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Bell Beaker pottery spread across western and central Europe beginning around 2750 

BCE before disappearing between 2200–1800 BCE. The forces propelling its expansion 

are a matter of long-standing debate, with support for both cultural diffusion and 

migration. We present new genome-wide data from 400 Neolithic, Copper Age and Bronze 

Age Europeans, including 234 Beaker-associated individuals. We detected limited genetic 

affinity between Iberian and central European Beaker-associated individuals, and thus 

exclude migration as a significant mechanism of spread between these two regions. 

However, migration played a key role in the further dissemination of the Beaker Complex, 

a phenomenon we document most clearly in Britain where we report 155 individuals who 

lived from 4000-800 BCE. British Neolithic farmers were genetically similar to 

contemporary populations in continental Europe and especially to Neolithic Iberians, 

indicating that a portion of their ancestry came from the Mediterranean rather than the 

Danubian route of farming expansion. Beginning with the Beaker period, all British 

individuals in our time transect harboured high proportions of Steppe-related ancestry 

and were most closely related to Beaker-associated individuals from the Lower Rhine 

area. The impact of the migration from the continent was profound, as we show that the 

spread of the Beaker Complex to Britain was associated with a replacement of ~90% of 

Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that 

had brought Steppe-related ancestry into central and northern Europe 400 years earlier. 

During the third millennium Before the Common Era (BCE), two new archaeological pottery 

styles expanded across Europe, replacing many of the more localized styles that preceded them.1 

In north-central and northeastern Europe there was the ‘Corded Ware Complex’ associated with 

people who derived most of their ancestry from Yamnaya pastoralists from the Eurasian 

steppe2–4 (henceforth referred to as Steppe). In western Europe there was the equally expansive 

‘Bell Beaker Complex,’ defined by assemblages of grave goods including stylised bell-shaped 

pots, copper daggers, arrowheads, stone wristguards and V-perforated buttons5 (Extended Data 

Fig. 1). The oldest radiocarbon dates associated with Beaker pottery are around 2750 BCE in 

Atlantic Iberia6, which has been interpreted as evidence that the Beaker Complex originated 

there. However, the geographic origin is still debated7 and other scenarios including an origin in 

the Lower Rhine or even multiple independent origins are plausible (Supplementary 

Information section 1). Regardless of the geographic origin, by 2500 BCE the Beaker Complex 

had spread throughout western Europe (and northwest Africa), and reached southern and 

Atlantic France, Italy and central Europe5, where it overlapped geographically with the Corded 

Ware Complex. Within another hundred years, it had expanded to Britain and Ireland8. A major 

debate in archaeology has revolved around the question of whether the spread of the Beaker 

Complex was mediated by the movement of people, culture, or a combination9. Genome-wide 
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data have revealed high proportions of Steppe-related ancestry in Beaker Complex-associated 

individuals from Germany and the Czech Republic2–4, showing that they derived from mixtures 

of populations from the Steppe and the preceding farmers of Europe. However, a deeper 

understanding of the ancestry of people associated with the Beaker Complex requires genomic 

characterization of individuals across the geographic range and temporal duration of this 

archaeological phenomenon. 

Ancient DNA data  

To understand the genetic structure of ancient people associated with the Beaker Complex and 

their relationship to preceding, subsequent and contemporary peoples, we enriched ancient 

DNA libraries for sequences overlapping 1,233,013 single nucleotide polymorphisms (SNPs) by 

hybridization DNA capture4,10, and generated new sequence data from 400 ancient Europeans 

dated to ~4700–800 BCE and excavated from 137 different sites (Extended Data Table 1; 

Supplementary Table 1; Supplementary Information, section 2). This dataset includes Beaker-

associated individuals from Iberia (n=45), southern France (n=4), northern Italy (n=3), Sicily 

(n=3), central Europe (n=133), The Netherlands (n=9) and Britain (n=37), and 166 individuals 

from other ancient populations including 118 individuals from Britain who lived both before 

(n=51) and after (n=67) the arrival of the Beaker Complex (Fig. 1a-b). For genome-wide 

analyses, we filtered out first-degree relatives and individuals with low coverage (<10,000 

SNPs) or evidence of contamination (Methods) and combined our data with previously 

published ancient DNA data (Extended Data Fig. 2) to form a dataset of 683 ancient samples 

(Supplementary Table 1). We further merged these data with 2,572 present-day individuals 

genotyped on the Affymetrix Human Origins array11,12 and 300 high coverage genomes13. To 

facilitate the interpretation of our genetic results, we also generated 106 new direct radiocarbon 

dates (Extended Data Table 2; Supplementary Information, section 3). 

Y-chromosome analysis 

The Y-chromosome composition of Beaker associated males was dominated by R1b-M269 

(Supplementary Table 3), a lineage associated with the arrival of Steppe migrants in central 

Europe during the Late Neolithic/Early Bronze Age2,3. Outside Iberia, this lineage was present 

in 84 out of 90 analysed males. For individuals in whom we could determine the R1b-M269 

subtype (n=60), we found that all but two had the derived allele for the R1b-S116/P312 

polymorphism, which defines the dominant subtype in western Europe today14. In contrast, 

Beaker-associated individuals from the Iberian Peninsula carried a higher proportion of Y 

haplogroups known to be common across Europe during the earlier Neolithic period2,4,15,16, such 

as I (n=7) and G2 (n=2), while R1b-M269 was found in four individuals (the two with higher 

coverage could be further classified as R1b-S116/P312). Finding this widespread presence of 
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the R1b-S116/P312 polymorphism in ancient individuals from central and western Europe 

suggests that people associated with the Beaker Complex may have had an important role in the 

dissemination of this lineage throughout most of its present-day distribution. 

Genomic insights into the spread of people associated with the Beaker Complex 

We performed Principal Component Analysis (PCA) by projecting ancient samples onto a set of 

present-day populations from West Eurasia and replicate previous findings11 of two parallel 

clines, with present-day Europeans on one side and present-day Near Easterners on the other 

(Extended Data Fig. 3a). Individuals associated with the Beaker Complex are strikingly 

heterogeneous within the European cline—splayed out along the axis of variation defined by 

Early Bronze Age Yamnaya Steppe pastoralists at one extreme and Middle Neolithic/Copper 

Age European farmers at the other extreme (Fig. 1c; Extended Data Fig. 3a)—suggesting that 

the genetic differentiation may be related to variable amounts of Steppe-related ancestry. We 

obtained qualitatively consistent inferences using ADMIXTURE model-based clustering17. 

Beaker Complex-associated individuals harboured three main genetic components: one 

characteristic of European hunter-gatherers, one maximized in Neolithic farmers from the 

Levant and Anatolia, and one maximized in Neolithic farmers of Iran and present in admixed 

form in Bronze Age Steppe populations (Extended Data Fig. 3b). 

Both PCA and ADMIXTURE are powerful tools for visualizing genetic structure but they do 

not provide formal tests of admixture between populations. We grouped Beaker Complex 

individuals based on geographic proximity and genetic similarity (Supplementary Information, 

section 6), and used qpAdm2 to directly test admixture models and estimate mixture proportions. 

We modelled their ancestry as a mixture of Mesolithic western European hunter-gatherers 

(WHG), northwestern Anatolian Neolithic farmers, and Bronze Age Steppe pastoralists (the first 

two of which contributed to earlier Neolithic Europeans; Supplementary Information, section 8). 

We find that the great majority of sampled Beaker Complex individuals in areas outside of 

Iberia (with the exception of Sicily) derive a large portion of their ancestry from populations 

related to Bronze Age Steppe pastoralists (Fig. 2a), whereas in Iberia, such ancestry is present in 

only eight of the 39 analysed individuals who represent the earliest detection of Steppe-related 

genomic affinities in this region. We observe striking differences in ancestry not only at a pan-

European scale, but also within regions and even within sites. Unlike other individuals from the 

Upper Alsace region of France (n=2), an individual from Hégenheim resembles the previous 

Neolithic populations and can be modelled as a mixture of Anatolian Neolithic and western 

hunter-gatherers without any Steppe-related ancestry. Given that the radiocarbon date of the 

Hégenheim individual is older (2832–2476 cal BCE (quoting 95.4% confidence intervals for 

this and other dates) (Supplementary Information, section 2) than other samples from the same 
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region (2566–2133 cal BCE), the pattern could reflect temporal differentiation. At 

Szigetszentmiklós in Hungary, we find Beaker-associated individuals with very different 

proportions (from 0% to 75%) of Steppe-related ancestry and overlapping dates. This genetic 

heterogeneity is consistent with early stages of mixture between previously established 

European Neolithic populations and migrants with Steppe-related ancestry. An implication is 

that, even at a local scale, the Beaker Complex was associated with people of diverse ancestries. 

While the Steppe-related ancestry in Beaker-associated individuals had a recent origin in the 

East2,3, the other ancestry component (from previously established European farmers) could 

potentially be derived from several parts of Europe, as genetically closely related groups were 

widely distributed during the Neolithic and Copper Ages2,4,11,16,18–23. To obtain insight into the 

origin of this ancestry in Beaker Complex-associated individuals, we began by looking for 

regional patterns of genetic differentiation within Europe during the Neolithic and Copper Age 

periods. We examined whether Neolithic and Copper Age test populations predating the 

emergence of the Beaker Complex shared more alleles with Iberian (Iberia_EN) or central 

European Linearbandkeramik (LBK_EN) Early Neolithic populations. As previously described2, 

there is genetic affinity to Iberian Early Neolithic farmers in Iberian Middle Neolithic/Copper 

Age populations, but not in central and northern European Neolithic populations (Fig. 2b), 

which could be explained by differential affinities to hunter-gatherer individuals from different 

regions22 (Extended Data Fig. 4). Neolithic farmers from southern France and Britain are also 

significantly closer to Iberian Early Neolithic farmers than to central European Early Neolithic 

farmers (Fig. 2b), consistent with the analysis of a Neolithic farmer genome from Ireland.23 We 

ruled out the possibility that these results are driven by similarities in the proportion of hunter-

gatherer admixture by modelling Neolithic populations and WHG in an admixture graph 

framework (Extended Data Fig. 5; Supplementary Information, section 7), and finding that all 

working models require that a portion of the ancestry of the Neolithic farmers of Britain is 

derived from groups related to early farmers from Iberia. Megalithic tombs document 

substantial interaction along the Atlantic façade of Europe, and our results are consistent with 

such interactions reflecting south-to-north movements of people. More data from southern 

Britain and Ireland (where currently data are sparse) and nearby regions in continental Europe 

will be needed to fully understand the complex interactions human movements between Britain, 

Ireland, and the continent during the Neolithic24. 

The distinctive genetic signatures of pre-Beaker Complex populations in Iberia compared to 

central Europe allow us to test formally for the origin of the Neolithic farmer-related ancestry in 

Beaker Complex-associated individuals in our dataset (Supplementary Information, section 8). 

We grouped individuals from Iberia (n=39) and from outside Iberia (n=172) to increase power, 

and evaluated the fit of different Neolithic/Copper Age groups with qpAdm under the model: 
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Yamnaya + Neolithic/Copper Age. For Beaker Complex-associated individuals from Iberia, the 

best fit was obtained when Middle Neolithic and Copper Age populations from the same region 

were used as a source for their Neolithic farmer-related ancestry, and we could exclude central 

and northern European populations (P < 0.0028) (Fig. 2c). Conversely, the Neolithic farmer-

related ancestry in Beaker Complex individuals outside Iberia was most closely related to 

central and northern European Neolithic populations with relatively high hunter-gatherer 

admixture (e.g. Poland_LN, P = 0.18; Sweden_MN, P = 0.25), and we could significantly 

exclude Iberian sources (P < 0.0104) (Fig. 2c). These results support largely different origins for 

Beaker Complex-associated individuals, with no discernible Iberia-related ancestry outside 

Iberia. 

Nearly complete turnover of ancestry in Britain 

British Beaker Complex-associated individuals (n=19) show strong similarities to central 

European Beaker Complex-associated individuals in their genetic profile (Extended Data Fig. 

3), an observation that is not just restricted to British individuals associated with the ‘All Over 

Corded’ Beaker pottery style that is shared between Britain and Central Europe, but also in 3 

British individuals associated with the ‘Maritime’ Beaker pottery style that was the predominant 

early style in Iberia. The presence of large amounts of Steppe-related ancestry in British Beaker 

Complex-associated individuals (Fig. 2a) contrasts sharply with Neolithic individuals from 

Britain (n=51), who have no evidence of Steppe genetic affinities and cluster instead with 

Middle Neolithic and Copper-Age populations from mainland Europe (Extended Data Fig. 3). 

Thus, the arrival of Steppe-related ancestry in Britain was mediated by a migration that began 

with the Beaker Complex. A previous study showed that Steppe-related ancestry arrived in 

Ireland by the Bronze Age23, and here we show that – at least in Britain – it arrived earlier in the 

Copper Age/Beaker period. 

Among the different continental Beaker Complex groups analysed in our dataset, individuals 

from Oostwoud (Province of Noord-Holland, The Netherlands) are the most closely related to 

the great majority of the Beaker Complex individuals from southern Britain (n=27). They had 

almost identical Steppe-related ancestry proportions (Fig. 2a), the highest shared genetic drift 

(Extended Data Fig. 6b) and were symmetrically related to most ancient populations (Extended 

Data Fig. 6a), showing that they are consistent with being derived from the same ancestral 

population with limited mixture into either group. This does not necessarily imply that the 

Oostwoud individuals are direct ancestors of the British individuals, but a genetically closely-

related group to the one (perhaps yet to be sampled) that moved into Britain from continental 

Europe. 
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We investigated the magnitude of population replacement in Britain with qpAdm,2 modelling 

the genome-wide ancestry of Copper and Bronze Age individuals (including Beaker Complex-

associated individuals) as a mixture of continental Beaker Complex-associated samples (using 

the Oostwoud individuals as a surrogate) and the British Neolithic population (Supplementary 

Information, section 8). Fig. 3a shows the results, ordering individuals by date and showing 

excess Neolithic farmer-related ancestry compared to continental Beaker Complex-associated 

individuals as a baseline. For the earliest individuals (between ~2400–2000 BCE), the Neolithic 

ancestry excess is highly variable, consistent with migrant communities that were just beginning 

to mix with the previously established Neolithic population of Britain. During the subsequent 

Bronze Age we observe less variation and a modest increase in Neolithic farmer-related 

ancestry (Fig. 3a), which could represent admixture with persisting British populations with 

high levels of Neolithic farmer-related ancestry (or alternatively incoming continental 

populations with higher proportions of Neolithic farmer-related ancestry). In either case, our 

results imply a minimum of 90±2% local population turnover by the Middle Bronze Age, with 

no further decrease observed in 5 samples from the Late Bronze Age (Supplementary 

Information, section 8). While the exact turnover rate and its geographic pattern will be refined 

with more ancient samples, our results imply that for individuals from Britain during and after 

the Beaker period, a very high fraction of their DNA derives from ancestors who lived in 

continental Europe prior to 2400 BCE. An independent line of evidence for population turnover 

comes from Y-chromosome haplogroup composition. While R1b haplogroups were completely 

absent in the Neolithic samples (n=33), they represent more than 90% of the Y-chromosomes 

during Copper and Bronze Age Britain (Fig. 3b; Supplementary Table 3). 

Our genetic time transect in Britain also allowed us to track the frequencies of alleles with 

known phenotypic effects. Derived alleles at rs16891982 (SLC45A2) and rs12913832 

(HERC2/OCA2), which contribute to reduced skin and eye pigmentation in Europeans, 

dramatically increased in frequency between the Neolithic period to the Beaker and Bronze Age 

periods (Extended Data Fig. 7). Thus, the arrival of migrants associated with the Beaker 

Complex significantly altered the pigmentation phenotypes of British populations. However, the 

lactase persistence allele at SNP rs4988235 remained at very low frequencies in our dataset both 

in Britain and continental Europe, showing that the major increase in its frequency in Britain, as 

in mainland Europe3,4,25, occurred in the last 3,500 years. 

Discussion 

The term ‘Bell Beaker’ was introduced by late 19th-century and early 20th-century 

archaeologists to refer to the distinctive pottery style found across western and central Europe at 

the end of the Neolithic, initially hypothesized to have been spread by a genetically 
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homogeneous group of people. This idea of a ‘Beaker Folk’ became unpopular after the 1960s 

as scepticism about the role of migration in mediating change in archaeological cultures grew26, 

although J.G.D. Clark speculated that the Beaker Complex expansion into Britain was an 

exception27, a prediction that has now been borne out by ancient genomic data.  

Our results prove that the expansion of the Beaker Complex cannot be described by a simple 

one-to-one mapping of an archaeologically defined material culture to a genetically 

homogeneous population. This stands in contrast to other archaeological complexes analysed to 

date, notably the Linearbandkeramik first farmers of central Europe2, the Early Bronze Age 

Yamnaya of the Steppe2,3, and to some extent the Corded Ware Complex of central and eastern 

Europe2,3. Instead, our results support a model in which cultural transmission and human 

migration both played important roles, with the relative balance of these two processes 

depending on the region. In Iberia, the majority of Beaker-associated individuals lacked Steppe 

affinities and were genetically most similar to preceding Iberian populations. In central Europe, 

Steppe-related ancestry was widespread and we can exclude a substantial contribution from 

Iberian Beaker associated individuals, contradicting initial suggestions of gene flow into central 

Europe based on analysis of mtDNA28 and dental morphology29. The presence of Steppe-related 

ancestry in some Iberian individuals demonstrates that gene-flow into Iberia was, however, not 

uncommon during this period. 

Other parts of the Beaker Complex expansion were driven to a substantial extent by migration. 

This genomic transformation is clearest in Britain due to our dense time transect. The earliest 

Beaker pots found in Britain show influences from both the lower Rhine region and the Atlantic 

façade of western Europe30. However, such dual influence is not mirrored in the genetic data, as 

the British Beaker Complex individuals were genetically most similar to lower Rhine 

individuals from the Netherlands. The arrival of people associated with the Beaker Complex 

precipitated a profound demographic transformation in Britain, exemplified by the absence of 

individuals in our dataset without large amounts of Steppe-related ancestry after 2400 BCE. It is 

possible that the uneven geographic distribution of our samples, coupled with different burial 

practises between local and incoming populations (cremation versus burial) during the early 

stages of interaction could result in a sampling bias against local individuals. However, the 

signal observed during the Copper Age/Beaker period persisted, without any evidence of 

genetically Neolithic-like individuals among the 67 Bronze Age individuals we newly report. 

These results are notable in light of strontium and oxygen isotope analyses of British skeletons 

from the Beaker and Bronze Age periods31, which have provided no evidence of substantial 

mobility over individuals’ lifetimes from locations with cooler climates or from places with 

geologies atypical of Britain. However, the isotope data are only sensitive to first-generation 

migrants, and do not rule out movements from regions such as the lower Rhine, which is 



 

 

9 

consistent with the genetic data, or from other geologically similar regions for which DNA 

sampling is still sparse. Further sampling of regions on the European continent may reveal 

additional candidate sources. 

By analysing DNA data from ancient individuals we have been able to provide constraints on 

the processes underlying cultural and social changes in Europe during the third millennium 

BCE. Our results motivate further archaeological research to identify the changes in social 

organization, technology, subsistence, climate, population sizes32 or pathogen exposure33,34 that 

could have precipitated the demographic changes uncovered in this study. 
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Figure 1. Spatial, temporal, and genetic structure of individuals in this study. a, 

Geographic distribution of samples with new genome-wide data. For clarity, random jitter was 

added for sites with multiple individuals. b, Time ranges for samples with new genome-wide 

data. Sample sizes are given next to each bar. c, Principal component analysis of 990 present-

day West Eurasian individuals (grey dots), with previously published (pale yellow) and new 

ancient samples projected onto the first two principal components. This figure is a zoom of 

Extended Data Fig 3a. E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; BA, 

Bronze Age.  
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Figure 2. Investigating the genetic makeup of Beaker Complex individuals. a, Proportion of 

Steppe-related ancestry (shown in black) in Beaker Complex-associated groups, computed with 

qpAdm under the model Steppe_EBA + Anatolia_N + WHG. The area of the pie is proportional 

to the number of individuals (shown inside the pie if more than one). See Supplementary 

Information, section 8 for mixture proportions and standard errors. b, f-statistics of the form 

f4(Mbuti, Test; Iberia_EN, LBK_EN) computed for European populations before the emergence 

of the Beaker Complex. The statistic takes negative values if the Test shares more alleles with 

Iberia_EN (positive values in the case of excess affinity with LBK_EN). Error bars represent ±1 

standard errors. c, Testing different populations as a source for the Neolithic ancestry 

component in Beaker Complex individuals. The table shows the P-values (highlighted if >0.05) 

for the model: Steppe_EBA + Neolithic/Copper Age source population. BC, Beaker complex; 

E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; BA, Bronze Age; N_Iberia, 

Northern Iberia; C_Iberia, Central Iberia; SE_Iberia, Southeast Iberia; SW_Iberia, Southwest 

Iberia.  
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Figure 3. Population transformation in Britain associated with the arrival of the Beaker 

Complex. a, Modelling Copper and Bronze Age (including Beaker Complex) individuals from 

Britain as a mixture of continental Beaker Complex-associated individuals (red, represented by 

Beaker Complex samples from Oostwoud) and the Neolithic population from Britain (blue). 

Individuals are ordered chronologically (oldest on the left) and included in the plot if 

represented by more than 100,000 SNPs. See Supplementary Information, section 8 for mixture 

proportions and standard errors. b, Y-chromosome haplogroup composition in males from 

Britain. CA, Copper Age; EBA, Early Bronze Age; MBA, Middle Bronze Age; LBA, Late 

Bronze Age. BC, Beaker complex.  



 

 

13 

References 

1. Czebreszuk, J. Bell Beakers from West to East. in Ancient Europe, 8000 B.C. to A.D. 

1000: An Encyclopedia of the Barbarian World (eds. Bogucki, P. I. & Crabtree, P. J.) 

476–485 (Charles Scribner’s Sons, 2004). 

2. Haak, W. et al. Massive migration from the steppe was a source for Indo-European 

languages in Europe. Nature 522, 207–211 (2015). 

3. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 

(2015). 

4. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 

528, 499–503 (2015). 

5. Czebreszuk, J. Similar But Different. Bell Beakers in Europe. Adam Mickiewicz 

University (2004). 

6. Cardoso, J. L. Absolute chronology of the Beaker phenomenon North of the Tagus 

estuary : demographic and social implications. Trabajos de Prehistoria 71, 56–75 

(2014). 

7. Jeunesse, C. The dogma of the Iberian origin of the Bell Beaker: attempting its 

deconstruction. J. Neolit. Archaeol. 16, 158–166 (2015). 

8. Fokkens, H. & Nicolis, F. Background to Beakers. Inquiries into regional cultural 

backgrounds of the Bell Beaker complex. (Leiden: Sidestone Press, 2012). 

9. Vander Linden, M. What linked the Bell Beakers in third millennium BC Europe? 

Antiquity 81, 343–352 (2007). 

10. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. 

Nature 524, 216–219 (2015). 

11. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for 

present-day Europeans. Nature 513, 409–413 (2014). 

12. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. 

Nature 536, 1–22 (2016). 

13. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse 

populations. Nature 538, (2016). 

14. Valverde, L. et al. New clues to the evolutionary history of the main European paternal 

lineage M269: dissection of the Y-SNP S116 in Atlantic Europe and Iberia. Eur. J. Hum. 

Genet. 1–5 (2015). doi:10.1038/ejhg.2015.114 

15. Gamba, C. et al. Ancient DNA from an Early Neolithic Iberian population supports a 

pioneer colonization by first farmers. Mol. Ecol. 21, 45–56 (2012). 

16. Günther, T. et al. Ancient genomes link early farmers from Atapuerca in Spain to 

modern-day Basques. Proc. Natl. Acad. Sci. U. S. A. 112, 11917–11922 (2015). 

17. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in 

unrelated individuals. Genome Res. 19, 1655–1664 (2009). 

18. Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 

7943, 1–16 (2016). 

19. Skoglund, P. et al. Genomic Diversity and Admixture Differs for Stone-Age 

Scandinavian Foragers and Farmers. Science 201, 786–792 (2014). 

20. Olalde, I. et al. A Common Genetic Origin for Early Farmers from Mediterranean 

Cardial and Central European LBK Cultures. Mol. Biol. Evol. 32, 3132–3142 (2015). 

21. Mathieson, I. et al. The Genomic History of Southeastern Europe. bioRxiv (2017). 

22. Lipson, M. et al. Parallel ancient genomic transects reveal complex population history of 

early European farmers. bioRxiv (2017). 

23. Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of 

the insular Atlantic genome. Proc. Natl. Acad. Sci. U. S. A. 113, 1–6 (2016). 

24. Sheridan, J. A. The Neolithisation of Britain and Ireland: the big picture. in Landscapes 

in transition (eds. Finlayson, B. & Warren, G.) 89–105 (Oxbow, Oxford, 2010). 

25. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the 

lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl. Acad. Sci. 

U. S. A. 104, 3736–41 (2007). 

26. Clarke, D. L. The Beaker network: social and economic models. in Glockenbecher 



 

 

14 

Symposion,Oberried, 18–23 März 1974 (eds. Lanting, J. N. & DerWaals, J. D. van) 460–

77 (1976). 

27. Clark, G. The Invasion Hypothesis in British Archaeology. Antiquity 40, 172–189 

(1966). 

28. Brotherton, P. et al. Neolithic mitochondrial haplogroup H genomes and the genetic 

origins of Europeans. Nat. Commun. 4, 1764 (2013). 

29. Desideri, J. When Beakers Met Bell Beakers : an analysis of dental remains. British 

archaeological Reports - International Series; 2292 (2011). 

30. Needham, S. Transforming Beaker Culture in North-West Europe; Processes of Fusion 

and Fission. Proc. Prehist. Soc. 71, 171–217 (2005). 

31. Parker Pearson, M. et al. Beaker people in Britain: migration, mobility and diet. 

Antiquity 90, 620–637 (2016). 

32. Shennan, S. et al. Regional population collapse followed initial agriculture booms in 

mid-Holocene Europe. Nat. Commun. 4, 2486 (2013). 

33. Valtueña, A. A. et al. The Stone Age Plague : 1000 years of Persistence in Eurasia. 

bioRxiv (2016). 

34. Rasmussen, S. et al. Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years 

Ago. Cell 163, 571–582 (2015). 

35. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave 

bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. 110, 

15758–63 (2013). 

36. Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. 

Sci. Rep. 5, 11184 (2015). 

37. Korlević, P. et al. Reducing microbial and human contamination in dna extractions from 

ancient bones and teeth. Biotechniques 59, 87–93 (2015). 

38. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil – DNA – 

glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. London B 

(2015). doi:10.1098/rstb.2013.0624 

39. Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo 

methylation in ancient DNA. Nucleic Acids Res. 38, 1–12 (2010). 

40. Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of 

mitochondrial genomes using PCR products. PLoS One 5, e14004 (2010). 

41. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in 

multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, 1–8 (2012). 

42. Behar, D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree 

from its root. Am. J. Hum. Genet. 90, 675–84 (2012). 

43. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler 

transform. Bioinformatics 25, 1754–1760 (2009). 

44. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial 

genomes. Curr. Biol. 23, 553–9 (2013). 

45. Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of 

nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7, 

e34131 (2012). 

46. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD : Analysis of Next 

Generation Sequencing Data. BMC Bioinformatics 15, 1–13 (2014). 

47. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078–9 (2009). 

48. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era 

of high-throughput sequencing. Nucleic Acids Res. 44, W58-63 (2016). 

49. van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human 

mitochondrial DNA variation. Hum. Mutat. 30, E386-94 (2009). 

50. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–93 (2012). 

51. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native 

Americans. Nature 505, 87–91 (2014). 

52. Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early 



 

 

15 

Middle Pleistocene horse. Nature 499, 74–8 (2013). 

53. Gallego Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian 

admixture in Eastern Africa. Science 350, 820–822 (2015). 

54. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). 

55. Kilinc, G. M. et al. The Demographic Development of the First Farmers in Anatolia. 

Curr. Biol. 26, 1–8 (2016). 

56. Gallego-Llorente, M. et al. The genetics of an early Neolithic pastoralist from the 

Zagros, Iran. Sci. Rep. 6, 4–10 (2016). 

57. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old 

Mesolithic European. Nature 507, 225–8 (2014). 

58. Hofmanová, Z. et al. Early farmers from across Europe directly descended from 

Neolithic Aegeans. Proc. Natl. Acad. Sci. U. S. A. 113, 6886–6891 (2016). 

59. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS 

Genet. 2, e190 (2006). 

60. Purcell, S. et al. PLINK : A Tool Set for Whole-Genome Association and Population-

Based Linkage Analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 

61. Busing, F. M. T. A., Meijer, E. & Van Der Leeden, R. Delete- m Jackknife for Unequal 

m. Stat. Comput. 9, 3–8 (1999). 

62. Rojo-Guerra, M. Á., Kunst, M., Garrido-Pena, R. & García-Martínez de Lagrán, I. 

Morán-Dauchez, G. Un desafío a la eternidad. Tumbas monumentales del Valle de 

Ambrona. Memorias Arqueología en Castilla y León 14, Junta de Castilla y León, 

Valladolid (2005). 

63. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European 

prehistory. Nat. Commun. 5, 5257 (2014). 

 

  



 

 

16 

Methods 

Ancient DNA analysis 

We screened skeletal samples for DNA preservation in dedicated clean rooms. We extracted 

DNA35–37 and prepared barcoded next generation sequencing libraries, the majority of which 

were treated with uracil-DNA glycosylase to greatly reduce the damage (except at the terminal 

nucleotide) that is characteristic of ancient DNA38,39 (Supplementary Information, section 4). 

We initially enriched libraries for sequences overlapping the mitochondrial genome40 and ~3000 

nuclear SNPs using synthesized baits (CustomArray Inc.) that we PCR amplified. We 

sequenced the enriched material on an Illumina NextSeq instrument with 2x76 cycles, and 2x7 

cycles to read out the two indices41. We merged read pairs with the expected barcodes that 

overlapped by at least 15 bases, mapped the merged sequences to hg19 and to the reconstructed 

mitochondrial DNA consensus sequence42 using the samse command in bwa (v0.6.1)43, and 

removed duplicated sequences. We evaluated DNA authenticity by estimating the rate of 

mismatching to the consensus mitochondrial sequence44, and also requiring that the rate of 

damage at the terminal nucleotide was at least 3% for UDG-treated libraries44 and 10% for non-

UDG-treated libraries45. 

For libraries that were promising after screening, we enriched in two consecutive rounds for 

sequences overlapping 1,233,013 SNPs (‘1240k SNP capture’)2,10 and sequenced 2x76 cycles 

and 2x7 cycles on an Illumina NextSeq500 instrument. We processed the data bioinformatically 

as for the mitochondrial capture data, this time mapping only to the human reference genome 

hg19 and merging the data from different libraries of the same individual. We further evaluated 

authenticity by studying the ratio of X-to-Y chromosome reads and estimating X-chromosome 

contamination in males based on the rate of heterozygosity46. Samples with evidence of 

contamination were either filtered out or restricted to sequences with terminal cytosine 

deamination to remove sequences that derived from modern contaminants. Finally, we filtered 

out from our genome-wide analysis dataset samples with fewer than 10,000 targeted SNPs 

covered at least once and samples that were first-degree relatives of others in the dataset 

(keeping the sample with the larger number of covered SNPs) (Supplementary Table 1). 

Mitochondrial haplogroup determination 

We used the mitochondrial capture bam files to determine the mitochondrial haplogroup of each 

sample with new data, restricting to sequences with MAPQ≥30 and base quality ≥30. First, we 

constructed a consensus sequence with samtools and bcftools47, using a majority rule and 

requiring a minimum coverage of 2. We called haplogroups with HaploGrep248 based on 
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phylotree49 (mtDNA tree Build 17 (18 Feb 2016)). Mutational differences compared to the 

rCRS and corresponding haplogroups can be viewed in Supplementary Table 2. 

 

Y-chromosome analysis 

We determined Y-chromosome haplogroups for both new and published samples 

(Supplementary Information, section 5). We made use of the sequences mapping to 1240k Y-

chromosome targets, restricting to sequences with mapping quality ≥30 and bases with quality 

≥30. We called haplogroups by determining the most derived mutation for each sample, using 

the nomenclature of the International Society of Genetic Genealogy (http://www.isogg.org) 

version 11.110 (21 April 2016). Haplogroups and their supporting derived mutations can be 

viewed in Supplementary Table 3. 

 

Merging newly generated data with published data  

We assembled two datasets for genome-wide analyses: 

 

- HO includes 2,572 present-day individuals from worldwide populations genotyped on the 

Human Origins Array11,12,50 and 683 ancient individuals. The ancient set includes 211 Beaker 

Complex individuals (195 newly reported, 7 with shotgun data3 for which we generated 1240k 

capture data and 9 previously published3,4), 68 newly reported individuals from relevant ancient 

populations and 298 previously published12,18,19,21–23,51–58 individuals (Supplementary Table 1). 

We kept 591,642 autosomal SNPs after intersecting autosomal SNPs in the 1240k capture with 

the analysis set of 594,924 SNPs from Lazaridis et al.11. 

 

-HOIll includes the same set of ancient samples and 300 present-day individuals from 142 

populations sequenced to high coverage as part of the Simons Genome Diversity Project13. For 

this dataset, we used 1,054,671 autosomal SNPs, excluding SNPs of the 1240k array located on 

sex chromosomes or with known functional effects. 

 

For each individual, we represented the allele at each SNP by randomly sampling one sequence, 

discarding the first and the last two nucleotides of each sequence. 

Principal component analysis 

We carried out principal component analysis (PCA) on the HO dataset using the smartpca 

program in EIGENSOFT59. We computed principal components on 990 present-day West 

Eurasians and projected ancient individuals using lsqproject: YES and shrinkmode: YES. 
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ADMIXTURE analysis 

We performed model-based clustering analysis using ADMIXTURE17 on the HO reference 

dataset, including 2,572 present-day individuals from worldwide populations and the ancient 

individuals. First, we carried out LD-pruning on the dataset using PLINK60 with the flag --

indep-pairwise 200 25 0.4, leaving 306,393 SNPs. We ran ADMIXTURE with the cross 

validation (--cv) flag specifying from K=2 to K=20 clusters, with 20 replicates for each value of 

K and keeping for each value of K the replicate with highest log likelihood. In Extended Data 

Fig. 3b we show the cluster assignments at K=8 of newly reported individuals and other 

relevant ancient samples for comparison. We chose this value of K as it was the lowest one for 

which components of ancestry related both to Iranian farmers and European hunter-gatherers 

were maximized. 

f-statistics 

We computed f-statistics on the HOIll dataset using ADMIXTOOLS50 with default parameters 

(Supplementary Information, section 6). We used qpDstat with f4mode:Yes for f4-statistics and 

qp3Pop for outgroup f3-statistics. We computed standard errors using a weighted block 

jackknife61 over 5 Mb blocks. 

Inference of mixture proportions 

We estimated ancestry proportions on the HOIll dataset using qpAdm2 and a basic set of 9 

Outgroups: Mota, Ust_Ishim, MA1, Villabruna, Mbuti, Papuan, Onge, Han, Karitiana. For 

some analyses (Supplementary Information, section 8) we added additional outgroups to this 

basic set. 

Admixture graph modelling 

We modelled the relationships between populations in an Admixture Graph framework with the 

software qpGraph in ADMIXTOOLS50, using the HOIll dataset and Mbuti as an outgroup 

(Supplementary Information, section 7). 

Allele frequency estimation from read counts 

We used allele counts at each SNP to perform maximum likelihood estimation of allele 

frequencies in ancient populations as in ref.4. In Extended Data Fig. 7, we show derived allele 

frequency estimates at three SNPs of functional importance for different ancient populations.  
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Data availability 

All 1240k and mitochondrial capture sequencing data are available from the European 

Nucleotide Archive, accession number XXXXXXXX [to be made available on publication]. 

The genotype dataset we analysed is available from the Reich Lab website at [to be made 

available on publication]. 
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Extended Data Figure 1. Beaker complex artefacts. a, Beaker and flint implements excavated 

at Newmill, Perth and Kinross District, Tayside Region, Scotland. b, Beaker Complex grave 

goods from La Sima III barrow, Soria, Spain62. Photo: Alejandro Plaza, Museo Numantino. 
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Extended Data Figure 2. Ancient individuals with previously published genome-wide data 

used in this study. a, Sampling locations. b, Time ranges. W/E/S/CHG, 

Western/Eastern/Scandinavian/Caucasus hunter-gatherers; E, Early; M, Middle; L, Late; N, 

Neolithic; CA, Copper Age; BA, Bronze Age. 
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Extended Data Figure 3. Population structure. a, Principal component analysis of 990 

present-day West Eurasian individuals (grey dots), with previously published (pale yellow) and 

new ancient samples projected onto the first two principal components. b, ADMIXTURE 

clustering analysis with k=8 showing ancient individuals. W/E/S/CHG, 

Western/Eastern/Scandinavian/Caucasus hunter-gatherers; E, Early; M, Middle; L, Late; N, 

Neolithic; CA, Copper Age; BA, Bronze Age. 
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Extended Data Figure 4. Hunter-gatherer affinities in Neolithic/Copper Age Europe. 

Differential affinity to hunter-gatherer individuals (LaBraña157 from Spain and KO163 from 

Hungary) in European populations before the emergence of the Beaker Complex. See 

Supplementary Information, section 8 for mixture proportions and standard errors computed 

with qpAdm. E, Early; M, Middle; L, Late; N, Neolithic; CA, Copper Age; BA, Bronze Age; 

N_Iberia, Northern Iberia; C_Iberia, Central Iberia. 
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Extended Data Figure 5. Modelling the relationships between Neolithic populations. a, 

Admixture graph fitting a Test population as a mixture of sources related to both Iberia_EN and 

Hungary_EN. b, Likelihood distribution for models with different proportions of the source 

related to Iberia_EN (green admixture edge in (a)) when Test is England_N, Scotland_N or 

France_MLN. 
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Extended Data Figure 6. Genetic affinity between Beaker Complex-associated individuals 

from southern England and the Netherlands. a, f-statistics of the form f4(Mbuti, Test; 

BK_Netherlands_Tui, BK_England_SOU). Negative values indicate that Test is closer to 

BK_Netherlands_Tui than to BK_England_SOU, and the opposite for positive values. Error 

bars represent ±3 standard errors. b, Outgroup-f3 statistics of the form f3(Mbuti; 

BK_England_SOU, X) measuring shared genetic drift between BK_England_SOU and other 

Beaker Complex groups. Error bars represent ±1 standard errors. 
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 Extended Data Figure 7. Derived allele frequencies at three SNPs of functional 

importance. Error bars represent 1.9-log-likelihood support interval. The red dashed lines show 

allele frequencies in the 1000 Genomes GBR population (present-day people from Great 

Britain). BC, Beaker Complex; CA, Copper Age; BA, Bronze Age. 
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Extended Data Table 1. Sites with new genome-wide data reported in this study. 

 
Site N Approx. date range (BCE) Country 

Brandysek 12 2500–2000 Czech Republic 

Kněževes 2 2500–1900 Czech Republic 

Lochenice 1 2500–1900 Czech Republic 

Lovosice II 1 2500–1900 Czech Republic 

Moravska Nova Ves 4 2300–1900 Czech Republic 

Prague 5 - Mala Ohrada 14 2500–2200 Czech Republic 

Prague 5, Jinonice 14 2500–1700 Czech Republic 

Prague 8, Kobylisy, Ke Stírce Street 12 2500–1900 Czech Republic 

Radovesice 13 2500–2000 Czech Republic 

Velké Přílepy 3 2500–1900 Czech Republic 

Clos de Roque, Saint Maximin-la-Sainte-Baume 3 4700–4500 France 

Collet Redon, La Couronne-Martigues 1 3500–3100 France 

Hégenheim Necropole, Haut-Rhin 1 2800–2500 France 

La Fare, Forcalquier 1 2500–2200 France 

Marlens, Sur les Barmes, Haute-Savoie 1 2500–2100 France 

Mondelange, PAC de la Sente, Moselle 2 2400–1900 France 

Rouffach, Haut-Rhin 1 2300–2100 France 

Sierentz, Les Villas d'Aurele, Haut-Rhin 2 2600–2300 France 

Villard, Lauzet-Ubaye 2 2200–1900 France 

Alburg-Lerchenhaid, Spedition Häring, Bavaria 13 2500–2100 Germany 

Augsburg Sportgelände, Augsburg 6 2500–2000 Germany 

Hugo-Eckener-Straße, Augsburg 3 2500–2000 Germany 

Irlbach, County of Straubing-Bogen, Bavaria 17 2500–2000 Germany 

Künzing-Bruck, Lkr. Deggendorf, Bavaria 3 2500–2000 Germany 

Landau an der Isar, Bavaria 5 2500–2000 Germany 

Manching-Oberstimm, Bavaria 2 2500–2000 Germany 

Osterhofen-Altenmarkt, Bavaria 4 2600–2000 Germany 

Unterer Talweg 58-62, Augsburg 2 2500–2200 Germany 

Unterer Talweg 85, Augsburg 1 2400–2100 Germany 

Weichering, Bavaria 4 2800–1800 Germany 

Worms-Herrnsheim, England 1 2800–1800 Germany 

Aberdour Road, Dunfermline, Fife, Scotland 1 2000–1800 Great Britain 

Abingdon Spring Road cemetery, Oxfordshire, England 1 2500–2200 Great Britain 

Achavanich, Wick, Scotland 1 2500–2100 Great Britain 

Amesbury Down, Wiltshire, England 13 2500–1300 Great Britain 

Banbury Lane, Northamptonshire, England 3 3400–3100 Great Britain 

Barrow Hills, Radley, Oxfordshire, England 1 2300–1800 Great Britain 

Barton Stacey, Hampshire, England 1 2200–2000 Great Britain 

Baston and Langtoft, South Lincolnshire, England 2 1700–1600 Great Britain 

Biddenham Loop, Bedfordshire, England 9 1600–1300 Great Britain 

Boatbridge Quarry, Thankerton, Scotland 1 2400–2100 Great Britain 

Boscombe Airfield, Wiltshire, England 1 1800–1600 Great Britain 

Canada Farm, Sixpenny Handley, Dorset, England 2 2500–2300 Great Britain 

Carsington Pasture Cave, Derbyshire, England 2 3700–2000 Great Britain 

Central Flying School, Upavon, Wiltshire, England 1 2500–1800 Great Britain 

Cissbury, Sussex, England 1 3600–3400 Great Britain 

Clachaig, Scotland 1 3500–3400 Great Britain 

Clay Farm, Cambridgeshire, England 2 1400–1300 Great Britain 

Covesea Cave 2, Scotland 3 2100–800 Great Britain 

Covesea Caves, Scotland 2 1000–800 Great Britain 

Culverhole Cave, West Glamorgan, Wales 1 1600–1200 Great Britain 

Dairy Farm, Willington, England 1 2300–1900 Great Britain 

Distillery Cave, Scotland 3 3800–3400 Great Britain 

Ditchling Road, England 1 2500–1900 Great Britain 

Doune, Perth and Kinross, Scotland 1 1800–1600 Great Britain 

Dryburn Bridge, Scotland  2 2300–1900 Great Britain 

Eton Rowing Course, Buckinghamshire, England 2 3600–2900 Great Britain 

Eweford Cottages, Scotland  1 2100–1900 Great Britain 

Flying School, Netheravon, Wiltshire, England 2 2500–1800 Great Britain 

Fussell's Lodge, Salisbury, Wiltshire, England 2 3800–3600 Great Britain 

Giggleswick Scar, Kelco Cave, North Yorkshire, 
England 

1 3700–3500 Great Britain 

Great Orme Mines, Llandudno, North Wales 1 1700–1600 Great Britain 

Hasting Hill, Sunderland, Tyne and Wear, England 2 2500–1800 Great Britain 

Hexham Golf Course, Northumberland, England 1 2000–1800 Great Britain 

Holm of Papa Westray North, Scotland 4 3500–3100 Great Britain 

Isbister, Orkney, Scotland 10 3300–2300 Great Britain 

Leith, Merrilees Close, City of Edinburgh, Scotland 2 1600–1500 Great Britain 

Longniddry, Evergreen House, Coast Road , Scotland  3 1500–1300 Great Britain 



 

 

29 

Longniddry, Grainfoot, Scotland 1 1300–1000 Great Britain 

Low Hauxley, Northumberland, England 2 2100–1600 Great Britain 

Macarthur Cave, Scotland 1 4000–3800 Great Britain 

Melton Quarry, East Riding of Yorkshire, England 1 1900–1700 Great Britain 

Neale's Cave, Paington, Somerset, England 1 2000–1600 Great Britain 

North Face Cave, Llandudno, North Wales 1 1400–1200 Great Britain 

Nr. Ablington, Figheldean, England 1 2500–1800 Great Britain 

Nr. Millbarrow, Wiltshire, England 1 3600–3400 Great Britain 

Over Narrows, Needingworth Quarry, England 5 2200–1300 Great Britain 

Pabay Mor, Scotland  1 1400–1300 Great Britain 

Point of Cott, Orkney, Scotland 2 3700–3100 Great Britain 

Porton Down, Wiltshire, England 2 2500–1900 Great Britain 

Quoyness, Scotland 1 3100–2900 Great Britain 

Raschoille Cave, Oban, Argyll and Bute, Scotland 9 4000–2900 Great Britain 

Raven Scar Cave, Ingleton, North Yorkshire, England 1 1100–900 Great Britain 

Reaverhill, Barrasford, Northumberland, England 1 2100–2000 Great Britain 

Rhos Ddigre, Denbighshire, Wales 1 3100–2900 Great Britain 

River Thames Skulls, Mortlake, London, England 1 1900–1700 Great Britain 

River Thames Skulls, Syon Reach, London, England 1 2500–2100 Great Britain 

Sorisdale, Coll, Scotland 1 2500–2100 Great Britain 

Staxton Beacon, Staxton,England 1 2400–1600 Great Britain 

Stenchme, Lop Ness, Orkney, Scotland  1 2000–1500 Great Britain 

Summerhill,Blaydon, Tyne and Wear, England 1 1900–1700 Great Britain 

Thanet, Kent, England 4 2100–1700 Great Britain 

Thurston Mains, Innerwick, East Lothian, Scotland 1 2300–2000 Great Britain 

Tinkinswood, Glamorgan, Wales 1 4000–3300 Great Britain 

Totty Pot, Cheddar, Somerset, England 1 2800–2500 Great Britain 

Trumpington Meadows, Cambridge, England 2 2200–2000 Great Britain 

Tulach an t'Sionnach, Scotland 1 3700–3500 Great Britain 

Tulloch of Assery A, Scotland 1 3700–3400 Great Britain 

Tulloch of Assery B, Scotland 1 3800–3600 Great Britain 

Turners Yard, Fordham, Cambridgeshire, England 1 1700–1500 Great Britain 

Unstan Chamber Tomb, Orkney, Scotland 1 3400–2800 Great Britain 

Upper Swell, Chipping Norton, Gloucestershire, 

England 
1 4000–3500 Great Britain 

Waterhall Farm, Chippenham, Cambridgeshire, England 1 2000–1700 Great Britain 

West Deeping, Lincolnshire, England 1 2300–2000 Great Britain 

Whitehawk, Brighton, Sussex, England 1 3700–3500 Great Britain 

Wick Barrow, England 1 2500–1900 Great Britain 

Wilsford, England 2 2500–1900 Great Britain 

Windmill Fields, Ingleby Barwick, England 4 2300–2000 Great Britain 

Yarnton, Oxfordshire, England 4 2500–1900 Great Britain 

Budakalász, Csajerszke (M0 Site 12)  2 2600–2200 Hungary 

Budapest-Békásmegyer 3 2500–2100 Hungary 

Mezöcsát-Hörcsögös halom alatt 4 2800–2400 Hungary 

Szigetszentmiklós-Vízműtelep Üdülősor 4 2900–1800 Hungary 

Szigetszentmiklós,Felső Ürge-hegyi dűlő 6 2500–2200 Hungary 

Pergole 2, Partanna, Sicily 3 2500–1900 Italy 

Via Guidorossi, Parma, Emilia Romagna 3 2200–1900 Italy 

Dzielnica  1 2300–2000 Poland 

Iwiny 1 2300–2000 Poland 

Jordanów Śląski 1 2300–2200 Poland 

Kornice 4 2500–2100 Poland 

Racibórz-Stara Wieś 1 2300–2000 Poland 

Samborzec 3 2500–2100 Poland 

Strachów 1 2000–1800 Poland 

Żerniki Wielkie  1 2300–2100 Poland 

Bolores, Estremadura 1 2800–2600 Portugal 

Cova da Moura, Torres Vedras 1 2300–2100 Portugal 

Galeria da Cisterna, Almonda 2 2500–2200 Portugal 

Verdelha dos Ruivos, District of Lisbon 3 2700–2300 Portugal 

Arroyal I, Burgos 5 2600–2200 Spain 

Camino de las Yeseras, Madrid 14 2800–1700 Spain 

Camino del Molino, Caravaca, Murcia 4 2900–2100 Spain 

Humanejos, Madrid 11 2900–2000 Spain 

La Magdalena, Madrid 3 2800–1800 Spain 

Paris Street, Cerdanyola, Barcelona 10 2900–2300 Spain 

Virgazal, Tablada de Rudrón, Burgos 1 2300–2000 Spain 

Sion-Petit-Chasseur, Dolmen XI 3 2500–2000 Switzerland 

De Tuithoorn, Oostwoud, Noord-Holland 11 2600–1600 The Netherlands 
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Extended Data Table 2. 106 newly reported radiocarbon dates 
 

Sample Date Location Country 

I4145 2279–2033 calBCE (3740±35 BP, Poz-84460) Kněževes Czech Republic 

I1392 2832–2476 calBCE (4047±29 BP, MAMS-25935) Hégenheim Necropole, Haut-Rhin France 

I4144 2572–2512 calBCE (3955±35 BP, Poz-84553) Osterhofen-Altenmarkt Germany 

E09537_d 2471–2300 calBCE (3909±29 BP, MAMS 29074) Unterer Talweg 58-62, Augsburg, Bavaria Germany 

I4249 2336-2141 calBCE (3802±26 BP, BRAMS1217) Irlbach LKR Germany 

E09538 2464–2212 calBCE (3870±30 BP, MAMS 29075) Unterer Talweg 58-62, Augsburg, Bavaria Germany 

I3592 2458-2204 calBCE (3844±33 BP, BRAMS-1218) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 

I4250 2434-2150 calBCE (3825±26 BP, BRAMS1219) Irlbach LKR Germany 

I3593 2398-2146 calBCE (3817±26 BP, BRAMS-1215) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 

I3590 2339-2143 calBCE (3802±26 BP, BRAMS-1217) Alburg-Lerchenhaid, Spedition Häring, Bavaria Germany 

I2657 3952–3781 calBCE (5052±30 BP, SUERC-68701) Macarthur Cave Great Britain 

I2633 3766-3642 calBCE (4911±32 BP, SUERC-68634) Tulloch of Assery B Great Britain 

I2659 3762–3644 calBCE (4914±27 BP, SUERC-68702) Distillery Cave Great Britain 

I2691 3701–3640 calBCE (4881±25 BP, SUERC-68704) Distillery Cave Great Britain 

I2796 3706–3536 calBCE (4856±33 BP, SUERC-69074) Point of Cott, Orkney Great Britain 

I2634 3704–3535 calBCE (4851±34 BP, SUERC-68638) Tulach an t'Sionnach Great Britain 

I2635 3653–3390 calBCE (4796±37 BP, SUERC-68639) Tulloch of Assery A Great Britain 

I2636 3520–3362 calBCE (4651±33 BP, SUERC-68640) Holm of Papa Westray North Great Britain 

I2988 3517–3362 calBCE (4645±29 BP, SUERC-68711) Clachaig Great Britain 

I2660 3514–3353 calBCE (4631±29 BP, SUERC-68703) Distillery Cave Great Britain 

I2650 3500–3360 calBCE (4754±36 BP, SUERC-68642) Holm of Papa Westray North Great Britain 

I2637 3510–3340 calBCE (4697±33 BP, SUERC-68641) Holm of Papa Westray North Great Britain 

I2605 3632–3373 calBCE (4710±35 BP, Poz-83483) Eton Rowing Course Great Britain 

I2980 3361–3102 calBCE (4530±33 BP, SUERC-69073) Point of Cott, Orkney Great Britain 

I2651 3330–3090 calBCE (4525±36 BP, SUERC-68643) Holm of Papa Westray North Great Britain 

I3085 3339–3027 calBCE (4471±29 BP, SUERC-68724) Isbister, Orkney Great Britain 

I2978 3336–3024 calBCE (4464±29 BP, SUERC-68725) Isbister, Orkney Great Britain 

I2934 3327–3036  calBCE (4466±33 BP, SUERC-69071) Isbister, Orkney Great Britain 

I2935 3336–3012 calBCE (4451±29 BP, SUERC-68723) Isbister, Orkney Great Britain 

I2979 3334–2942 calBCE (4447±29 BP, SUERC-68726) Isbister, Orkney Great Britain 

I2631 3098–2907 calBCE (4384±36 BP, SUERC-68633) Quoyness Great Britain 

I2933 3011–2886 calBCE (4309±29 BP, SUERC-68722) Isbister, Orkney Great Britain 

I2977 3009–2764 calBCE (4275±33 BP, SUERC-69072) Isbister, Orkney Great Britain 

I2630 2581–2464 calBCE (3999±32 BP, SUERC-68632) Isbister, Orkney Great Britain 

I2932 2571–2348 calBCE (3962±29 BP, SUERC-68721) Isbister, Orkney Great Britain 

I2612 2465–2209 calBCE (3865±35 BP, Poz-83492) Hasting Hill, Sunderland, Tyne and Wear Great Britain 

I2416 2470-2285 calBC (3830±30 BP, Beta-432804) Amesbury Down, Wiltshire Great Britain 

I2418 2440–2200 calBCE (3835±25 BP, NZA-32788) Amesbury Down, Wiltshire Great Britain 

I2565 2470–2140 calBCE (3829±38 BP, OxA-13562) Amesbury Down, Wiltshire Great Britain 

I2459 2460–2140 calBCE (3829±30 BP, SUERC-54823) Amesbury Down, Wiltshire Great Britain 

I2457 2480-2280 calBCE (3890±30 BP, SUERC-36210) Amesbury Down, Wiltshire Great Britain 

I2457 2200-2031 calBCE (3717±28 BP, SUERC-69975) Amesbury Down, Wiltshire Great Britain 

I2453 2289–2041 calBCE (3760±35 BP, Poz-83404) West Deeping Great Britain 

I2445 2137–1930 calBCE (3650±35 BP, Poz-83407) Yarnton Great Britain 

I2596 2280–2030 calBCE (3739±30 BP, NZA-32484) Amesbury Down, Wiltshire Great Britain 

I2566 2210–2030 calBCE (3734±25 BP, NZA-32490) Amesbury Down, Wiltshire Great Britain 

I2452 2195–1920 calBCE (3700±30 BP, Beta-444979) Dairy Farm, Willington Great Britain 

I2452 2277–2030 calBCE (3735±35 BP, Poz-83405) Dairy Farm, Willington Great Britain 

I2598 2140–1940 calBCE (3664±30 BP, NZA-32494) Amesbury Down, Wiltshire Great Britain 

I2460 2030–1820 calBCE (3575±27 BP, SUERC-53041) Amesbury Down, Wiltshire Great Britain 

I2609 2023–1772 calBCE (3560±40 BP, Poz-83423) Hexham Golf Course, Northumberland Great Britain 

I2610 1936–1746 calBCE (3515±35 BP, Poz-83498) Summerhill,Blaydon, Tyne and Wear Great Britain 

I1775 1693–1600 calBCE (3344±27 BP, OxA-14308) Great Orme Mines, Llandudno, North Wales Great Britain 

I2574 1415–1228 calBCE (3065±36 BP, SUERC-62072) North Face Cave, Llandudno, North Wales Great Britain 

I2786 2459–2206 calBCE (3850±35 BP, Poz-83639) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 

I2787 2458–2202 calBCE (3840±35 BP, Poz-83640) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 

I2741 2458–2154 calBCE (3835±35 BP, Poz-83641) Szigetszentmiklós,Felső Ürge-hegyi dűlő Hungary 

I4229 2289–2135 calBCE (3775±25 BP, PSU-1750) Cova da Moura Portugal 

I0826 2833–2480 calBCE (4051±28 BP, MAMS-25940) Paris Street, Cerdanyola, Barcelona Spain 

I0257 2571–2350 calBCE (3965±29 BP, MAMS-25937) Paris Street, Cerdanyola, Barcelona Spain 

I0462 2566–2346 calBCE (3950±26 BP, MAMS-25936) Arroyal I, Burgos Spain 

I0825 2474–2300 calBCE (3915±29 BP, MAMS-25939) Paris Street, Cerdanyola, Barcelona Spain 

 


