

Edinburgh Research Explorer

Online/Offline OR Composition of Sigma Protocols
Citation for published version:
Ciampi, M, Persiano, G, Scafuro, A, Siniscalchi, L & Visconti, I 2016, Online/Offline OR Composition of
Sigma Protocols. in M Fischlin & J-S Coron (eds), Advances in Cryptology -- EUROCRYPT 2016. Lecture
Notes in Computer Science, vol. 9666, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 63-92, 35th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, 8/05/16. https://doi.org/10.1007/978-3-662-49896-5_3

Digital Object Identifier (DOI):
10.1007/978-3-662-49896-5_3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Advances in Cryptology -- EUROCRYPT 2016

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Mar. 2024

https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49896-5_3
https://www.research.ed.ac.uk/en/publications/2cf4e48e-ec7c-415b-8074-bce8de10f653

Online/Offline OR Composition of Sigma Protocols

Michele Ciampi
DIEM

Università di Salerno
ITALY

mciampi@unisa.it

Giuseppe Persiano
DISA-MIS

Università di Salerno
ITALY

giuper@gmail.com

Alessandra Scafuro
Boston University and

Northeastern University
USA

scafuro@bu.edu

Luisa Siniscalchi
DIEM

Università di Salerno
ITALY

lsiniscalchi@unisa.it

Ivan Visconti
DIEM

Università di Salerno
ITALY

visconti@unisa.it

Abstract

Proofs of partial knowledge allow a prover to prove knowledge of witnesses for k out of n
instances of NP languages. Cramer, Schoenmakers and Damg̊ard [CDS94] provided an efficient
construction of a 3-round public-coin witness-indistinguishable (k, n)-proof of partial knowledge
for any NP language, by cleverly combining n executions of Σ-protocols for that language. This
transform assumes that all n instances are fully specified before the proof starts, and thus
directly rules out the possibility of choosing some of the instances after the first round.

Very recently, Ciampi et al. [CPS+16a] provided an improved transform where one of the
instances can be specified in the last round. They focus on (1, 2)-proofs of partial knowledge
with the additional feature that one instance is defined in the last round, and could be adaptively
chosen by the verifier. They left as an open question the existence of an efficient (1, 2)-proof of
partial knowledge where no instance is known in the first round. More in general, they left open
the question of constructing an efficient (k, n)-proof of partial knowledge where knowledge of all
n instances can be postponed. Indeed, this property is achieved only by inefficient constructions
requiring NP reductions [LS90].

In this paper we focus on the question of achieving adaptive-input proofs of partial knowledge.
We provide through a transform the first efficient construction of a 3-round public-coin witness-
indistinguishable (k, n)-proof of partial knowledge where all instances can be decided in the third
round. Our construction enjoys adaptive-input witness indistinguishability. Additionally, the
proof of knowledge property remains also if the adversarial prover selects instances adaptively
at last round as long as our transform is applied to a proof of knowledge belonging to the widely
used class of proofs of knowledge described in [Mau15, CD98]. Since knowledge of instances and
witnesses is not needed before the last round, we have that the first round can be precomputed
and in the online/offline setting our performance is similar to the one of [CDS94].

Our new transform relies on the DDH assumption (in contrast to the transforms of [CDS94,
CPS+16a] that are unconditional). We also show how to strengthen the transform of [CPS+16a]
so that it also achieves adaptive soundness, when the underlying combined protocols belong to
the class of protocols described in [Mau15, CD98].

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Comparison with the State of the Art . 8
1.3 Online/Offline Computations . 8

2 Preliminaries 10
2.1 Adaptive-Input Special Soundness and Proof of Knowledge 12
2.2 Adaptive-Input Witness Indistinguishability . 12
2.3 The DDH assumption . 13
2.4 Instance-Dependent Trapdoor Commitment . 14

3 Adaptive-Input (k, n)-Proof of Partial Knowledge 15
3.1 (Adaptive-Input) Proof of Knowledge . 17
3.2 Adaptive-Input Witness Indistinguishability . 19

4 Adaptive-Input Special-Soundness of Σ-Protocols 22
4.1 Soundness Issues in Delayed-Input Σ-Protocols . 22
4.2 A Compiler for Adaptive-Input Special Soundness 23

5 On the Adaptive-Input Soundness of [CPS+16a]’s Transform 25
5.1 Overview of the Construction of [CPS+16a] . 25

5.1.1 The Construction of [CPS+16a] . 25
5.2 Adaptive-Input Soundness of ΠOR . 26

6 Extension to Multiple Relations 27
6.1 (Adaptive-Input) Proof of Knowledge . 29
6.2 Adaptive-Input Witness Indistinguishability . 30

7 Acknowledgments 32

2

1 Introduction

Proofs of knowledge (PoKs) are ubiquitous in cryptographic protocols. When enjoying additional
features, such as honest-verifier zero knowledge (HVZK), witness indistinguishability (WI) or zero
knowledge (ZK), they are used as building blocks in essentially every protocol for secure compu-
tation. As such, the degree of security and efficiency achieved by the underlying PoKs, directly
and dramatically, impacts on the security and efficiency of the larger protocol. For instance, the
existence of very efficient WI PoKs for specific languages such as Discrete Log and DDH has been
instrumental for constructing efficient maliciously secure two-party computation (see [HL10] and
reference within). Round-efficient protocols [Pas03, KO04] require security notions, both with re-
spect to a malicious prover (soundness) and with respect to a malicious verifier (WI), that hold
even in presence of adaptive-input selection.

Proofs of partial knowledge. In [CDS94], Cramer et al. showed that one can use a specific
type of PoK (called a Σ-protocol) to construct an efficient PoK for a compound statement. More
precisely, the compound statement consists of n instances, and the goal is to prove knowledge of
a witness for at least k of the n instances. As such, these proofs are named “proofs of partial
knowledge” in [CDS94]. The transform of [CDS94] cleverly combines n parallel executions of PoKs
that are Σ-protocols in an efficient 3-round public-coin perfect WI (k, n)-proof of partial knowledge.
A similar result was given in [DSDCPY94] for perfect ZK.

Note that, if efficiency is not a concern, proofs of partial knowledge were already possible (with
computational WI, though) thanks to the general construction of Lapidot and Shamir (LaSh) [LS90]1.
Proving compound statements via LaSh however requires expensive NP reductions. On the other
hand, LaSh PoKs provide a stronger security guarantee: honest players use the instances specified
in the statements only in the last round, and security holds even if the adversarial verifier (resp.,
prover) chooses the instances adaptively after having seen the first (resp., second) round. LaSh’s
construction is therefore an adaptive-input WI proof of partial knowledge for all NP. As mentioned
above, this property can be instrumental to save at least one round of communication, when the
proof of partial knowledge is used in a larger protocol.

The construction shown in [CDS94], instead, although efficient, does not provide any form
of adaptivity, as all the n instances must be fully specified before the protocols starts. As a
consequence, the improved efficiency of [CDS94] must be paid for by the additional rounds need by
the larger protocol that uses the PoK as a building block.

The proof of partial knowledge of [CPS+16a]. A very recent work by Ciampi et al. [CPS+16a]
makes a first preliminary step towards closing the gap between [LS90] and [CDS94]. [CPS+16a]
proposes a different transform for WI proofs of partial knowledge that gives some adaptivity at the
price of generality. Namely, their technique yields to a (1, 2)-proof of partial knowledge where the
knowledge of one of the two instances can be postponed to the last round. In more details, they
show a PoK for a statement “x0 ∈ L0 ∨ x1 ∈ L1” in which x0 and x1 are not immediately needed
(in contrast to [CDS94]). The honest prover needs x0 to run the 1st round while x1 is needed only
in the 3rd round along with a witness for either one of x0 and x1. The verifier needs to see x0

and x1 only at the end, in order to accept/reject the proof. These PoKs are called delayed input
in [CPS+16a] as the need of the input is delayed to the very last round for the honest prover. For

1See [OV12] for a detailed description of [LS90].

3

clarity, we stress that a delayed-input protocol is not necessarily secure against inputs that have
been adaptively chosen. Indeed, the technique of [CPS+16a] yields a proof of partial knowledge
that is delayed input for one of the two instances, is adaptive-input WI but it is not adaptively
secure against a malicious prover. The security achieved is sufficient for their target applications.

The open question and its importance. The above preliminary progress leaves open the
following fascinating question: can we design an efficient transform that yields an adaptive-input
WI (k, n)-proof of partial knowledge where all n instances are known only in the last round?

Previous efficient transforms require the a-priori knowledge of all instances or of one out of two
instances, even if the corresponding languages admit efficient delayed-input Σ-protocols. For the
sake of concreteness, assume one wants to prove knowledge of the discrete logarithm of at least
one of gx0 or gx1 . There exists a very efficient Σ-protocol Σdl, due to Schnorr [Sch89], for proving
knowledge of one discrete log. Schnorr’s protocol is also delayed-input property and the prover
needs not to know the instance gx in order to compute the first round. However, when we apply
known transforms, the resulting protocol loses the delayed-input property. More specifically, both
instances gx0 and gx1 are need by [CDS94], and at least one gx0 by [CPS+16a].

1.1 Our Results

In this work we study the above open question and give various positive answers.

Σ-Protocols and adaptive-input selection. We shed light on the relation between delayed-
input Σ-protocols and adaptive-input Σ-protocols. Recall that a Σ-protocol enjoys a special sound-
ness property, which means that, given two accepting transcripts2 for the same statement having
the same first round, one can efficiently extract a witness for that statement.

We show that delayed-input Σ-protocols are not necessarily adaptive-input sound; that is, they
are not sound if the malicious prover can choose the statements adaptively. Indeed, in Section 4.1
we show how a malicious prover, based on the second round played by the verifier, can craft a
false statement that will make the verifier accept and the extractor of special soundness fail even
when the statement is true. The attack applies to the most commonly used Σ-protocols, such
as Schnorr’s protocol for discrete logarithm, the protocol for Diffie-Hellman (DH) tuples and the
protocol of [MP03] for proving knowledge of committed messages, and to all Σ-protocols in the well
known class proposed by Cramer in [CD98] and Maurer in [Mau15].

The loss of soundness with respect to provers that adaptively choose their inputs was already
noticed in [BPW12] for non-interactive zero-knowledge arguments obtained from Σ-protocols by
means of the Fiat-Shamir transform [FS86]. Indeed there are in the literature some incorrect uses
of the Fiat-Shamir transform in which an adversarial prover can first create a transcript and then
can try to find an instance not in the language such that the transcript is accepting. Of course, in
the random-oracle model the above issue can be addressed by giving also the instance as input to
the random oracle to generate the challenge. This fix is meaningless in the standard model that is
the focus of our work.

We then analyze the transform of [CPS+16a] that is delayed-input with respect to one instance
only. We observe that when [CPS+16a] combines protocols belonging to the class of [CD98, Mau15],

2In the literature special soundness is often generalized to ` > 2 accepting transcripts with the bound of ` being
polynomial in the security parameter.

4

it is not secure with respect to a malicious prover that is allowed to adaptively choose his input.
Therefore the transform of [CPS+16a] is not adaptive-input sound. We stress however, that in the
applications targeted in [CPS+16a] the input that is specified only in the last round is chosen by the
verifier. As such, for their applications they do not need any form of adaptive-input soundness, but
only adaptive-input witness-indistinguishability (which they achieve). Moreover, the special sound-
ness of their transform preserves security w.r.t. adaptive-input selection. Summing up, [CPS+16a]
correctly defines and achieves delayed-input Σ-protocols and adaptive-input WI and uses it in the
applications. However adaptive-input special soundness is not defined and not achieved in their
work.

Adaptive-input special-sound Σ-protocols. In light of the above discussion, a natural ques-
tion is whether we can upgrade the security of the class of Σ-protocols that are delayed input, but
not adaptive-input sound.

Towards this, we first clarify the conceptual gap between adaptive-input selection and the
adaptivity considered in [CPS+16a] by formally defining adaptive-input special soundness. Then
we show a compiler that takes as input any delayed-input Σ-protocol belonging to the class specified
in [CD98, Mau15], and outputs a Σ-protocol that is adaptive-input sound; i.e., it is sound even
when the malicious prover adaptively chooses his input in the last round.

The main idea behind this compiler is to force the prover to correctly send the first round of
the Σ-protocol through another parallel run of the Σ-protocol. This allows for the extraction of
any witness in the proof of knowledge. The compiler is shown in Section 4.2.

We also show (in Section 5) that nevertheless, [CPS+16a]’s transform preserves the adaptivity of
the Σ-protocols that are combined. Namely, when applied to Σ-protocols that are already adaptive-
input special sound and WI, [CPS+16a]’s transform outputs a (1, 2)-proof of partial knowledge that
is an adaptive-input proof of knowledge as well.

Adaptive-input (k, n)-proofs of partial knowledge. The main contribution of this paper is a
new transform that yields the first efficient (k, n)-proofs of partial knowledge where all n instances
can be specified in the last round.

Our new transform takes as input a delayed-input Σ-protocol for a relation R, and outputs a
3-round public-coin WI special-sound (k, n)-proof of partial knowledge for the relation (R∨· · ·∨R)
where no instance is known at the beginning. The security of our transform is based on the DDH
assumption. The WI property of the resulting protocol holds also with respect to adaptive-input
selection, while the PoK property holds also in case of adaptive-input selection only if the underlying
Σ-protocol is adaptive-input special sound.

We also show a transform that admits instances taken from different relations. Interestingly,
this construction makes use as subprotocol of the first construction where instances are taken from
the same relation.

1.1.1 Our Technique

We provide a technique for composing a delayed-input Σ-protocol for a relation R in an delayed-
input Σ-protocol for the (k, n)-proof of partial knowledge for relation (R∨ . . . ∨R).

For better understanding our technique, it is instructive to see why the previous transforma-
tion [CDS94] (resp., [CPS+16a]) requires that all n (resp., 1 out of 2) instances are specified before
the protocol starts.

5

Limitations of previous transforms. Let ΣR be a delayed-input Σ-protocol, and let (R ∨
. . . ∨ R) be the relation for which we would like to have a (k, n)-proof of partial knowledge. The
technique of [CDS94] works as follows. The prover P , on input the instances (x1 ∈ R∨. . .∨xn ∈ R),
runs protocols ΣR, . . . ,ΣR in parallel. P gets only k witnesses for k different instances but it needs
to somehow generate an accepting transcript for all instances. How to prove the remaining n − k
instances without having the witness? The idea of [CDS94] consists simply in letting the prover
generate the n−k transcripts (corresponding to the instances for which he did not get the witnesses)
using the HVZK simulator S associated to the Σ-protocol. Additionally [CDS94] introduces a
mechanism that allows the prover to control the value of exactly (n − k) of the challenges played
by V , so that the prover can force the transcripts computed by the simulator in (n− k) positions.

So, why does the transform of [CDS94] need all instances to be known already in the 1st round?
The answer is that P needs to run S already in the 1st round, and S expects the instance as input.
Similar arguments apply for [CPS+16a] as it requires that 1 instance out of 2 is known already in
the 1st round.

The core idea of our technique. Previous transforms fail because the prover runs the HVZK
simulator to compute the 1st round of some of the transcripts of ΣR. Our core idea is to provide
mechanisms allowing P to postpone the use of the simulator to the 3rd round. The main challenge
is to implement mechanisms that are very efficient and preserve soundness and WI of the composed
Σ-protocol. We stress that we want to solve the open problems in full, and thus none of the
instances are known at the beginning of the protocol. To be more explicit, in the 1st round, the
prover starts with the following statement (? ∈ LR ∨ . . .∨? ∈ LR).

Assume we have a (k, n)-equivocal commitment scheme that allows the prover to compute n
commitments such that k of them are binding and the remaining n−k are equivocal, and the verifier
cannot distinguish between the two types of commitment, where the k positions that are binding
must be chosen already in the commitment phase (a similar tool was constructed in [ORS15]).
With this gadget in hand, we can construct a delayed-input (k, n)-proof of partial knowledge ΣOR

k,n

as follows. Let (a, c, z) denote generically the 3 messages exchanged during the execution of a
Σ-protocol ΣR.

In the 1st round, P honestly computes ai for the i-th execution of ΣR. Here we are using the
fact that ΣR is delayed-input, and thus ai can be computed without using the instance. Then
he commits to a1, . . . , an using the (k, n)-equivocal commitment scheme discussed above, where
the k binding positions are randomly chosen. Thus, the 1st round of protocol ΣOR

k,n consists of n
commitments. In the 2nd round V simply sends a single challenge c according to ΣR. In the 3rd
round, P obtains the n instances x1, . . . , xn and k witnesses. At this point, for the instances xi
for which he did not receive the witness, he will use the HVZK simulator to compute an accepting
transcript (ãi, c, z̃i) and then equivocate the (n−k) equivocal commitments so that they decommit
to the new generated ãi. For the k remaining instances he will honestly compute the 3rd round
using the committed input ai. Intuitively, soundness follows from the fact that k commitments are
binding, and from the soundness of ΣR. WI follows from the hiding of the equivocal commitment
scheme and the HVZK property of ΣR.

Note that in this solution we are crucially using the fact that we are composing the same
Σ-protocol so that P can use any of the ai committed in the 1st round to compute an honest
transcript. This technique thus falls short as soon as we want to compose arbitrary Σ-protocols
together. Nevertheless, this transformation turns to be useful for the case of different Σ-protocols.

6

(k, n)-equivocal commitment scheme. A (k, n)-equivocal commitment scheme allows a sender
to compute n commitments com1, . . . , comn such that k of them are binding and n−k are equivocal.
We will use the language DH of DH tuples and we will implement a (k, n)-equivocal commitment
scheme very efficiently under the DDH assumption as follows. In the commitment phase, the sender
computes n tuples T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn) and proves that k out of n tuples
are not in DH. We show that this can be done using the classical [CDS94] (k, n)-proof of partial
knowledge that can be obtained starting with a Σ-protocol Σddh for DH.

We then use the well known [DG03, CV05, CV07, HL10] fact that Σ-protocols can be used to
construct an instance-dependent trapdoor commitment scheme, where the sender can equivocate
if he knows the witness for the instance. Thus, each tuple Ti can be used to compute an instance-
dependent trapdoor commitment comi using Σddh. comi will be equivocal if Ti was indeed a DH
tuple, it will be binding otherwise. Because the sender proves that k tuples are not in DH, it holds
that there are at least k binding commitment. Hiding follows from the WI property of [CDS94]
and the HVZK of Σddh. Commitment and decommitment can be completed in 3 rounds.

The case of different Σ-protocols. We now consider the case where we want to compose
Σ1, . . . ,Σn for possibly different relations. Our (k, n)-equivocal commitment does not help here
because each ai is specific to protocol Σi, and cannot be arbitrarily mixed and matched once the k
witnesses are known.

For this case we thus use a different trick. We ask the prover to commit to each ai twice, once
using a binding commitment and once using an equivocal commitment. This again can be very
efficiently implemented from the DDH assumption as follows. For each i, P generates tuples T 0

i

and T 1
i , that are such that at most one can be a DH tuple. It then commits to ai twice using the

instance-dependent trapdoor commitment associated to tuple T 0
i and tuple T 1

i . Because at most
one of the two tuples is a DH tuple, at most one of the commitments of ai can be later equivocated.
Thus the 1st round of our transformation consists of 2 commitments of ai for 1 ≤ i ≤ n.

In the 3rd round, when P receives instances x1, . . . , xn and k witnesses, he proceeds at follows.
For each i, if P knows the witness for xi, he will open the binding commitment for position i, and
compute zi using the honest prover procedure of Σi. Instead, if P does not have a witness for xi,
he will compute a new ãi, zi using the simulator on input xi, c and open the equivocal commitment
in position i. At the end, for each position i, one commitment has remained unopened.

This mechanism allows an honest prover to complete the proof with the knowledge of only k
witnesses. However, what stops a malicious prover to always open the equivocal commitments and
thus complete the proof without knowing any of the witnesses?

We avoid this problem by requiring P to prove that, among the n tuples corresponding to the
unopened commitments, at least k out of n tuples are DH tuples. This directly means that k of
the opened commitments were constructed over non-DH tuples, and therefore are binding.

Now note that proving this theorem requires an (k, n)-proof of partial knowledge in order to
implement Σddh, where the instance to prove, i.e., the tuple that will be unopened, is known only in
the 3rd round when P knows for which instances he is able to open a binding commitment. Here we
crucially use the (k, n)-proof of partial knowledge for the same Σ-protocol developed above making
sure to first run our compiler that strengthen Σddh with respect to statements adaptively selected
by a malicious prover.

7

1.2 Comparison with the State of the Art

In Table 1 we compare our results with the relevant related work. We consider [LS90], a 3-
round public-coin WIPoK that is fully adaptive-input and that works for any NP language. We
also consider [CDS94] that proposed efficient 3-round public-coin WI proofs of partial knowledge
(though, without supporting any adaptivity). Finally, we consider [CPS+16a] since it was the
only work that faced the problem of combining together efficiency and some form of delayed-input
instances.

The last row refers to our main result that allows to postpone knowledge of all the instances to
the last round.

Assumption Adaptive WI Adaptive PoK NP Reduction

LaSh90 [LS90] OWP
k out of n

(all adaptive)
k out of n

(all adaptive)
Yes

CDS94 [CDS94] / / / No

CPSSV16 [CPS+16a] /
1 out of 2

(1 adaptive)
/ No

This Work
(main result)

DDH
k out of n

(all adaptive)
k out of n

(all adaptive)
No

Table 1: Comparison with previous work.

The 2nd column refers to the computational assumptions needed by [LS90] (i.e., one-way per-
mutations) and our main result (i.e., DDH assumption). The 3rd column specifies the type of WI
depending on the adaptive selection of the instances from the adversarial verifier. The 4th column
specifies the soundness depending on the adaptive selection of the instances from the adversarial
prover.

1.3 Online/Offline Computations

Our result has the advantage that the prover can compute the first round without knowing instances
and witnesses. The first round is therefore an offline phase. When the prover interacts with the
verifier (online phase) he sends the first round precomputed and computes only the third round of
the protocol. We stress that [CDS94] requires to know the instances already to compute the first
round. Furthermore the work of [LS90] allows the prover to compute the first round offline but in
the online phase the prover must perform an NP reduction.

In Table 23 we compare the effort of the prover in the online phase in our work and in [CDS94,
LS90]. We consider a prover that proves knowledge of discrete logarithms for 1 instance out of 2
instances (1st column) and a prover that proves knowledge of discrete logarithms for k instances
out of n instances (2nd column). As we noted, above in the online phase of [LS90] the prover
computes an NP reduction (2nd row). For our construction and the one of [CDS94] we count the
number of modular4 exponentiations that are computed in the online phase (3rd and 4th rows).

3The actual amount of computations significantly depends on the precise versions of the subprotocols used in the
construction. The adaptive-input special-sound versions of the subprotocols are certainly more expensive than their
non-adaptive counterparts.

4We will omit the word modular from now on.

8

Below we briefly describe how we have computed the above costs. In [CDS94] the number of
exponentiations is 2n − k. This comes from the fact that the first round of Schnorr’s Σ-protocol
requires one exponentiation while the simulator requires two exponentiations. In [CDS94] the
simulator is executed 2(n− k) times and moreover k exponentiations are needed to run the prover
of Schnorr’s protocol.

(1, 2) DLogs (k, n) DLogs

LaSh90 [LS90] NP-reduction NP-reduction

CDS94 [CDS94] 3 exps 2n− k exps

CPSSV16 [CPS+16a] 4 exps /

This Work
(main result)

2 exps
[4 exps]

2(n− k) exps
[4(n− k) exps]

Table 2: Comparison with previous work proving knowledge of discrete logarithms. The table
illustrates the computations of the prover in the online phase.

In the (1,2)-proof of partial knowledge of [CPS+16a], the 1st round requires 3 exponentiations.
Indeed, in the 1st round of [CPS+16a] the prover runs Schnorr’s simulator and computes the 1st
round of Schnorr’s Σ-protocol. The 3rd round of [CPS+16a] has a different analysis depending on
which witness is used. When the prover of [CPS+16a] uses the witness for an adaptively chosen
instance, then there is no addition exponentiation. Otherwise, another execution of Schnorr’s
simulator is required. For this reason, in the worst case the 3rd round of [CPS+16a] costs two
exponentiations. Note that in the execution of the construction of [CPS+16a] 4 exponentiations are
performed in the online phase, since only the 1st round of Schnorr’s Σ-protocol can be precomputed.

The final row corresponds to our main result and shows the general case of k instances out of
n. Our construction involves 10n− k exponentiations. Indeed a commitment computed according
to the commitment scheme described previously based on DH tuples costs 4 exponentiations. In
our construction in the 1st round we sample n− k DH tuples and k non-DH, sampling a DH/non-
DH tuple costs 3 exponentiations, so this operation costs 3n. Also in the 1st round we compute
n− k equivocal commitments and k binding commitments, and this sums up to 2n + 2k modular
exponentiations. Furthermore the prover computes the 1st round of Schnorr’s Σ-protocol n times
and this costs n exponentiations. Moreover it has to run [CDS94] to prove knowledge of witnesses
for k instances out of n instances, and this costs 2n− k exponentiations. The only operations that
involve exponentiations at the third round are the n − k executions of the simulator of Schnorr’s
Σ-protocol. Therefore the online phase costs 2(n− k).

The adaptive-input special-sound version of our construction costs 13n − 3k exponentiations.
Consider that in the adaptive-input special-sound version of Schnorr’s Σ-protocol an execution of
the simulator costs 4 exponentiations. Moreover computing the 1st round involves 2 exponenti-
ations. Hence the first round of our adaptive-input special-sound construction involves 6n + k
exponentiations and the online phase costs 4(n− k) exponentiations.

The exponentiations in square brackets specify the cost of our main result when Schnorr’s Σ-
protocol is transformed into an adaptive-input special-sound Σ-protocol. The analysis for the case
of 1 out of 2 is similar with k = 1 and n = 2 but in this case, in the offline phase, we do not consider
the cost of [CDS94] since the correctness of the pair of tuples can be self-verified.

9

2 Preliminaries

We use N to denote the set of all natural numbers. For a probabilistic algorithm A, A(x) denotes
the probability distribution of the output of A when run with x as input. We use A(x; r) instead to
denote the output of A when run on input x and coin tosses r. We let PPT stand for probabilistic
polynomial time.

A polynomial-time relation R is a relation for which membership of (x,w) to R can be decided
in time polynomial in |x|. If (x,w) ∈ R then we say that w is a witness for instance x. A
polynomial-time relation R is naturally associated with the NP language LR defined as LR =
{x|∃w : (x,w) ∈ R}. Similarly, an NP language is naturally associated with a polynomial-time
relation. Following [GMY06], we define L̂R to be the input language that includes both LR and
all well formed instances that do not have a witness. It follows that LR ⊆ L̂R and membership in
L̂R can be tested in polynomial time. In a proof system for R, the verifier runs the protocol only
if the common input x belongs to L̂R and it immediately rejects common inputs not in L̂R.

Given two interactive machines M0 and M1, we denote by 〈M0(x0),M1(x1)〉(x2) the output of
M1 when running on input x1 and interacting with M0 running on input x0 and common input x2.

Definition 1. A pair (P,V) of PPT interactive machines is a complete protocol for an NP language
L with relation R if the following property holds:

• Completeness. For every common input x ∈ L and witness w such that (x,w) ∈ R, it holds
that

Prob [〈P(w),V〉(x) = 1] = 1.

Definition 2. A complete protocol (P,V) is a proof system for NP language L with relation R if
the following property holds:

• Soundness. For every interactive machine P? there exists a negligible function ν such that
for every x /∈ L:

Prob [〈P?,V〉(x) = 1] ≤ ν(|x|).

A proof system (P,V) is public coin if V’s messages consist of his coin tosses.

Definition 3 ([Dam10]). Let k : {0, 1}∗ → [0, 1] be a function. A complete protocol (P,V) is a proof
of knowledge for the relation R with knowledge error k if the property of Knowledge soundness is
satisfied.

• Knowledge soundness: there exists a constant c > 0 and a probabilistic oracle machine Extract,
called the extractor, such that for every interactive prover P? and every input x, the machine
Extract satisfies the following condition. Let ε(x) be the probability that V accepts on input
x after interacting with P?. If ε(x) > k(x), then upon input x and oracle access to P?, the
machine Extract outputs a string w such that (x,w) ∈ R within an expected number of steps
bounded by |x|c/(ε(x)− k(x)).

10

Σ-protocols. Here we introduce a special 3-round public coin protocol widley used in practice:
Σ-protocols. Here the verifier sends one single message, called the challenge. There exist efficient
Σ-protocols for useful languages, and moreover they are easy to work with as already shown in
many transforms [DG03, MP03, Vis06, CDV06, BPSV08, YZ07, OPV10, Lin15, CPSV16].

A transcript τ of an execution of a public-coin protocol Π = (P,V) for statement x consists of
the sequence of messages exchanged by P and V. We say that τ is accepting if V outputs 1. Two
accepting transcripts (a, c, z) and (a′, c′, z′) for a 3-round public coin proof system with the same
common input constitute a collision iff a = a′ and c 6= c′.

Definition 4. A 3-round public-coin complete protocol Π = (P,V) is a Σ-protocol for NP language
L with polynomial-time relation R iff the following additional properties are satisfied:

• Special Soundness. There exists an efficient algorithm Extract that, on input x and a collision
for x, outputs a witness w such that (x,w) ∈ R.

• Special Honest Verifier Zero Knowledge (SHVZK). There exists a PPT simulator algorithm
S that, on input an instance x ∈ L and challenge c, outputs (a, z) such that (a, c, z) is an
accepting transcript for x. Moreover, the distribution of the output of S on input (x, c) is
perfectly5 indistinguishable from the distribution of the transcript obtained when V sends c as
challenge and P runs on common input x and any private input w such that (x,w) ∈ R.

SHVZK is a weaker requirement than Zero Knowledge but it nonetheless implies non-trivial
security against adversarial verifiers.

Theorem 1 ([CDS94]). Every Σ-protocol is Perfect WI.

The special soundness property makes the challenge length act as a security parameter for a
Σ-protocol, in the sense that a Σ-protocol with sufficiently long challenges is also a proof system.
More formally, we have.

Theorem 2. [CDS94, Dam10] Let Π be a Σ-protocol for relation R and challenge length l. Run-
ning Π k-times in parallel for the same instance x corresponds to running Σ-protocol for R with
challenge length k · l.

Following the Theorem 1 of [Dam10] and its security proof we can claim the following theorem.

Theorem 3. Let Π be a 3-round public-coin protocol that enjoys the property of completeness and
that is special sound for a relation R. If Π has challenge length of dimension λ, then Π is a proof
of knowledge with knowledge error 2−λ.

By the above theorem, we have that every Σ-protocol with a sufficiently long challenge is a
proof of knowledge with negligible knowledge error.

In this paper we consider a relaxed notion of special soundness, called t-special soundness, by
which t = poly(|x|) transcripts (with t > 2) allow to extract a witness for x. By using a proof
similar to the one of Theorem 3, we can prove that a t-special sound protocol is a proof of knowledge
with negligible soundness error when the challenge is sufficiently long.

5In this work we stick with the requirement of perfect SHVZK for Σ-protocols. Computational special HVZK has
also been considered in the literature.

11

2.1 Adaptive-Input Special Soundness and Proof of Knowledge

In this paper we make use of Σ-protocols that enjoys a stronger definition of completeness: delayed-
input completeness. In a Σ-protocol that enjoys this property the prover does not need to know
both theorem and witness in order to output the first round of the protocol.

Definition 5 (Delayed-Input Σ-protocol [CPS+16a]). A Σ-protocol Π = (P,V) for a relation R
is delayed-input if P computes the first round having as input only the security parameter 1λ and
` = |x|.6

In this paper we also consider a stronger notion of special-soundness and PoK that could be
enjoyed by a Σ-protocol that is delayed-input.

The special soundness of a Σ-protocol strictly requires the statement x ∈ L to be unchanged
in the 2 accepting transcripts. We introduce a stronger notion referred to as adaptive-input special
soundness. Roughly speaking, we require that it is possible to extract witnesses from a collision
even if the two accepting 3-round transcripts are for two different instances. It is easy to see that
adaptive-input special soundness implies extraction against provers that choose the theorem to be
proved after seeing the challenge.

Definition 6. A Σ-protocol Π for relation R enjoys adaptive-input special soundness if there exists
an efficient algorithm AExtract that, on input accepting 3-round transcripts (a, c1, z1) for input x1

and (a, c2, z2) for input x2, outputs witnesses w1 and w2 such that (x1, w1) ∈ R and (x2, w2) ∈ R.

In this work we also define a protocol Π = (P,V) that is adaptive-input proof of knowledge.
The adaptive-input proof of knowledge property is the same as the proof of knowledge property,
with the differences that Π has to be delayed-input, and that the adversarial prover P? can choose
the statement when the last round is played. We require that the instance x given in output by
AExtract must be perfect indistinguishable from an instance x′ given in output by P? in an execution
of Π with V. The previous discussion about proving the proof of knowledge property from `-special
soundness also applies when proving adaptive-input proof of knowledge from adaptive-input `-
special soundness.

2.2 Adaptive-Input Witness Indistinguishability

The notion of adaptive-input WI formalizes security of the prover with respect to an adversarial
verifier A that adaptively chooses the input instance to the protocol; that is, after seeing the first
message of the prover. More specifically, for a delayed-input 3-round complete protocol Π, we
consider game ExpAWIΠ,A between a challenger C and an adversary A in which the instance x and
two witnesses w0 and w1 for x are chosen by A after seeing the first message of the protocol played
by the challenger. The challenger then continues the game by randomly selecting one of the two
witnesses, wb, and by computing the third message by running the prover’s algorithm on input the
instance x, the selected witness wb and the challenge received from the adversary. The adversary
wins the game if she can guess which of the two witnesses was used by the challenger.

We now define the adaptive-input WI experiment ExpAWIΠ,A(λ, aux). This experiment is pa-
rameterized by a delayed-input 3-round complete protocol Π = (P,V) for a relation R and by PPT

6For simplicity in the rest of the paper we do not specify anymore that the algorithms P,V take as input ` when
the instance x is not known.

12

adversary A. The experiment has as input the security parameter λ and auxiliary information aux
for A.

ExpAWIΠ,A(λ, aux):

1. C randomly selects coin tosses r and runs P on input (1λ; r) to obtain a;

2. A, on input a and aux, outputs instance x, witnesses w0 and w1 such that
(x,w0), (x,w1) ∈ R, challenge c and internal state state;

3. C randomly selects b← {0, 1} and runs P on input (x,wb, c) to obtain z;

4. b′ ← A((a, c, z), aux, state);

5. if b = b′ then output 1 else output 0.

We set AdvAWIΠ,A(λ, aux) =
∣∣Prob

[
ExpAWIΠ,A(λ, aux) = 1

]
− 1

2

∣∣ .
Definition 7 (Adaptive-Input Witness Indistinguishability). A delayed-input 3-round complete
protocol Π is adaptive-input WI if for any PPT adversary A there exists a negligible function ν
such that for any aux ∈ {0, 1}∗ it holds that AdvAWIΠ,A(λ, aux) ≤ ν(λ).

2.3 The DDH assumption

Let G be a cyclic group, g generator of G and let A,B and X be elements of G. We say that
(g,A,B,X) is a Diffie-Hellman tuple (a DH tuple, in short) if A = gα, B = gβ for some integers
0 ≤ α, β ≤ |G| − 1 and X = gαβ. If this is not the case, the tuple is called non-DH. To verify that
a tuple is DH, it is sufficient to have the discrete log α of A to the base g and then to check that
X = Bα. We thus define the polynomial-time relation DH = {((g,A,B,X), α) : A = gα and X =
Bα} of the DH tuples.

The DDH assumption posits the hardness of distinguishing a randomly selected DH tuple from
a randomly selected non-DH tuple with respect to a group generator algorithm. For sake of con-
creteness, we consider the specific group generator GG that, on input 1λ, randomly selects a λ-bit
prime p such that q = (p− 1)/2 is also prime and outputs the (description of the) order q group G
of the quadratic residues modulo p along with a random generator g of G.

Assumption 1 (DDH Assumption). For every probabilistic polynomial-time algorithm A there
exists a negligible function ν s.t.∣∣∣Prob

[
(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gγ) = 1

]
−

Prob
[

(G, q, g)← GG(1λ);α, β, γ ← Zq : A((G, q, g), gα, gβ, gαβ) = 1
] ∣∣∣ ≤ ν(λ).

In our construction we will need the concept of a oneNDH tuple; that is, a tuple T = (g,A,B,X)
such that A = gα, B = gβ and X = gαβ+1. It is easy to see that, under the DDH assumption,
randomly selected oneNDH tuples are indistinguishable from randomly selected non-DH tuples.
Indeed, let T = (g,A,B,X) be any tuple and consider tuple T ′ = (g,A,B,X · g). Then we have
that if T is a randomly selected DH tuple, then T ′ is a randomly selected oneNDH tuple; whereas, if
T is a randomly selected non-DH tuple then T ′ is statistically close to a randomly selected non-DH

13

tuple. Moreover, by transitivity, we have that, under the DDH assumption, randomly selected
oneNDH tuples are indistinguishable from randomly selected DH tuples. We can thus state the
following lemma.

Lemma 1. Under the DDH assumption, for every probabilistic polynomial-time algorithm A there
exists a negligible function ν s.t.∣∣∣Prob

[
(G, q, g)← GG(1λ);α, β ← Zq : A((G, q, g), gα, gβ, gαβ+1) = 1

]
−

Prob
[

(G, q, g)← GG(1λ);α, β ← Zq : A((G, q, g), gα, gβ, gαβ) = 1
] ∣∣∣ ≤ ν(λ).

We next describe a Σ-protocol Π1ndh for proving that at least k out of n given tuples are oneNDH.
The Σ-protocol is based on the perfect WI Σ-protocol Πddh of [CDS94] for proving that at least k
of n given tuples are DH. We stress that the Σ-protocol Π1ndh that we construct in this section is
also perfect WI.

Formally, we construct Σ-protocol Π1ndh
k = (P1ndh

k ,V1ndhk) for the polynomial-time relation

1ndhk =
{((

(g1, A1, B1, X1), . . . , (gn, An, Bn, Xn)
)
, ((αb1 , b1) . . . , (αbk , bk))

)
:

1 ≤ b1 < · · · < bk ≤ n and Abi = g
αbi
bi

and Xbi = gbi ·B
αbi
bi
, for i = 1, . . . , k

}
.

P1ndh
k and V1ndhk , on input tuples (g1, A1, B1, X1), . . . , (gn, An, Bn, Xn), construct tuples (g1, A1, B1, Y1),

. . . , (gn, An, Bn, Yn) by setting Yi = Xi/gi, for i = 1, . . . , n. Then P1ndh
k and V1ndhk engage in Σ-

protocol Πddh with the constructed tuples (g1, A1, B1, Y1), . . . , (gn, An, Bn, Yn) as input.

Theorem 4. Π1ndh is a perfect WI Σ-protocol for the polynomial-time relation 1ndh.

Proof. The perfect WI property follows from the perfect WI of [CDS94]. The proof is then com-
pleted by the following two simple observations. If at least k of the input tuples are oneNDH then
at least k of the constructed tuples (gi, Ai, Bi, Yi) are DH and the prover has a witness for it. On
the other hand, if fewer than k of the input tuples are oneNDH then the constructed tuples contain
fewer than k DH tuples.

2.4 Instance-Dependent Trapdoor Commitment

We define the notion of a Instance-Dependent Trapdoor Commitment scheme associated with a
polynomial-time relation R and show a construction that uses Σ-protocols and fits this definition.

Definition 8 (Instance-Dependent Trapdoor Commitment scheme). Let R be a polynomial-time
relation. An Instance-Dependent Trapdoor Commitment (a IDTC, in short) scheme for R with
message space M is a quadruple of PPT algorithms (Com,Dec, (Fake1,Fake2)) where Com is the
randomized commitment algorithm that takes as input an instance x ∈ L̂R (with |x| = poly(λ)) and
a message m ∈ M and outputs commitment com and decommitment dec. Dec is the verification
algorithm that takes as input (x, com, dec,m) and decides whether m is the decommitment of com.

(Fake1,Fake2) are randomized algorithms. Fake1 takes as input an instance x, a witness w s.t.
(x,w) ∈ R (|x| = poly(λ)) and outputs commitment com, and equivocation information rand.
Fake2 takes as input x, w, m, and rand, and outputs dec s.t. Dec, on input (x, com, dec,m),
accepts m as decommitment of com.

A Instance-Dependent Trapdoor Commitment scheme has the following properties:

14

• Correctness: for all x ∈ L̂R, all m ∈M , it holds that

Prob [(com, dec)← Com(x,m) : Dec(x, com, dec,m) = 1] = 1.

• Binding: if x /∈ LR then for every commitment com there exists at most one message m s.t.
Dec(x, com, dec,m) = 1 for any value dec.

• Hiding: for every receiver A, for every auxiliary information aux, for all x ∈ LR and all for
m0,m1 ∈M , it holds that

Prob
[
b← {0, 1}; (com, dec)← Com(1λ, x,mb) : b = A(aux, x, com,m0,m1)

]
≤ 1

2
.

• Trapdoorness: the following two families of probability distributions are perfect indistin-
guishable (namely the two probability distributions coincide for all (x,w,m) such that (x,w) ∈
R and m ∈M):

{(com, rand)← Fake1(x,w); dec← Fake2(x,w,m, rand) : (com, dec)}

{(com, dec)← Com(x,m) : (com, dec)}.

IDTC from Σ-protocol. Our construction follows similar constructions of [Dam10, HL10,
DN02]. Let Π = (P,V) be a Σ-protocol for the polynomial-time relation R with the associated
NPlanguage LR and challenge length λ, let S be the special HVZK simulator for Π and let (x,w)
be s.t. (x,w) ∈ R. Now we show an IDTC CSΠ = (ComΠ,DecΠ, (FakeΠ

1 ,Fake
Π
2)).

• ComΠ takes as input x, and m ∈ {0, 1}λ, runs (com, dec)← S(x,m) and output (com, dec).

• DecΠ takes as input x, com, dec,m and gives its to V. Outputs what V outputs.

• FakeΠ
1 takes as input x, w, and samples a random string ρ and runs P on input (1λ, x, w; ρ)

to get the 1st message a of Π. FakeΠ
1 sets rand = ρ, com = a and outputs (com, rand).

• FakeΠ
2 takes as input x,w,m, rand and runs P on input (1λ, x, w,m, rand) to get the 3rd

message z of Π. FakeΠ
1 sets dec = z and outputs dec.

Theorem 5. CSΠ is an IDTC for the polynomial-time relation R.

Proof. The security proof relies only on the properties of Π. Correctness follows from the com-
pleteness of Π. Binding follows from the special soundness of Π. Hiding and Trapdoorness follow
from the SHVZK and the completeness of Π.

3 Adaptive-Input (k, n)-Proof of Partial Knowledge

For a polynomial-time relation R, we define the k-threshold relation Rk as follows

Rk =
{((

x1, . . . , xn
)
,
(
(w1, d1), . . . , (wk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (xdi , wi) ∈ R, for i = 1, . . . , k
}
.

15

In this section we show that if R admits a delayed-input Σ-protocol Π = (P,V), then, under the
DDH assumption, Rk has a delayed-input WIPoK Πk = (Pk,Vk). Protocol Πk uses Π and Π1ndh

k

as sub-protocols.
Let us give the intuition behind our construction. The prover starts by randomly selecting k

oneNDH tuples and n−k DH tuples. Each tuple is used to commit to a random and independently
selected first message of protocol Π by using an IDTC CS = (Com,Dec, (Fake1,Fake2)) (see. Sec. 2.4)
for the polynomial time relation DH (defined in Sec. 2.3). More specifically the algorithm Com is
used to computes the commitments w.r.t. the DH tuples, and the algorithm Fake1 to computes the
commitments w.r.t. the oneNDH tuples.

All commitments and tuples are sent to the verifier. Note that Π is a delayed-input Σ-protocol
and thus the inputs are not needed to complete this step. Then the verifier’s challenge c and n
inputs along with the witnesses for k of them are made available to the prover. The prover associates
each input for which a witness is available with one of the commitments sent to the verifier in the
first round that was computed with respect to a oneNDH tuple. The commitment is opened by
using Dec and the third round message is computed by the prover by using the witness. Instead,
for an input for which no witness is available, the prover runs the simulator of Π and obtains an
accepting transcript (a, c, z). The prover then associates a commitment computed with respect to
a DH tuple and computes, by using the algorithm Fake2, an opening of it as a. The the prover
sends the opening and z to the verifier. In sums, for each input, the verifier receives an accepting
transcript whose first message is shown to have been committed to in the first round. To ensure
that the prover cannot cheat and choose n DH tuples, the prover and the verifier engage in parallel
into an execution of Σ-protocol Π1ndh

k described in Section 2.

1st round. Pk ⇒ Vk:

1. Set (G, p, g)← GG(1λ).

2. Randomly choose tuples T1 = (g1, A1, B1, X1), . . . , Tn = (gn, An, Bn, Xn) of elements
of G under the constraint that exactly k are oneNDH and n − k are DH, along with
α1, . . . , αn such that Ai = gαi

i , for i = 1, . . . , n.

3. Let b1, . . . , bk denote the indices of the k oneNDH tuples and b̃1, . . . , b̃n−k denote the
indices of the n− k DH tuples.

4. Run the prover of Π1ndh
k on input T = (T1, . . . , Tn), witness ((αb1 , b1), . . . , (αbk , bk)) and

randomness ρ thus obtaining message a1ndh. Send a1ndh to Vk.
5. For i = 1, . . . , n:

Compute the first round ai of Π by running P with randomness ri.

Compute pair (comi, deci) of commitment and decommitment of ai using Ti.

Send (Ti, comi) to Vk.

2nd round. Vk ⇒ Pk: randomly select a challenge c and send it to Pk.

3rd round. Pk ⇒ Vk:

1. Receive inputs (x1, . . . , xn) and witnesses (wd1 , . . . , wdk) for inputs xd1 , . . . , xdk (we de-

note by d̃1, . . . , d̃n−k the indices of the inputs for which no witness has been provided).

2. Compute the third round of Π1ndh using c as challenge to get z1ndh and send it to Vk.

16

3. Pick a random permutation σ of {1, . . . , k} to associate each of the k oneNDH tuples
Tb1 , . . . , Tbk with one of the k inputs xd1 , . . . , xdk for which a witness is available.

4. For i = 1, . . . , k:

Set j = dσ(i) and tj = bi.

Compute zj by running P on input (xj , wj), atj , randomness rtj and challenge c.

Set Mj = (j, tj , dectj , atj , zj).

5. Pick a random permutation τ of {1, . . . , n− k} to associate each of the n− k DH tuples
T
b̃1
, . . . , T

b̃n−k
to one of the k inputs x

d̃1
, . . . , x

d̃n−k
for which no witness is available.

6. For i = 1, . . . , n− k:

Set j = d̃τ(i) and tj = b̃i.

Run simulator S on input xj and c obtaining (aj , zj).

Use trapdoor αtj to compute decommitment dectj of comtj as aj .

Set Mj = (j, tj , dectj , aj , zj).

7. For j = 1, . . . , n: send Mj to Vk.

Vk accepts if and only if all the following conditions are satisfied:

1. (a1ndh, c, z1ndh) is an accepting transcript for V1ndh with input T ;

2. all tj ’s are distinct;

3. for j = 1, . . . , n: dectj is a valid decommitment of comtj with respect to Ttj ;

4. for j = 1, . . . , n: (aj , c, zj) is an accepting transcript for V with input xj ;

3.1 (Adaptive-Input) Proof of Knowledge

In this section we start by proving that Πk is a proof of knowledge and then we prove that if Π
adaptive-input special sound then Πk is an adaptive-input proof of knowledge.

Theorem 6. Protocol Πk is a proof of knowledge for Rk.

Proof. The completeness property is straightforward from the completeness of Π1ndh
k and Π and

from the correctness and trapdorness properties of the Instance-Dependent Trapdoor Commitment
scheme used.

Now we proceed to prove that Πk is N -special sound with N = k(n−k+1)+1. By the arguments
of Section 2 about the proof of knowledge property of protocols that enjoy N -special soundness,
we can conclude that Πk is a proof of knowledge. Specifically, we show that there exists an efficient
extractor that, for any sequence (x1, . . . , xn) of n inputs and for any set of N accepting transcripts
of Πk that share the same first message and have different challenges, outputs the witnesses of k of
the n inputs. The extractor is based on the following observations.

From any two (out of the N) accepting transcripts of Πk, we can extract a collision for Π1ndh
k .

By the special soundness of Π1ndh
k , the collision gives us the witnesses that k of the tuples used in

the N transcripts are oneNDH. Without loss of generality, we assume that we obtain witnesses for
T1, . . . , Tk and we call them the good tuples. This implies that commitments com1, . . . , comk that
appear in the shared first round of the N transcripts are opened to the same strings a1, . . . , ak in
all the N transcripts. The k good tuples can be associated in each of the N transcripts to different

17

inputs; however, if the same good tuple is associated with the same input xi in two different
transcripts then we obtain a collision for Π with input xi and thus, by the special soundness of Π,
it is possible to extract a witness for xi. We call such inputs good as well. Notice that we have N
transcripts and k good tuples and thus we have k ·N associations of good tuple to inputs.

We next prove that the N transcripts contain collisions of protocol Π with good tuples for at
least k inputs and thus at least k witnesses can be extracted. For the sake of contradiction, suppose
that there are only m ≤ k − 1 good inputs and let us count the good-tuple-to-input association
(which we know to be k ·N) by counting the contributions of the good inputs and of the non-good
inputs, separately. Clearly, each of the m good inputs is associated with at most one good tuple for
each of the N transcripts thus contributing m ·N associations. Each of the remaining n−m inputs
is associated with each of the k good tuples in at most one of the N transcripts thus contributing
an extra (n−m) · k associations. We have thus counted a total of m ·N + (n−m) · k associations.
Since the number of associations is an increasing function of m and since m ≤ k − 1, we have

m ·N + (n−m) · k = m · (N − k) + n · k
≤ (k − 1) · (N − k) + n · k
≤ k ·N −N + k · (n− k + 1)

= k ·N − 1

Contradiction.

Theorem 7. If Π is adaptive-input special sound then Πk is an adaptive-input proof of knowledge
for Rk.

Proof. The delayed-input property follows from the completeness of protocols Π1ndh
k , the correctness

and trapdorness properties of the Instance-Dependent Trapdoor Commitment scheme used, and
from the delayed-input completeness of Π.

To complete the proof we proceed similarly to the security proof of Theorem 6 by proving that
the protocol Πk is adaptive-input special sound. More specifically we show that there exists an
efficient algorithm that on input 2 accepting transcripts (a, c1, z1) (a, c2, z2) for Πk such that

- the first one is accepting with respect to a sequence of n theorems (x1
1, . . . , x

1
n),

- the second one is accepting with respect to a sequence of n (potentially different from the
previous one) theorems (x2

1, . . . , x
2
n),

- they share the same first round and

- they include different challenges,

outputs, k witnesses for each of the two sequences of theorems (for a total of at most 2 · k
different witnesses).

The extractor is based on the following observations.
First of all, observe that, by the special soundness of protocol Π1ndh

k , it is possible to extract
the witness certifying that k of the tuple T1, . . . , Tn appearing in the first message are oneNDH.
Let us denote by b1, . . . , bk the indices of the oneNDH tuples. This implies that commitments

18

comb1 , . . . , combk that appear in the common first round of the N transcripts will be opened to the
same strings ab1 , . . . , abk .

To conclude the proof we observe that if two transcripts use the same oneNDH tuple Tbi then we
can obtain two transcripts of Σ-protocol Π that share the same first message and have two different
challenges. By the adaptive-input special soundness property of Π there exists an extractor that
outputs a witness. Given that Πk is adaptive-input special sound, the property of adaptive-input
PoK follows immediately from the arguments of Section 2.1.

3.2 Adaptive-Input Witness Indistinguishability

Here we prove that Πk is WI with respect to a PPT adversary A that is allowed to select the
instance and the witnesses after receiving the first round. We have the following theorem.

Theorem 8. Under the DDH assumption, if Π is SHVZK for R then Πk is adaptive-input WI for
relation Rk.

Proof. For sake of contradiction, let A be a PPT adversary and aux an auxiliary information
for which AdvAWIΠk,A(λ, aux) is a non-negligible function of λ. We let X = (x1, . . . , xn) denote
the instance output by A at Step 2 of ExpAWIΠk,A and we let W 0 = ((w0

1, d
0
1), . . . (w0

k, d
0
k)) and

W 1 = ((w1
1, d

1
1), . . . (w1

k, d
1
k)) denote the witnesses output. We remark that (xdbi

, wbi) ∈ R for

i = 1, . . . , k and b = 0, 1 and that i 6= j implies that d0
i 6= d0

j and d1
i 6= d1

j . Let m ≤ k be the

number of instances of Π in X for which W 1 contains a witness but W 0 does not. Obviously, since
W 0 and W 1 contain witnesses for the same number k of instances of Π in X, it must be the case
that m is also the number of instances of Π in X for which W 0 contains a witness and W 1 does
not. We call m the number of unique instances (these are instances for which a witness appears in
exactly one of W 0 and W 1).

For integer 0 ≤ m ≤ k for which A has a positive probability of outputting X,W 0,W 1 with m
unique instances, we define AdvAWI(λ, aux|m) to be the advantage of A conditioned on the event
that there are m unique instances. Notice that we dropped the indices A and Πk not to overburden
the notation. Since AdvAWI(λ, aux) is non-negligible in λ there must exist integer 0 ≤ m ≤ k
such that AdvAWI(λ, aux|m) is defined and non-negligible and the probability of having m unique
instances is also non-negligible. Notice that the value of m depends solely on the adversaryA and we
consider it fixed throughout the proof. In designing the reductions to the problem of distinguishing
DH tuples from oneNDH tuples (which, by Lemma 1, is hard under the DDH assumption), we
shall assume that A would output X,W 0 and W 1 with m unique instances. When this is actually
the case, which by our choice of m has a non-negligible probability of occurring, we will have a
non-negligible advantage in solving the problem; when instead the number of unique instances is
other than m, we will output a random guess. This is sufficient to prove that a non-negligible
advantage in distinguishing DH tuples from oneNDH tuples is obtained.

We rename the instances of X output by A, so that W 0 and W 1 can be written as

W 0 =
(
(w0

1,m+ 1), . . . , (w0
m, 2m), (w0

m+1, 2m+ 1), (w0
k,m+ k)

)
and

W 1 =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . . , (w1
k,m+ k)

)
;

that is, we sort the instances of X so that the first m instances, x1, . . . , xm, have a witness only in
W 1; the next m instances, xm+1, . . . , x2m, have a witness only in W 0; and the last k−m instances,

19

x2m+1, . . . , xm+k, have witnesses in the both. For any two such W 0 and W 1, we define the following
intermediate sequences of witnesses W1, . . . ,Wk:

1. For i = 0, . . . ,m: Wi consists of witnesses

Wi =
((
w1

1, 1
)
, . . . ,

(
w1
i , i
)
,
(
w0
i+1,m+ i+ 1

)
, . . . ,

(
w0
m, 2m

)
,
(
w0
m+1, 2m+ 1

)
, . . . ,

(
w0
m+k,m+ k

))
.

Note that Wi contains witnesses for (x1, . . . , xi, xm+1+i, . . . , x2m). Moreover, W0 coincides
with W 0 and in Wm the first m witnesses are from W 1 and the remaining are from W 0.

2. For i = m+ 1, . . . , k: Wi consists of witnesses

Wi =
(
(w1

1, 1), . . . , (w1
m,m), (w1

m+1, 2m+ 1), . . .

. . . , (w1
m+i,m+ i), (w0

m+i+1,m+ i+ 1), . . . , (w0
m+k,m+ k)

)
.

It is easy to see that Wk coincides with W 1.

For i = 0, . . . , k, we define hybrid experiment Hi as the experiment in which the challenger C uses
sequence of witnesses Wi to complete the third step of the experiment ExpAWIΠk,A. Clearly, H0

is the experiment ExpAWIΠk,A when C picks b = 0 and Hk is the same experiment when C picks
b = 1.

We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . ,m − 1. We will then
argue about the indistinguishability of Hm+i and Hm+i+1 for i = 0, . . . , k − m − 1. We assume
inductively that in Hi the probability that there will be m unique instances is non-negligible and
prove that this is still the case in Hi+1. We remind the reader that, in Hi and Hi+1, the challenger
C uses witnesses for the following k instances:

Hi x1 · · · xi xm+i+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

Hi+1 x1 · · · xi xi+1 xm+i+2 · · ·x2m x2m+1 · · · xm+k

The differences between the two hybrid experiments are relative to instances xi+1 and xm+i+1

and to the witness used by the prover to complete the proof that at least k tuples are oneNDH.
Specifically,

1. the transcript of Π for xi+1 is produced by the simulator in Hi and by the prover in Hi+1;
2. the first messages of the transcript of Π for xi+1 is committed to with a DH tuple in Hi and

with a oneNDH tuple in Hi+1;
3. the transcript of Π for xm+i+1 is produced by the prover in Hi and by the simulator in Hi+1;
4. the first messages of the transcript of Π for xm+i+1 is committed to with a oneNDH tuple in
Hi and with a NDH tuple in Hi+1;

5. protocol Π1ndh is completed by using the witnesses for the oneNDH tuples associated with
x1, · · · , xi, xm+i+2, · · · , x2m, x2m+1, · · · , xm+k. In addition, the witness for the oneNDH tuple
associated with xm+i+1 is used by Hi and the witness for the oneNDH tuple associated with
xi+1 is used by Hi+1.

6. in addition, in both hybrid experiments exactly k of the tuples are oneNDH and exactly n−k
are DH.

20

To prove indistinguishability of Hi and Hi+1 we consider four intermediate hybrids: H1
i , . . . ,H4

i .

H1
i differs from Hi in the way the transcript of Π instance xi+1 is computed. Specifically, instead

of using the SHVZK simulator of Π, H1
i uses the algorithm of the prover of Π run with wi+1 as

input. Indistinguishability of H1
i and Hi follows directly from the following two observations. First,

observe that xi+1 is associated in both Hi and H1
i with a DH tuple and therefore the commitment

is perfectly hiding. Moreover, Π’s simulator is perfect.

H2
i differs fromH1

i in the way the tuples used to compute the commitments are chosen. Specifically,
H2
i chooses k+1 oneNDH tuples, n−k−1 DH tuples (as opposed to k oneNDH tuples and n−k DH

tuples). The extra oneNDH tuple is used by H2
i to compute the commitment of the first message of

Π that will be associated to xi+1 in the third round. As a sanity check, notice that in this case the
commitment associated with xi+1 is binding but this is not a problem as an accepting transcript
of Π for xi+1 can be computed by using witness wi+1.

We observe that Lemma 1 implies that the probability that, in H2
i , A produces two sequences

W 0 and W 1 of witnesses with m unique instances is still non-negligible7.
Indistinguishability of H1

i and H2
i follows by Lemma 1. Let T = (g,A,B,X) be either a random

oneNDH tuple or a random DH tuple and consider the following simulator algorithm S that on input
T produces the view of A in H1

i or in H2
i depending on whether T is DH or non-DH. The n tuples

selected by S consist in k randomly selected oneNDH tuples, n−k−1 randomly selected DH tuples
and T . Then, S executes the same steps as in H1

i and will associate tuple T with xi+1. Notice that
S does not need a witness for T being DH to complete the execution as the accepting transcript
of Π for xi+1 is computed using the witness wi+1 and the prover’s algorithm and thus there is no
need of a trapdoor to change the first message committed in the 1st round.

H3
i differs from H2

i as protocol Π1ndh is completed by using the witness of the tuple associated
with xi+1 and not the tuple associated with xm+i+1 (along, obviously, the tuples associated with
x1, . . . , xi and with xm+i+2, . . . , xm+k). Indistinguishability of H3

i and H2
i follows from the perfect

WI of Π1ndh. Notice also that the only change intervenes after A has output the instances and the
witnesses and therefore the probability of having m unique instances does not change.

H4
i differs fromH3

i in the way the tuples used to compute the commitments are chosen. Specifically,
H4
i chooses k oneNDH tuples, n−k DH tuples (as opposed to k+1 oneNDH tuples and n−k−1 DH

tuples). The extra DH tuple is used by H4
i to compute the commitment of the first message of Π

that will be associated to xm+i+1 in the third round. Indistinguishability of H3
i and H4

i follows by
the same argument used for the indistinguishability of H2

i and H1
i and also by the same argument

the probability of having m unique instances stays non-negligible.

Finally, we observe that H4
i differs from Hi+1 in the way the transcript of Π instance xm+i+1 is

computed. Specifically, instead of using the prover of Π, H4
i uses the simulator of Π. Indistin-

guishability of H4
i and Hi+1 follows by the same argument used for the indistinguishability of Hi

and H1
i . Notice also that the only change intervenes after A has output the instances and the

witnesses and therefore the probability of having m unique instances does not change.
We have thus proved that H0 is indistinguishable from Hm. To complete the proof, we need to

prove that Hm+i and Hm+i+1 are indistinguishable for i = 0, . . . , k −m− 1. This follows directly
from the observation that Hm+i and Hm+i+1 only differ in the witness used for x2m+i+1: Hm+i

7Actually, the probability is, up to a negligible additive factor, the same as in H1
i which in turn is exactly the

same as in Hi

21

uses the witness from W 0 whereas Hm+i+1 uses the witness from W 1. Indistinguishability then
follows directly from the Perfect WI of Π.

4 Adaptive-Input Special-Soundness of Σ-Protocols

In this section, we first show Σ-protocols that are not secure when the adversarial prover can choose
the statement adaptively after seeing the verifier’s challenge. We then give an efficient compiler
that, on input a Σ-protocol belonging to the general class considered in [Mau15, CD98], outputs a
Σ-protocol that is adaptive-input sound.

4.1 Soundness Issues in Delayed-Input Σ-Protocols

We start by showing that the notion of adaptive-input special soundness is non-trivial in the sense
that there are Σ-protocols that are not special sound when the statement is chosen adaptively at
the 3rd round.

Issues with soundness. Let us consider the following well-known Σ-protocol ΠDH for relation
DH (see Section 2.3). On common input T = (g,A,B,X) and honest prover’s private input α such
that A = gα and X = Bα, the following steps are executed. We denote the size of the group G by
q.

1. P picks r ∈ Zq at random and computes and sends a = gr, x = Br to V;

2. V chooses a random challenge c ∈ Zq and sends it to P;

3. P computes and sends z = r + cα to V;

4. V accepts if and only if gz = a ·Ac and Bz = x ·Xc.

We next show that the above Σ-protocol does not enjoy special soundness if an adversarial prover
is allowed to select X adaptively after seeing the challenge c sent by the honest verifier. Indeed,
consider the following two conversations ((a = gr, x = Bs), c1, z1 = r + α · c1) and ((a = gr, x =
Bs), c2, z2 = r + α · c2) for tuples (g,A,B,X1) and (g,A,B,X2) where A = gα, X1 = gγ1 and
X2 = gγ2 for γi = zi−s

ci
= α+ r−s

ci
, for i = 1, 2.

It is easy to see that both conversations are accepting (for their respective inputs) and that, if
r 6= s, neither tuple is a DH tuple and therefore no witness can be extracted. Notice that this is a
very strong soundness attack since the adversarial prover succeeds in convincing the verifier even
though the statement is false.

A similar argument can be used to prove that the Σ-protocol of [MP03] for relation Com =
{((g, h,G,H,m), r) : G = gr and H = hr+m} does not enjoy adaptive-input special soundness.

Issues with special soundness. Let us now consider Schnorr’s Σ-protocol [Sch89] for relation
DLog = {((G, g, Y), y) : gy = Y }. Clearly, this is a different case since there is no false theorem to
prove, and thus and adversarial prover can only violate special soundness; that is, it is not possible
to extract a witness from two accepting transcripts with the same first message.

22

In Schnorr’s protocol, the prover on input (Y, y) ∈ DLog starts by sending a = gr, for a randomly
chosen r ∈ Zq. Upon receiving challenge c, P replies by computing z = r + yc. V accepts (a, c, z)
if gz = a · Y c.

Consider now accepting transcripts (a, ci, zi) with respect to inputs Yi, i = 1, 2. In this case, to
extract witnesses yi s.t. ((G, g, Yi), yi) ∈ DLog one has to solve the following system with unknowns
r, y1, and y2. {

z1 = r + c1 · y1

z2 = r + c2 · y2

Since c1 6= c2, the linear system above has q2 solutions and thus the two transcripts give no
information on either of the two witnesses.

4.2 A Compiler for Adaptive-Input Special Soundness

In this section, we construct an adaptive-input special soundness Σ-protocol Πa
f for proving knowl-

edge of the pre-image of a homomorphic function. Our construction is based on the Σ-protocol
Πf = (Pf ,Vf) given in [CD98, Mau15] that generalizes and subsumes several Σ-protocols, including
the one by Schnorr [Sch89], Guillou-Quisquater [GQ88] and the Σ-protocol for DH tuples [DH76].
Thus our construction can be seen as a compiler that adds adaptive-input special soundness to the
Σ-protocols generalized by the protocol of [CD98, Mau15].

Let us proceed more formally. Let (G, ?) and (H,⊗) be two groups with efficient operations and
let f : G → H be a one-way homomorphism from G to H. That is, for all x, y ∈ G, we have that
f(x ? y) = f(x)⊗ f(y) and it is infeasible to compute w from f(w) for a randomly chosen w. We
next describe Σ-protocol Πf for relation Rf = {(x,w) : x = f(w)}. Here prover Pf and verifier Vf
receive as input the description of groups G and H along with an element x ∈ H. In addition, Pf
receives w such that x = f(w) as a private input. Let C be an arbitrary subset of N.

1. Pf picks r ← G, sets a = f(r) and sends a to Vf ;

2. Vf picks c← C and sends it to Pf ;

3. Pf computes z = r ? wc and sends it to Vf ;

4. Vf accepts if and only if f(z) = a⊗ xc.

Theorem 3 of [Mau15] describes necessary conditions for Πf to be special sound. Specifically,
given a collision (a, c1, z1) and (a, c2, z2) for common input x, it is possible to extract w such that
x = f(w) if integer y and element u ∈ G such that the following two conditions are satisfied are
known:

1. gcd(c1 − c2, y) = 1;

2. f(u) = xy.

It is not difficult to see that this is the case when the protocol is instantiated to give Schnorr’s
protocol, the Guillou-Quisquater protocol or the protocol for DH tuples. We also observe that,
since Schnorr’s protocol is a special case of this protocol, protocol Πf does not enjoy adaptive-
input special soundness.

23

From Πf to Πa
f . We have seen that in the case of the Σ-protocol for DH, if P∗ sends a non-DH

tuple in the first round, instead of a DH tuple as prescribed by the protocol, then he succeeds in
violating special soundness. We next show that if we force the prover to correctly compute the first
message then the protocol is adaptive-input special soundness.

Roughly speaking, we augment Πf by requiring the prover to also give a proof of knowledge
of the randomness used to compute the first round a of Πf which for Πf consists in executing a
second instance of the same protocol on input the first message a. We observe that the second
instance of Πf is not subject to an adaptive-input attack since the adversarial prover is committed
to using the first message a of the first instance of Πf as input.

More precisely, we consider the protocol Πa
f consisting of the parallel execution of two instances

of Πf . For common input x, the first instance of Πf is executed on common input x, whereas in
the second instance the common input is the first message a of the first instance. The verifier of
Πa
f sends the same challenge to both instances and accepts if and only if, in both instances, the

verifier of Πf accepts. For our propose we need to set the challenge space of Πa
f as Ca

f = Cf − {0},
where Cf is the challenge space of Πf . The reason why we cannot have Ca

f = Cf will be clear in the
proof of adaptive-input special soundness. For now we just make the following considerations.

1. If Πf has challenge space Cf of size one, then Πf is already adaptive-input special sound,
therefore our compiler just sets Πa

f = Πf .

2. If Πf has challenge space Cf of size two, and |Cf − {0}| = 1, then our compiler outputs
Πa
f = Πf setting Ca

f = Cf − {0}. We observe that, by definition, Πa
f enjoys the property of

adaptive-input special soundness.

3. In general, if Cf contains 0, then the output protocol of the compiler has challenge smaller
than Cf , and therefore has also worst knowledge error than the starting protocol. This can be
easily avoided by using Theorem 2 in order to amplify the challenge space of Πf before using
our compiler. We recall that preserve the knowledge error is important in order to preserve
the PoK property of the input protocol8.

Let us now prove that Πa
f enjoys adaptive-input special soundness (when we are not in the cases

1 and 2 described before). Suppose we have two accepting transcripts of Πa
f that share the first

message but have different challenge messages. By special soundness of the second instance of Πf ,
we can extract the randomness r used to compute the first message a of the first instance of Πf

from the two sub-transcripts of the second instance of Πf . We conclude the proof by showing that
it is possible to compute a witness for x from one accepting transcript (a, c, z) of Πf for x if r such
that f(r) = a is available. Let y and u be such that f(u) = xy and gcd(y, c) = 1. These values
can be computed since f satisfies the conditions set by Theorem 3 of [Mau15]. More precisely, we
observe that the Theorem 3 of [Mau15] works only if gcd(y, c) = 1 and c 6= 0, and this is the reason
why we require that the challenge space of Πa

f does not contain the challenge 0. Then, by using
the extended GCD algorithm, we can compute α and β such that y · α + c · β = 1. Finally, we
set w = uα ? (r−1 ? z)β. Now observe that f(z) = a ⊗ xc and this implies that f(r−1 ? z) = xc.
Therefore, f(w) = f(uα ? (r−1 ? z)β) = f(u)α ⊗ f(z ? r−1)β = xyα ⊗ xβc = x that proves that
f(w) = x.

We have thus proved the following theorem.

8We observe that the Theorem 3 cannot be directly applied to the Σ-protocol described in this section because of
the different notation used to describe the challenge space of a Σ-protocol.

24

Theorem 9. If there exists a Σ-protocol Πf for Rf , then there exists a Σ-protocol Πa
f for Rf that

enjoys adaptive-input special soundness.

5 On the Adaptive-Input Soundness of [CPS+16a]’s Transform

Ciampi et al. in [CPS+16a] give a compiler that takes as input two Σ-protocols, Π0 and Π1 for
languages L0 and L1, and constructs a new Σ-protocol ΠOR for L0 ∨ L1 in which the instance for
language L1 is needed by the prover only in the 3rd round. The compiler requires Π1 to be delayed
input. In this section we show that if Π1 enjoys adaptive-input special soundness, then so does
ΠOR.

5.1 Overview of the Construction of [CPS+16a]

We start by giving a succinct description of the main building block used by [CPS+16a].

t-Instance-Dependent Trapdoor Commitment. In a t-Instance-Dependent Trapdoor Com-
mitment (a t-IDTC) scheme for polynomial-time relation R, one party can commit a message m
from a predefined message space M with respect to an instance x. The commitment produced is
hiding and binding unless a witness w such that (x,w) ∈ R; in this case, the commitment can be
equivocated.

More precisely, a t-IDTC scheme consists of a triple of PPT algorithms (TCom,TDec,TFake)
with the following syntax. The commitment algorithm TCom takes as input an instance x and a
message m and returns a commitment com of m with respect to x along with a decommitment dec.
The decommitment algorithm TDec takes as input com, dec and m and x and verifies whether dec
is an opening of com as m with respect to x. TFake is the equivocation procedure that, given a
witness for an instance x, a commitment com of message m with respect to x along with the random
coin tosses used to produce it and message m′ outputs a decommitment dec′ of com as m′. It is
required that a t-IDTC is correct (honestly computed commitments are correctly decommitted),
hiding (honestly computed commitments hide the message), trapdoor (a fake commitment is indis-
tinguishable from an honestly computed commitment) and t-Special Extractable. The property of
t-Special Extractability informally says that if the sender opens the same commitment in t different
ways, then it is possible to efficiently extract the witness w. A construction of a 2-IDTC scheme
that is perfect hiding, perfect trapdoor and 2-Special Extractable from a special type of Σ-protocols
is given in [CPS+16a].

5.1.1 The Construction of [CPS+16a]

Let R0 be a relation admitting a t-IDTC scheme with t = 2 and let R1 be a relation admitting an
delayed-input Σ-protocol Π1; we denote by S1 the associated simulator for the honest verifier zero
knowledge. We next describe the Σ-protocol ΠOR = (POR,VOR) of [CPS+16a] for the OR relation:

ROR =
{

((x0, x1), w) : ((x0, w) ∈ R0 ∧ x1 ∈ L̂R1) OR ((x1, w) ∈ R1 ∧ x0 ∈ L̂R0)
}
.

We assume that x0 and the length of x1 in unary are available from the onset of the protocol whereas
x1 and the witness w such that ((x0, x1), w) ∈ ROR are given before the 3rd round. Obviously, the
verifier does not get to learn w.

25

1. POR executes the following steps:

1.1. pick random r1 and compute the 1st round a1 of the delayed-input Σ-protocol Π1 using
r1 as random coin tosses;

1.2. compute a pair (com, dec1) of commitment and decommitment of a1 with respect to x0.

1.3. send com to VOR.

2. VOR sends a random challenge c.

3. POR on input ((x0, x1), c, (w, b)) s.t. (xb, w) ∈ Rb executes the following steps:

3.1. If b = 1,

compute the 3rd round of Π1, z1, using as input (x1, w, c);

3.2. send (dec1, a1, z1) to VOR;

3.3. If b = 0,

run simulator S1 on input x1 and c obtaining (a2, z2);

use trapdoor to compute decommitment dec2 of com as a2;

3.4. send (dec2, a2, z2) to VOR.

4. VOR receives (a, z) and dec from POR and accepts if and only if the following conditions are
satisfied:

4.1. (a, c, z) is an accepting conversation for x1;

4.2. dec is a valid decommitment of com for a message a.

5.2 Adaptive-Input Soundness of ΠOR

We now show that ΠOR preserves the adaptive-input special soundness of the underlying Σ-protocol.

Theorem 10. If R0 admits a 2-IDTC and R1 admits a delayed-input adaptive-input special-sound
Σ-protocol, then ΠOR is an adaptive-input special-sound Σ-protocol.

Proof. The claim follows from the adaptive-input special soundness of the underlying Σ-protocol
Π1 and from the 2-Special Extractability property of the 2-IDTC scheme. More formally, con-
sider an accepting transcript (com, c, (a, z, dec)) for input (x0, x1) and an accepting transcript
(com, c′, (a′, z′, dec′)) for input (x0, x

′
1), where c′ 6= c and x1 is potentially different from x′1. We

observe that:

• if a = a′ then, by adaptive-input special soundness of Π1, there exists an efficient extrac-
tor AExtract that, given as input ((a, c, z), x1) and ((a′, c′, z′), x′1), outputs w1 and w′1 s.t.
(x1, w1) ∈ R1 and (x′1, w

′
1) ∈ R1;

• if a 6= a′, then dec and dec′ are two openings of com with respect to x0 for messages a 6= a′;
then we can obtain a witness w0 for x0 by the 2-Special Extractability of the 2-IDTC scheme.

A similar arguments can be used to show that if R0 admits a 3-IDTC and R1 admits a delayed-
input Σ-protocol with adaptive-input special soundness, then ΠOR enjoys the adaptive-input proof
of knowledge property.

26

6 Extension to Multiple Relations

In this section, we generalize the result of Section 3 to the case of different relations. More specif-
ically, given delayed-input Σ-protocols Σ1, . . . ,Σn for polynomial-time relations R1, . . . ,Rn, we
construct an Adaptive-Input Proof of Partial Knowledge ΓR1,...,Rn

k = (PR1,...,Rn

Γk
,VR1,...,Rn

Γk
) for the

k-threshold polynomial-time relation

RR1,...,Rn

k =

{((
x1, . . . , xn

)
,
(
(w1, d1) . . . , (wk, dk)

))
: 1 ≤ d1 < · · · < dk ≤ n

and (xdi , wi) ∈ Ri for i = 1, . . . , k

}
.

Not to overburden our notation, we will just write Rk,Γk,PΓk
, and VΓk

, whenever R1, . . . ,Rn are
clear from the context.

Let us start by providing some intuition on Γk. For j = 1, . . . , n, the prover of Γk computes
two first-round messages for Σj and commits to each one using a different tuple. Note that Σj

is delayed-input so this step can be performed without knowing the instances (nor the witnesses).
The two tuples, T 0

j and T 1
j , used to compute the commitments for j are chosen so that they share

the first three components and T 1
j is DH and, consequently, T 0

j is non-DH. Therefore, the verifier
is guaranteed that, for each j, at most one of the commitments of the tuple is DH (and thus at
most one commitment can be equivocated). For each j, the tuples T 0

j and T 1
j and the relative

commitments com0
j and com1

j are sent in random order to the verifier. The prover then receives
the n instances, witnesses for k of them and the verifier’s challenge. Then, for each instance xj
for which a witness is available, the prover decommits the commitment computed using T 0

j (the
non-DH tuple) and computes the third round message by running the prover of Σj . On the other
hand, for each instance xj for which no witness is provided, the prover runs the simulator of Σj

and produces an accepting transcript; then the commitment computed using T 1
j (the DH tuple) is

opened as the first message of the simulated transcript, by using equivocation. In both cases, the
decommitment and the accepting transcript are sent to the verifier.

The verifier expects to receive an accepting transcript for each instance with the first message
coming (through equivocation for n−k of them) from a commitment sent as part of the first round.
Moreover, to ensure that the prover has not cheated by equivocating too many commitments, the
prover and the verifier engage in parallel in a protocol by which the prover proves that from among
the n unopened commitments at least k are associated with DH tuples; this implies, by the way the
pairs of tuples have been constructed, that at least k of the opened commitments are associated with
non-DH tuples. We denote the resulting protocol by Πk. Notice that when Πk starts, the prover
does not know which commitment will be opened (since this depends on the witnesses received
after the challenge); this can be handled by our protocol that it only needs instances and witnesses
before the third round starts.

1st round. PΓk
⇒ VΓk

:

PΓk
receives as unary inputs the security parameter λ, the number n of theorems that will be

given as input at the beginning of the third round, and the number k of witnesses that will
be provided.

1. Set (G, p, g)← GG(1λ).

27

2. For j = 1, . . . , n

2.1. Randomly sample a non-DH tuple T 0
j = (gj , Aj , Bj , Xj) over G, along with αj such

that Aj = g
αj

j .

2.2. Set Yj = B
αj

j and T 1
j = (gj , Aj , Bj , Yj)

(note that, by construction, T 1
j is a DH tuple).

3. Select random string R and use it to compute the first round message aΠk of Πk by
running prover Pk.
Send aΠk to VΓk

.

4. For j = 1, . . . , n

4.1. Select random strings R0
j and R1

j and use them to compute the first-round messages

a0
j and a1

j of Σj by running the prover of Σj .

4.2. Compute the pair (com0
j , dec

0
j) of commitment and decommitment of the message

a0
j using non-DH tuple T 0

j .

4.3. Compute the commitment com1
j (of the message a1

j) using the DH tuple T 1
j .

4.4. Send pairs (T 0
j , com

0
j) and (T 1

j , com
1
j) in random order to VΓk

.

2nd round. VΓk
⇒ PΓk

: VΓk
randomly selects a challenge c and sends it to PΓk

.

3rd round. PΓk
⇒ VΓk

:

PΓk
receives theorems x1, . . . , xn and, for d1 < . . . < dk, witnesses w1, . . . , wk for theorems

xd1 , . . . , xdk , respectively. We let d̃1 < . . . < d̃n−k denote the indices of the theorems for
which no witness has been provided.

1. For l = 1, . . . , k

1.1. Use j as a shorthand for dl.

1.2. Set Uj = T 1
j and Ûj = T 0

j .

1.3. Compute zj by running prover of Σj on input (xj , wl), randomness R0
j used to

compute the first round a0
j , and challenge c.

1.4. Set Mj = (a0
j , zj , dec

0
j , Ûj).

2. For l = 1, . . . , n− k
2.1. Use j as a shorthand for d̃l.

2.2. Set Uj = T 0
j and Ûj = T 1

j .

2.3. Run the simulator of Σj on input xj and c therefore obtaining (ã1
j , zj).

2.4. Use the trapdoor αj to compute the decommitment dec1
j of com1

j as ã1
j .

2.5. Set Mj = (ã1
j , zj , dec

1
j , Ûj).

3. For l = 1, . . . , n send Ml to VΓk
.

4. Compute the third round zΠk of Πk by running prover of Πk on input tuples (U1, . . . , Un),
witnesses αd1 , . . . , αdk and randomness R used to compute the first round aΠk .

VΓk
accepts if and only if the following conditions are satisfied.

28

1. For j = 1, . . . , n

Check that the two tuples sent for j in the first round share the first three components.

Write Mj as Mj = (aj , zj , decj , Ûj).

Check that (aj , c, zj) is an accepting conversation of Σj for instance xj .

Check that decj is a decommitment as aj with respect to tuple Ûj of one of com0
j and

com1
j and that tuple Ûj was associated with j in the first round. Denote by Uj the other

tuple associated with j.

2. Check that (aΠk , c, zΠk) is an accepting conversation of VΓk
for instances U1, . . . , Un.

6.1 (Adaptive-Input) Proof of Knowledge

In this section we prove that Γk enjoys the property of PoK. Also, assuming that Π1, . . . ,Πn are
adaptive-input special sound, we prove that Γk enjoys the property of adaptive-input PoK.

Theorem 11. Γk is a proof of knowledge for RR1,...,Rn

k .

Proof. The completeness property follows from the completeness of protocols Πk and Πi, for i ∈
{1, . . . , n}, and from the correctness and trapdoorness property of the Instance-Dependent Trapdoor
Commitment scheme used.

As for the previous security proofs, we proceed by proving that our protocol is N -special sound.
More precisely we prove that Γk is (2n+k)-special sound assuming that Πk is adaptive-input special
sound.

First of all we observe that combining the arguments given in the security proof of Theorem 7,
and the fact that the well known Σ-protocol for DH tuple [DH76] can be converted into one that
enjoys adaptive-input special soundness (see. Sec. 4.2), we can easily claim that Πk is adaptive-
input special sound.

Now we are ready to prove that there exists an efficient extractor which, for any sequence
(x1, . . . , xn) of n fixed inputs and for any set of 2n+ k accepting conversations of Γk that share the
same first message and have different challenges, outputs the witness of wi s.t. (xdi , wi) ∈ Rdi for
i = 1, . . . , k, with 1 ≤ d1 < · · · < dk ≤ n.

The extractor considers a set of 2n+ k accepting conversations a, cj , zj (with j = 1, . . . , 2n+ k)
such that they share the same first message and have different challenges.

For each a, cj , zj (with j = 1, . . . , 2n + k) processed by the extractor one of the following two
cases is possible.

1. There are two conversations of Σ-protocol Πi for theorem xi that share the same first message
ai and have two different challenges. Then by the special soundness property of Πi one can
efficiently get a witness wi for theorem xi.

2. If the new accepting transcript a, cj , zj does not allow the extractor to obtain the witness
then a new non-DH tuple is used for the first time in the accepting conversation a, cj , zj .

The proof ends with the observation that the algorithm stops after k times that the first case
occurs, while the second case occurs at most 2n times.

Theorem 12. If Πi, for i = 1, . . . , n, are adaptive-input special sound then Γk is an adaptive-input
proof of knowledge for RR1,...,Rn

k .

29

Proof. As has been done in the previous security proof, we assume without loss of generality that
Πk is adaptive-input special sound.

The delayed-input completeness of Γk follows from the delayed-input completeness of protocols
Πk, the correctness and trapdorness properties of the Instance-Dependent Trapdoor Commitment
scheme used, and from the delayed-input completeness of Πi for i = 1, . . . , n.

In order to prove that Γk enjoys the property of adaptive-input PoK we need to show an extractor
AExtract that, given oracle access to P?Γk

, outputs an instance x with the respective witness w (see.
Sec 2.1). AExtract complete an execution of the protocol Γk acting as the verifier VΓk

does, in order
to obtain a theorem x1 and a transcript (a, c1, z1) (that is accepting with non-negligible probability).
At this point AExtract, for j = 2, . . . , N , rewinds P?Γk

before that the challenge has been sent, picks

a fresh challenge cj (never used before), and send it to Γk in order to obtain, with non-negligible
probability, another accepting transcript a, cj , zj with respect to a theorem xj = (xj1, . . . , x

j
n).

First of all we observe that from any two (out of the N) accepting transcripts of Πk, we can
extract a collision for Πk. By the adaptive-input special soundness of Πk, the collision gives us
the witnesses that k of the tuples associated to the commitments opened in the last round of each
accepting transcript are non-DH. Without loss of generality, we refer to that tuples as T j1 , . . . , T

j
k

for the j-th transcript, with j = 1, . . . , N .
In order to extract a witness for x1 = (x1

1, . . . , x
1
n) it is necessary to obtain, for every t = 1, . . . k,

at least one transcript (a, cy, zy) that has T yt = T 1
t , with y ∈ {2, . . . , N}. With sufficiently large

N = poly(λ), the probability that this condition is satisfied is non-negligible. The proof ends with
the observation that, because of the adaptive-input special soundness property of Π1, . . . ,Πn, when
a (binding) commitment com computed with respect to the tuple T 1

t (for t = 1, . . . , k) is opened
two times, then is it possible to extract the witness for the theorems proved using as a first round
the message committed in com.

6.2 Adaptive-Input Witness Indistinguishability

Theorem 13. If relations R1, . . . ,Rn admit a SHVZK Σ-protocol then, under the DDH assump-
tion, Γk is adaptive-input WI for RR1,...,Rn.

Proof. We adopt the same framework of the proof for the case of one relation. Specifically, we have
the same definition of hybrid witness sequence Wi and of hybrid experiment Hi, for i = 0, . . . , k.
We start by proving indistinguishability of Hi and Hi+1 for i = 0, . . . ,m − 1. The differences
between the tho hybrids are relative to inputs xi+1 and xm+i+1 and the witness used to complete
protocol Πk. We consider the following intermediate hybrids.

H1
i differs from Hi in the way the transcript of Σi+1 for instance xi+1 is computed. Specifically,

instead of using the SHVZK simulator of Σi+1, H1
i uses the algorithm of the prover of Σi+1 run

with wi+1 as input. Notice that in both hybrids the tuple Ûi+1 used to commit the first-round
message of Σi+1 is a DH tuple whereas Ui+1 is a non-DH tuple. In H1

i however the equivocability
of the commitment is not used and the transcript is completed using the witness and the prover’s
algorithm for Σi+1. Indistinguishability of H1

i and Hi follows directly from the perfect SHVZK.

H2
i differs from H1

i in the fact that tuple Ûi+1 is a non-DH tuple and Ui+1 is a DH tuple. In other
words, in H2

i the first-round message of the transcript relative to xi+1 shown at the third round
has been committed to by a non-DH tuple.

30

Suppose now, for sake of contradiction, that there exists a PPT distinguisherD and a polynomial
poly(·) such that, for sufficiently large security parameters λ,

p1(λ) ≥ p2(λ) + 1/poly(λ),

where p1(λ) and p2(λ) are, respectively, the probabilities that D outputs 1 on input the view of A
in H1

i and in H2
i . We use D and A to design an algorithm B that has a non-negligible advantage

in the DDH game. Algorithm B receives as input a challenge tuple T = (g,A,B,X), randomly
selects Y and constructs the tuple T̂ = (g,A,B, Y) that shares the first three components with T .
Then B simulates the view of A in Hi1 with the following two modifications: T and T̂ are the tuples
associated with i+ 1; in the third round, B selects one of the two at random and the commitment
computed at the first round with respect to the selected tuple is opened. B feeds D with the view
generated by interacting with A and records D’s output. Finally, B outputs 1 if and only if it had
selected T and D has output 1 or it had selected T̂ and D has output 0.

Now, let us compute the probability that B outputs 1 when T is DH tuple. Notice that if T
is selected (and this happens with probability 1/2) then B has produced the view of H1

i and thus

the probability that D outputs 1 is p1. On the other hand, if T̂ is selected then B has produce the
view of H2

i and thus the probability that D outputs 0 is 1− p2. Therefore, it T is DDH, B outputs
1 with probability 1/2 · (1 + p1 − p2).

Consider now the case in which T is non-DH. In this case, both T and T̂ are non-DH and
thus the view received by D is independent from which one of the two is selected by B. We thus
denote by p the probability that D outputs 1 when the view contains two non-DH tuples. As in the
previous case, B outputs 1 if T is selected and D outputs 1 (this event has probability 1/2p) and T̂
is selected and D outputs 0 (this event has probability 1/2 · (1− p)). Therefore B has probability
1/2 of outputting 1 when it receives a non-DH tuple in output.

We thus conclude that B breaks the DDH assumption. Contradiction.

H3
i differs from H2

i in the witness used to compute an accepting transcript for Πk. More specifically
αi+1 is used instead of αm+i+1 in the tuple that define the witness for Πk. Observe that this is
possible because Ui+1 is a DH tuple. Suppose now, for sake of contradiction, that there exists a
PPT distinguisher D and a polynomial poly(·) such that, for sufficiently large security parameters
λ,

p1(λ) ≥ p2(λ) + 1/poly(λ),

where p1(λ) and p2(λ) are, respectively, the probabilities that D outputs 1 on input the view of A
in H2

i and in H3
i . We use D and A to design an algorithm B that has a non-negligible advantage

in break the adaptive WI property of Πk. Algorithm B receives as input the first round challenge
aΠk and computes all the other informations needed to compute the first round of the protocol of
Γk. B, upon receiving the challenge c computes the challenge theorem and witnesses as following:

XΠk
= (U1, . . . , Un);

W 0
Πk

= (α1, . . . , αi, αm+i+1, αm+i+2, . . . , α2m, α2m+1, . . . αm+k);

W 1
Πk

= (α1, . . . , αi+1, αm+i+2, . . . , α2m, α2m+1, . . . αm+k).

Then sends them, with the challenge c, to the challenger. B, upon receiving zΠk , completes the
third round protocol using zΠk , and sends it to A. B feeds D with the view generated by interacting

31

with A and records D’s output. Finally, B outputs 1 if and only if the witness W 0
Πk

has been used

by the challenger and D has output 1 or has been used W 1
Πk

and D has output 0.

H4
i differs from H3

i in the fact that tuple Ûm+i+1 is a DH tuple and Um+i+1 is a non-DH tuple. In
other words, in H4

i the first-round message of the transcript relative to xm+i+1 shown at the third
round has been committed to by a DH tuple. The indistinguishability between H3

i and H4
i follows

the same arguments of the indistinguishability between H2
i and H1

i

Finally, we observe that H4
i differs from Hi+1 in the way the transcript of Πm+i+1 for the instance

xm+i+1 is computed. Specifically, instead of using the prover of Π, H4
i uses the simulator of Π.

Indistinguishability of H4
i and Hi+1 follows by the same argument used for the indistinguishability

of Hi and H1
i .

We have thus proved that H0 is indistinguishable from Hm. To complete the proof, we need to
prove that Hm+i and Hm+i+1 are indistinguishable for i = 0, . . . , k −m− 1. This follows directly
from the observation that Hm+i and Hm+i+1 only differ in the witness used for x2m+i+1: Hm+i

uses the witness from W 0 whereas Hm+i+1 uses the witness from W 1. Indistinguishability then
follows directly from the Perfect WI of Π.

7 Acknowledgments

We thank the anonymous reviewers of Eurocrypt 2016 for many insightful comments and sugges-
tions. This work has been supported in part by “GNCS - INdAM” and in part by the EU COST
Action IC1306.

A preliminary version of this work will appear in the proceedings of the Eurocrypt 2016 [CPS+16b].

References

[BPSV08] Carlo Blundo, Giuseppe Persiano, Ahmad-Reza Sadeghi, and Ivan Visconti. Im-
proved security notions and protocols for non-transferable identification. In Com-
puter Security - ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings, pages 364–378, 2008. (Cited

on page 11.)

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove your-
self: Pitfalls of the fiat-shamir heuristic and applications to helios. In Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, pages 626–643, 2012. (Cited on page 4.)

[CD98] Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arith-
metic; or: Can zero-knowledge be for free? In Hugo Krawczyk, editor, Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 23-27, 1998, Proceedings, volume 1462 of Lecture
Notes in Computer Science, pages 424–441. Springer, 1998. (Cited on pages 1, 4, 5, 22, and 23.)

32

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology — CRYPTO ’94, volume 839 of Lecture Notes in Computer
Science, pages 174–187. Springer Berlin Heidelberg, 1994. (Cited on pages 1, 3, 4, 5, 6, 7, 8, 9,

11, and 14.)

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial commitments: Mini-
mal assumptions and efficient constructions. In Theory of Cryptography, Third The-
ory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006,
Proceedings, pages 120–144, 2006. (Cited on page 11.)

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved or-composition of sigma-protocols. In Theory of Cryptography -
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, pages 112–141, 2016. (Cited on pages 1, 2, 3, 4, 5, 6, 8, 9, 12, and 25.)

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline or composition of sigma protocols. In Advances in Cryptology
- EUROCRYPT 2016, 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, 2016.
(Cited on page 32.)

[CPSV16] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti. A trans-
form for NIZK almost as efficient and general as the fiat-shamir transform without
programmable random oracles. In Theory of Cryptography - 13th International Con-
ference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II,
pages 83–111, 2016. (Cited on page 11.)

[CV05] Dario Catalano and Ivan Visconti. Hybrid trapdoor commitments and their applica-
tions. In Automata, Languages and Programming, 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages 298–310, 2005.
(Cited on page 7.)

[CV07] Dario Catalano and Ivan Visconti. Hybrid commitments and their applications to
zero-knowledge proof systems. Theor. Comput. Sci., 374(1-3):229–260, 2007. (Cited on

page 7.)

[Dam10] Ivan Damg̊ard. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf, 2010.
(Cited on pages 10, 11, and 15.)

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA, pages 426–437, 2003. (Cited on pages

7 and 11.)

[DH76] W Diffie and ME Hellman. New directions in cryptography, ieee transctions in
information theory. Volume IT-22, November, 1976. (Cited on pages 23 and 29.)

33

http://www.cs.au.dk/~ivan/Sigma.pdf

[DN02] Ivan Damg̊ard and Jesper Buus Nielsen. Perfect hiding and perfect binding univer-
sally composable commitment schemes with constant expansion factor. In Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 2002, Proceedings, pages 581–596,
2002. (Cited on page 15.)

[DSDCPY94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. On
monotone formula closure of SZK. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 454–
465, 1994. (Cited on page 3.)

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings, pages 186–194, 1986. (Cited on page 4.)

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 19(2):169–209, 2006. (Cited on page 10.)

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge proto-
col fitted to security microprocessor minimizing both transmission and memory. In
Christoph G. Günther, editor, Advances in Cryptology - EUROCRYPT ’88, Work-
shop on the Theory and Application of of Cryptographic Techniques, Davos, Switzer-
land, May 25-27, 1988, Proceedings, volume 330 of Lecture Notes in Computer Sci-
ence, pages 123–128. Springer, 1988. (Cited on page 23.)

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, 2010. (Cited on

pages 3, 7, and 15.)

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptolo-
gyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
pages 335–354, 2004. (Cited on page 3.)

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part I, pages 93–109, 2015. (Cited on page 11.)

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Advances in Cryptology - CRYPTO, 1990. (Cited on pages 1, 3, 8, and 9.)

[Mau15] Ueli Maurer. Zero-knowledge proofs of knowledge for group homomorphisms. De-
signs, Codes and Cryptography, pages 1–14, 2015. (Cited on pages 1, 4, 5, 22, 23, and 24.)

[MP03] Daniele Micciancio and Erez Petrank. Simulatable commitments and efficient concur-
rent zero-knowledge. In Advances in Cryptology - EUROCRYPT 2003, International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, pages 140–159, 2003. (Cited on pages 4, 11, and 22.)

34

[OPV10] Rafail Ostrovsky, Omkant Pandey, and Ivan Visconti. Efficiency preserving transfor-
mations for concurrent non-malleable zero knowledge. In Theory of Cryptography,
7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February
9-11, 2010. Proceedings, pages 535–552, 2010. (Cited on page 11.)

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 339–358, 2015. (Cited on page 6.)

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous resettability from collision resis-
tance. Electronic Colloquium on Computational Complexity (ECCC), 19:164, 2012.
(Cited on page 3.)

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes
in Computer Science, pages 160–176. Springer, 2003. (Cited on page 3.)

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, volume 435
of Lecture Notes in Computer Science, pages 239–252. Springer New York, 1989. (Cited

on pages 4, 22, and 23.)

[Vis06] Ivan Visconti. Efficient zero knowledge on the internet. In Automata, Languages
and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II, pages 22–33, 2006. (Cited on page 11.)

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge in
the bare public-key model. In Advances in Cryptology - EUROCRYPT 2007, 26th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings, pages 129–147, 2007.
(Cited on page 11.)

35

	Introduction
	Our Results
	Comparison with the State of the Art
	Online/Offline Computations

	Preliminaries
	Adaptive-Input Special Soundness and Proof of Knowledge
	Adaptive-Input Witness Indistinguishability
	The DDH assumption
	Instance-Dependent Trapdoor Commitment

	Adaptive-Input (k,n)-Proof of Partial Knowledge
	(Adaptive-Input) Proof of Knowledge
	Adaptive-Input Witness Indistinguishability

	Adaptive-Input Special-Soundness of -Protocols
	Soundness Issues in Delayed-Input -Protocols
	A Compiler for Adaptive-Input Special Soundness

	On the Adaptive-Input Soundness of CPSSV15's Transform
	Overview of the Construction of CPSSV15
	The Construction of CPSSV15

	Adaptive-Input Soundness of OR

	Extension to Multiple Relations
	(Adaptive-Input) Proof of Knowledge
	Adaptive-Input Witness Indistinguishability

	Acknowledgments

