates, two labelling reactions were set up in parallel to label a synthetic DNA oligonucleotide-peptide heteroconjugate HC20-A with either 18O or 18O, and then analysed individually by RP-HPLC/ESI-FT-ICR mass spectrometry in negative mode (Figure 3A).

In the presence of H$_2^{18}$O, the monoisotopic peak of HC20-A was increased in mass by 4 Da following the incorporation of two 18O atoms into the C-terminus of the peptide moiety, to form the I_0 isotopomer. The high mass resolving power of FT-ICR mass spectrometry allowed the clear distinction between the I_0 and I_2 isotopomers. The associated change in mass did not affect the HPLC retention time of the HC20-A.

Figure 3. Trypsin and nuclease P1-catalysed 16O/18O labelling of HC20-A. (A) RP-HPLC/ESI-FT-ICR-MS negative mode mass spectra of HC20-A following trypsin-catalysed labelling. The [M-4H]$^+_{16}$ ions of I_0 and I_2 isotopomers are present at m/z 1996.2232 and 1997.2254 in H$_2^{16}$O and H$_2^{18}$O respectively; and (B) Monolith-HPLC/ESI-FT-ICR positive mode mass spectra of HC20-A following nuclease P1 digestion. The [M+2H]$^{2+}_{16}$ ions of I_0 and I_2 isotopomers are present at m/z 778.8336 and 779.8358 in H$_2^{16}$O and H$_2^{18}$O respectively. An asterisk indicates remaining I_0 species present in the H$_2^{16}$O labelled sample.

Nuclease P1-Catalysed Labelling of Heteroconjugates

Nuclease P1 digests the DNA moiety of HC20-A into a single nucleoside 5’ monophosphate covalently bound to the peptide via the triazole linkage. In the presence of H$_2^{18}$O, we expected nuclease P1 to label heteroconjugates by incorporating a single 18O atom on the remaining nucleotide.

To demonstrate nuclease P1-catalysed labelling, two reactions were performed in parallel to digest and label HC20-A with either 16O or 18O, and then analysed individually by RP-HPLC/ESI-FT-ICR mass spectrometry in positive mode (Figure 3B). In the presence of 95% H$_2^{18}$O, the monoisotopic peak of the digested HC20-A had increased in mass by 2 Da following the incorporation of a single 18O atom into the remaining 5’ monophosphate, to form the I_2 isotopomer. Although very efficiently labelled, 18O labelling to form the I_2 isotopomer was not 100%, with some I_0 isotopomer also present (Figure 3B, annotated with an asterisk), likely due to the occurrence of minimal back exchange with residual 16O. Again, the associated change in mass did not affect the retention time of the digested HC20-A. In conclusion, HC20-A can be 16O/18O labelled by either trypsin introducing a 4 Da shift or nuclease P1 introducing a 2 Da shift.

Differential Sequential Labelling of Heteroconjugates

To uniquely label heteroconjugates with 18O, we next combined both the trypsin and nuclease P1 labelling steps. To demonstrate this, two reactions were performed in parallel to label heteroconjugate HC20-A with either 16O or 18O. Trypsin catalysed 18O labelling was performed first, and following this, to prevent digestion of nuclease P1 in the next step, trypsin was chemically and heat inactivated. Next, nuclease P1 catalysed 18O labelling was performed. Samples were then analysed individually and mixed 1:1, and analysed by RP-HPLC/ESI-FT-ICR mass spectrometry in positive mode. In the presence of H$_2^{18}$O, the monoisotopic peak of HC20-A was increased in mass by 6 Da following the dual labelling approach (Figure 4A and 4B) to form the I_0 isotopomer. When the labelled samples were mixed 1:1 prior
to analysis, the heteroconjugate was detected as a doublet, with the co-eluting \(I_0 \) and the \(I_s \) isotopomers, 6 Da apart, within a single LC/MS run (Figure 4, lower spectrum).

In a UV cross-linking experiment, heteroconjugates are present within a complex sample containing a background of non-cross-linked species. Therefore, to ensure differential labelling of heteroconjugates was efficient within a more complex sample, we next performed differential labelling of HC20-A within a tryptic digest of BSA. In addition to HC20-A we employed a range of heteroconjugates which varied in their overall sequence and charge to ensure labelling and detection was not restricted to HC20-A. Differential labelling was performed as previously.

A. \(^{16}\text{O} \) labelled

\[
\begin{align*}
\text{[M+2H]}^{+} & \text{^{16}O}_2 \\
I_0 & \text{ } 6 \\
I_s & \text{ } 6 \\
\end{align*}
\]

B. \(^{18}\text{O} \) labelled

\[
\begin{align*}
\text{[M+2H]}^{+} & \text{^{18}O}_2 \\
I_0 & \text{ } 6 \\
I_s & \text{ } 6 \\
\end{align*}
\]

C. 1:1 \(^{16}\text{O}:^{18}\text{O} \) labelled

\[
\begin{align*}
\text{6 Da} & \text{ } 6 \\
\end{align*}
\]

Figure 4. Differential \(^{16}\text{O}/^{18}\text{O} \) labelling of the heteroconjugate. Monolith-HPLC/ESI-FT-ICR positive mode mass spectra of differentially labelled HC20-A. Differentially \(^{16}\text{O} \) and \(^{18}\text{O} \) labelled samples were either run individually (A and B), or mixed 1:1 prior to MS analysis (C). The \([\text{M+2H}]+\) ions of \(I_0 \) and \(I_s \) isotopomers are present at \(m/z \) 778.8535 and 781.8569 in \(^{16}\text{O} \) and \(^{18}\text{O} \) respectively.

Heteroconjugates HC20-A, -B, -C and -D were observed to elute at 8.0, 6.4, 7.4 and 6.4 min respectively as indicated on the total ion chromatogram shown in Figure 5. All four heteroconjugates were efficiently labelled and observed as unique doublets within this complex sample. In Figure 5B, the mass spectrum at 6.4 min is shown, in which, both, differentially labelled HC20-B and differentially labelled HC20-D were present as unique 6 Da doublets within this spectrum. In conclusion, a range of heteroconjugates can be uniquely and efficiently labelled within a more complex sample using a two-step differential labelling approach.

Detection of Differentially Labelled Heteroconjugates

In the experiments described above, differentially labelled heteroconjugate doublets were easily identified as we employed defined synthetic model heteroconjugates. However finding unknown doublets in a real cross-linking experiment, is a challenging task. To automate the detection of differentially labelled doublets and allow the efficient detection of potential heteroconjugate species, we developed an OpenMS data analysis pipeline. Doublets detected by the pipeline represent potential heteroconjugate precursor ions which could then be further characterised and confirmed by MS/MS analysis. If the detected doublet is a true heteroconjugate, fragmentation of both the light and heavy labelled species would give complementary labelled fragment spectra. The \(^{18}\text{O} \) labelling may also aid in sequencing of the nucleic acid-peptide heteroconjugates, similar to its application for peptide and cross-linked peptide de novo sequencing.

To test the data analysis pipeline, data was analysed from samples in which equimolar mixtures of BSA tryptic peptides and HC20-B, HC20-C and HC20-D were differentially labelled in triplicate and analysed by LC/MS. The pipeline detected four 6 Da doublet species which were present in all three replicates whereas no doublets were detected in control samples containing only labelled BSA peptides. The detected doublets correspond to the \([\text{M+2H}]+\) and \([\text{M+3H}]+\) ions of HC20-B, and HC20-D (Table 1). HC20-C was not detected, but manual inspection of the data revealed that a highly abundant BSA peptide with a similar mass coeluted with HC20-C, which resulted in an overlapping isotopic distribution and interfered with the detection of HC20-C by the pipeline. This highlights the importance of enrichment strategies which are required in all cross-linking workflows to remove the majority of excess non-cross-linked species and thus enable the identification of cross-linked heteroconjugates.

To test if our labelling strategy is compatible with enrichment methods and if enrichment could improve the detection of heteroconjugates, the samples were enriched by using titanium dioxide columns. Importantly, the 6 Da label of heteroconjugates was maintained following
enrichment, and in addition, HC20-C could now be detected by the pipeline (Table 1).

<table>
<thead>
<tr>
<th>Molar Ratio of BSA Peptides/Heteroconjugates</th>
<th>1:1</th>
<th>2:1</th>
<th>5:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide enrichment</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HC20-B ([\text{M}+2\text{H}]^2)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>(m/z = 781.3070)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>HC20-C ([\text{M}+3\text{H}]^3)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>(m/z = 797.8197)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>HC20-D ([\text{M}+2\text{H}]^2)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>(m/z = 789.3045)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>HC20-D ([\text{M}+3\text{H}]^3)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>(m/z = 726.5387)</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
</tbody>
</table>

Table 1. Heteroconjugates detected by the OpenMS pipeline, with and without titanium dioxide enrichment.

In a true cross-linking experiment, owing to low cross-linking efficiency, heteroconjugates are present in substoichiometric amounts compared with non-cross-linked peptides. Therefore the pipeline was tested using different molar ratio’s of BSA peptides: heteroconjugates. At a ratio of 2:1, the pipeline detected HC20-B and HC20-D (Table 1). However with a larger excess of BSA peptides at 5:1, only a single HC20-B \([\text{M}+2\text{H}]^2\) ion was detected. Following titanium dioxide enrichment, a further three heteroconjugates ions were detected (Table 1). Titanium dioxide enrichment increased the sensitivity of the detection in every scenario tested.

In conclusion, the OpenMS-based analysis pipeline efficiently detects differentially labelled heteroconjugates within an LC/MS data set. In cross-linking experiments, candidate heteroconjugate species could be confirmed with targeted MS/MS approaches. Lastly, our labelling strategy is compatible with standard heteroconjugate enrichment protocols, a key step in all cross-linking workflows.

DISCUSSION

UV cross-linking and mass spectrometry is a useful method to characterise interactions in different nucleic acid-protein complexes. However, the identification of heteroconjugates is a challenging task. We have developed a novel isotopic differential labelling strategy to uniquely label heteroconjugates and enable their detection by an OpenMS data analysis pipeline by the presence of isotopic doublets. This labelling approach could also be used to complement and increase confidence in heteroconjugates identified by the recently developed software program RNPtr. RNPtr detects heteroconjugates by calculating and searching for a variety of nucleic acid modifications. Length and composition of nucleic acid moieties remaining after nuclease digestion are variable and any amino acid could potentially be cross-linked. Therefore, a large number of nucleic acid modifications must be considered in RNPtr database search, and conventional search engines are not suitable for such analysis.

Nuclease P1 digestion alone can uniquely label heteroconjugates. However, automated detection of 2 Da differentially labelled heteroconjugates doublets is challenging due to the overlapping isotope distributions of the

| I0 and I1 isopomers. We therefore combined both the trypsin and nuclease P1 labelling steps to uniquely label heteroconjugates (with 6 Da), and provide optimal resolution between the isotope distributions of the
| I0 and I1 isopomers. In addition, the 6 Da shift is small enough to allow accurate detection of the mass difference using high resolution mass spectrometry. Labelling heteroconjugates with \(^1\text{H}^2\text{O}\) (6 Da) allows them to be easily distinguished from contaminants such as non-cross-linked (but labelled) peptides (4 Da) and nucleic acids (2 Da) which are commonly present in cross-linking samples, even following heteroconjugate enrichment.

This labelling approach is applicable to existing methods published thus far for generating nucleic acid-peptide heteroconjugates, as it exploits the protease and nuclease digestion steps necessary for the sample preparation of heteroconjugates. This method can detect heteroconjugates with a variety of nucleic acid modifications which have been UV cross-linked with native DNA or photoactivatable DNA, or cross-linked chemically, and does not require that the cross-linking mechanism and any associated losses are known in advance. It also does not require specially synthesized, isotopically labelled nucleic acids, therefore would be suitable for cross-linking experiments using any synthetic nucleic acid as well as nucleic acids in or isolated from cells. Synthetic heteroconjugates as described here may be included to serve as internal controls for efficient labelling and enrichment. This labelling approach is relevant to both the study of DNA-protein and RNA-protein heteroconjugates, and would be compatible with other serine proteases and nucleases which act by a hydrolysis mechanism. Lastly, the steps of protease and nuclease labelling are flexible and could be reversed or incorporated at any stage within the sample preparation and enrichment protocol as appropriate for the user. In conclusion, the differential labelling approach introduced and developed here facilitates the identification of cross-linked nucleic acid-peptide heteroconjugates by mass spectrometry.

AUTHOR INFORMATION

Corresponding Author

* Email: heidrun.interthal@ed.ac.uk

Notes

The authors declare no competing financial interest. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD003673. The OpenMS workflow can be found on our website at http://www.OpenMS.de/workflows.

ACKNOWLEDGMENT

We would like to thank David Clarke and Jeffrey G. A. Walton for helpful discussion. This work was supported by Medical Research Council Career Development Award G0700257 and a Scottish Universities Life Sciences Alliance grant (to H.I.). F.J.F. was supported by a BBSRC postgraduate studentship. T.S. and O.K. are supported by the BMBF grant de.NBI - German Network for Bioinformatics Infrastructure (FKZ 031 A 535A).

REFERENCES

Authors are required to submit a graphic entry for the Table of Contents (TOC) that, in conjunction with the manuscript title, should give the reader a representative idea of one of the following: A key structure, reaction, equation, concept, or theorem, etc., that is discussed in the manuscript. Consult the journal’s Instructions for Authors for TOC graphic specifications.

Insert Table of Contents artwork here