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ABSTRACT: Cross-linking of nucleic acids to proteins in combination with mass spectrometry permits the precise identification 

of interacting residues between nucleic acid-protein complexes. However, the mass spectrometric identification and characterisation 

of cross-linked nucleic acid-protein heteroconjugates within a complex sample is challenging.  Here we establish a novel enzymatic 
differential 16O/18O labelling approach, which uniquely labels heteroconjugates.  We have developed an automated data analysis 

workflow based on OpenMS for the identification of differentially isotopically labelled heteroconjugates against a complex 

background. We validated our method using synthetic model DNA oligonucleotide-peptide heteroconjugates which were subjected 

to the labelling reaction and analysed by high resolution FT-ICR mass spectrometry. 

UV cross-linking in combination with mass spectrometry is 

a powerful technique which can be applied to nucleic acid-
protein complexes in order to identify proteins, peptides and 

the amino acids involved in intermolecular interactions within 

nucleic acid-protein complexes1,2.  Non-covalent nucleic acid-
protein interactions are firstly stabilized by UV cross-linking 

to form covalent heteroconjugates.  Following protease and 

nuclease digestion and an enrichment step, such 

heteroconjugates can then be characterised by mass 
spectrometry to identify the cross-linked peptides and amino 

acids.  However, the mass spectrometric identification of 

cross-linked nucleic acid-protein heteroconjugates within a 
complex mixture is still challenging and cannot be performed 

by conventional MS search engines.  Here we introduce a 

novel sequential differential enzymatic 16O/18O isotope 
labelling strategy which has been designed to facilitate the 

mass spectrometric identification of oligonucleotide-peptide 

heteroconjugates, allowing them to be readily distinguished 

from non-cross-linked peptides and their detection can be 

easily automated. 

Normally following UV cross-linking, heteroconjugates are 

digested with trypsin resulting in a mixture of oligonucleotide-
peptide heteroconjugates and non-cross-linked peptides and 

oligonucleotides.  To establish this method we have used 

synthetic model DNA oligonucleotide-peptide 
heteroconjugates3, labelled them using our differential 

labelling approach described in Figure 1 and, then analysed 

them by high resolution Fourier transform ion cyclotron 
resonance (FT-ICR) mass spectrometry.  Firstly, 

heteroconjugates are labelled by post-digestion trypsin 

catalysed labelling in the presence of either H2
16O or H2

18O.  

During this step, heteroconjugates are differentially labelled at 
the C-terminus of the peptide moiety with 16O2/18O2.  Non-

cross-linked peptides are also labelled, therefore to clearly 

identify heteroconjugates, a second labelling step is required.  

Nuclease P1 digestion in the presence of either H2
16O or H2

18O 
allows heteroconjugates to be uniquely labelled with either 
16O1/18O1 at the 5’ phosphate of the remaining DNA moiety.  

Following the two step labelling approach, 16O3 (I0 
isotopomers) and 18O3 (I6 isotopomers) differentially labelled 

samples are mixed 1:1 and analysed by LC/MS.  The 

differentially labelled heteroconjugates are unambiguously 

identified by the presence of a characteristic doublet, in which 

the monoisotopic peaks are clearly separated by 6 Da. 

 

Figure 1. Sequential differential enzymatic 16O/18O labelling of 

nucleic acid-peptide heteroconjugates.  Oligonucleotide-peptide 

heteroconjugates are first labelled by trypsin in H2
16O or H2

18O, to 

label the C-terminus of the peptide moiety with 16O2 or 18O2. 

Heteroconjugates are then digested and labelled using nuclease P1 

to label the 5’ monophosphate of the DNA moiety with 16O or 
18O.  Samples are then combined 1:1 and analysed by LC/MS.  

The resulting heteroconjugates are labelled with 16O3 or 18O3, 

which appear as a characteristic doublet of I0 and I6 isotopomers, 

separated by 6 Da.  Amino acids are depicted as green circles, an 



 

oligonucleotide as a black line, and a single nucleoside 5’ 

monophosphate as a single small grey circle. 

In addition, we have developed an OpenMS data analysis 

pipeline in which the detection of 6 Da doublets is automated, 

therefore allowing the easy identification of differentially 

labelled nucleic acid-peptide heteroconjugates within a 
LC/MS data set.  Thus a complete workflow for the labelling 

and detection of nucleic acid-peptide heteroconjugates is 

illustrated which is applicable to any nucleic acid-protein 

cross-linking study. 

MATERIALS AND METHODS 

Chemicals, Solvents and Reagents 

All chemicals, solvents and reagents were purchased from 

Sigma-Aldrich or Fisher Scientific.  For mass spectrometry, 

solvents were of LC/MS grade or higher.  For all stable 

isotope labelling experiments, H2
18O (97% Cambridge Stable 

Isotope Laboratories, Inc, USA) was used to prepare all 

buffers and labelling solutions (except where stated).  The 

synthetic heteroconjugates were synthesized as described 
previously3.  For all heteroconjugates the 20-mer 

oligonucleotide (5′GTAGAGGATCTAAAAGACXT-Biotin-

TEG3′), where X was 5-ethynyl-2’-deoxyuridine (5EdU), 

was purchased from BaseClick, Germany.  For 

heteroconjugate HC20-A, the peptide (LDIAFGTF*ATK), 
where F* was 4-azidophenylalanine, was purchased from 

Eurogentec, UK.  For heteroconjugates HC20-B, HC20-C and 

HC20-D, peptides B (LDNAHF*GDATK), C 
(LDFAHF*GDATK) and D, (LDNSHF*GDATK) were 

synthesised in-house.  For click chemistry, the Oligo-Click Kit 

was used as per the manual (BaseClick, Germany) and as 

described previously. 

Trypsin Catalyzed Labelling of HC20-A 

Two reactions were set up in parallel to label HC20-A with 

either 16O or 18O. Prior to labelling, 500 pmol of HC20-A was 
washed in 3 x 10 µL H2

16O or H2
18O, then reduced to dryness 

using a speed vac.  For labelling, HC20-A was reconstituted in 

50 µL (10 µM) containing 50 mM NH4HCO3, 10 mM CaCl2 
and 2 µg trypsin (Sequencing Grade Modified Trypsin, 

Promega, 1 µg/µL stock dissolved in 50 mM NH4HCO3).  

Reactions were incubated at 37°C for 5 hours, then 10 µL of 
each reaction was analysed by RP-HPLC/ESI-FT-ICR-MS in 

negative mode as described previously for HC20-A3. 

Nuclease P1 Labelling of HC20-A 

Two reactions were set up in parallel to digest and label 

HC20-A with either 16O or 18O.  Prior to labelling, 200 pmol of 

HC20-A was washed as described above.  For labelling, 
HC20-A was reconstituted in 20 µL (10 µM) containing 50 

mM NH₄C₂H₃O₂, pH 5.2, 100 nM ZnCl2 and 0.1 units 

nuclease P1 (N8630, Sigma-Aldrich, 250 units dissolved in 1 
mL H2

16O) Reactions were incubated at 50°C for 30 min then 

10 µL of each reaction was analysed individually by monolith-

HPLC/ESI-FT-ICR-MS in positive mode as described below. 

Differential Sequential Labelling of Heteroconjugates 

All labelling reactions were set up in parallel for H2
16O and 

H2
18O: either a pure sample of 500 pmol of HC20-A in H2O; 

or, samples containing the indicated mixtures of HC20-A, 

HC20-B, HC20-C and HC20-D, in molar ratios of 1:1, 1:2 or 

1:5 with BSA tryptic peptides (10 µM BSA pre-digested) in 

50 mM NH4HCO3, in either 16O or 18O.  Trypsin catalysed 
labelling of all samples was then performed as described 

above, in 50 µL (10 µM of each heteroconjugate and 10, 20 or 

50 µM pre-digested BSA).  Following trypsin labelling 
samples were incubated at 100°C for 10 min and 

phenylmethylsulfonyl fluoride was added to a final 

concentration of 1 mM.  Samples were then reduced to 

dryness using a speed vac and digested with nuclease P1 as 
described above but in 50 µL (10 µM).  For titanium dioxide 

heteroconjugate enrichment, samples were acidified by 2% 

formic acid, then loaded onto geloader tip microcolumns 
packed in-house with titanium dioxide  (TiO2 Sachtopore NP 5 

µm/300A) and washed 3 times with 30 µl of 2% formic acid 

(diluted in H2
16O/H2

18O), Samples were eluted with 20 µl 1 % 
ammonia into 10 % formic acid, then reduced to dryness and 

reconstituted in 50 µL H2
16O/H2

18O. To minimise back 

exchange, 5 µL of the 16O and 18O differentially labelled 

samples, containing 5 µM of each heteroconjugate, were 
combined immediately prior to analysis by monolith-

HPLC/ESI-FT-ICR-MS in positive mode. 

FT-ICR Mass Spectrometry 

Analysis was performed using reverse-phase high 

performance liquid chromatography (RP-HPLC) using an 

U3000 HPLC system (Dionex, UK) coupled to the standard 
electrospray source (Bruker Daltonics) and a SolariX FTICR 

mass spectrometer equipped with a 12 T superconducting 

magnet (BrukerDaltonics).  Acquisition of LC/MS data was 

controlled by HyStar, version 3.4, build 8 (Bruker Daltonics). 

For analysis of labelled HC20-A in negative mode, analysis 

was performed as described previously3. 

For analysis of nuclease P1 digested and labelled, RP-HPLC 

was performed using a monolith column (500 µm x 50 mm 

pepswift poly(styrene/divinyl benzene) (PSDVB) column, 

Thermo Finnigan, USA).  Ten µL of 10 µM 16O or 18O 
labelled sample HC20-A was injected, or ten µL of 5 µM 16O 

and 18O labelled sample HC20-A+B+C+D within a BSA 

tryptic digest.  Heteroconjugates were analysed in positive 
mode using buffer A, 0.1% formic acid, and buffer B, 0.1% 

formic acid in 100% acetonitrile.  Using a flow rate of 20 

μL/min at 60°C, the column was first run at 0% B for 2 min, 
followed by a linear ramp from 0% to 100% B from 2 to 20 

min.  The column was then washed with 100% B from 20 to 

25 min, then with 0% B from 25 to 30 min. 

For electrospray ionization, gas pressure was typically ~2.2 

psi and spray voltage was 4.5 kV.  For mass spectrometry, ion 

accumulation times was typically 0.3 s.  Ions were trapped 

using a 6 cm × 10 cm Infinity cell. Each individual LC/MS 
spectrum was the sum of two acquisitions. Transient data size 

was typically 1 or 2 Mword for each acquisition, and sine-bell 

multiplication apodization was applied to each transient during 
FT-MS postprocessing.  All mass spectra were analyzed using 

DataAnalysis software version 4.1 SR1 build 362.7 (Bruker 

Daltonics) 

OpenMS Data Analysis Pipeline 

Data was exported to mzML files using CompassXport 3.0 

(Bruker Daltonics). The mzML files formed the input for the 
data analysis pipeline outlined in Figure 2. To reduce the 

impact of low intensity signals on doublet detection, a signal 

processing step was performed that retains the highest 
intensity mass peak in a sliding window of size 0.2 Thomson 

using the OpenMS tool SpectraFilterWindowMower4,5. In the 



 

second step of the pipeline, we configure the tool 
FeatureFinderMultiplex6 to detect eluting species exhibiting 

the characteristic 6 Da shift with m/z tolerance set to 5 ppm. 

The FileFilter tools then discarded all detected singlets and 
only doublets were retained. The list of 6 Da doublets is then 

exported to a tabular text file using the TextExporter tool. 

 

Figure 2. Overview of the data processing pipeline.  Raw data is 

exported and input into the automated OpenMS data processing 

workflow (shaded boxes). Each node corresponds to an OpenMS 

pipeline tool (name in italic letters) that performs a distinct data 

processing step. Detected doublets are then written as tabular file 

and can be inspected using a spreadsheet application.  

RESULTS 

Trypsin-Catalysed Labelling of Heteroconjugates 

Serine proteases including trypsin, LysC and GluC, can 
catalyse the incorporation of two 18O atoms at the carboxyl-

terminus of a proteolytic peptide in the presence of the heavy 

isotopic form of water H2
18O 7.  For 18O labelling, proteolytic 

digestion can be decoupled from enzyme catalysed oxygen 

exchange8, which offers the advantage that both reactions can 

be performed separately.  Therefore post digestion trypsin 

catalysed oxygen exchange can be optimised to promote the 
incorporation of two 18O atoms and achieve a high labelling 

efficiency, which is required for the differential labelling 

strategy. 

To demonstrate efficient post-digestion trypsin-catalysed 
18O labelling of DNA-peptide heteroconjugates, two labelling 

reactions were set up in parallel to label a synthetic DNA 
oligonucleotide-peptide heteroconjugate HC20-A with either 
16O or 18O, and then analysed individually by RP-HPLC/ESI-

FT-ICR mass spectrometry in negative mode (Figure 3A).   

In the presence of H2
18O, the monoisotopic peak of HC20-A 

was increased in mass by 4 Da following the incorporation of 

two 18O atoms into the C-terminus of the peptide moiety, to 

form the I4 isotopomer.  The high mass resolving power of FT-
ICR mass spectrometry allowed the clear distinction between 

the I0 and I4 isotopomers.  The associated change in mass did 

not affect the HPLC retention time of the HC20-A. 

 

Figure 3. Trypsin and nuclease P1-catalysed 16O/18O labelling of 

HC20-A.  (A) RP-HPLC/ESI-FT-ICR-MS negative mode mass 

spectra of HC20-A following trypsin-catalysed labelling.  The 

[M-4H]4- ions of I0 and I4 isotopomers are present at m/z 

1996.2232 and 1997.2254 in H2
16O and H2

18O respectively; and 

(B) Monolith-HPLC/ESI-FT-ICR positive mode mass spectra of 

HC20-A following nuclease P1 digestion.   The [M+2H]2+ ions of 

I0 and I2 isotopomers are present at m/z 778.8336 and 779.8358 in 

H2
16O and H2

18O respectively.  An asterisk indicates remaining I0 

species present in the H2
18O labelled sample. 

Nuclease P1-Catalysed Labelling of Heteroconjugates 

Nuclease P1 digests the DNA moiety of HC20-A into a 

single nucleoside 5’ monophosphate covalently bound to the 

peptide via the triazole linkage3.  In the presence of H2
18O, we 

expected nuclease P1 to label heteroconjugates by 

incorporating a single 18O atom on the remaining nucleotide. 

To demonstrate nuclease P1-catalysed labelling, two 
reactions were performed in parallel to digest and label HC20-

A with either 16O or 18O, and then analysed individually by 

RP-HPLC/ESI-FT-ICR mass spectrometry in positive mode 
(Figure 3B).  In the presence of 95% H2

18O, the monoisotopic 

peak of the digested HC20-A had increased in mass by 2 Da 

following the incorporation of a single 18O label into the 

remaining 5’ monophosphate, to form the I2 isotopomer.  
Although very efficiently labelled, 18O labelling to form the I2 

isotopomer was not 100%, with some I0 isotopomer also 

present (Figure 3B, annotated with an asterisk), likely due to 
the occurrence of minimal back exchange with residual 16O.  

Again, the associated change in mass did not affect the 

retention time of the digested HC20-A.  In conclusion, HC20-
A can be 16O/18O labelled by either trypsin introducing a 4 Da 

shift or nuclease P1 introducing a 2 Da shift.   

Differential Sequential Labelling of Heteroconjugates 

To uniquely label heteroconjugates with 18O3, we next 

combined both the trypsin and nuclease P1 labelling steps.  To 

demonstrate this, two reactions were performed in parallel to 
label heteroconjugate HC20-A with either 16O3 or 18O3.  

Trypsin catalysed 18O labelling was performed first, and 

following this, to prevent digestion of nuclease P1 in the next 

step, trypsin was chemically and heat inactivated.  Next, 
nuclease P1 catalysed 18O labelling was performed.  Samples 

were then were analysed individually and mixed 1:1, and 

analysed by RP-HPLC/ESI-FT-ICR mass spectrometry in 
positive mode. In the presence of H2

18O, the monoisotopic 

peak of HC20-A was increased in mass by 6 Da following the 

dual labelling approach (Figure 4A and 4B) to form the I6 
isotopomer.  When the labelled samples were mixed 1:1 prior 



 

to analysis, the heteroconjugate was detected as a doublet, 
with the co-eluting I0 and the I6 isotopomers, 6 Da apart, 

within a single LC/MS run (Figure 4, lower spectrum). 

In a UV cross-linking experiment, heteroconjugates are 
present within a complex sample containing a background of 

non-cross-linked species.  Therefore, to ensure differential 

labelling of heteroconjugates was efficient within a more 

complex sample, we next performed differential labelling of 
HC20-A within a tryptic digest of BSA. In addition to HC20-

A we employed a range of heteroconjugates which varied in 

their overall sequence and charge to ensure labelling and 
detection was not restricted to HC20-A.  Differential labelling 

was performed as previously. 

 

Figure 4. Differential 16O/18O labelling of the heteroconjugate.  

Monolith-HPLC/ESI-FT-ICR positive mode mass spectra of 

differentially labelled HC20-A.  Differentially 16O and 18O 

labelled samples were either run individually (A and B), or mixed 

1:1 prior to MS analysis (C).  The [M+2H]2+ ions of I0 and I6 

isotopomers are present at m/z 778.8535 and 781.8569 in H2
16O 

and H2
18O respectively. 

Heteroconjugates HC20-A, -B -C and -D were observed to 

elute at 8.0, 6.4, 7.4 and 6.4 min respectively as indicated on 

the total ion chromatogram shown in Figure 5.  All four 
heteroconjugates were efficiently labelled and observed as 

unique doublets within this complex sample.  In Figure 5B, the 

mass spectrum at 6.4 min is shown, in which, both, 
differentially labelled HC20-B and differentially labelled 

HC20-D were present as unique 6 Da doublets within this 

spectrum.  In conclusion, a range of heteroconjugates can be 
uniquely and efficiently labelled within a more complex 

sample using a two-step differential labelling approach. 

Detection of Differentially Labelled Heteroconjugates 

In the experiments described above, differentially labelled 
heteroconjugate doublets were easily identified as we 

employed defined synthetic model heteroconjugates.  

However finding unknown doublets in a real cross-linking 
experiment, is a challenging task.  To automate the detection 

of differentially labelled doublets and allow the efficient 

detection of potential heteroconjugate species, we developed 

an OpenMS data analysis pipeline. Doublets detected by the 
pipeline represent potential heteroconjugate precursor ions 

which could then be further characterised and confirmed by 
MS/MS analysis. If the detected doublet is a true 

heteroconjugate, fragmentation of both the light and heavy 

labelled species would give complementary labelled fragment 
spectra.  The 18O labelling may also aid in sequencing of the 

nucleic acid-peptide heteroconjugates, similar to its 

application for peptide and cross-linked peptide de novo 

sequencing9,10.   

To test the data analysis pipeline, data was analysed from 

samples in which equimolar mixtures of BSA tryptic peptides 

and HC20-B, HC20-C and HC20-D were differentially 
labelled in triplicate and analysed by LC/MS.  The pipeline 

detected four 6 Da doublet species which were present in all 

three replicates whereas no doublets were detected in control 

samples containing only labelled BSA peptides. The detected 

 

Figure 5. Differential 16O/18O labelling of the heteroconjugates.   

(A)  Total Ion Chromatogram of a differentially labelled BSA 

tryptic digest containing HC20-A, HC20-B, HC20-C and HC20-

D, analysed by Monolith-HPLC/ESI-FT-ICR positive mode mass 

spectrometry.  The elution time of each heteroconjugate is 

annotated  (B)  The mass spectrum at time 6.4 min, and inset, 

zoomed in to shown differentially labelled HC20-B and HC20-D. 

doublets correspond to the [M+2H]2+ and [M+3H]3+ ions of 
HC20-B, and HC20-D (Table 1).  HC20-C was not detected, 

but manual inspection of the data revealed that a highly 

abundant BSA peptide with a similar mass coeluted with 

HC20-C, which resulted in an overlapping isotopic 
distribution and interfered with the detection of HC20-C by 

the pipeline.  This highlights the importance of enrichment 

strategies which are required in all cross-linking workflows to 
remove the majority of excess non-cross-linked species and 

thus enable the identification of cross-linked 

heteroconjugates1,2. To test if our labelling strategy is 
compatible with enrichment methods and if enrichment could 

improve the detection of heteroconjugates, the samples were 

enriched by using titanium dioxide columns11.  Importantly, 
the 6 Da label of heteroconjugates was maintained following 



 

enrichment, and in addition, HC20-C could now be detected 

by the pipeline (Table 1). 

 

Table 1. Heteroconjugates detected by the OpenMS 

pipeline, with and without titanium dioxide enrichment, 

In a true cross-linking experiment, owing to low cross-

linking efficiency, heteroconjugates are present in 

substochiometric amounts compared with non-cross-linked 

peptides.  Therefore the pipeline was tested using different 
molar ratio’s of BSA peptides: heteroconjugates.  At a ratio of 

2:1, the pipeline detected HC20-B and HC20-D (Table 1). 

However with a larger excess of BSA peptides at 5:1, only a 
single HC20-B [M+2H]2+ ion was detected, Following 

titanium dioxide enrichment, a further three heteroconjugates 

ions were detected (Table 1).  Titanium dioxide enrichment 
increased the sensitivity of the detection in every scenario 

tested. 

In conclusion, the OpenMS-based analysis pipeline 

efficiently detects differentially labelled heteroconjugates 
within an LC/MS data set. In cross-linking experiments, 

candidate heteroconjugate species could be confirmed with 

targeted MS/MS approaches.  Lastly, our labelling stratey is 
compatible with standard heteroconjugate enrichment 

protocols, a key step in all cross-linking workflows. 

DISCUSSION 

UV cross-linking and mass spectrometry is a useful method 
to characterise interactions in different nucleic acid-protein 

complexes1,2.  However, the identification of heteroconjugates 

is a challenging task.  We have developed a novel isotopic 
differential labelling strategy to uniquely label 

heteroconjugates and enable their detection by an OpenMS 

data analysis pipeline by the presence of isotopic doublets. 
This labelling approach could also be used to complement and 

increase confidence in heteroconjugates identified by the 

recently developed software program RNPxl. RNPxl detects 

heteroconjugates by calculating and searching for a variety of 
nucleic acid modifications12.  Length and composition of 

nucleic acid moieties remaining after nuclease digestion are 

variable and any amino acid could potentially be cross-linked. 
Therefore, a large number of nucleic acid modifications must 

be considered in RNPxl database search, and conventional 

search engines are not suitable for such analysis.. 

Nuclease P1 digestion alone can uniquely label 

heteroconjugates.  However, automated detection of 2 Da 

differentially labelled heteroconjugates doublets is challenging 

due to the overlapping isotope distributions of the I0 and I2 
isotopomers.  We therefore combined both the trypsin and 

nuclease P1 labelling steps to uniquely label heteroconjugates 

(with 6 Da), and provide optimal resolution between the 
isotope distributions of the I0 and I6 isotopomers.  In addition, 

the 6 Da shift is small enough to allow accurate detection of 

the mass difference using high resolution mass spectrometry.  
Labelling heteroconjugates with 18O3 (6 Da) allows them to be 

easily distinguished from contaminants such as non-cross-
linked (but labelled) peptides (4 Da) and nucleic acids (2 Da) 

which are commonly present in cross-linking samples, even 

following heteroconjugate enrichment. 

This labelling approach is applicable to existing methods 

published thus far for generating nucleic acid-peptide 

heteroconjugates, as it exploits the protease and nuclease 

digestion steps necessary for the sample preparation of 
heteroconjugates.  This method can detect heteroconjugates 

with a variety of nucleic acid modifications which have been 

UV cross-linked with native DNA or photoactivatable DNA, 
or cross-linked chemically, and does not require that the cross-

linking mechanism and any associated losses are known in 

advance.  It also does not require specially synthesized, 
isotopically labelled nucleic acids13, therefore would be 

suitable for cross-linking experiments using any synthetic 

nucleic acid as well as nucleic acids in or isolated from cells.  

Synthetic heteroconjugates as described here may be included 
to serve as internal controls for efficient labelling and 

enrichment.  This labelling approach is relevant to both the 

study of DNA-protein and RNA-protein heteroconjugates, and 
would be compatible with other serine proteases and nucleases 

which act by a hydrolysis mechanism.  Lastly, the steps of 

protease and nuclease labelling are flexible and could be 
reversed or incorporated at any stage within the sample 

preparation and enrichment protocol as appropriate for the 

user. In conclusion, the differential labelling approach 
introduced and developed here facilitates the identification of 

cross-linked nucleic acid-peptide heteroconjugates by mass 

spectrometry. 
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