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Abstract

The round complexity of commitment schemes secure against man-in-the-middle attacks has
been the focus of extensive research for about 25 years. The recent breakthrough of Goyal,
Pandey and Richelson [STOC 2016] showed that 3 rounds are sufficient for (one-left, one-right)
non-malleable commitments. This result matches a lower bound of [Pas13]. The state of af-
fairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable
commitment schemes.

In this paper we solve the above open problem by showing how to transform any 3-round
(one-left one-right) non-malleable commitment scheme (with some extractability property) in a
3-round concurrent non-malleable commitment scheme. Our transform makes use of complexity
leveraging and when instantiated with the construction of [GPR16] gives a 3-round concurrent
non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-
time adversaries.

We also show how our 3-round concurrent non-malleable commitment scheme can be used for
3-round arguments of knowledge and in turn for 3-round identification schemes secure against
concurrent man-in-the-middle attacks.

Keywords: non-malleability, commitments, PoKs, identification schemes.
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1 Introduction

Commitment schemes are fundamental in Cryptography. They require a sender to fix a message
that can not be changed anymore, but that will remain hidden to a receiver until the sender decides
to reveal it.

In order to model modern real-world adversaries, commitment schemes have been proposed with
additional security properties. Here we consider the intriguing question of constructing a scheme
that remains secure against man-in-the-middle (MiM) attacks: a non-malleable (NM) commitment
scheme [DDN91].

This fascinating setting is much harder to deal with than the classic stand-alone setting. In-
deed while we know 1-round and 2-round regular commitment schemes under various assumptions
([GL89, NY89, Ped91, Nao91, HM96]), Pass proved that NM commitments1 require at least 3
rounds [Pas13] when security is proved through a black-box reduction to a falsifiable (polynomial
or subexponential time) hardness assumption. Instead in different and more controversial models
(e.g., assuming the existence of a trusted random string, by modeling hash functions as random ora-
cles, by weakening the security definition admitting an inefficient challenger) we know constructions
of non-interactive NM commitments [DG03, PPV08].

The round complexity of NM commitment schemes in the standard model has puzzled re-
searchers for long time. Starting from the construction of [DDN91] that required a logarithmic
number of rounds, various constant-round schemes were proposed [Bar02, PR05b, PR05a, PR08,
PW10, LP11, Goy11, GLOV12, GRRV14, BGR+15, LP15, COSV16]. Interestingly Ciampi et al.
in [COSV16] show a 4-round commitment scheme that is secure also when the adversary mounts
a concurrent MiM attack, a setting that corresponds to what can actually happen when sender
and receiver are connected through a communication network like the Internet. In such a much
more interesting setting a MiM adversary receives multiple commitments from senders and sends
his commitments to multiple receivers.

1.1 Towards 3-Round (Concurrent) NM Commitments

The existence of 3-round NM commitment schemes is an important question first because 3 is
the best possible constant (in light of the lower bound of [Pas13]), and second because 3 is the
smallest number of rounds for a primitive that often makes use of commitment schemes: proofs of
knowledge.

The importance of obtaining 3-round (and not just any constant-round) NM commitments mo-
tivated the very recent and innovative work of [GPR16] that, by just relying on any non-interactive
commitment scheme and exploiting the power of non-malleable codes in the split-state model,
shows a 3-round NM commitment scheme. Interestingly, such construction is not claimed to be se-
cure against concurrent man-in-the-middle attacks. Therefore the following natural and important
question remains open.

Main Open Question: Can we construct a 3-round concurrent non-malleable commitment scheme
matching the lower bound of [Pas13]?

1We consider the notion of NM commitment w.r.t. commitment.
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1.2 Other 3-Round Challenges

We list here 3 other interesting settings where no 3-round construction is known against concurrent
MiM adversaries.

• Proofs2 of knowledge are very useful in Cryptography. They have been studied in particular
when there are only 3 rounds and the verifier just sends random bits (e.g., Σ-protocols [CDS94,
Dam10], Blum’s protocol for Hamiltonicity [Blu86]). Despite their importance, there is no
construction for 3-round proofs of knowledge (PoK) that is sufficiently secure under concurrent
MiM attacks. This is due to the fact that such attacks are in general extremely difficult to
deal with. Even though there exist constructions with a constant number of rounds, the case
of just 3 rounds so far has remained unsolved.

• In [LS90]3 Lapidot and Shamir proposed a 3-round public-coin witness indistinguishable PoK
for NP (the LS protocol) where the input (except its size) is needed only when playing the 3rd
round. This special completeness property named “delayed input” in [CPS+16a, CPS+16b]
has been critically used in many applications (e.g., [KO04, DPV04, HV16, YZ07, YYZ10,
Wee10, GMPP16, HV16, MV16, COSV16]), and in [CPS+16a, CPS+16b] it was considered
for the OR composition of Σ-protocols instead of relying on LS. When a PoK is used as
sub-protocol the delayed-input feature is instrumental to give a better round complexity to
the external protocol. An additional features of delayed-input protocols is that they allow to
shift large part of the computation to an off-line phase. Unfortunately the LS protocol and
the PoKs of [CPS+16a, CPS+16a] are not secure against concurrent MiM attacks and this
penalizes those applications where both round complexity and security against concurrent
MiM attacks are important.

• We notice that identification schemes have been often proposed (e.g., [FFS87]) through the
paradigm of proving “knowledge” of a secret4. Under this formulation there are constant-
round constructions that are proven secure against concurrent MiM attacks [BFGM01]. How-
ever no 3-round scheme known in literature is proven secure in presence of a concurrent MiM
adversary.

1.3 Results of This Work

In this work we study 3-round commitment scheme in presence of concurrent MiM attacks and
solve in the positive the above open problems.

3-Round concurrent NM commitment schemes. In the main result of this submission, we
show a transform that on input any 3-round NM commitment scheme5 gives a 3-round concurrent

2For simplicity in the informal part of the paper we will not make a strict distinction between proofs and arguments.
In the formal part we will use appropriate terms.

3See [OV12] for a detailed description of [LS90].
4Other notions based on signature or decryption capabilities are considered weaker since in some applications the

verifier wants to make sure that the prover is the actual entity matching the announced identity. Indeed without a
PoK a prover could give some partial information about his secret to others that can still succeed in convincing the
verifier, even though they do not know the full secret.

5We also require the scheme to be extractable. Extractability often comes for free since it is commonly used in
the non-malleability proof.
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NM commitment scheme. The construction of [GPR16] can be used to instantiate our transform,
therefore obtaining a 3-round concurrent NM commitment scheme based on any one-way permu-
tation secure against subexponential-time adversaries. This result solves the main open question.
Moreover our scheme (still when instantiated with the one of [GPR16] and using a proper one-way
permutation) is public coin and (if desired6) has the delayed-input property.

Our transform extends the security of the underlying commitment scheme to multiple receivers.
It is known that this implies security also with multiple senders [LPV08]. The crucial idea of our
transform is to combine the underlying NM commitment scheme along with a one-time pad, to
produce a commitment of a message that by itself, in case of a malleability attack, will have suffi-
cient structure to be recognized by a distinguisher in the session in which it appears. Therefore a
successful concurrent MiM even playing multiple commitments with multiple receivers will have to
maul the underlying commitment scheme in at least one session. Since the message has sufficient
structure with respect to that single session, we are able to translate the concurrent MiM attack
into a non-concurrent MiM that violates the security of the underlying (non-concurrent) NM com-
mitment scheme. We will implement the idea of committing to a message with structure by forcing
a successful concurrent MiM to commit to the solution of a puzzle in at least one session. We will
use complexity leveraging to show that the attack of the concurrent MiM is indistinguishable from
the attack of a polynomial-time simulator that plays with receivers only.

Just for completeness, we also show an explicit concurrent MiM adversary A for the scheme
of [GPR15]. The crucial point here, following a technique of [FMNV14] is that the scheme
of [GPR15] allows A to spread the message committed by the honest sender over several commit-
ments that the adversary sends to multiple receivers. The scheme presented in [GPR16] is slightly
different and became available after our work was already submitted, therefore when describing A
we stick with [GPR15].

3-round arguments of knowledge and ID schemes against concurrent MiM attacks.
We notice that our 3-round concurrent NM commitment scheme is a commit-and-prove argument
of knowledge (AoK). This means that one can see our scheme as a commitment followed by an
AoK about the committed value. By applying a simple change to the statement of the underlying
AoK we obtain a 3-round concurrent NM witness-indistinguishable AoK (concurrent NMWIAoK)
a notion introduced in [OPV08] and later on extended in [LPV09]. We stress that the delayed-input
and public-coin properties of our commitment scheme are preserved by our concurrent NMWIAoK.

Notice that AoKs under standard assumptions require at least 3 rounds. The simulation-based
notion for concurrent non-malleable arguments of knowledge (i.e., concurrent NM zero knowledge)
requires at least a polylogarithmic number of rounds [CKPR01, BPS06] when the simulator is black
box. In [OPV08] it is shown how to get concurrent NM zero knowledge (NMZK) in the bare public-
key (BPK) model [CGGM00, MR01] with just two executions of a concurrent NMWIAoK. Therefore
here we directly obtain a round-efficient concurrent NMZKAoK in the BPK model. Notice also
that by making use of the delayed-input feature the simulator can extend a main thread avoiding
issues due to aborting adversaries as discussed in [SV12, ORSV13].

Finally, we notice that one can get an identification scheme secure in the PoK sense in the concur-
rent7 setting of [BFGM01] as well as under the stronger definition based on matching conversations

6Our transform can be instantiated in two ways. In the former the message to commit is required already when
playing the first round, while in the latter the message to commit is required when playing the third round only.

7In [BFGM01] a notion called CR2 is proposed to deal with concurrent MiM attacks and reset attacks. Reset
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of [BR93, Kat02] naturally extended to multiple concurrent sessions. Following [OPV08, COSV12],
the key idea consists in using an identity that has two possible secrets such that knowledge of one
witness does not allow to compute the other one in polynomial time. Then, by using our imple-
mentation of a concurrent NMWIAoK for proving knowledge of a secret associated to such identity
we obtain a 3-round identification scheme secure against concurrent MiM attacks.

Challenges for future work. The existence of OWPs is a standard falsifiable hardness assump-
tion. Our scheme relies on a strengthening of this standard assumption w.r.t. subexponential-time
adversaries. Notice that the lower bound of [Pas13] still applies in case of subexponential-time
hardness, therefore our 3-round concurrent non-malleable scheme is round optimal. Various nat-
ural and fascinating questions on commitments and proofs of knowledge remain open after our
work and as such we think our results will motivate further research. Examples of open questions
about concurrent NM commitments are the following: 1) the existence of 3-round schemes based on
standard falsifiable hardness assumptions w.r.t. polynomial-time adversaries only; 2) the existence
of 3-round schemes with black-box use of primitives; 3) the existence of practical schemes.

2 Notation, Definitions and Tools

We denote the security parameter by λ and use “|” as concatenation operator (i.e., if a and b are
two strings then by a|b we denote the concatenation of a and b). For a finite set Q, x← Q denotes
the algorithm that chooses x from Q with uniform distribution. Usually we use the abbreviation
ppt that stays for probabilistic polynomial-time. We use poly(·) to indicate a generic polynomial
function of the input.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗
such that membership of (x,w) in Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel,
we call x the instance and w a witness for x. For a polynomial-time relation Rel, we define the
NP-language LRel as LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL is such
that L = LRelL).

Let A and B be two interactive probabilistic algorithms A and B. We denote by 〈A(α), B(β)〉(γ)
the distribution of B’s output after running on private input β with A using private input α,
both running on common input γ. Typically, one of the two algorithms receives 1λ as input. A
transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution where A
receives a private input α, B receives a private input β and both A and B receive a common input
γ. Moreover, we will refer to the view of A as the messages it received during the execution of
〈A(α), B(β)〉(γ), along with its randomness and its input. We denote by Ar an algorithm A that
receives as randomness r. We say that a protocol (A,B) is public coin if B sends to A random bits
only.

A function ν(·) from non-negative integers to reals is called negligible, if for every constant c > 0
and all sufficiently large λ ∈ N we have ν(λ) < λ−c.

Definition 1 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way if the
following two conditions hold:

attack were also considered in the notion CR1+ introduced in [BPSV08]. Since reset attacks are out of the scope of
this work, we will focus on concurrent MiM attacks only.
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• there exist a deterministic polynomial-time algorithm that on input y in the domain of f
outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary
input z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a one-way permutation (OWP) if f is a permutation.
We will require that an algorithm that runs in time T̃ = 2λ

α
for some positive constant α < 1,

can invert a OWP f . In this case we say that f is T̃ -breakable.

Definition 2 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be en-
sembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y ,
if for every ppt distinguisher D there exist a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Prob

[
t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 2 with the only difference that the
distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

We note that in the usual case where |Xλ| = Ω(λ) and the length λ can be derived from a
sample of Xλ, it is possible to omit the auxiliary input 1λ.

Definition 3 (Delayed-input proof/argument system). A pair of ppt interactive algorithms Π =
(P,V) constitutes a proof system (resp., an argument system) for an NP-language L, if the following
conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Prob [ 〈P(w),V〉(x) = 1 ] = 1.

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible
function ν such that for every x /∈ L and every z:

Prob [ 〈P?(z),V〉(x) = 1 ] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness
if P needs x and w only to compute the last round and V needs x only to compute the output.
Before that, P and V run having as input only the size of x.

The notion of delayed-input completeness was defined in [CPS+16b]. We say that the transcript
τ of an execution of (P,V) is accepting if V outputs 1. An interactive protocol Π = (P,V) is public
coin if, at every round, V at each round simply tosses a predetermined number of coins (random
challenge) and sends them to P.
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Definition 4 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Witness
Indistinguishable (WI) for a relation Rel if, for every malicious ppt verifier V?, there exists a
negligible function ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Prob [ 〈P(w),V?〉(x) = 1 ]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

The notion of a perfect WI proof system is obtained by requiring ν(|x|) = 0.
Obviously one can generalize the above definitions of WI to their natural adaptive-input vari-

ants, where the adversarial verifier can select the statement and the witnesses adaptively, before
the prover plays the last round.

Definition 5 (Proof of Knowledge [LP11]). A proof system Π = (P,V) is a proof of knowledge
(PoK) for the relation RelL if there exist a probabilistic expected polynomial-time machine E, called
the extractor, such that for every algorithm P?, there exists a negligible function ν(λ), every state-
ment x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

Prob [ 〈P?r (z),V〉(x) = 1 ] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition
holds w.r.t. any ppt P?.

In this paper we also consider the adaptive-PoK property. The adaptive-PoK property ensures
that the PoK property still holds when a malicious prover can choose the statement adaptively at
the last round. In this case, to be consistent with Definition 5 where the extractor algorithm E
takes as input the statement proved by P?, we have to consider a different extractor algorithm.
This extractor algorithm takes as input the randomness r of P, the randomness r′ of V and outputs
the witness for x ∈ L, where x is selected by P?r when interacting with Vr′ .

In this paper we use the 3-round public-coin WI Proof of Knowledge (WIPoK) proposed by
Lapidot and Shamir [LS90], that we denote by LS. LS enjoys delayed-input completeness since the
inputs for both P and V are needed only to play the last round, and only the length of the instance
is needed earlier. The LS protocol is also sound when a malicious prover can choose the statement
adaptively at the third round. We refer to this property as adaptive soundness. LS also enjoys the
property of adaptive PoK and adaptive WI.

2.1 Commitment Schemes

Definition 6 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme
(Sen,Rec) is a two-phase protocol between two ppt interactive algorithms, a sender Sen and a
receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to produce
a commitment com. In the decommitment phase, Sen sends to Rec a decommitment information d

such that Rec accepts m as the commitment of com.
Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following

properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m (i.e., com is the
transcript of an execution of CS = (Sen,Rec) where Sen runs on input a message m).
Let d be the private output of Sen in this phase.
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• Decommitment phase8. Rec on input m and d accepts m as decommitment of com.

Hiding([Lin10]): for a ppt adversary A and a randomly chosen bit b ∈ {0, 1}, consider the
following hiding experiment ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any ppt adversary A, there exist a negligible function ν, such that:∣∣∣Prob
[

ExpHiding0A,CS(λ) = 1
]
− Prob

[
ExpHiding1A,CS(λ) = 1

] ∣∣∣ < ν(λ).

Binding: for every commitment com generated during the commitment phase by a possibly
malicious unbounded sender Sen? interacting with an honest receiver Rec, there exists at most
one message m that Rec accepts as decommitment of com.

We also consider the definition of a commitment scheme where the hiding property still holds
against an adversary A running in time bounded by T = 2λ

α
for some positive constant α < 1. In

this case we will say that a commitment scheme is T -hiding. We will also say that a commitment
scheme is T̃ -breakable to specify that an algorithm running in time T̃ = 2λ

β
, for some positive

constant β < 1, recovers the (if any) only message that can be successfully decommitment.
In the rest of the paper we also use a non-interactive commitment schemes, with secure param-

eter λ. In this case we consider a commitment scheme as a pair of ppt algorithms (NISen,NIRec)
where:
- NISen takes as input (m;σ), where m ∈ {0, 1}poly(λ) is the message to be committed and σ ←

{0, 1}λ is randomness, and outputs the commitment com and the decommitment dec;
- NIRec takes as input (dec, com, m) and outputs 1 if it accepts m as a decommitment of com and

0 otherwise.

3-Round extractable commitment schemes. Informally, a 3-round commitment scheme is
extractable if there exists an efficient extractor that having black-box access to any efficient mali-
cious sender ExCom? that successfully performs the commitment phase, outputs the only committed
string that can be successfully decommitted.

Definition 7 (3-Round Extractable Commitment Scheme [PW09, GLOV12]). A 3-round perfectly
binding commitment scheme ExCS = (ExCom,ExRec) is an extractable commitment scheme if
given oracle access to any malicious sender ExCom?, there exists an expected ppt extractor Ext

that outputs a pair (τ, σ?) such that the following properties hold:
- Simulatability: the simulated view τ is identically distributed to the view of ExCom? (when

interacting with an honest ExRec) in the commitment phase.
- Extractability: there exists no decommitment of τ to σ, where σ 6= σ?.

8In this paper we consider a non-interactive decommitment phase only.
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2.2 Non-Malleable Commitment Schemes

Here we follow [LPV08]9. Let Π = (Sen,Rec) be a statistically binding commitment scheme. Con-
sider MiM adversaries that are participating in left and right sessions in which poly(λ) commitments
take place. We compare between a MiM and a simulated execution. In the MiM execution the
adversary A, with auxiliary information z, is simultaneously participating in poly(λ) left and right
sessions. In the left sessions the MiM adversary A interacts with Sen receiving commitments to
values m1, . . . ,mpoly(λ) using identities id1, . . . , idpoly(λ) of its choice. In the right session A inter-
acts with Rec attempting to commit to a sequence of related values m̃1, . . . , m̃poly(λ) again using
identities of its choice ĩd1, . . . , ĩdpoly(λ). If any of the right commitments is invalid, or undefined,
its value is set to ⊥. For any i such that ĩdi = idj for some j, set m̃i =⊥ (i.e., any commitment
where the adversary uses the same identity of one of the honest senders is considered invalid). Let

mim
A,m1,...,mpoly(λ)

Π (z) denote a random variable that describes the values m̃1, . . . , m̃poly(λ) and the
view of A, in the above experiment. In the simulated execution, an efficient simulator S directly in-
teracts with Rec. Let simS

Π(1λ, z) denote the random variable describing the values m̃1, . . . , m̃poly(λ)

committed by S, and the output view of S; whenever the view contains in the i-th right session
the same identity of any of the identities of the left session, then m̃i is set to ⊥.

In all the paper we denote by δ̃ a value associated with the right session (where the adversary A
plays with a receiver MMRec) where δ is the corresponding value in the left session. For example,
the sender commits to v in the left session while A commits to ṽ in the right session.

Definition 8 (Concurrent NM commitment scheme [LPV08]). A commitment scheme is concurrent
NM with respect to commitment (or a many-many NM commitment scheme) if, for every ppt
concurrent MiM adversary A, there exists a ppt simulator S such that for all mi ∈ {0, 1}poly(λ) for
i = {1, . . . , poly(λ)} the following ensembles are computationally indistinguishable:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .

As in [LPV08] we also consider relaxed notions of concurrent non-malleability: one-many and
one-one NM commitment schemes. In a one-many NM commitment scheme, A participates in one
left and polynomially many right sessions. In a one-one (i.e., a stand-alone secure) NM commitment
scheme, we consider only adversaries A that participate in one left and one right session. We will
make use of the following proposition of [LPV08].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then, (Sen,Rec) is also
a concurrent (i.e., many-many) NM commitment scheme.

We also consider the definition of a NM commitment scheme secure against a MIM A running
in time bounded by T = 2λ

α
for some positive constant α < 1. In this case we will say that a

commitment scheme is T -non-malleable.
When the identity is selected by the sender then the above id-based definitions guarantee non-

malleability without ids as long as the MiM does not behave like a proxy (an unavoidable attack).
Indeed the sender can pick as id the public key of a strong signature scheme signing the transcript.
The MiM will have to use a different id or to break the signature scheme.

9In this paper we will consider only NM commitments w.r.t. commitments. Difficulties on achieving also the
notion of NM w.r.t. decommitments were discussed in [OPV09, CVZ10].
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2.3 3-Round One-One NM Commitment Scheme

As main tool we need a 3-round one-one NM commitment scheme (NMCS) that enjoys the ex-
tractability property. In the rest of the paper we will refer to such a commitment scheme as
ΠNM = (SenNM,RecNM).

In [GPR16] the authors provide the first 3-round one-one NM commitment scheme. Their
scheme enjoys also the extractability property10 and public coin. We will call a 3-round one-one
NM commitment scheme as ΠNM = ((Sen1

NM, Sen2
NM),RecNM) where:

• the algorithm Sen1
NM takes as input (id,m; ρ), where id ∈ {0, 1}λ is the identity, m is the

message to be committed and ρ ← {0, 1}λ is a randomness, and outputs a that is the first
round of the commitment scheme to be sent to the receiver;

• the algorithm Sen2
NM takes as input (id, c,m; ρ), where c is the second round received by Rec,

m is the message to be committed, id is the same identity received as input by Sen1
NM, ρ is

the randomness, and outputs (z, dec) where z is the last round of the commitment, and dec

is the decommitment value.

The reveal phase consists in sending dec and m to the receiver. The receiver RecNM, on input
the randomness it used during the commitment phase, the transcript com = (a, c, z, id), m and dec

outputs 1 if dec is valid w.r.t. com and m and outputs 0 otherwise.

2.4 The LS Proof of Knowledge and NMWI Argument Systems

In this paper we use the 3-round public-coin WI adaptive proof of knowledge (see Sec. 5 for a formal
definition) proposed by Lapidot and Shamir [LS90], that we denote by LS. LS is delayed-input since
the inputs for the prover and the verifier are needed only to play the last round, while only the size
of the common input is needed earlier. For this reason we will refer to a prover P as a pair (P1,P2).
More formally, LS for a relation Rel is a pair Π = (P = (P1,P2),V), with security parameter λ,
where P executes the algorithms P1 and P2 defined as follows. The algorithm P1, takes as input
(`;α), ` is the instance length and α← {0, 1}λ is the randomness, and outputs the 1st round of the
LS protocol. The algorithm P2 takes as input (x,w, c;α), where x, w are such that (x,w) ∈ Rel, c
is the challenge sent by V and α is the randomness11 and outputs the 3rd round of the LS protocol.

In this paper we also consider a definition where the WI property of LS still holds against a
distinguisher with running time bounded by T = 2λ

α
for some constant positive constant α < 1.

In this case we say that the instantiation of LS is T -witness indistinguishable (T -WI).

Witness indistinguishability and MiM attacks. The definition of non-malleable witness
indistinguishability (NMWI) given in [OPV08] requires that the witness encoded in the proof given
by the MiM A be independent of the witness used by the honest prover in his proof. The concept
of witness encoded in a proof becomes clear when considering commit-and-prove argument systems.
In such arguments, the transcript includes a commitment that encodes in an unambiguous way the
witness used by the prover. In a NMWI commit-and-prove argument system, the witness encoded
in the proof produced by the A must be independent of the witness used (and thus encoded by the
honest prover) in the proof in which A acts as a verifier. Similarly to the case of non-malleable

10Extractability is informally stated in Claim 12 of [GPR15].
11The same α is passed to P1 and P2 so that P2 can reconstruct the state of P1.
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commitments, one can give a definition with or without sessions ids. Here we use the one without
sessions ids since it is more useful in the applications.

Let A be a MiM interacting in the left proof with P that is running on input x and witness w.
In the right proof A interacts with V on common input x̃ chosen by A. We denote by z the auxiliary
information available to A. NMWI is defined in terms of the random variable wmimA(x,w, z) that
is the view of A that we denote by ViewPA(x,w, z) (i.e., the view of A when running with z as
auxiliary input and playing with P that runs on input (x,w)) and the witness encoded in the right
proof given by A. If the right proof is not accepting or the transcript is identical to the one of the
left proof then the witness encoded is ⊥; otherwise the string w committed by A in the right proof
is returned. In other words, wmimA(x,w, z) consists of the view of A and the witness encoded in
the right proof unless the proof is not accepting.

Definition 9 (NMWI argument system [OPV08]). A commit-and-prove argument system Π =
(P,V) for an NP-language L and corresponding relation RelL is a non-malleable witness indistin-
guishable argument if, for all ppt man-in-the-middle adversaries A, for all x ∈ L and all w,w′

such that RelL(x,w), RelL(x,w′) for all auxiliary information z it holds that {wmimA(x,w, z)} ≈
{wmimA(x,w′, z)}.

The above notion extends in a straight-forward way to the case of a concurrent MiM adversary
trivially. Formally, the concurrent MiM A opens poly(λ) left and right proofs each with a common
input of length poly(λ). A interacts in the i-th left proof with an instance of the honest prover P
on common input “xi ∈ L” and private input wi such that RelL(xi, wi). In the j-th right proof A
is interacting with the honest verifier V on common input x̃j of its choice.

Let X,W be respectively the sequence of instances and witnesses in input to P in the left
proofs. Now the distribution wmimA(X,W, z) consists of the view ViewPA(X,W, z) of A along with
a sequence (w̃1, . . . , w̃poly(λ)) and it holds that: if the j-th right proof is not accepting or the
transcript is identical to the one of a left proof then w̃j =⊥; otherwise, w̃j is the witness encoded
in the j-th right proof.

Definition 10 (cNMWI argument [OPV08]). A commit-and-prove argument system Π = (P,V)
for an NP-language L and corresponding relation RelL is concurrent non-malleable witness indis-
tinguishable if, for all ppt concurrent man-in-the-middle adversaries A, for all sequences X of
poly(λ) elements of L of length poly(λ), for all sequences W and W ′ of witnesses for X, and for
all auxiliary information z it holds that {wmimA(X,W, z)} ≈ {wmimA(X,W ′, z)}.

3 3-Round Concurrent Non-Malleable Commitments

In this section we show the main result of this work, a transform that starting from a 3-round
extractable one-one non-malleable commitment scheme outputs a 3-round concurrent non-malleable
commitment scheme.

3.1 Informal Description

Our transform takes as input a 3-round extractable one-one NM commitment scheme ΠNM, a OWP
f , a non-interactive perfectly binding commitment scheme NI, the 3-round delayed-input adaptive
WI/PoK LS and outputs a 3-round fully concurrent (i.e., many-many) NM commitment scheme
ΠMMCom = (MMSen,MMRec).
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aNM(s0), aLS

cNM(s0), cLS, Y

s1, zNM(s0), zLS, com(m)

MMSen(m) MMRec

• Y is an element taken from the range of the OWP f .

• com(m) is the perfectly binding commitment of m computed using NI.

• (aNM(s0), cNM(s0), zNM(s0)) = τ is the transcript of the execution of the NM commitment
scheme ΠNM when the sender commits to s0.

• (aLS, cLS, zLS) = π is the transcript of LS proving knowledge of either m and the ran-
domness used to compute com, or of (s0, dec), s.t. f(s0 ⊕ s1) = Y and dec is a valid
decommitment of s0 w.r.t. τ .

Figure 1: Informal description of our 3-round concurrent NM commitment scheme.

Let m be the message that MMSen wants to commit. The high-level idea of our compiler is
depicted in Fig. 1. The sender MMSen, on input the session-id id and the message m, computes the
1st round of the protocol by running LS and sending the 1st round of NM to commit to a random
message s0 using id as session-id. In the 2nd round the receiver MMRec sends the challenges of
NM and LS, also sends a random value Y in the range of the OWP f12. In the last round MMSen
commits to message m using NI, therefore obtaining com, then computes the last round of NM,
completes the transcript of LS, and finally sends a random string s1. The protocol LS is used by
MMSen to prove to MMRec that either she knows message m and the randomness used to compute
com, or she knows the values (s0, dec), such that f(s0 ⊕ s1) = Y and dec is a valid decommitment
to s0 w.r.t. the commitment computed using ΠNM. We observe that MMSen needs m only when
computing the 3rd round, therefore our construction enjoys delayed-input correctness.

3.2 Our Compiler

Our compiler needs the following tools:
1. a OWP f that is secure against ppt adversaries and T̃f -breakable;
2. a non interactive perfectly binding commitment scheme NI = (NISen,NIRec) that is TNI-hiding

and T̃NI-breakable;
3. a 3-round extractable one-one NM commitment scheme ΠNM = (SenNM = (Sen1

NM,Sen2
NM),RecNM)

that is TNM-hiding/non-malleable, and T̃NM-breakable;

12When sampling from the range of f corresponds to picking a random string, we have that our commitment
scheme is public coin.
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4. the LS proof system LS = (P = (P1,P2),V) for the language

L =
{(

(a, c, z), Y, s1, com, id
)

: ∃ (m,σ) s.t. com = NISen(m;σ) OR
(
∃(ρ, s0)

s.t. a = Sen1
NM(id, s0; ρ) AND z = Sen2

NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)
)}

that is TLS-WI for the corresponding relation RelL.
Let λ be the security parameter of our scheme. We will use wlog λ also as security parameter for

the hardness to invert f with respect to polynomial time adversaries. Then we consider the following
hierarchy of security levels for the above tools: Tf << TNI <<

√
TNM << TNM <<

√
TLS << TLS

where by “T << T ′” we mean that “T · poly(λ) < T ′”. We also require that:

• NI is TNI-hiding, but is also T̃NI =
√
TNM-breakable;

• ΠNM is TNM hiding/non-malleable, but the hiding is also T̃NM =
√
TLS-breakable.

Now we need to define different security parameters, one for each tool involved in the security
proof to be consistent with the hierarchy of security levels defined above (a similar use of security
parameters has been proposed in [PW10]). Given the security parameter λ of our scheme, we will
make use of the following security parameters (all polynomially related to λ and such that the
above hierarchy of security levels holds): λ for f , λNI for NI, λNM for ΠNM, λLS for LS.

We denote by Params the function that on input λ outputs (λNI, λNM, λLS, `) where ` is the
size of the theorem to be proved using LS13. Our concurrent NM commitment scheme ΠMMCom =
(MMSen,MMRec) is fully described in Fig. 2.

Theorem 1. Suppose there exist OWPs secure against subexponential-time adversaries, then ΠMMCom

is a perfectly binding delayed-input commitment scheme.

Proof. Correctness. The delayed-input correctness of ΠMMCom follows by inspection considering
the delayed-input completeness of LS, and the correctness of ΠNM and NI.

Binding. To prove the binding property we only observe that the message given in output in the
decommitment phase of ΠMMCom is the message committed using NI. Moreover the decommitment
phase of ΠMMCom coincides with the decommitment of NI. Since NI is perfectly binding we have
that therefore ΠMMCom is perfectly binding too.

Hiding. The hiding property follows directly from the non-malleability property proved in
Theorem 2. Indeed the proof of Theorem 2 does not rely on the hiding of ΠMMCom.

3.3 Proof of Non-Malleability

In this section we prove our main theorem.

Theorem 2. Suppose there exist OWPs secure against subexponential-time adversaries, then ΠMMCom

is concurrent (i.e., many-many) non-malleable.

Proof. Since we can use Proposition 1, we only need to prove that our commitment enjoys one-
many non-malleability. More formally with respect to a one-many adversary A, we need to show
that for all m ∈ {0, 1}poly(λ) it holds that:

{mimA,mΠMMCom
(z)}z∈{0,1}? ≈ {simS

ΠMMCom
(1λ, z)}z∈{0,1}?

13To compute 1st and 2nd round of LS only the length ` of the instance is required.
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Common input: Security parameters: λ, (λNI, λNM, λLS, `) = Params(λ).
MMSen’s identity: id ∈ {0, 1}λ.
Input to MMSen: m ∈ {0, 1}poly{λ}.

Commitment Phase:

1. MMSen→ MMRec

1.1. Pick s0 ∈ {0, 1}λ.

1.2. Pick a randomness ρ ∈ {0, 1}λNM and compute aNM = Sen1
NM(id, s0; ρ).

1.3. Pick a randomness α ∈ {0, 1}λLS and compute aLS = P1(`;α).

1.4. Send (aNM, aLS) to MMRec.

2. MMRec→ MMSen

2.1. Pick a randomness γ and run RecNM on input (id, aNM; γ) to obtain cNM.

2.2. Pick a randomness β and run V to obtain cLS.

2.3. Pick a random y ∈ {0, 1}λ and compute Y = f(y).

2.4. Send (cNM, cLS, Y ) to MMSen.

3. MMSen→ MMRec

3.1. Pick a randomness σ ∈ {0, 1}λNI and compute (com, dec) = NISen(m;σ).

3.2. Pick s1 ← {0, 1}λ.

3.3. Compute (zNM, decNM) = Sen2
NM(id, cNM, s0; ρ).

3.4. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with (|x| = `). Run

zLS = P2(x,w, cLS;α) where x is the theorem to be proven and w is the witness.

3.5. Send (zNM, com, zLS, s1) to MMRec.

4. MMRec: Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and abort iff (aLS, cLS, zLS) is not ac-

cepting for V with respect to x.

Decommitment Phase:

1. MMSen→ MMRec: Send (dec,m, decNM, s0) to MMRec.

2. MMRec: Accept m as the committed message iff

2.1. NIRec(dec, com,m) = 1 and

2.2. RecNM on input γ, (aNM, cNM, zNM, id), s0 and decNM outputs 1.

Figure 2: Our 3-round concurrent NM commitment scheme.
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where S is the simulator depicted in Fig. 3.
This means that the real execution in which the sender runs MMSen to commit to a message m

must be indistinguishable with respect to an execution in which a simulator S runs internally the
MiM adversarial A sending a commitment of 0λ, and then forwards the messages that A sends in
the right sessions to receivers MMRec1, . . . ,MMRecpoly(λ).

We remark that in the security proof we denote by δ̃i a value associated with the i-th right
session (where the adversary A plays with a receiver MMReci with i ∈ {1, . . . , poly(λ)}) where δ is
the corresponding value in the left session. For example, the sender commits to v in the left session
while A commits to ṽi in the i-th right session.

To prove the indistinguishability of the above two experiments we proceed by showing 3 hybrid
experiments14 Hmi (z) with i = 1, 2, 3, where m is the message committed in the left session.
Following [LP11] we denote by {mimAHmi

(z)}z∈{0,1}? the random variable describing the view of

the MiM A combined with the value it commits in the right interaction in hybrid Hmi (z) (as usual,
the committed value is replaced by ⊥ if the right interaction does not correspond to a commitment
that can be successfully opened or if A has copied the identity of the left interaction).

The first hybrid is the experiment in which in the left session MMSen commits to m, while in
the right session we run MMRec1, . . . ,MMRecpoly(λ) for the rights sessions played by A. We refer
to this hybrid experiment as Hm1 (z), details follow below.

Hm
1 (z).
Left session:

1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , `;α).
1.4. Send (aNM, aLS) to A.

2. Third round, upon receiving (cNM, cLS, Y ) from A.

2.1. Compute (com, dec) = NISen(m;σ).
2.2. Pick s1 ← {0, 1}λ.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with (|x| = `). Run

zLS = P2(x,w, cLS;α).
2.5. Send (zNM, com, zLS, s1) to A.

Right sessions: act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We have that for allm ∈ {0, 1}poly(λ) {mimAHm1 (z)}z∈{0,1}? clearly corresponds to {mimA,mΠMMCom
(z)}z∈{0,1}? .

Before we move on with the sequence of hybrid experiments we need to prove that, for all i ∈
{1, . . . , poly(λ)} A does not manage to invert any values Ỹi in the right sessions by sending a value
s̃1i such that f(s̃0i⊕ s̃1i) = Ỹi where s̃0i is the message committed in the i-th right session through
NM.

Lemma 1. Let pi be the probability that in the i-th right session, for i ∈ {1, . . . , poly(λ)}, A sends
a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM. Then pi < ν(λ)
for some negligible function ν.

14We will describe the hybrid experiments in a succinct way focusing on the key steps (e.g., omitting sampling of
randomness, generation of parameters λNI, λNM, λLS, `).

16



Proof. Suppose by contradiction that for a right session i the claim does not hold. We can construct
an adversary Af that inverts the OWP f in polynomial time. Formally we consider a challenger Cf
of f that chooses a random Y in the range of f and sends it to Af . Af wins if it gives as output y
such that Y = f(y). Before describing the adversary we need to consider the augmented machine
Sn→1 that will be used by Af . Sn→1 internally executes A, and interacts with an external receiver
Recext of the protocol ΠNM acting as the sender. Formally Sn→1 acts as follows.

Sn→1(Y, ϕ, z)

1. Act in the left session with A (that runs using randomness ϕ) as in Hm1 (z).

2. For all j 6= i ∈ {1, . . . poly(λ)} run MMRecj as in Hm1 (z). Instead run MMReci as described
in steps 3, 4 and 5.

3. Upon receiving the 1st round of the i-th right session (ãNMi
, ãLSi) from A, send ãNMi

to Recext.

4. Upon receiving c̃NMi
from Recext, run as follows:

4.1. Run V to obtain c̃LSi
.

4.2. Set Ỹi = Y .

4.3. Send (c̃NMi
, c̃LSi

, Ỹi) to A.

5. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi, z̃LSi , s̃1i),

set x̃ =
(
(ãNMi

, c̃NMi
, z̃NMi

), Ỹ , s̃1i, ˜comi, ĩd
)

and abort iff (ãLSi , c̃LSi , z̃LSi) is not accepting for
V with respect to x̃.

6. Send z̃NMi
to Recext.

Notice that the above execution of Sn→1 is distributed identically to Hm1 (z) when Recext plays
identically as honest receiver. Now we can conclude the proof of this lemma by describing how Af
works. Af runs the extractor of ΠNM using Sn→1 as sender (recall that an extractor of ΠNM plays
only having access to a sender of ΠNM). We have that the extractor with non-negligible probability
outputs the committed message of an execution that inverts f . By using the randomness ϕ, Af
can reconstruct the view of A and retrive the value s̃1i. Therefore A running in polynomial time15

outputs with non-negligible probability the value y = s̃0i ⊕ s̃1i such that f(y) = Y .

We now consider the second hybrid experiment Hm2 (z) where in the left session, after receiving
Y from A, the sender in time Tf finds a value y such that Y = f(y). Then the sender sets and
sends s1 = y ⊕ s0, where s0 is the value committed using ΠNM. The only difference between this
hybrid experiment and Hm1 (z) is that Hm2 (z) runs in time sub-exponential in λ, and the value s1 is
equal to y ⊕ s0 where Y = f(y). Formally Hm2 (z) is the following experiment.

Hm
2 (z).

Left session:

15The extractor is an expected polynomial-time algorithm while Af must be a strict polynomial-time algorithm.
Therefore Af will run the extractor up to a given upperbounded number of steps that is higher than the expected
running time of the extractor. Obviously with non-negligible probability the truncated extraction procedure will be
completed successfully and this is sufficient for Af to invert f . The same standard argument about truncating the
execution of an expected polynomial-time algorithm will be needed later but for simplicity we will not repeat this
discussion.
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1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , `;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A.

2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = y ⊕ s0.
2.4. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.5. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with (|x| = `). Run

zLS = P2(x,w, cLS;α).
2.6. Send (zNM, com, zLS, s1) to MMRec.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

When switching from Hm1 (z) to Hm2 (z) we will make sure that the following two properties hold.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimAHm1 (z) ≈ mimAHm2 (z).16

2. Let pi be the probability that in the i-th right session of H2, for i ∈ {1, . . . , poly(λ)}, A sends
a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM. Then
pi < ν(λ) for some negligible function ν.

We now prove that the above two properties hold.

Lemma 2. For all message m ∈ {0, 1}poly(λ) it holds that mimAHm1 (z) ≈ mimAHm2 (z).

Proof. Suppose by contradiction that the distribution of mimAHm1 (z) is distinguishable from mimAHm2 (z);
this means that there exists a distinguisher D that can tell apart such two distributions. We now
use D and A to construct an adversary AHiding that breaks the hiding of ΠNM in time poly(λ) · TNI

therefore reaching a contradiction17. Let CHiding be the challenger of the hiding game, we con-
sider two randomly chosen challenge messages (m0,m1) sent to CHiding. We now provide a formal
description of the adversary AHiding.

AHiding(m0,m1, z)

1. Upon receiving the 1st round aNM from CHiding, run as follows:

1.1. Compute aLS = P1(1λLS , `;α).

1.2. Send (aNM, aLS) to A.

2. Upon receiving (cNM, cLS, Y ) from A, send cNM to CNM.

3. Upon receiving the 3rd round zNM from CHiding, run as follows:

3.1. Compute y such that Y = f(y), set s1 = m0 ⊕ y.

16To simplify the notation here, and in the rest of the proof, we will omit that the indistinguishability between two
distributions must hold for every auxiliary input z.

17Recall that ΠNM is secure against adversaries running in time poly(λ) · TNI < TNM.
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3.2. Compute (com, dec) = NISen(m;σ).

3.3. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with (|x| = `). Run

zLS = P2(x,w, cLS;α).

3.4. Send (zNM, com, zLS, s1) to A.

4. Simulate MMRec1, . . . ,MMRecpoly(λ) with A when A plays as a sender.

5. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the non-interactive
commitment received by MMReci, run in time TNI to compute m̃i such that ∃ ˜dec : 1 =
NIRec( ˜comi, ˜dec, m̃i) and add m̃i to M .

6. Give M and the view of A to the distinguisher D and output what D outputs.

The proof ends with the observation that if CHiding has committed to m0 then the xor of the
committed value with s1 is equal to y such that f(y) = Y , like in Hm2 (z). If instead CHiding has
committed to m1 then the xor of the committed value and s1 is equal to a random value, like in
Hm1 (z).

Lemma 3. Let pi be the probability that in the i-th right session of H2, for i ∈ {1, . . . , poly(λ)},
A sends a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM. Then
pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not hold. We can construct
a distinguisher DNM and an adversary ANM that break the non-malleability of ΠNM. Let CNM be
the challenger of the NM commitment and let (m0,m1) be two randomly chosen challenge messages
given to CNM.

ANM(m0,m1, z)

Left session:

1. Act as AHiding acts in the left session.

Right sessions:

1. For all j 6= i ∈ {1, . . . , poly(λ)} run MMRecj as in Hm2 (z). Instead run MMReci as
described in steps 1.1, 1.2 and 1.3.

1.1. Forward ãNMi
to RecNM.

1.2. Upon receiving c̃NM from RecNM, pick a random c̃LSi , pick a random Ỹi and send
(c̃NMi

, c̃LSi , Ỹi) to A.

1.3. Upon receiving z̃NMi
from A, send it to RecNM.

Let mimANM(z) be the view of mimANM(z) and the tuple of committed messages in the right
session. The distinguisher DNM takes as input mimANM(z) and acts as follows.

DNM(mimANM(z)) : Let s̃0i be the committed message sent in the i-right session byANM to MMRec.
Reconstruct the output messages of A (using the same randomness of mimANM(z)) to pick s̃1i. If
f(s̃1i ⊕ s̃0i) = Ỹi output 1 and output 0 otherwise. The proof ends with the observation that if
CNM has committed to m0 then the xor of the committed value with s1i is equal to y such that
f(y) = Y like in Hm2 . If instead CHiding has committed to m1 then the xor of the committed value
with s1i is equal to a random string as in Hm1 .
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The third hybrid experiment that we consider is equal to Hm2 (z) with the difference that the
LS proof system is executed using s0 and the randomness of the non-malleable commitment of s0.
Recall that f(s0 ⊕ s1) = Y . We observe that in the left session of Hm2 (z) it already holds that
f(s0 ⊕ s1) = Y , therefore we can switch the witness used in LS and complete the execution of the
proof system. Formally Hm3 (z) is the following experiment.

Hm
3 (z).

Left sessions:

1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , `;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A.

2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = s0 ⊕ y.
2.4. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.5. Compute (com, dec) = NISen(1λNI ,m;σ).
2.6. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with (|x| = `). Run

zLS = P2(x,w, cLS;α).
2.7. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

Even in this case we need to prove the following two properties.
1. For all message m ∈ {0, 1}poly(λ) it holds that mimAHm2 (z) ≈ mimAHm3 (z).

2. Let pi be the probability that in the i-th right session of H3, for any i ∈ {1, . . . , poly(λ)},
A sends a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM.
Then pi < ν(λ) for some negligible function ν.

Lemma 4. For any message m ∈ {0, 1}poly(λ) it holds that mimAHm2 (z) ≈ mimAHm3 (z).

Proof. Suppose by contradiction that there exist a adversary A and a distinguisher D that can
tell apart such two distributions. We can use this adversary and the associated distinguisher to
construct an adversary ALS for the TLS-witness-indistinguishable property of the LS protocol. Let
CLS be the WI challenger, the adversary works as follows. ALS(z)

1. Pick s0 ← {0, 1}λ.

2. Compute aNM = Sen1
NM(id, s0; ρ).

3. Upon receiving aLS from CLS, send (aNM, aLS) to A.

4. Upon receiving (cNM, cLS, Y ) from A run as follows:

4.1. Run in time Tf to compute y such that Y = f(y).

4.2. Set s1 = s0 ⊕ y.
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4.3. Compute (zNM, decNM) = Sen2
NM(id, cNM, s0; ρ).

4.4. Compute (com, dec) = NISen(1λNI ,m;σ).

4.5. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
, w0 = (⊥,⊥, s0, ρ),

w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.

6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.

7. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the non-interactive
commitment received by MMReci, and run in time T̃NI to compute m̃i such that ∃ ˜dec : 1 =
NIRec( ˜comi, ˜dec, m̃i) and add m̃i to M .

8. Give M and the view of A to the distinguisher D.

9. Output what D outputs.

The proof ends with the observation that if CLS has has used as witness the randomness of the
non-malleable commitment of the value s0 such that f(s0 ⊕ s1) = Y then we are in the hybrid
experiment Hm3 (z). If instead CLS has used as a witness the randomness used to compute the
non-interactive commitment NI then we are in the hybrid experiment Hm2 (z).

Lemma 5. Let pi be the probability that in the i-th right session of Hm3 , for i ∈ {1, . . . , poly(λ)},
A sends a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM. Then
pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not hold, then we can
construct an adversary A′LS for the TLS witness-indistinguishable property of the LS protocol. Let
CLS be the WI challenger, the adversary works as follows.

A′LS(z)

1. Pick s0 ← {0, 1}λ.

2. Compute aNM = Sen1
NM(id, s0; ρ).

3. Upon receiving aLS from CLS, send (aNM, aLS) to A.

4. Upon receiving (cNM, cLS, Y ) from A, run as follow:

4.1. Run in time Tf to compute y such that Y = f(y).

4.2. Set s1 = s0 ⊕ y.

4.3. Compute (zNM, decNM) = Sen2
NM(id, cNM, s0; ρ).

4.4. Compute (com, dec) = NISen(1λNI ,m;σ).

4.5. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
, w0 = (⊥,⊥, s0, ρ),

w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.

6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.
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7. Run in time T̃NM to extract the value s̃0i from the non-malleable commitment sent by A in
the i-th session. Output 1 if f(s̃0i ⊕ s̃1i) = Ỹi and output 0 otherwise.

The proof ends with the observation that if CLS has used w0 = (⊥,⊥, s0, ρ) as a witness then A
acts as in Hm3 (z), sending with non-negligible probability two shares such that the xor of them
gives a puzzle solution. If CLS has used w1 = (m,σ,⊥,⊥) then the xor of the two shares is with
overwhelming probability different from a puzzle solution as in Hm2 (z).

The next hybrid experiment that we consider is H0
3(z). The only differences between this hybrid

experiment and Hm3 (z) is that the sender, using NI, commits to a message 0λ instead of m. Formally
the hybrid experiment is the following.

H0
3(z).

Left session:

1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(`;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A, run as follows:

2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Compute (com, dec) = NISen(0λ;σ).

2.5. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with (|x| = `). Run

zLS = P2(x,w, cLS;α).
2.6. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We now prove the following properties.

1. Let pi be the probability that in the i-th right session of H0
3, for any i ∈ {1, . . . , poly(λ)},

A sends a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM.
Then pi < ν(λ) for some negligible function ν.

2. For any message m ∈ {0, 1}poly(λ) it holds that mimAHm3 (z) ≈ mimAH0
3
(z).

Lemma 6. Let pi be the probability that in the i-th right session of H0
3, for i ∈ {1, . . . , poly(λ)},

A sends a value s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value committed using NM. Then
pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that there exists a right session i ∈ {1, . . . , poly(λ)} in which
A commit to a string s̃0 such that f(s̃0i ⊕ s̃1i) = Ỹi using ΠNM. Then we can construct an
adversary ANI that breaks the hiding property of the non interactive commitment scheme NI. Let
CNI be the challenger that on input m0 = 0λ and m1 = m, picks a random bit b, computes
(com, dec) = NISen(1λNI ,mb;σ) and sends com to ANI.
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Before describing ANI we need to consider, as in the proof of Lemma 1, a machine Sn→1 that
internally executes A, and interacts with a receiver Recext of the protocol ΠNM acting as the sender.

Formally Sn→1 acts as follows.

Sn→1(com, ϕ, z)
Run A using randomness ϕ.

1. Pick s0 ← {0, 1}λ.

2. Compute aNM = Sen1
NM(id, s0; ρ).

3. Compute aLS = P1(1λLS , `;α).

4. Send (aNM, aLS) to A.

5. Upon receiving (cNM, cLS, Y ) from A, run as follows:

5.1. Run in time Tf to compute y such that Y = f(y).

5.2. Set s1 = s0 ⊕ y.

5.3. Compute (zNM, decNM) = Sen2
NM(id, cNM, s0; ρ).

5.4. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with (|x| = `). Run

zLS = P2(x,w, cLS;α).

5.5. Send (zNM, com, zLS, s1) to A.

6. Let i ∈ {1, . . . , poly(λ)} be the right session that contradicts the claim. For all j 6= i ∈
{1, . . . poly(λ)} run MMRecj as in H4(m, z). Run MMReci as follows.

6.1. Upon receiving the 1rd round of the i-th right session (ãNMi
, ãLSi) from A, send ãNMi

to
the external receiver Recext.

6.2. Upon receiving c̃NMi
from Recext, run as follows:

i. Run V to obtain c̃LSi
.

ii. Pick a random Ỹi.
iii. Send (c̃NMi

, c̃LSi
, Ỹi) to A.

6.3. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi, z̃LSi , s̃1i),

set x̃ =
(
(ãNMi

, c̃NMi
, z̃NMi

), Ỹ , s̃1i, ˜comi, ĩd
)

and abort iff (ãLSi , c̃LSi , z̃LSi) is not accepted
by V with respect to x̃.

6.4. Send z̃NMi
to Recext.

Now we can conclude the proof of this lemma by describing how ANI works. ANI runs the
extractor of the protocol ΠNM using Sn→1 as sender (recall that an extractor of ΠNM plays only
having access to a sender of ΠNM). Since the extractor with non-negligible probability outputs the
committed message we have that ANI retrives s̃0i. Moreover ANI gets s̃1i by reconstructing the view
of A using the randomness ϕ. Since by contradiction A contradicts the claim of this lemma, we
have that ANI can break the hiding of NI because f(s̃0i ⊕ s̃1i) = Ỹ with non-negligible probability
in H0

3(z) where m0 = 0λ is committed in com, while the same happens with negligible probability
only in Hm3 (z) where m1 = m. Therefore if this happens, ANI outputs 0, otherwise ANI outputs a
random bit.
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Lemma 7. For any message m ∈ {0, 1}poly(λ) it holds that mimAHm3 (z) ≈ mimAH0
3
(z).

Proof. Suppose by contradiction that there exists a distinguisher D and an adversary A such that
mimAHm3 (z) is distinguishable from mimAH0

3
(z) then we can construct an adversary ANI that breaks

the hiding property of the non-interactive commitment scheme NI. Let CNI be the challenger that
on input m0 = 0λ and m1 = m, picks a random bit b, computes (com, dec) = NISen(1λNI ,mb;σ)
and sends com to ANI. Before describing ANI, we consider the following experiment Emb(ϕ, com, z).

Emb(ϕ, com, z).
The randomness required from all next steps is take from ϕ.

Run A(z).

Left session:

1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(`;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A, run as follows:

2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with (|x| = `). Run

zLS = P2(x,w, cLS;α).
2.5. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

Now we are ready to describe the adversary ANI for the hiding of NI. ANI executes the following
steps.

1. Let M be an empty tuple. ANI runs Emb(ϕ, com, z).

2. For all i ∈ {1, . . . , poly(λ)}, ANI runs the extractor of LS on the i-th right session of the
execution of Emb(ϕ, com, z) obtaining m̃i and adds it to M .

3. Using the randomness ϕ, ANI reconstructs the view of A in the execution of Emb(ϕ, com, z).
Use such view and M as input to D.

4. Output what D outputs.

The proof ends with the observation that if CNI has committed to 0λ then the view of A and the
distribution of the committed messages coincide with H0

3, otherwise they coincide with Hm3 .
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Common input: Security parameters: λ, (λNI, λNM, λLS, `) = Params(λ). Identity: id ∈
{0, 1}λ.
Internal simulation of the left session:

1. Pick s0 ← {0, 1}λ.

2. Pick a randomness ρ, and compute (decNM, aNM) = Sen1
NM(id, s0; ρ).

3. Pick a randomness α and compute aLS = P1(`;α).

4. Send (aNM, aLS) to A.

5. Upon receiving (cNM, cLS, Y ) from A.

5.1. Pick a randomness σ and compute (com, dec) = NISen(1λNI , 0λ;σ).

5.2. Pick s1 ← {0, 1}λ.

5.3. Compute zNM = Sen2
NM(id, cNM, s0; ρ).

5.4. Set x =
(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (0λ, σ,⊥,⊥) with (|x| = `). Run

zLS = P2(x,w, cLS;α) where x is the theorem to be proven and w is the witness.

5.5. Send (zNM, com, zLS, s1) to A.

Stand-alone commitment:

1. S acts as a proxy between A and MMReci for i = 1, . . . , poly(λ).

Figure 3: The simulator S.

The entire security proof now is almost over because we have proved that for all m ∈ {0, 1}poly(λ)

the following relation holds:

{mimA,mΠMMCom
(z)}z∈{0,1}? = {mimAHm1 (z)}z∈{0,1}? ≈ {mimAHm2 (z)}z∈{0,1}? ≈ {mimAHm3 (z)}z∈{0,1}? ≈

{mimAH0
3
(z)}z∈{0,1}? ≈ {mimAH0

2
(z)}z∈{0,1}? ≈ {mimAH0

1
(z)}z∈{0,1}? = {simS

ΠMMCom
(1λ, z)}z∈{0,1}? .

We show in Figure 3 the simulator S.
We observe that in this proof we had to consider a delayed-input version of our commitment

scheme. Indeed, the sender can choose the message m to be committed by sending the non-
interactive commitment com of the message m in the third round. It is easy to see that the same
security proof still works when the non-interactive commitment is sent in the 1st round, but then
clearly the delayed-input property is lost.

4 More 3-Round Protocols Against Concurrent MiM Attacks

In this section we show how to obtain some forms of 3-round arguments of knowledge and of 3-round
identification schemes that are secure against concurrent MiM attacks.
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4.1 Non-Malleable WI Arguments of Knowledge

Our concurrent NM commitment scheme when instantiated without sessions ids, can be used to
obtain almost directly a commit-and-prove AoK. Recall that in our scheme there is a non-interactive
commitment com of m and then rest of the protocol is an AoK. This AoK is used by the sender
to claim that either he knows the message committed in com, or he committed through ΠNM to a
share s0 that allows to compute the solution of the puzzle.

In order to be fully compliant with the notion of commit-and-prove AoK, we just need to make
a trivial change to the statement of the LS subprotocol. Given an instance x ∈ L and a witness
w the prover of our commit-and-prove AoK uses the non-interactive commitment to commit to
w, and uses the rest to prove that either he knows the committed message w that moreover is a
witness for x ∈ L or again, he committed through ΠNM to a share s0 that allows to compute the
solution of the puzzle.

More formally, we define a commit-and-prove AoK ΠCaP = (PCaP,VCaP) that corresponds to
our concurrent NM commitment scheme with some minimal changes. First, PCaP and VCaP have as
a common input an instance x ∈ L, where L is an NP-language. Second, PCaP has as private input
w such that (x,w) ∈ RelL. Third, PCaP runs the sender MMSen having as input w, while VCaP runs
the receiver MMRec with the exception of running the LS subprotocol LS for:

LCaP =
{(
x, (a, c, z), Y, s1, com, id

)
: (∃ (w, σ) s.t. com = NISen(w;σ) AND (x,w) ∈ RelL)

OR
(
∃(ρ, s0) s.t. a = Sen1

NM(id, s0; ρ) AND z = Sen2
NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)

)}
that is WI for the relation

RelLCaP
=
{((

x, (a, c, z), Y, s1, com, id
)
, (w, σ, s0, ρ)

)
: (com = NISen(w;σ) AND

(x,w) ∈ RelL) OR
(
a = Sen1

NM(id, s0; ρ) AND z = Sen2
NM(id, c, y; ρ) AND Y = f(s0 ⊕ s1)

)}
We can now claim the following theorem.

Theorem 3. Suppose there exist OWPs secure against subexponential-time adversaries, then ΠCaP

is a 3-round concurrent NMWI argument of knowledge.

Proof. The proof of this theorem is pretty straightforward given the previous proof for the con-
current non-malleability of our commitment scheme, therefore here we just point out the main
intuition.

First of all, ΠCaP is clearly a commit-and-prove AoK. Indeed, there exists a commitment of the
witness and there is an AoK proving that the committed message is a witness. In order to see this,
notice that for any ppt malicious prover succeeding with non-negligible probability in proving a
statement x ∈ L, the extractor of LS (of course this needs to be run against an augmented machine)
would return (in expected polynomial time and with overwhelming probability) the committed
witness since otherwise it would return a share s0 that combined with s1 allows to invert the OWP
in polynomial time.

We can now focus on the concurrent NMWI property, and we can assume (by contradiction) that
the adversary succeeds in encoding in the right sessions witnesses that are related to the witnesses
encoded in the left sessions. Notice that the proof is almost identical to the one of Theorem 2.
We can indeed prove the case of one prover and multiple verifiers (i.e., one-many), and then we
can apply the fact that any one-many NMWIAoK is also a concurrent NMWIAoK. Indeed this
was used in [OPV08] and follows similar arguments given in [PR05a, LPV08]. For the one-many
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case we can therefore follow the proof of Theorem 2 with the following trivial change. Instead of
running hybrid experiments starting with a message m and ending with a message 0, in the proof
of one-many concurrent NMWI we start with a witness w0 and end with a witness w1. Everything
else remains untouched and all the reductions work directly.

We finally notice that ΠCaP can be instantiated to be public-coin and delayed-input, precisely
as our concurrent non-malleable commitment scheme. While what we discussed above applies to
arguments only, techniques to obtain proofs can be found in [CVZ11].

Instances with just one witness and non-transferability. Recall that the definition of
NMWI considers two experiments that differ only on the witness used by the prover. Therefore it is
unclear which security is given by a NMWIAoK when the instance has only one witness. In order
to understand the security guaranteed by ΠCaP in such a case, consider the proof of concurrent
NMWI, and thus, in turn, consider the proof of concurrent non-malleability of our commitment
scheme. Notice that while the sequence of hybrids goes from an experiment where the committed
message is m to an experiment where the committed message is 0, there is an experiment H3(·, z)
in which the committed message is irrelevant. Indeed, the entire execution is based on inverting
the OWP, in encrypting it through the shares s0 and s1 and in using this witness in the execution
of LS. This experiment can be seen as the execution of a quasi-polynomial time simulator that
breaks the puzzle18 following the approach of [Pas03]19. Therefore following the same observa-
tions of [Pas03, Pas04] on the security offered by quasi-polynomial time simulation, our concurrent
NMWIAoK even for instances with just one witness would not help the adversary in proving a
statement whose witness is much harder to compute than breaking the puzzle.

The above discussion explains also the non-transferability flavor of ΠCaP. Indeed, at first sight,
a MiM attack of an adversary A to an AoK should be an attempt of A to transfer the proof that it
gets from the prover to a verifier. As such, an AoK that is secure against concurrent MiM attacks
should provide some non-transferability guarantee. Since the success of A during a MiM attack
can be replicated without a MiM attack by a quasi-polynomial time simulator, we have that ΠCaP

guarantees non-transferability whenever computing the witnesses for the considered instances is
assumed to be harder than breaking the puzzle.

Using NMWI for NMZK in the Bare Public-Key (BPK) model. In [OPV08] it is shown
that a concurrent NMWIAoK Π gives directly a concurrent NMZKAoK in the BPK model. The
construction is straightforward as it just consists of running Π twice, first from the verifier to
the prover (proving knowledge of one out of two secrets) and then from the prover to the verifier
(proving knowledge of either a witness for x ∈ L or of one out of the two secrets of the verifier).

Our construction from Theorem 3 when combined with the construction of [OPV08] gives a
candidate round-efficient concurrent NMZKAoK in the BPK model.

4.2 Identification Schemes

Identification schemes represent one of the most successful real-world applications of cryptographic
protocols. We show here a 3-round identification scheme secure against concurrent MiM attacks
following the concept of proving knowledge of a secret.

18The puzzle can be implemented through a OWP that can be inverted in quasi-polynomial time.
19The work of Pass did not take into account MiM attacks.
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Identification schemes based on proving knowledge of a secret. The importance of this
setting was for instance discussed in [COSV12] mentioning the following example. Consider a
verifier V that provides a service to restricted group of provers P. A malicious prover P? could give
to another party B that is not part of the group, some partial information about his secret that is
sufficient for B to obtain the service from V, while still B does not know P?’s secret. The paradigm
of proving knowledge of a secret in an identification scheme allows to prevent attacks like the one
just described. When the identification scheme consists in proving knowledge of a secret the sole
fact that B convinces V is sufficient to claim that one can extract the whole secret from B. This
implies that B obtained P?’s secret corresponding to his identity, and thus B is actually P?20.

We now introduce a security definition that takes into account concurrent MiM attacks similarly
to the definition CR2 (concurrent-reset on-line) of [BFGM01]. The definition of [BFGM01] also
includes possible reset attacks in addition to allowing A to invoke multiple concurrent executions
of the prover in the left sessions while A is interacting with the verifier. In the remaining part of
this section we will ignore reset attacks since they are out of the purpose of our work. As described
in [Kat02] in most network-based settings reset attacks are not an issue. Following the notation
of [Kat02] we now give a formal security definitions for an identification scheme.

Definition 11. Let Π = (K,P,V) be a tuple of ppt algorithms. We say Π is an identification
scheme secure against man-in-the-middle attacks if the following conditions hold:

Correctness. For all (pk, sk) output by K(1λ), we have

Prob [ 〈P(sk),V〉(pk) = 1 ] = 1.

Security. For all ppt adversaries A there exists a negligible function ν such that

Prob
[

(pk, sk)← K(1λ) : 〈AP(sk),V〉(pk) = 1 AND τ /∈ T
]
< ν(λ),

where A has oracle access to a stateful (i.e., non-resettable) P(sk), T is defined as the transcripts set
of the interactions between P(sk) and A, and τ is defined as the transcript of one of the interactions
between A and V. All interactions can be arbitrarily interleaved and A controls the scheduling of
the messages.

Identification scheme from NMWI. Our construction ΠID = (KID,PID,VID) follows the ap-
proach of [OPV08, COSV12]. Let f : {0, 1}λ → {0, 1}λ be a one-way permutation, let λ be the
security parameter. The public key of PID is the pair (pk0, pk1), the secret key is skb for a randomly
chosen bit b, such that pkb = f(skb). Therefore the algorithm KID takes as input the security
parameter and outputs ((pk0, pk1), skb) as described above. The protocol simply consists in PID

running our 3-round concurrent NMWIAoK ΠCaP with VID to prove that it knows the pre-image of
either pk0 or pk1. Formally, let Lid be the following language Lid = {(y0, y1) : ∃ x ∈ {0, 1}λ such
that y0 = f(x) ∨ y1 = f(x)}, then the identification scheme consists of PID proving the statement
(pk0, pk1) ∈ Lid using ΠCaP. Fig. 4 summarizes our identification scheme. Now we can claim the
following theorem.

Theorem 4. Assume the existence of OWPs secure against subexponential-time adversaries then
ΠID is an identification scheme secure against concurrent MiM attacks.

20This is instead not likely to happen in scenarios where the same secret key is used for other critical tasks such as
signatures of any type of document.

28



PID(sk, pk)

pk = (pk0, pk1)

sk = skb

VID(pk)

Concurrent NMWIAoK
(pk0, pk1) ∈ Lid

Figure 4: Our 3-round identification scheme ΠID from our 3-round concurrent NMWIAoK.

The proof is again straight-forward. If a PPT A succeeds then concurrent NMWI of ΠCaP

guarantees that the witness that he encoded in the proof is independent of the one encoded in the
proofs given by P. Therefore by using the AoK property of ΠCaP we can invert f with non-negligible
probability.

5 Concurrent Malleability of [GPR15]

Here, just for completeness, we briefly explain the intuition behind the fact that the 3-round NM
commitment scheme ΠNM = (SenNM,RecNM) of [GPR15] is malleable with respect to a concurrent
MiM attack. In order to do this we follow the technique of [FMNV14].

We will describe a concurrent MiM adversary A and a distinguisher D that win in the non-
malleability security game. We will refer to a NM commitment of the message m using the scheme
ΠNM as nmcom(m). We stress that nmcom(m) is the result of a 3-round interaction between the
sender SenNM and the receiver RecNM. We start by describing the high-level idea of the protocol
ΠNM. In the 1st round a left-state L is computed using a special split-state non-malleable code.
Let n = |L|. Then a non-interactive commitment comL of L is sent in the 1st round, while in the
3rd round the sender computes the right-state R corresponding to the message m and sends it in
the clear. In parallel there is also a PoK of the message L committed in comL. This PoK can be
seen as a PoK of each bit of L. Therefore there are n PoKs where the j-th proof is used to prove
knowledge of the bit Lj of L.

The actual scheme of [GPR15] is much more sophisticated than what we have just described,
there are various other components but however they have no impact on the work done by our A,
so we will omit them from this short description. Essentially, we will show here that a simplified
version of the scheme of [GPR15] is concurrently malleable. However all our arguments apply to
their full scheme.

The proposed adversary A interacts with one sender SenNM in the left session and with many
receiver RecNM1, . . . ,RecNMpoly(λ) in the right sessions. The behavior of A in the left and right
session can be summarized as following.

Left session. SenNM computes the 1st round of ΠNM as follows. First, he computes L, then he
computes a perfectly binding commitment comL of L and computes n PoKs one for each bit of the
message committed in comL. In the last round of ΠNM SenNM completes the n PoKs and sends R
to A such that the pair (L,R) is a valid encoding of m according to the special non-malleable code.
Hence in the left session A receives comL, R and n PoKs one for each bit of the string committed
in comL, therefore a PoK for each bit Lj of L.
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Figure 5: The one-many MiM A.

Right sessions. In the right sessions A interacts with RecNM1, . . . ,RecNMpoly(λ) mauling the
commitments received on the left. More specifically, it starts 2n right sessions where n of them
should correspond to nmcom(L1), . . . , nmcom(Ln) such that L = L1 . . . Ln, and the other n sessions
should correspond to invalid commitments (we refer to such commitments as nmcom(⊥)).

More precisely, our adversary computes, for each bit Lj of L, two NM commitments nmcom(1λ),
nmcom(0λ) such that if Lj = 1 then nmcom(0λ) is invalid, otherwise nmcom(1λ) is invalid. In order
to poison one out of nmcom(0λ) and nmcom(1λ), A will rely on the PoK of Lj received on the left.
The PoK of Lj will be plugged in the PoKs of nmcom(0λ) and in the PoKs of nmcom(1λ). More
precisely one of the n PoKs of nmcom(0λ) that correspond to a PoK of the bit 0 will be replaced
with the PoK of Lj . The same approach is applied when A computes nmcom(1λ) with the only
difference that the PoK that A will replace corresponds to a PoK of a bit 1. In this way only one
out of nmcom(0λ) and nmcom(1λ) still remain a valid commitment. In particular nmcom(Lj) will
remain a valid commitment while nmcom(1− Lj) will be poisoned and thus will correspond to an
invalid commitment.

There is however a subtlety. Since the PoK played on the right is for one component copied
from the PoK played on the left, it can be completed successfully with constant probability and
the adversary has to abort the session if it can not complete the PoK. Therefore each of the above
2n right sessions could be repeated multiple times, but however the total amount of right sessions
will still be polynomial in the security parameter.

Finally our distinguisher D given as input the committed bits L1, . . . , Ln and R contained in the
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view of A, can easily recover the message m committed in the left interaction.
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