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Abstract

Depending on the application, malleability in cryptography can be viewed as either a flaw or —
especially if sufficiently understood and restricted — a feature. In this vein, Chase, Kohlweiss, Lysyan-
skaya, and Meiklejohn recently defined malleable zero-knowledge proofs, and showed how to control
the set of allowable transformations on proofs. As an application, they construct the first compact
verifiable shuffle, in which one such controlled-malleable proof suffices to prove the correctness of an
entire multi-step shuffle.

Despite these initial steps, a number of natural problems remained: (1) their construction of
controlled-malleable proofs relies on the inherent malleability of Groth-Sahai proofs and is thus
not based on generic primitives; (2) the classes of allowable transformations they can support are
somewhat restrictive.

In this paper, we address these issues by providing a generic construction of controlled-malleable
proofs using succinct non-interactive arguments of knowledge, or SNARGs for short. Our construction
can support very general classes of transformations, as we no longer rely on the transformations that
Groth-Sahai proofs can support.

1 Introduction

Recently, malleability is increasingly being viewed more as a feature than as a bug [28, 29, 18, 1, 13, 16, 6].
In this vein, we (called CKLM in the sequel to disambiguate between our current and prior work) [7]
introduced controlled-malleable non-interactive zero-knowledge proof systems (cm-NIZKs for short).
At a high level, a cm-NIZK allows one, given a proof π for an instance x ∈ L, to compute a proof
π′ for the related instance T (x) ∈ L for transformations T under which the language is closed. This
malleability property can be additionally controlled, meaning there is some specified class of allowable
transformations T such that, given the proof π for x ∈ L, a new proof π′ for T (x) ∈ L may be obtained
only for T ∈ T . The notion of a cm-NIZK is non-trivial when the proof system also needs to be concise
or derivation-private; i.e., in addition to π′ being the same size as π, it should be impossible to tell
whether π′ was obtained using a witness or by mauling a proof for a previous statement.

The notion of a derivation-private cm-NIZK is well motivated: as one application, CKLM showed
that it allows for the modular design of schemes that satisfy randomizable and homomorphic chosen-
ciphertext security. Another application they presented is a compactly verifiable shuffle for an election,
wherein a set of encrypted votes, submitted by N different voters, is shuffled (i.e. re-randomized and
permuted), in turn, by L voting authorities. To ensure that the authorities are behaving honestly, each
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authority provides a non-interactive zero-knowledge proof that it has correctly shuffled the votes; if this
is done using standard NIZKs, then in order to verify that the overall shuffling process was correct a
verifier would need to access L separate proofs, each proving that an authority correctly performed the
shuffling process. If each proof is of size s(N), this means that the verifier’s work is Θ(Ls(N)) (here
we ignore the security parameter). Using derivation-private cm-NIZKs, the verifier’s workload can be
reduced: each authority can, instead of producing a brand new proof, “maul” the proof of the previous
authority; the proof produced by the last authority should then convince the verifier that the ciphertexts
output at the end are a valid shuffling of the input ciphertexts. This makes vote shuffling a factor of L
more efficient, as the verifier needs to verify a proof of size only Θ(s(N) + L). (The size of the proof
is still dependent on L because each authority needs to, intuitively, add a “stamp of participation” in
order for a verifier to ascertain that the shuffling process was performed correctly.)

CKLM then showed how to construct derivation-private cm-NIZK proof systems for a limited, but
nevertheless expressive, class of transformations. Specifically, their approach builds heavily on the
Groth-Sahai proof system [25]; this means that they can consider only relations on group elements in
groups that admit bilinear pairings, and it might therefore seem as though controlled malleability were
just a property of the Groth-Sahai proof system and not necessarily something that could be realized
using more general building blocks. Interestingly, as a consequence of this limitation, CKLM did not
fully deliver on the promise of a compactly verifiable shuffle: in order to prove that a given set of
ciphertexts is a shuffle, they needed to represent everything, including the transformations applied to
the set of ciphertexts, as a set of elements in the underlying group. The way they chose to do this
was using a permutation matrix; since this permutation matrix needs to be extractable from the proof,
the size of each proof in their construction was Θ(N2 + L). For the usual voting scenario, in which
the number of voters far exceeds the number of mix authorities, a vote shuffling scheme wherein each
authority produces its own proof but the proofs are only of size Θ(N) (such as the verifiable shuffle of
Groth and Lu [23]), therefore has a shorter proof overall.

Thus, the two important, and somewhat related open problems were: first, can a derivation-private
controlled-malleable NIZK be realized in a modular fashion from general building blocks, without re-
quiring the specific number-theoretic assumptions underlying the Groth-Sahai proof system? Second,
can it be realized for general classes of languages and transformations, and not just those languages
whose membership is expressible using pairing product equations over group elements as needed to
invoke the Groth-Sahai proof system? In this paper, we give a positive answer to both.

Our contributions. We first investigate how to construct a derivation-private cm-NIZK from suc-
cinct non-interactive arguments (SNARGs) [22, 6]. We limit our attention to t-tiered languages and
transformations; briefly, a language is t-tiered if each instance x can be efficiently labeled with an integer
i = tier(x), 1 ≤ i ≤ t, and a transformation T for a t-tiered language L is t-tiered if tier(T (x)) > tier(x)
for all x ∈ L where tier(x) < t, and T (x) = ⊥ if tier(x) = t. Some transformations are naturally
t-tiered: for example, a vote shuffling transformation carried out by authority i should output a set of
ciphertexts and stamps of approval from each authority up to i; furthermore, all transformations can
be made t-tiered if one is willing to reveal how many times a transformation has been applied.

Intuitively, our construction works as follows: given a proof π for an instance x ∈ L, to provide a
proof for a new instance x′ = T (x) ∈ L, a user can form a “proof of a proof;” i.e., prove knowledge
of this previous instance x and its proof π, as well as the transformation T from x to x′, and call this
proof π′. By the succinctness property of SNARGs, this new proof π′ can in fact be the same size as
the previous proof π, and thus this “proof of a proof” approach can be continued without incurring any
blowup in size.

Although the intuition is relatively simple, going from SNARGs to cm-NIZKs is in fact quite chal-
lenging. While the outline above describes how to build malleability into SNARGs, it is still the case that
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SNARGs satisfy only the non-black-box notion of adaptive knowledge extraction, whereas cm-NIZKs
require a much stronger (black-box) version of extractability. (This stronger notion is crucially used in
the CCA encryption and the shuffle applications in CKLM.) To therefore break all these requirements
up into smaller pieces, we begin with SNARGs and then slowly work our way up to cm-NIZKs in three
separate constructions, with each construction incorporating an additional requirement.

We begin in Section 3.1 with a construction of a malleable SNARG. This construction closely follows
the intuition above (which is itself inspired by the “targeted malleability” construction of Boneh et
al. [6]): malleability is achieved by proving knowledge of either a fresh witness or a previous instance and
proof, and a transformation from that instance to the current one. As observed by Bitansky et al. [3, 4],
care must be taken with this kind of recursive composition of SNARGs, as the size of the extractor can
quickly blow up as we continue to extract proofs from other proofs; we can therefore construct t-tiered
malleable SNARGs (i.e., SNARGs malleable with respect to the class of all t-tiered transformations)
for only constant t. Furthermore, a formal treatment of our particular recursive technique reveals that
a stronger notion of extraction, in which the extractor gets to see not only the random tape but also
the code for the adversary, is necessary for both our construction and the original one of Boneh et al.

With our construction in Section 3.1, we therefore added malleability to the SNARG while preserving
succinctness. In Section 3.2, we next tackle the issue of extractability; in particular, we want to boost
from the non-black-box notion of extractability supported by SNARGs to the standard black-box notion
of a proof of knowledge (NIZKPoK). To do this, we in fact rely only on the soundness of the SNARG,
and do not attempt to use the (non-black-box) extractor at all. Instead, we perform a sort of verifiable
encryption, in which we encrypt the witness and then prove knowledge (using the malleable SNARG)
of the value inside the ciphertext; in this our approach is perhaps most similar to that of Damg̊ard
et al. [11]. A black-box extractor is then simple to construct: it just decrypts the ciphertext and
thus, provided the proof is sound, recovers the witness. In addition, to preserve the full generality
of our t-tiered transformations one would instantiate the encryption scheme using fully homomorphic
encryption, although we will also see in Section 4 that interesting classes of transformations can still be
supported by more limited schemes (such as ones that are multiplicatively homomorphic).

With our construction in Section 3.2, we therefore achieved the same properties that the Groth-Sahai
proof system already provided (namely, a malleable NIWIPoK), but with respect to a more general class
of transformations. As such, to now construct cm-NIZKs in Section 3.3, we can follow approximately
the same construction as CKLM, who also used malleable NIWIPoKs to construct their cm-NIZK. Once
again, however, care must be taken in this step, as we would like to preserve the generality in the class
of transformations that we supported in the previous two sections. We therefore modify the CKLM
construction to allow for this, and thus achieve cm-NIZKs for all t-tiered transformations.

In summary, we show that if zero-knowledge SNARGs exist for all languages in NP and fully homo-
morphic encryption exists, then derivation-private cm-NIZK proof systems exist for all t-tiered classes
of transformations, where t is a constant. We do this by constructing three distinct types of proofs,
each of which may be of independent interest: first, a malleable SNARG, then a malleable NIZKPoK,
and finally a cm-NIZK. While each of our constructions builds from the previous one, we stress that
our constructions are all fully generic; e.g., any malleable SNARG can be used to construct a malleable
NIZKPoK, not just the specific one we construct.

Finally, in Section 4, we show how to use our SNARG-based proofs for t-tiered transformation
classes (using just multiplicatively homomorphic encryption rather than the heavyweight requirement
of fully homomorphic encryption) to construct a compact verifiable shuffle with proof size Θ(N + L)
under general assumptions. This enhances CKLM in two ways: (1) CKLM had proof size Θ(N2 + L);
(2) CKLM required Groth-Sahai proofs, rather than general assumptions. In a separate paper [8], we
showed that, by making additional assumptions about groups that admit bilinear pairings (similar to
those made by Groth and Lu [23]), we can also obtain a compact verifiable shuffle with proofs of size
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Θ(N + L) using the Groth-Sahai proof system.

2 Definitions and Notation

We recall the main security notions we use. We begin with the recent definitions for malleability due
to CKLM [7], as well as their definition for compactly verifiable shuffles; we then define succinct non-
interactive zero-knowledge arguments (SNARGs), which form the basis for our construction of malleable
proofs in Section 3.

2.1 Malleable proofs

Let R(·, ·) be a relation such that the corresponding language LR = {x | ∃w such that (x,w) ∈ R} is
in NP. As defined by CKLM, the relation is closed with respect to a transformation T = (Tinst, Twit)
if, for every (x,w) ∈ R, (Tinst(x), Twit(w)) ∈ R as well. We define zero knowledge and related notions
formally in Appendix A, but recall briefly here that a non-interactive zero-knowledge (NIZK) proof
system [5, 14, 20] is a set of algorithms (CRSSetup,P,V) for which there exists an efficient simulator
(S1, S2) such that no adversary can distinguish between proofs formed by the prover and proofs formed
by the simulator, and an efficient extractor (E1, E2) that can produce a witness w such that (x,w) ∈ R
from any valid proof π for x. For zero knowledge, we discuss here two additional variants: the first,
composable zero knowledge, says that the adversary should still be unable to distinguish even give the
simulation trapdoor, and the second, statistical zero knowledge, says that the distribution of proofs
formed by the simulator and prover are indistinguishable even to an unbounded adversary; composable
zero knowledge is thus implied by statistical zero knowledge, as an unbounded adversary could produce
the simulator trapdoor itself.

To incorporate malleability, CKLM extend a NIZK (CRSSetup,P,V) to add an additional algo-
rithm, ZKEval, that given a transformation T , a previous instance x, and a previous proof π such that
V(crs, x, π) = 1, computes a valid proof for Tinst(x); i.e., a proof π′ such that V(crs, Tinst(x), π′) = 1.
They then say that the proof system is malleable with respect to a set of transformations T if for every
T ∈ T , this computation can be performed efficiently. In terms of controlling malleability, the main
definition of CKLM reconciles simulation soundness [30, 12] and simulation-sound extractability [21]
with malleability by requiring that, for a set of transformations T , if an adversary can produce a proof
π that x ∈ LR then the extractor can extract from π either a witness w or a transformation T ∈ T and
previously proved instance x′ such that x = Tinst(x

′). This is defined more formally as:

Definition 2.1. [7] Let (CRSSetup,P,V,ZKEval) be a NIZKPoK system for an efficient relation R,
with a simulator (S1, S2) and an extractor (E1, E2). Let T be a set of unary transformations for the
relation R such that membership in T is efficiently testable. Let SE 1 be an algorithm that, on input 1k,
outputs (crs, τs, τe) such that (crs, τs) is distributed identically to the output of S1. Let A be given, let
Q := Qinst × Qproof be a table for storing the instances queried to S2 and the proofs given in response,
and consider the following game:

• Step 1. (crs, τs, τe)
$←− SE 1(1

k).

• Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

• Step 3. (w, x′, T )← E2(crs, τe, x, π).

• Step 4. b← ((w 6= ⊥ ∧ (x,w) /∈ R) ∨

((x′, T ) 6= (⊥,⊥) ∧ (x′ /∈ Qinst ∨ x 6= Tinst(x
′) ∨ T /∈ T )) ∨

(w, x′, T ) = (⊥,⊥,⊥))
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The NIZKPoK satisfies controlled-malleable simulation-sound extractability (CM-SSE, for short)
with respect to T if for all PPT algorithms A there exists a negligible function ν(·) such that the
probability (over the choices of SE 1, A, and S2) that V(crs, x, π) = 1 and (x, π) 6∈ Q but b = 1 is at
most ν(k).

CKLM also defined the notion of derivation privacy for malleable proofs, which says that proofs
should not reveal whether they were formed fresh or via transformation.

Definition 2.2. [7] For a non-interactive proof (CRSSetup,P,V,ZKEval), an efficient relation R mal-
leable with respect to T , an adversary A, and a bit b, let pA

b (k) be the probability of the event that b′ = 0
in the following game:

• Step 1. crs
$←− CRSSetup(1k).

• Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T )
$←− A(crs).

• Step 3. If V(crs, xi, πi) = 0 for some i, (xi, wi) /∈ R for some i, or T /∈ T , abort and output ⊥.
Otherwise, form

π
$←−
{

P(crs, Tinst(x1, . . . , xq), Twit(w1, . . . , wq)) if b = 0
ZKEval(crs, T, {xi, πi}qi=1) if b = 1.

• Step 4. b′
$←− A(state, π).

Then the proof system is derivation private if for all PPT algorithms A there exists a negligible function
ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

CKLM give a zero-knowledge variant of derivation privacy called strong derivation privacy, in which
proofs output by ZKEval should be indistinguishable from those output by the simulator. The security
experiment is almost the same, with the only differences being that A is given the simulation trapdoor,
A is not required to output any witnesses, and S2 is used in place of P. More formally, CKLM provide
the following definition:

Definition 2.3. [7] For a malleable NIZK proof system (CRSSetup,P,V,ZKEval) with an associated
simulator (S1, S2), a given adversary A, and a bit b, let pA

b (k) be the probability of the event that b′ = 0
in the following game:

• Step 1. (σsim, τs)
$←− S1(1k).

• Step 2. (state, x1, π1, . . . , xq, πq, T )
$←− A(σsim, τs).

• Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of Tinst, or T /∈ T ,
abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tinst(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}qi=1) if b = 1.

• Step 4. b′
$←− A(state, π).

Then the proof system is strongly derivation private if for all PPT algorithms A there exists a negligible
function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

Putting these all together, if a proof system is zero knowledge, strongly derivation private, and
CM-SSE, then CKLM call it a cm-NIZK.
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2.2 Compactly verifiable shuffles

A compact verifiable shuffle [7] requires that a single non-interactive proof suffices to verify the correct-
ness of an entire multi-step shuffle. We have the following definition:

Definition 2.4. [7] For a verifiable shuffle (Setup,Shuffle,Verify) with respect to an encryption scheme
(KeyGen,Enc,Dec), a given adversary A and a bit b ∈ {0, 1}, let pA

b (k) be the probability that b′ = 0 in
the following experiment:

• Step 1. (params, sk , S = {pk i}i, {sk i}i)
$←− Setup(1k).

• Step 2. A gets params, S, and access to the following two oracles: an initial shuffle oracle that,
on input ({ci, πi}i, pk `) for pk ` ∈ S, outputs ({c′i}i, π, {pk `}) (if all the proofs of knowledge πi
verify), where π is a proof that the {c′i}i constitute a valid shuffle of the {ci}i performed by the
user corresponding to pk ` (i.e., the user who knows sk `); and a shuffle oracle that, on input
({ci, πi}i, {c′i}i, π, {pk j}j , pkm) for pkm ∈ S, outputs ({c′′i }i, π′, {pk j}j ∪ {pkm}).

• Step 3. Eventually, A outputs a tuple ({ci, πi}i, {c′i}i, π, S′ := {pk j}j).

• Step 4. If Verify(params, ({ci, πi}i, {c′i}i, π, {pk j}j)) = 1 and S ∩ S′ 6= ∅ then continue; oth-
erwise simply abort and output ⊥. If b = 0 give A {Dec(sk , c′i)}i, and if b = 1 then give A
ϕ({Dec(sk , ci)}i), where ϕ is a random permutation ϕ

$←− Sn.

• Step 5. A outputs a guess bit b′.

Then the shuffle is compactly verifiable if for all PPT algorithms A there exists a negligible function
ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

In addition to providing this definition, CKLM also provide a generic construction [7, Section 6] of
such a shuffle using as building blocks a hard relation [9], a re-randomizable encryption scheme, a proof
of knowledge, and a cm-NIZK. We use this generic construction in our shuffle construction in Section 4,
and for completeness we give their construction in Appendix B.

2.3 Function privacy

For their application to controlled malleable encryption, CKLM also defined the notion of function
privacy for encryption, which had already been used in the literature and is analogous to the notion of
derivation privacy for proofs. As we use function-private encryption as a building block in Section 3.2,
we give their formal definition here.

First, we follow CKLM in defining a homomorphic encryption scheme as (KeyGen,Enc,Dec,Eval),

where if c
$←− Enc(pk ,m), Eval(pk , c, Tct) = Enc(pk , Tct(m)) (with some appropriate randomness). For

the transformations, we require that Tct(m1, . . . ,mn) = ⊥ if mi = ⊥ for any i, and similarly that
Eval(pk , {ci}i, Tct) = ⊥ if Dec(sk , ci) = ⊥ for any i.

Definition 2.5. [7] For an encryption scheme (KeyGen,Enc,Dec,Eval) homomorphic with respect to a
class of transformations Tct, a given adversary A, and a bit b, let pA

b (k) be the probability of the event
b′ = 0 in the following game:

• Step 1. (pk , sk)
$←− KeyGen(1k).

• Step 2. (state, {ci}i, Tct)
$←− A(pk , sk).

6



• Step 3. If Tct /∈ Tct then abort. Otherwise, compute

c′
$←−
{

Enc(pk , Tct{Dec(sk , ci)}i)) if b = 0
Eval(pk , {ci}i, Tct) if b = 1.

• Step 4. b′
$←− A(state, c′).

Then the encryption scheme is function private with respect to Tct if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA

0 (k)− pA
1 (k)| < ν(k).

2.4 Succinct non-interactive arguments of knowledge

Our cm-NIZK construction in Section 3 builds on succinct non-interactive arguments of knowledge,
or SNARGs (also called SNARKs) for short. Proofs of this kind were first shown to exist by Micali
in 2000 [27], who used the Fiat-Shamir heuristic [15] to eliminate the interaction in previous succinct
arguments. More recently, Groth provided a construction using pairings [22] which was improved by
Lipmaa [26], Bitansky et al. [3] constructed designated-verifier SNARGs using the new notion of ex-
tractable collision-resistant hash functions, and Gennaro et al. [17] constructed constant-sized SNARGs
with a relatively short common reference string.

Our definition is based primarily on that of Boneh et al. [6], although for the succinctness property
we incorporate the definition of Gentry and Wichs [19] as well. In addition, to perform our recursive
composition in Section 3.1, we require a stronger notion of extraction than the original definition
provided; essentially, we consider adversaries that take in advice strings as input. Although we present
two formulations below, strong and generative adaptive knowledge extraction, we note that these notions
are in fact equivalent.

Definition 2.6. Let 0 < γ < 1 be a constant. A (strong) γ-succinct non-interactive argument of
knowledge for a relation R is a tuple of probabilistic polynomial-time algorithms (CRSSetup,P,V) with
the following properties:

1. Perfect completeness. For all k ∈ N, (x,w) ∈ R, crs
$←− CRSSetup(1k), and π

$←− P(crs, x, w), the
probability that V(crs, x, π) = 1 is 1.

2. Strong/generative adaptive knowledge extraction. For a PPT algorithm A, let EA be an associated
PPT algorithm, and z be a string. Then consider the following game:

• Step 1. crs
$←− CRSSetup(1k); r

$←− {0, 1}∗.
• Step 2. (x, π)← A(crs, z; r).

• Step 3. w ← EA(crs, z; r).

We say the adversary wins the game against EA if V(crs, x, π) = 1 but (x,w) 6∈ R.

We say the argument system satisfies strong adaptive knowledge extraction if for all PPT A and
polynomials p(·) there exists an EA and a negligible function ν(·) such that for all sufficiently large
k and for all z ∈ {0, 1}p(k) the probability (over the choices of CRSSetup and r) that A wins the
game against EA is at most ν(k). This corresponds to previous definitions of adaptive knowledge
extraction if we consider only z = ⊥.

In addition, it satisfies generative adaptive knowledge extraction if there exists a poly-time algo-
rithm E such that for all PPT A and polynomials p(·) there exists a negligible function ν(·) such
that, on input the code of A, E produces an extractor EA, running in time polynomial in that of
A, such that for all sufficiently large k and for all z ∈ {0, 1}p(k) the probability (over the choices
of CRSSetup and r) that A wins the game against EA is at most ν(k).
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3. φ-succinct arguments. For all k ∈ N, (x,w) ∈ R, and crs
$←− CRSSetup(1k), it holds that

P(crs, x, w) produces a distribution over strings of length at most φ(k, |x|, |w|), where φ(k, |x|, |w|)
is bounded by poly(k)polylog(|x|) + γ|w| for some constant 0 < γ < 1.

Lemma 2.7. A SNARG system (CRSSetup,P,V) satisfies strong adaptive knowledge adaptive if and
only if it satisfies generative adaptive knowledge extraction.

Proof. (Sketch.) Arguing that generative adaptive knowledge extraction implies strong adaptive knowl-
edge extraction is very straighforward: For each adversary A, the extractor EA = E(A), that is guar-
anteed by generative adaptive knowledge extraction, meets the necessary requirements.

To show that strong adaptive knowledge extraction implies generative adaptive knowledge extrac-
tion, consider the universal adversary AU that on input (crs, z; r) parses z = A||z′ and then runs
A(crs, z′; r). (Here and in the rest of the paper, we use A to mean both the adversary, and the code that
describes it.) Now, by the strong adaptive knowledge extraction property, there exists a PPT extractor
EU and a negligible function ν(·) such that for all z = A||z′, AU wins the game against EU wins with
probability at most ν(k). Then we define the extractor generator E that on input A: (1) generates a
description A for A, and (2) outputs an extractor EA that, on input (crs, z′; r), runs EU (crs,A||z′; r).
Then, because strong knowledge extraction guarantees that AU wins with negligible probability for all
values of z, this implies that for all A, A wins the game against EA with negligible probability.

While the succinctness property of SNARGs is quite attractive for applications, it comes with a price:
all known SNARG constructions are based on so-called “knowledge of exponent” assumptions [10, 2];
furthermore, a recent result due to Gentry and Wichs [19] that separates SNARGS from all falsifiable
assumptions suggests that this dependence is perhaps inherent. In addition, to satisfy our stronger
version of adaptive knowledge extraction (either strong or generative; again, they are equivalent), the
knowledge of exponent assumption used to prove the security of existing SNARG constructions [22, 17]
would have to be potentially strengthened to consider an extractor that has access to the code of A. For
example, we consider a modified version of the q-PKE assumption due to Groth [22] (in which both the
adversary and extractor receive advice strings), that has also been considered by Gennaro et al. [17].

Assumption 2.8 (Strong q-PKE assumption). [17, Assumption 3] For (p,G,GT , e, g)← G(1k), an
advice string z, an adversary A, and an extractor EA, consider the following game:

• Step 1. α, x
$←− Fp; crs := (p,G,GT , e, g, g

x, . . . , gx
s
, gα, gαx, . . . , gαx

s
); r

$←− {0, 1}∗.

• Step 2. (c, ĉ)← A(crs, z; r).

• Step 3. (a0, . . . , as)← EA(crs, z; r).

Then the strong q-power knowledge of exponent (PKE) assumption holds for G if for any z ∈ {0, 1}poly(k),
generated independently of α, and any PPT algorithm A, there exists a PPT algorithm EA and a
negligible function ν(·) such that the probability that ĉ = cα but c 6=

∏s
i=0 g

aix
i

is at most ν(k).

The final observation we make about SNARGs is that the definition of adaptive knowledge extraction
requires the extractor to have non-black-box access to the malicious prover; as we will see in Section 3.2,
this can make SNARGs difficult to integrate into protocol design. Fortunately, we can easily see that
this notion relates to the standard notion of soundness for proofs [14] (as used implicitly in Groth’s
SNARG construction [22]):

Theorem 2.9. If a proof system (CRSSetup,P,V) satisfies adaptive knowledge extraction then it also
satisfies adaptive computational soundness.
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zero-knowledge SNARG t-tiered construction Enc+NIZK construction signature-binding: our cm-NIZK

SAKE
Thm 3.3 // SAKE

Thm 3.6 // PoK
Thm 3.12

+E/SUF-CMA
// CM-SSE

ZK
Thm 3.1 //
Thm 3.2

**

ZK
Thm 3.7

+IND-CPA
//

Thm 3.8
+function privacy **

ZK
Thm 3.11 // ZK

SDP
Thm 3.8 // DP

Thm 3.13 // SDP

Figure 1: The various relations among our constructions in this section. The arrows indicate which properties of
the previous construction are used to obtain which properties of the next one, and are labeled on the top with the
theorem number that proves the relation; the labels on the bottom indicate properties of additional primitives
that are used as well. For example, we prove in Theorem 3.12 that our signature-binding construction of a cm-
NIZK satisfies CM-SSE if our Enc+NIZK construction is a proof of knowledge, and the additional signature and
one-time signature schemes we use are, respectively, unforgeable and strongly unforgeable; this is captured by the
top rightmost arrow in the diagram. Strong adaptive knowledge extraction is written as SAKE, zero knowledge
as ZK, proof of knowledge as PoK, and (strong) derivation privacy as (S)DP.

Proof. To show this, we take an adversary A that can break the soundness of the proof system with
non-negligible probability ε and use it to construct an adversary B that breaks adaptive knowledge
extraction with the same probability ε. The code for B is simple: on input (crs; r), it gives crs to A (and
implicitly runs it on a random tape r′ ⊆ r), and when A outputs a pair (x, π) B outputs the same. By
the definition of soundness, A will win if V(crs, x, π) = 1 but x /∈ LR; this implies that, for any w output
by EB, it must be the case that (x,w) /∈ R, as otherwise x ∈ LR. B will therefore succeed whenever A
does and thus succeeds with probability ε.

3 A Construction of cm-NIZKs from SNARGs

In this section, we construct cm-NIZK proofs from zero-knowledge SNARGs that are malleable with
respect to a wide range of transformations, namely all t-tiered transformation classes. Intuitively, a
relation is t-tiered if each instance x lives in some tier i. We would like transformations to move up
through the tiers, and we would also like ensure that at most t transformations are applied. Formally,

we say that a relation R(t) is t-tiered if there exists an efficiently computable function tier : L
(t)
R → [0, t]

and (⊥,⊥) ∈ R(t), and that a transformation class T (t) is t-tiered for R(t) if for all T = (Tinst, Twit) ∈ T
the following two conditions hold: (1) if (x,w) ∈ R(t) and tier(x) < t, then (Tinst(x), Twit(w)) ∈ R(t)

and tier(Tinst(x)) > tier(x); and (2) if tier(x) = t then Tinst(x) = ⊥.
We summarize the contributions in this section in Figure 1. As discussed in the introduction, the

construction in each subsection is used as a component in the next subsection’s construction, with the
end goal of constructing a cm-NIZK. In Section 3.1 we construct a SNARG, malleable with respect
to a t-tiered transformation class, that we then use in Section 3.2 in combination with encryption to
obtain a full NIZKPoK; this step seems necessary because SNARGs satisfy only the weak notion of
adaptive knowledge extraction, which seems insufficient for constructing cm-NIZKs. Finally, using this
NIZKPoK and a one-time and regular signature scheme, we construct in Section 3.3 a cm-NIZK that is
malleable with respect to a broader class of transformations than could be supported by the construction
of CKLM [7].

9



3.1 From SNARGs to malleable but weakly extractable proofs

We begin by constructing a derivation-private NIZK for a relation R(t), malleable with respect to a
t-tiered transformation class T (t), that achieves some degree of knowledge extraction. Our approach
in this endeavor is inspired by that of Boneh et al. [6], who use SNARGs to construct a “targeted
malleable” encryption scheme. To form a proof for an instance x0 at the bottom level, one can use
the SNARG directly to obtain a proof π0. Now, suppose we would like to further form a proof for an
instance x1 = Tinst(x0); one option is to use the witness Twit(w0) and form a fresh proof just as we did
for x0. Another option, however, is to “maul” the proof π0: this can be accomplished by forming a new
proof π1 that proves knowledge of the old proof π0 and instance x0, as well as a transformation T such
that x1 = Tinst(x0).

The reason why SNARGs are attractive for this application is that, because the extraction procedure
is non-black-box and therefore the proofs can be succinct, the proof π1 can in fact be the same size as
the proof π0. Continuing in this fashion, we can see that at the i-th level, a proof for xi can be proved
using either knowledge of a witness wi for the relation R(t), or knowledge of a proof πi−1 for xi−1 and
a transformation T such that xi = Tinst(xi−1).

It turns out that, if the SNARG proof system used is zero knowledge (or even just witness indis-
tinguishable), then the resulting proof system is derivation private. As mentioned above, however, the
notion of extractability we can satisfy is still only the weak notion of adaptive knowledge extraction that
SNARGs provide. In the next section, we show how to bootstrap this construction to obtain a proof
system that satisfies the standard notion of extractability for proofs of knowledge (and still satisfies all
the malleability and derivation privacy requirements).

To begin our construction, we first formalize the intuition developed above by defining the languages

we use: at the bottom level at i = 0 we have L0 :=
{
x | ∃ w s.t. (x,w) ∈ R(t)

}
, and for i such that

1 ≤ i ≤ t, we have

Li :=

(x, crsi−1, . . . , crs0)

∣∣∣∣∣
∃ (w, x′, π′, T ) s.t (x,w) ∈ R(t) or

Vi−1(crsi−1, (x
′, crsi−2, . . . , crs0), π

′) = 1,

Tinst(x
′) = x, and T ∈ T (t)


Before giving our proof construction, we mention that these languages and our subsequent arguments

can be generalized to accommodate n-ary transformations, in which the language Li would be defined
as

Li :=

(x, crsi−1, . . . , crs0)

∣∣∣∣∣
∃ (w, {x′j}j , {π′j}j , T ) s.t (x,w) ∈ R(t) or

Vi−1(crsi−1, (x
′
j , crsi−2, . . . , crs0), π

′
j) = 1 ∀j,

Tinst({(x′j)}j) = x, and T ∈ T (t)


Because our shuffle application that we present in Section 4 involves only unary operations, we choose to
focus only on the case of n = 1 for ease of exposition. We can, however, support n-ary transformations
for constant n.

Using these languages and t + 1 SNARG systems (CRSSetupi,Pi,Vi), we now define our malleable
t-tiered construction for R(t) as seen in Figure 2.

Recall that there are three properties we would like this proof system to satisfy: (1) zero knowledge,
(2) derivation privacy, and (3) strong adaptive knowledge extraction; we deal with each of these in turn.
For the first, zero knowledge, if we assume that our underlying proof systems are zero knowledge then
we get a proof of the following theorem for free:

Theorem 3.1. If the SNARG systems (CRSSetupi,Pi,Vi) are zero knowledge for all i, 0 ≤ i ≤ t, then
the t-tiered construction is zero knowledge.
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• CRSSetup(1k): Generate crsi
$←− CRSSetupi(1

k) for all i, 0 ≤ i ≤ t. Output crs :=
(crs0, . . . , crst).

• P(crs, x, w): Compute i := tier(x); output π
$←− Pi(crsi, (x, crsi−1, . . . , crs0), (w,⊥,⊥,⊥)).

• V(crs, x, π): Compute i := tier(x) and output Vi(crsi, (x, crsi−1, . . . , crs0), π).

• ZKEval(crs, T, x, π): Compute i := tier(x), define x′ := Tinst(x), and output π
$←−

Pi+1(crsi+1, (x
′, crsi, . . . , crs0), (⊥, x, π, T )).

Figure 2: Our t-tiered construction of a malleable SNARG.

We next turn to derivation privacy. At first glance, it would seem impossible that our construction
could meet derivation privacy: after all, tier(x) openly reveals exactly how many times a transformation
has been applied! Looking at the definition of the prover P, however, we see that for x such that
tier(x) = i it does in fact output a proof that “looks like” i transformations have been applied, even
though it is using a fresh witness; as this is what the definition of derivation privacy requires (i.e.,
that the proof, rather than the instance, not reveal the transformation), we therefore use the witness
indistinguishability of the SNARGs (which trivially follows from zero knowledge) to show that derivation
privacy does hold. In addition, to show that strong derivation privacy holds, we require our SNARGs
to be composable zero knowledge (as the adversary in the strong derivation privacy game gets to see
the simulation trapdoor, and thus the zero knowledge adversary needs to as well); this requirement is
met, for example, by the SNARG constructions of Groth [22] and Gennaro et al. [17], both of which
actually satisfy the significantly stronger property of statistical zero knowledge.

Theorem 3.2. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy witness indistinguishability for all i,
then the t-tiered construction satisfies derivation privacy for transformations in T (t). Furthermore, if
(CRSSetupi,Pi,Vi) satisfy composable zero-knowledge for all i, then the t-tiered construction satisfies
both derivation privacy and strong derivation privacy for transformations in T (t).

Proof. To show both derivation privacy and strong derivation privacy, we first observe a relation between
an adversary’s overall advantage and its advantage at a specific tier. In particular, suppose there exists
an adversary A that wins either the derivation privacy or strong derivation privacy game with advantage
ε. If we let pi be the probability that A outputs an instance in Li and ai be the advantage of A when
it outputs an instance in Li, then there must be some level i0 ∈ {0, . . . , t} such that pi0ai0 ≥ ε/t. To
see this, note that there are no valid transformations for levels i ≥ t, so if the adversary outputs an
instance in Li for i ≥ t it will have advantage 0; A’s overall advantage ε is thus at most

∑t
i=0 piai by

the triangle inequality, and our inequality follows by an averaging argument.
Now, using this fact, we first show that if there exists an adversary A that wins at the derivation

privacy game with non-negligible advantage ε, then we can construct an adversary B that can distinguish
between witnesses at level i0 (where i0 is the level such that pi0ai0 ≥ ε/t) with related non-negligible
advantage. To start, B will receive as input a CRS crsi0 (which will be the output of CRSSetupi0(1k)). It

can then form crsj
$←− CRSSetupj(1

k) for all j, 0 ≤ j ≤ t such that j 6= i0, and give crs := (crs0, . . . , crst)
to A. At some point, A will give back to B a tuple of the form (state, x, w, π, T ). B can then check that
V(crs, x, π) = 1, (x,w) ∈ R(t), and T ∈ T ; if any of these checks fail then A is not behaving properly and
B can return ⊥ to A. Let tier(x) = i. B can then check further that i+1 = i0; if this fails then B outputs
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a random bit. Otherwise, B can compute x′ := (Tinst(x), crsi, . . . , crs0), w0 := (Twit(w),⊥,⊥,⊥), and
w1 := (⊥, x, π, T ) and output (x′, w0, w1) as its query to get back a proof π. It can then return π to A,
and when A outputs its guess bit B will output the same bit.

To see that interactions with B are indistinguishable from honest interactions, we observe first
that the CRS given to A is identical to the one it was expecting. As for the proof, note that if π
is formed using w0 then it is the output of Pi+1(crsi+1, (Tinst(x), crsi, . . . , crs0), (Twit(w),⊥,⊥,⊥)) =
P(crs, T ′inst(x), Twit(w)), which is exactly what A was expecting in the case that b = 0. If instead π is
formed using w1 then it is the output of Pi+1(crsi+1, (Tinst(x), crsi, . . . , crs0), (⊥, x, π, T )) = ZKEval(crs,
T, x, π), which is exactly what it is expecting in the case that b = 1. As B will therefore succeed with
advantage ai0 whenever A outputs an instance at level i0, and A’s view is identical to that in the
derivation privacy game so it outputs an instance at level i0 with probability pi0 , B will succeed with
probability pi0ai0 ≥ ε/t.

Next, we show that if the SNARG systems (CRSSetupi,Pi,Vi) satisfy composable zero-knowledge,
then the t-tiered construction satisfies strong derivation privacy. To show this, we assume there exists
an adversary A that can win at the strong derivation privacy game with non-negligible advantage ε and
use it to construct an adversary B that can distinguish between real and simulated proofs at level i0
with related non-negligible advantage.

First, recall that the simulator for the t-tiered proof system simply runs the simulator for the

appropriate SNARG system (CRSSetupi,Pi,Vi); for each i ∈ {0, . . . , t}, let S
(i)
1 , S

(i)
2 be the simulator

corresponding to (CRSSetupi,Pi,Vi). To start, B will receive as input a pair (crsi0 , τi0) (which will be

the output of the simulator S
(i0)
1 corresponding to (CRSSetupi0 ,Pi0 ,Vi0)). It can then form (crsj , τj)

$←−
S
(j)
1 (1k) for all j, 0 ≤ j ≤ t such that j 6= i0, and give crs := (crs0, . . . , crst) and τs := (τ0 . . . τt) to A. At

some point, A will give back to B a tuple of the form (state, x, π, T ). Let tier(x) = i. B can then check
that T ∈ T ; if this check fails then A is not behaving properly and B can return ⊥ to A. Otherwise,
B can then check further that i + 1 = i0; if this fails then B outputs a random bit. Otherwise, B can
compute x′ := (Tinst(x), crsi, . . . , crs0), and w′: = (⊥, x, π, T ) and query its oracle on (x′, w′) to get back
a proof π′. It can then return π′ to A, and when A outputs its guess bit B will output the same bit.

To see that interactions with B are indistinguishable from the strong derivation privacy game, we
observe first that the CRS given to A is identical to the one it was expecting. As for the proof, note that
if B’s proof oracle produces a real proof using Pi0 , then π is the output of Pi+1(crsi+1, (Tinst(x), crsi, . . . ,
crs0), (⊥, x, π, T )) = ZKEval(crs, T, x, π), which is exactly what A was expecting in the case that b = 1.

If instead B’s proof oracle produces a simulated proof π using using S
(i)
2 (x, crsi, . . . , crs0), then this is

identical to the output of the t-tiered simulator S2(x), which is exactly what A was expecting in the
case that b = 0. As B will therefore succeed with advantage ai whenever A outputs an instance at level
i, and A’s view is identical to that in the strong derivation privacy game so it outputs an instance at
level i with probability pi, B will succeed with probability pi0ai0 ≥ ε/t.

Next, we turn to adaptive knowledge extraction; here, we can show that if the number of times
the “proof of a proof” method has been applied is constant, then the t-tiered construction is strongly
adaptive knowledge extractable. As do Boneh et al. [6], we require t be constant so the runtime of the
extractor does not blow up: if A runs in time τ , and we require the runtime of the extractor to be
only polynomial in the runtime of A, then the extraction of the t-th nested proof (i.e., if A has formed
a proof of a proof t times) might take time atτ + tb for some constants a and b, which for arbitrary t
could be exponential. To ensure that the time taken to extract from these nested proofs instead remains
polynomial, we therefore require that t be constant. Furthermore, as we will see in the proof we rely on
strong adaptive knowledge extraction to perform our recursive extraction (again, as do Boneh et al.).

Theorem 3.3. If the SNARG systems (CRSSetupi,Pi,Vi) satisfy strong adaptive knowledge extraction
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(as defined in Definition 2.6) for all i, then the t-tiered construction satisfies strong adaptive knowledge
extraction for constant t.

Proof. To show this, we proceed inductively. We will first show that if we use only a single tier (t = 0),
then the t-tiered construction satisfies strong adaptive knowledge extraction whenever the underlying
SNARG does. Then we will show that for any constant `, if the (` − 1)-tiered construction and the
SNARG used in the `-th tier both satisfy strong adaptive knowledge extraction, then the `-tiered
construction satisfies it as well.

Base case: t = 0. At the first level, t = 0, we can show that if the SNARG system (CRSSetup0,P0,V0)
satisfies strong adaptive knowledge extraction, then the 0-tiered construction does as well. As the two
primitives are essentially equivalent, this is quite straightforward: if we have an adversary A0-tiered
against the 0-tiered construction that takes in a CRS crs0, an auxiliary input z and a random tape r
and outputs a pair (x, π), then we can construct an adversary A0 against the SNARG that, on input a
CRS crs0, an auxiliary input z, and a random tape r, runs (x, π)← A(crs0, z; r) and outputs (x, π).

By strong adaptive knowledge extraction, we also have an extractor generator E0 that, given the code
of A0, outputs a corresponding extractor E0. To use this to construct an extractor generator E0-tiered
for the 0-tiered construction, on input the adversary A0-tiered , E0-tiered will construct the adversary A0

described above, and then output E0-tiered := E0 ← E0(A0).
We now need to show two things: first, that E0-tiered runs in polynomial time and produces extractors

whose running time is a fixed polynomial of the corresponding adversaries, and next that these extractors
succeed in producing valid witnesses whenever the adversaries produce valid proofs.

First, we observe that as E0-tiered just outputs whatever E0 does, by the assumption that E0 runs in
polynomial time, E0-tiered will as well. Furthermore, by assumption there also exists some polynomial
poly0 such that for any SNARG adversary A0 running in time t, the resulting extractor E0 produced
by E0 runs in time poly0(t). Then, since our SNARG adversary A0 just runs the 0-tiered adversary
A0-tiered , if A0-tiered runs in time t then A0 will as well. Thus, the resulting E0-tiered = E0 will have
running time poly0(t).

Next, note that by construction, (x, π) is accepted by the 0-tiered verifier if and only if (x, π)
is accepted by the SNARG verifier. Thus, whenever A0-tiered produces an accepting proof, A0 also
produces an accepting proof. Now, suppose there exists an adversary A0-tiered and an auxiliary input
z such that, for E0-tiered ← E0-tiered , A0-tiered (crs0, z; r) outputs (x, π) and E0-tiered (crs0, z; r) outputs w
such that V(crs0, x, π) = 1 but (x,w) /∈ R(t); i.e., suppose A0-tiered wins at its game. Then if we consider
the A0 constructed from A0-tiered as above, by our construction of E0-tiered it must be the case that E0

on input A0 produces E0 such that A0(crs0, z; r) outputs (x, π) and E0(crs0, z; r) outputs w such that
V(crs0, x, π) = 1 but (x,w) /∈ R0. If this occurs with non-negligible probability, this would contradict
the strong adapative extraction property of the SNARG.

Inductive step: the `-tiered construction. We now proceed to our inductive step, in which we
show that, if the (` − 1)-tiered construction and the SNARG system (CRSSetup`,P`,V`) both satisfy
strong adaptive knowledge extraction, then the `-tiered construction satisfies strong adaptive knowledge
extraction. To show this, we proceed in three steps: first, we show how, given any adversary A against
the `-tiered construction, we can construct adversaries A` against the `-th SNARG system and Abase

against the (` − 1)-tiered construction. Now, by assumption, there exist extractor generators E` and
Ebase for the `-th SNARG and (` − 1)-tiered construction respectively, which we then use to construct
an extractor generator E for the `-tiered construction; we furthermore show that E runs in polynomial
time and that the extractors produced by E have a runtime that is a fixed polynomial of the runtime
of the corresponding adversaries. Finally, we show that if there exists an A such that E ← E(A) fails
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to produce a valid witness (i.e., A wins at the strong adaptive knowledge extraction game) then either
E` ← E`(A`) or Ebase ← Ebase(Abase) must have failed as well, which contradicts our assumption about
either the (`− 1)-tiered construction or the `-th SNARG system and thus E cannot fail with more than
negligible probability, meaning the `-tiered construction satisfies strong adaptive knowledge extraction
as well.

To define Abase and A` given A, we recall that A is given crs = (crs0, . . . , crs`) and outputs a value
of the form (x, π) with tier(x) = i, 0 ≤ i ≤ `, but that both Abase and A` will receive as input only
part of this crs. Rather than have them form the missing CRS values themselves (as this would cause a
problem for the recursive extraction), we instead give the remaining CRS values as additional auxiliary
inputs. Then A` proceeds as follows:

1. On input crs`, z, and r, parse z = (crs0, . . . , crs`−1)||z′ and define crs := (crs0, . . . , crs`) using the
auxiliary values of crs0, . . . , crs`−1.

2. Compute (x, π) ← A(crs, z′; r). If tier(x) = ` then output (x̂ := (x, crs`−1, . . . , crs0), π), and
otherwise output ⊥.

In terms of efficiency, we observe that the runtime of A` will be very close to the runtime of A, as
its only overhead beyond A is checking a condition and modifying the output; its runtime will therefore
certainly be polynomial in the runtime of A. We can also define Abase as follows:

1. On input (crs0, . . . , crs`−1), z, and r, parse z = crs`||z′ and define crs := (crs0, . . . , crs`) using the
auxiliary value of crs`.

2. Compute (x, π) ← A(crs, z′; r). If tier(x) < `, output (x, π). Otherwise, if tier(x) = `, then
construct the adversary A` defined above and generate E` ← E`(A`); run (w`, x`−1, π`−1, T`) ←
E`(crs`, (crs0, . . . , crs`−1)||z′; r). If (x,w`) /∈ R(t) then output (x`−1, π`−1), and otherwise output
⊥.

Again, the runtime of Abase is polynomial in the runtime of A, as by assumption the runtime of both
E` and E` is polynomial in the runtime of A` which, as just argued, is itself polynomial in the runtime
of A.

Next, we define E given the underlying extractor generators E` and Ebase ; given the code of an
adversary A, E constructs Abase and A` as described above, and obtains Ebase ← Ebase(Abase) and
E` ← E`(A`). It then produces an extractor E that behaves as follows:

On input crs = (crs0, . . . , crs`), z, and r, run (x, π)← A(crs, z; r).

1. If tier(x) < ` then output w′ ← Ebase((crs0, . . . , crs`−1), crs`||z; r).
2. If tier(x) = `, compute ŵ = (w`, x`−1, π`−1, T`) ← E`(crs`, (crs0, . . . , crs`−1)||z; r). Let x̂ :=

(x, crs`−1, . . . , crs0).

(a) If (x̂, ŵ) /∈ R`, output ⊥.

(b) If (x,w`) ∈ R(t) output w`.

(c) If (x,w`) /∈ R(t), compute w′ ← Ebase((crs0, . . . , crs`−1), crs`||z; r) and output T`(w
′).

First, we show that both E and E are efficient. For E , to provide E with the code for Ebase , it must first
generate Abase and run Ebase ← Ebase(Abase); similarly, to provide the code for E` it must generate A`

and run E` ← E`(A`) (and perform some basic additional operations at a constant cost). By assumption,
both the extractor generators have a runtime polynomial in the runtime of their respective adversaries;
furthermore, by our earlier discussions, both these adversaries have a runtime polynomial in the runtime
of A. The runtime of E can therefore be some fixed polynomial in the runtime of A.
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Moving on to E, once again by assumption the runtime of Ebase is polynomial in the runtime of
Abase , and the runtime of E` is polynomial in the runtime of A`. Again, because the runtimes of Abase

and A` are themselves polynomial in the runtime of A, the overall runtime of E can also be polynomial
in the runtime of A.

Finally, we show that if with non-negligible probabilty when run on crs = (crs0, . . . , crs`), z, and r,
A outputs (x, π) and E ← E(A) outputs w such that V(crs, x, π) = 1 but (x,w) 6∈ R(t), we break the
strong adaptive knowledge extraction of either the SNARG for level ` or the `− 1-tiered SNARG.

To show this, we consider four cases (based on the four cases used by E): either (1) tier(x) < `, (2.a)
tier(x) = ` and (x̂, ŵ) /∈ R`, (2.b) tier(x) = ` and (x,w`) ∈ R(t), or (2.c) tier(x) = ` and (x,w`) /∈ R(t).

1. If tier(x) < `, then by definition Abase outputs the same (x, π) as A, and E outputs the same
w as Ebase . If it is therefore the case that V(crs, x, π) = 1 but (x,w) 6∈ R(t), then it is also the
case that V(crs, x′, π′) = 1 but (x′, w′) 6∈ R(t) too, as they are all just the same values. Thus, if
with non-negligible probability (x,w) /∈ R(t) and this case occurs, then Abase breaks the strong
extractability of the (`− 1)-tiered SNARG.

2.a If tier(x) = ` and (x̂, ŵ) /∈ R`, then by definition A` outputs (x̂, π), and E` outputs ŵ such that
(x̂, ŵ) /∈ R`. By construction, V`(crs`, x̂, π) = 1 whenever V(crs, x, π) = 1, so if the proof output
by A is accepted then the proof output by A` will be accepted too. Thus if this case occurs with
non-negligible probability then A` contradicts the strong extractability of the `-th SNARG.

2.b The case tier(x) = ` and (x,w`) ∈ R(t) cannot lead to a successful A, since in this case E produces
w`, which is by definition a valid witness w such that (x,w) ∈ R(t).

2.c If, on the other hand, tier(x) = ` and (x,w`) /∈ R(t), then we know that Abase outputs (x`−1, π`−1)
(where we recall these values are pulled from the output of E`), and that E output w = T`(w

′).
Since we know that (x̂, ŵ) ∈ R`, that means T` will map a valid witness w′ for x`−1 to a valid
witness for x. Thus we know by the way w was computed that (x,w) 6∈ R(t) implies (x`−1, w

′) 6∈
R(t). Furthermore, (x̂, ŵ) ∈ R` also implies that π`−1 is an accepting proof for x`−1. Thus if
with non-negligible probability (x,w) /∈ R(t) and this case occurs, then Abase breaks the strong
extractability of the (`− 1)-tiered SNARG.

As we have therefore demonstrated that any winning case for A results in either A` or Abase winning
as well, which is a contradiction, it must be the case that the `-tiered construction satisfies strong
adaptive knowledge extraction as well.

Finally, we discuss the size of the proofs. Looking at the language Li for some level, we see that
an instance for the next language Li+1 consists of the same elements as an instance of Li, with the
addition of the CRS crsi. If we consider, for example, the SNARG construction of Groth [22], then the
size of crsi is O(|x(i)|2) for x(i) ∈ Li. Let f be the function that computes the size of the instance at
level i+ 1 given the size of the instance x at level i. Then, because an element of size |x|2 is added to
obtain the instance for the next level up, we have that f(f(|x|)) = |x|4, and, after t transformations,
that f t(|x0|) > |x0|2

t
. If t is constant, the fact that we require SNARGs to be of size polylog(|x|)

accounts for every such polynomial factor. Considering next the witness, we observe that the size of
the witness w(i) for i > 0 is |wi| + |xi−1| + |πi−1| + |Ti|. In order for our proofs to be succinct, we
require that |πi| ≤ |πi−1|. If we assume that |wi| ≤ |wi−1|, |xi| ≤ |xi−1|, and |Ti| ≤ |Ti−1| and that
w(i) = |wi| + |xi−1| + |πi−1| + |Ti| ≤ 4|πi−1|, then a poly(k)polylog(|x|) + γ|w| succinct SNARG with
γ = 1/4 is sufficient for our construction.
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3.2 From weak malleable proofs to malleable proofs of knowledge

With our malleable NIZK in place, we might now try to use it to directly construct a cm-NIZK or,
because we can satisfy only adaptive knowledge extraction, a weakened notion of cm-NIZK that acco-
modates this weaker extractability property. Looking back at the definition of controlled malleability
(CM-SSE) in Definition 2.1, however, we can see that A is given access to a simulation oracle S2. This
oracle access seems to be fundamental to the definition: to achieve any kind of simulation soundness,
in which we want A to be unable to produce its own proofs of false statements even after seeing many
such proofs, we must give it an oracle that can produce false proofs. If we attempt to then use any
non-black-box notion of extractability in conjunction with such an oracle, it is not clear how such an
extractor would even be defined, as it cannot simply run the code for A (in particular, because the
oracle’s ability to produce false proofs must be presumably unavailable to A and therefore EA).

To avoid this obstacle altogether, we instead augment the construction from the previous section to
achieve full extractability. To do this, our proofs consist of a ciphertext encrypting the witness, and a
malleable zero-knowledge SNARG proving knowledge of the value inside of this ciphertext. Now, rather
than require the use of the non-black-box extractor to prove any kind of extractability, we can instead
give an extractor the secret key, and it can extract by decrypting the ciphertext. As we will see in our
proof of Theorem 3.6, this means that all is required of the SNARG is soundness (which, we recall by
Theorem 2.9, is implied by adaptive knowledge extraction).

In more detail, to construct a malleable NIZKPoK for a relation R(pok) and transformation class
T (pok), we use an encryption scheme and a proof system for the relation R(t) such that

((pk , x, c), (w, r)) ∈ R(t) ⇐⇒ c = Enc(pk , w; r) ∧ (x,w) ∈ R(pok).

As for malleability, suppose we want to be able to transform the proofs for R(pok) with respect to
some transformation class T (pok). In order to implement ZKEval for a transformation T = (Tinst, Twit) ∈
T (pok), we will need to be able to transform the proof for R(t) and the ciphertext c. For the latter, this
means we need to be able to apply a transformation Tc on the ciphertext that produces an encryption
of Twit(w); i.e., the homomorphic property of the encryption scheme must be robust enough to allow
us to apply Twit to the encrypted message. For the proof, we also require a transformation Tr on the
randomness r of the ciphertext, as we require a transformation that maps (pk , x, c) to (pk , Tinst(x), Tc(c))
and (w, r) to (Twit(w), Tr(r)).

A bit more formally, for every T = (Tinst, Twit) ∈ T (pok) and r′ from the randomness space R, let
Tc be the transformation that maps c = Enc(w; r) to Eval(c, Twit; r

′) = Enc(Twit(w); r ◦ r′) (where ◦
denotes the operation that composes the randomness, and Eval denotes the homomorphic operation
on ciphertexts), let Tr be the resulting transformation on the randomness, and let τ(T, r′) be the
transformation that maps instances (x, c) to new instances (Tinst(x), Tc(c)), and witnesses (w, r) to new
witnesses (Twit(w), Tr(r)) (i.e., the exact transformation we need for the proof). Finally, let T (t) be the
set of transformations that includes τ(T, r′) for all T ∈ T (pok), r′ ∈ R, and let T (E) be the set of all
Twit.

To give our Enc+NIZK construction for R(pok), let (KeyGen,Enc,Dec,Eval) be a function-private ho-
momorphic encryption scheme(as defined in Definition 2.5)with randomness space R and let (CRSSetup′,
P ′,V ′,ZKEval′) be a malleable zero-knowledge SNARG for the relation R(t) with transformation set T (t).
See Figure 3 for our construction of a NIZKPoK using these primitives.

We make the following requirements on the underlying SNARG to obtain the completeness and
malleability properties; both of them follow directly from the Enc+NIZK construction:

Theorem 3.4. Let W(E+N) be the witness space for R(pok). If the SNARG is complete for R(t) and the
encryption scheme has message space M such that W(E+N) ⊆M, then the Enc+NIZK construction is
complete.
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• CRSSetup(1k): Generate crs′
$←− CRSSetup′(1k) and (pk , sk)

$←− KeyGen(1k) and output crs :=
(crs′, pk).

• P(crs, x, w): Parse crs = (crs′, pk) and pick randomness r
$←− R. Then compute c ←

Enc(pk , w; r) and π′
$←− P ′(crs′, (pk , x, c), (w, r)) and output π := (π′, c).

• V(crs, x, π): Parse crs = (crs′, pk) and π = (π′, c), and output V ′(crs′, (pk , x, c), π′).

• ZKEval(crs, T, x, π): Parse crs = (crs′, pk), π = (π′, c), and T = (Tinst, Twit). Then choose

random r′
$←− R, compute T ′ := τ(T, r′), and compute πT

$←− ZKEval′(crs′, T ′, (pk , x, c), π′) and
cT := Eval(pk , Twit, c; r

′). Output (πT , cT ).

Figure 3: Our Enc+NIZK construction of a NIZKPoK.

Theorem 3.5. The Enc+NIZK construction is malleable with respect to T (pok) whenever the SNARG
is malleable with respect to the corresponding set T (t) = τ(T (pok),R) and the encryption scheme is
malleable with respect to T (E) (as defined above).

If T (pok) is a t-tiered class of transformations on R(pok), then τ(T (pok)) will also be t-tiered on R(t).
Thus, if we instantiate (KeyGen,Enc,Dec,Eval) using a fully homomorphic encryption scheme and we
use the SNARGs constructed in the previous section, we can obtain a malleable proof system for any
t-tiered T (pok) with constant t. (On the other hand, we will see in Section 4 that there are interesting
relations and transformation classes we can obtain without fully homomorphic encryption as well.) As
for size efficiency, we know by the succinctness property of SNARGs that the size of π′ will not grow
through transformation. For the ciphertext c, if we assume that Twit does not increase the size of the
witness, then the size of c will stay the same as well and thus the proof will remain compact even as it
is transformed.

We would now like to show that if the SNARG satisfies adaptive knowledge extraction then the
Enc+NIZK construction satisfies extractability; i.e., is an argument of knowledge. We also must show
that the construction retains the original zero knowledge and derivation privacy properties as well.

Theorem 3.6. If the SNARG satisfies adaptive knowledge extraction with respect to R(t) then the
Enc+NIZK construction is a proof of knowledge with respect to R(pok).

Proof. To show this, we first define our extractor (E1, E2). E1 will generate crs′
$←− CRSSetup′(1k)

and (pk , sk)
$←− KeyGen(1k); it will then output crs := (crs′, pk) and τe := sk , so that its output crs is

distributed identically to the output of CRSSetup. When E2 receives a value π, it will parse π = (π′, c)
and output w := Dec(sk , c).

Now, we show that if there exists an adversary A that breaks extractability using this extractor
(E1, E2) with some non-negligible probability ε then we can use it to construct an adversary B that
breaks soundness for the SNARG with the same probability ε; by Theorem 2.9, which states that
adaptive knowledge extraction implies soundness, the result will follow. To start, the adversary B will

get as input a CRS crs′. It can then form (pk , sk)
$←− KeyGen(1k) and give (crs′, pk) and τe := sk to A.

At some point, A will output (x, π); if π parses as π = (π′, c), then B will output ((pk , x, c), π′).
As B generates (pk , sk) honestly and its input crs′ is assumed to be drawn from CRSSetup′, the CRS

given to A is distributed identically to what A expects. To see that B will also succeed whenever A does,
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we observe that A will break extractability only if V(crs, x, π) = 1 but E2(crs, τe, x, π) = w and (x,w) /∈
R(pok). If V(crs, x, π) = 1 then we know, by how the verifier is defined, that V ′(crs′, (pk , x, c), π′) = 1 as
well, so that the output of B will pass verification. Similarly, by the definition of the extractor and the
perfect decryption of the encryption scheme, we know that c is not an encryption of a witness w such
that (x,w) ∈ R(pok) and therefore (pk , x, c) /∈ LR(t) . B will therefore succeed in breaking soundness
whenever A breaks extractability, so B will succeed with probability ε.

Theorem 3.7. If the SNARG is zero knowledge and the encryption scheme is IND-CPA secure, then
the Enc+NIZK construction is zero knowledge.

Proof. To show this, we first define our simulator (S1, S2) based on the underlying simulator (S′1, S
′
2) for

the SNARG. The simulator S1 will generate (crs′, τ ′s)
$←− S′1(1k) and (pk , sk)

$←− KeyGen(1k); it will then

output crs := (crs′, pk) and τs := τ ′s. When S2 is queried on an instance x, it will form c
$←− Enc(pk , 0)

and π′
$←− S′2(crs′, τ ′s, (pk , x, c)). It will then return π := (π′, c).

To show that the outputs of this simulator are indistinguishable from those of (CRSSetup,P), we
first describe a hybrid simulator S2 that is given both the instance x and the witness w such that

(x,w) ∈ R(pok). This simulator will form c
$←− Enc(pk , w) and π′

$←− S′2(crs′, τ ′s, (pk , x, c)). If there exists
some adversary A that distinguishes between the outputs of this hybrid simulator and the prover with
some non-negligible advantage ε, then we show that we can use it to construct an adversary B that
breaks the zero knowledge property of the SNARG with the same advantage ε. The behavior of B is

straightforward: when it is given a crs′, it generates (pk , sk)
$←− KeyGen(1k) and gives crs := (crs′, pk)

to A. When A issues an oracle query (x,w), B picks randomness r
$←− R, sets c := Enc(pk , w; r), and

sends ((pk , x, c), (w, r)) to its own oracle to get back a proof π′; it then returns (π′, c) to A. At the end,
B will output the same guess bit as A.

To see that B will succeed whenever A does, we first argue that interactions with B are identical
to those that A expects. For the CRS, we observe that if crs′ was generated by CRSSetup′ then this
corresponds to the honest case for A, while if crs′ was generated by S′1 then this corresponds to the
simulated case. For the proofs, if B’s oracle uses the prover P ′ to compute π′ then the (π′, c) returned
to A will be distributed identically to the output of P, while if it uses S′2 then the values given to A
will be distributed identically to those computed by the hybrid simulator. As the winning cases for A
and B therefore align perfectly, we can see that B will succeed whenever A does.

Now, we move on to our real simulator S2 described at the beginning of the proof, and argue that
if there exists some adversary A that can distinguish between the outputs of this simulator and the
hybrid simulator with some non-negligible advantage ε then we can use it to construct a B that breaks
the IND-CPA security of the underlying encryption scheme with the same advantage ε. Again, the

behavior of B is straightforward: on an input pk , it will generate (crs′, τ ′s)
$←− S1(1

k) and give to A
crs := (crs′, pk). On queries of the form (x,w), B will query its own left-right oracle on (w, 0) to get

back a ciphertext c. It will then compute π′
$←− S′2(crs′, τ ′s, (pk , x, c)) and return (π′, c) to A. At the end,

B will output the same guess bit as A.
To see that B will succeed whenever A does, we first argue that interactions with B are identical to

those that A expects. First, we observe that the CRS will be identical to the one that A expects. For
the proofs, if B’s oracle uses the value w to encrypt then the (π′, c) returned to A will be distributed
identically to the output of the hybrid simulator, while if it uses 0 then the values given to A will be
distributed identically to those computed by the real simulator. As the winning cases for A and B
therefore again align perfectly, we can see that B will succeed whenever A does.
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Theorem 3.8. If the SNARG is zero knowledge and strongly derivation private with respect to the
class of transformations T (t) and the encryption scheme is function private with respect to T (E) then
the Enc+NIZK construction is derivation private with respect to T (pok).

Proof. To show this, we progress through a series of game transformations. The first game, G0, will be
the honest derivation privacy game using b = 0, in which P and Enc are used. In the next game, G1,
we switch to using simulated proofs; we argue that this change will go undetected by zero knowledge.
Next, in Game G2, we switch to using Eval instead of Enc, which we argue will go unnoticed by function
privacy. Finally in Game G3 we switch to using ZKEval, which we argue will go unnoticed by strong
derivation privacy; note that here we are now using ZKEval and Eval and so are in the derivation privacy
game for b = 1. If each game is indistinguishable from the previous one, then in particular G0 will be
indistinguishable from G3 and so we will be done.

To show thatG0 is indistinguishable fromG1, we argue that if there exists an adversary A that distin-
guishes between the two games with some non-negligible advantage ε then we can use it to construct an
adversary B that breaks the zero knowledge of the SNARG with the same advantage ε. To start, B will

get as input a CRS crs′. It will then generate (pk , sk)
$←− KeyGen(1k) and give crs := (crs′, pk) to A. When

A returns its challenge query (xA, wA, πA, T ), B will parse πA = (π, c) and T = (Tinst, Twit), pick random-

ness r′
$←− R, and form c′ := Enc(pk , Twit(wA); r′). It will then query ((pk , Tinst(xA), c′), (Twit(wA), r′))

to its own oracle to get back a proof π′ and return (π′, c′) to A. If A guesses that it is in G0 then B
guesses it is interacting with the prover, and if A guesses that it is in G1 then B guesses it is interacting
with the simulator. As B is executing the code of either game exactly, the success cases for A and B
therefore line up perfectly and B will succeed with the same advantage as A.

To next show that G1 is indistinguishable from G2, we argue that if there exists an adversary
A that distinguishes between the two games with non-negligible advantage ε then we can use it to
construct an adversary B that breaks function privacy with the same advantage ε. To start, B will

get as input a keypair (pk , sk); it will then generate (crs′, τs)
$←− S′1(1

k) and give crs := (crs′, pk) to
A. When A returns its challenge query (xA, wA, πA, T ), B will parse πA = (π, c) and T = (Tinst, Twit).
It will then query (c, (Tc, Twit)) to its own oracle to get back a ciphertext c′. Finally, it will compute

π′
$←− S2(crs′, τs, (pk , Tinst(xA), c′)) and return (π′, c′) to A. If A guesses it is in G1 then B will guess

that b = 0 (i.e., c′ was formed using Enc), and if A guesses it is in G2 then B will guess that b = 1 (i.e.,
c′ was formed using Eval). Again, if b = 0 then B is executing the exact code of G1, while if b = 1 then
B is executing the exact code of G2; B’s guesses will therefore be right exactly when A’s are, so B will
succeed with the same advantage as A.

Finally, we can argue that G2 is indistinguishable from G3; to do this, we show that if there exists
an adversary A that distinguishes between the two games with non-negligible advantage ε then we
can use it to construct an adversary B that breaks strong derivation privacy of the SNARG with the
same advantage ε. To start, B will get as input a CRS crs′ and a simulation trapdoor τs; it can

then generate (pk , sk)
$←− KeyGen(1k) and give crs := (crs′, pk) to A. When A returns its challenge

query (xA, wA, πA, T ), B can pick randomness r′
$←− R, derive T ′ := τ(T, r′) from T , and compute

c′ := Eval(pk , (Tc, Twit), c; r
′)). It then outputs ((pk , x, c), π, T ′) as its own challenge query to get back

a proof π′ and returns (π′, c′) to A. B will then guess b = 0 if A guesses it is in G2, and b = 1 if A
guesses it is in G3. To see that interactions with B will be indistinguishable to those that A expects,
observe that if b = 0 and B’s oracle is returning proofs from S2, then the values given to A will be
identical to those that it expects in G2; similarly, if B’s oracle is instead using ZKEval, then the values
given to A will be identical to those that it expects in G3. B therefore succeeds whenever A does, and
thus succeeds with advantage ε.
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3.3 From malleable NIWIPoKs to cm-NIZKs

With our malleable NIZKPoK in place, we are finally ready to construct cm-NIZKs (although, as we
will see, we require only witness indistinguishability rather than full zero knowledge). We first recall
the construction of CKLM, who used a relation R′ such that ((x, vk), (w, x′, T, σ)) ∈ R′ if (x,w) ∈ R or
Verify(vk , σ, x′) = 1, x = Tinst(x

′), and T ∈ T , where σ was a signature for a secure signature scheme.
We use the CKLM construction as a rough guideline for our own; the crucial alteration we make,
however, is that CKLM were willing to retain the natural re-randomizability of Groth-Sahai proofs,
whereas we want to consider classes of transformations that do not contain the identity (for example,
the t-tiered transformation classes).

Suppose we want to construct a cm-NIZK for relation R(cm) and transformation class T (cm). We
use a NIWIPoK for an augmented relation R(pok) such that ((x, vk , vkot), (w, x

′, vk ′ot, T, σ)) ∈ R(pok) if
(1) (x,w) ∈ R(cm) or (2) Verify(vk , σ, (x′, vk ′ot)) = 1 and either (2a) x = Tinst(x

′) for T = (Tinst, Twit) ∈
T (cm), or (2b) x′ = x and vk ′ot = vkot, where vkot is a verification key for a one-time signature scheme.

((x, vk , vkot), (w, x
′, vk ′ot, T, σ)) ∈ R(pok) ⇔ (1) (x,w) ∈ R(cm) ∨

(2) (Verify(vk , σ, (x′, vk ′ot)) = 1 ∧
((x = Tinst(x

′) ∧ T = (Tinst, Twit) ∈ T (cm)) ∨
(x′ = x ∧ vk ′ot = vkot))

Intuitively, to simulate proofs, we can use this last type of witness; i.e., on a query x, the simulator
can use sk as a trapdoor to sign (x, vkot) and produce a signature σ, and then form a proof using
(⊥, x, vkot,⊥, σ) as a witness. To ensure that an adversary cannot simply reuse this proof and claim
it as its own (i.e., apply the identity transformation), proofs are accompanied by a one-time signature,
on both the instance and the proof, to indicate that the proof was formed fresh for this instance.
Because the one-time signature thus binds together the instance and the proof, we call this construction
“signature binding.”

Now, if we want to allow transformations (T̂inst, T̂wit) ∈ T (cm) for our cm-NIZK, we will have to be
able to transform the underlying NIWIPoK accordingly. To do this for any T̂ = (T̂inst, T̂wit) ∈ T (cm),
and any v̂kot ∈ VK ot (where VK ot is the set of all possible verification keys), let ρ(T̂ , v̂kot) be a
transformation that maps (x, vk , vkot) to (T̂inst(x), vk , v̂kot) and (w, x′, vk ′ot, T, σ) to (T̂wit(w), x′, vk ′ot, T̂ ◦
T, σ). We require the underlying NIWIPoK to be malleable with respect to this class T (pok).

More formally, let (KeyGen, Sign,Verify) be an unforgeable signature scheme, (KeyGenot,Signot,
Verifyot) be a strongly unforgeable one-time signature scheme, and let (CRSSetupWI,PWI,VWI) be a
malleable derivation-private NIWIPoK for R(pok). We give our construction of a cm-NIZK using these
primitives in Figure 4.

Although in using T̂ ◦T we require that T (cm) be closed under composition, we note that this is not
a strong restriction. Indeed, if T (cm) is not closed under composition, then we can define the closure
of T (cm) to be the class of transformations T (cm)′ such that T ∈ T (cm)′ if and only if T = T1 ◦ . . . ◦ Tj
for j < t and T1, . . . , Tj ∈ T (cm). In this case, if we construct the NIWIPoK using our Enc+NIZK
construction, our proofs have to increase in size by a factor of t. (The encryption scheme used will
have to have message space large enough to represent T1 ◦ . . . ◦ Tt as (T1, . . . , Tt).) On the other hand,
this size increase is unavoidable for general transformations if we want to obtain a definition (like CM-
SSE) in which a non-interactive black-box extractor must be able to extract the entire transformation
performed.

By construction, we directly obtain the following theorems:

Theorem 3.9. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is complete for relation R(pok),
and the one-time signature is correct, then the signature-binding construction is complete for relation
R(cm).
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• CRSSetup(1k): Generate crsWI
$←− CRSSetupWI(1

k); (vk , sk)
$←− KeyGen(1k). Output crs :=

(crsWI, vk).

• P(crs, x, w): Parse crs = (crsWI, vk) and compute π′
$←− PWI(crsWI, (x, vk , vkot),

(w,⊥,⊥,⊥,⊥)). Generate (vkot, skot)
$←− KeyGenot(1

k), compute σot
$←− Signot(skot, (x, π

′)),
and output π := (π′, σot, vkot).

• V(crs, x, π): Parse π = (π′, σot, vkot) and check that Verifyot(vkot, σot, (x, π
′)) = 1; if this fails

then output 0. Otherwise, parse crs = (crsWI, vk) and output VWI(crsWI, (x, vk , vkot), π
′).

• ZKEval(crs, T, x, π): Parse crs = (crsWI, vk) and π = (π′, σot, vkot). Generate (v̂kot, ŝkot)
$←−

KeyGenot(1
k) and compute π′′

$←− ZKEvalWI(crsWI, ρ(T, v̂kot), (x, vk , vkot), π
′) and σ′ot

$←−
Signot(ŝkot, (x, π

′′)). Output (π′′, σ′ot, v̂kot).

Figure 4: Our signature-binding construction of a cm-NIZK.

Theorem 3.10. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is malleable with respect to the
transformation class T (pok) = ρ(T (cm),VK ot) (as defined above), then the signature-binding construction
is malleable for transformation class T (cm).

Now, if we want to instantiate the NIWIPoK using our Enc+NIZK construction from the previous
section, we must first ensure that R(pok) and T (pok) satisfy the constraints discussed therein. In particu-
lar, we required that T (pok) be a t-tiered transformation class for R(pok), and that there is an encryption
scheme whose message space contains the witness space for R(pok) that is homomorphic with respect to
the class of transformations {Twit} for all (Tinst, Twit) ∈ T (pok).

Expanding on this last requirement, as our witnesses for R(pok) are of the form (w, x′, vk ′ot, T, σ), we
need to use an encryption scheme in which the message space subsumes the space of all of these values;
i.e., the witness, instance, and transformation spaces, as well as the space of possible one-time verification
keys and signatures. We also need the encryption scheme to be homomorphic with respect to the set
of transformations that map (w, x′, vk ′ot, T, σ) to (T̂wit(w), x′, vk ′ot, T̂ ◦T, σ) for any (T̂inst, T̂wit) ∈ T (cm).
Finally, we require that T (cm) is t-tiered for R(cm), as this will guarantee that T (pok) is t-tiered for
R(pok). If we assume SNARGs for general languages and fully homomorphic encryption, then we can
obtain a cm-NIZK for any t-tiered transformation class as long as t is constant; in Section 4, we will also
see that we can construct cm-NIZKs for interesting relations using only multiplicatively homomorphic
encryption. Moreover, if we continue our assumption from the previous section that T̂wit does not
increase the size of w, then the size of proofs will not grow by transformation here either.

Finally, in order to show that this is a cm-NIZK, we need to show that it satisfies zero knowledge,
CM-SSE, and strong derivation privacy.

Theorem 3.11. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is witness indistinguishable then
the signature-binding construction is zero knowledge.

Proof. To show this, we first define our simulator (S1, S2). The simulator S1 is simple: it honestly gener-

ates crsWI
$←− CRSSetupWI(1

k) and (vk , sk)
$←− KeyGen(1k); it then outputs crs := (crsWI, vk) and τs := sk .

As for S2, when it is asked to provide a proof for an instance x, it computes (vkot, skot)
$←− KeyGenot(1

k)

and then uses the signing key sk to compute σ
$←− Sign(sk , (x, vkot)). It then computes the proof
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π′
$←− PWI(crsWI, (x, vk , vkot), (⊥, x, vkot,⊥, σ)), forms the one-time signature σot

$←− Sign(skot, (x, π
′)),

and returns (π′, σot, vkot).
Using this simulator, we can show that if there exists an adversary A that distinguishes between the

outputs of S1 and S2 and the outputs of CRSSetup and P with some non-negligible advantage ε then
we can construct an adversary B that distinguishes between witnesses in the underlying proof system
with the same advantage.

The adversary B now begins by getting as input a CRS crs′. It then generates (vk , sk)
$←− KeyGen(1k)

and gives crs := (crs′, vk) to A. When A outputs a query (x,w), B first generates (vkot, skot)
$←−

KeyGenot(1
k) and then forms σ

$←− Sign(sk , (x, vkot)). It then sets x′ := (x, vk , vkot), w0 := (w,⊥,⊥,⊥,
⊥), and w1 := (⊥, x, vkot,⊥, σ), and outputs (x′, w0, w1) as its own query to get back a proof π′. B can

then form σot
$←− Sign(skot, (x, π

′)) and return (π′, σot, vkot) to A. At the end of the game, B outputs
the same guess bit as A.

As the underlying CRS and signing keypair were generated honestly, the crs returned by S1 is
distributed identically to an honest one, so the CRS that B gives to A isdistributed identically to both the
output of S1 and the output of CRSSetup. As for the proofs, we note that σot and vkot are always formed
the same way, so the only potential difference is in the underlying proof π′. If the left witness is used

(i.e., b = 0 for the WI game) then A gets a proof of the form π′
$←− PWI(crs′, (x, vk , vkot), (w,⊥,⊥,⊥,⊥)),

which is exactly what A would get when interacting with the prover. If instead the right witness is used

then A gets a proof of the form π′
$←− PWI(crs′, (x, vk , vkot), (⊥, x, vkot,⊥, σ)) which, looking back to the

description of S2, is exactly what A would get when interacting with the simulator. As the interactions
with B are therefore identical to the interactions that A expects and B will guess correctly whenever A
does, we can conclude that B will succeed with advantage ε as well.

Theorem 3.12. If the signature scheme (KeyGen,Sign,Verify) is unforgeable (i.e., EUF-CMA secure),
the one-time signature (KeyGenot,Signot,Verifyot) is strongly unforgeable (SUF-CMA secure), and the
proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is an argument of knowledge, the signature-binding con-
struction satisfies the CM-SSE property.

Proof. To show this, we first describe the extractor (SE1, E2) for the full proof system given the ex-
tractor (E′1, E

′
2) for the underlying proof system (CRSSetupWI,PWI,VWI,ZKEvalWI). To start, SE1 runs

(crs′, τ ′e)
$←− E′1(1

k). It then generates (vk , sk)
$←− KeyGen(1k), sets crs := (crs′, vk) and τs := sk , and

outputs (crs, τs, τ
′
e). The extractor E2, on input (crs, τe, x, π), first parses crs = (crs′, vk), τe = τ ′e, and

π = (π′, σot, vkot), and then computes (w, x′, vk ′ot, T, σ) ← E′2(crs′, τ ′e, (x, vk , vkot), π
′). If (x,w) ∈ Rcm

then it outputs (w,⊥,⊥); otherwise, if Verify(vk , σ, (x′, vk ′ot)) = 1, x = Tinst(x
′), and T ∈ T then it

outputs (⊥, x′, T ), and otherwise it outputs (⊥,⊥,⊥).
With this extractor in place, we now assume there exists an adversary A that breaks CM-SSE

with some non-negligible probability ε. For A to win at the CM-SSE game, recall that, in a game
using crs = (crs′, vk), it must output (x, π) where π = (π′, σot, vkot), such that V(crs, x, π) = 1 and
(x, π) /∈ Q. Additionally, one of three events must have occurred with respect to the extracted values
(w̃, x̃′, T̃ ) ← E2(crs, τe, x, π) and W := (w, x′, vk ′ot, T, σ) ← E′2(crs′, τ ′e, X := (x, vk , vkot), π

′).1 We
consider these events with respect to the five winning conditions of the CM-SSE game:

1. w̃ 6= ⊥ and (x, w̃) /∈ R(cm): this can never happen as E2 always checks (x,w) ∈ Rcm before
outputting w 6= ⊥.

2. (x̃′, T̃ ) 6= (⊥,⊥) and x̃′ was never queried to S2: then it must be the case that x′ was never
signed by the simulator but that we nevertheless have a signature on it, as E2 always checks for

1We distinguish E2’s output from E′
2’s output, as E2 sets some values to ⊥ if checks fail.
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a signature on x′ before outputting x′ 6= ⊥.

3. (x̃′, T̃ ) 6= (⊥,⊥) and x 6= Tinst(x̃
′): this can never happen as E2 always checks that x = Tinst(x

′)
before outputting x′ 6= ⊥.

4. (x̃′, T̃ ) 6= (⊥,⊥) and T̃ /∈ T : this can never happen as E2 always checks that T ∈ T before
outputting x′ 6= ⊥.

5. (w̃, x̃′, T̃ ) = (⊥,⊥,⊥) and (x, π) /∈ Q: this can only happen if x = x′ ∧ ¬(T = id ∧ id ∈ T ) or
(X,W ) /∈ R(pok). In the former case we either have that vk ′ot was not generated by the simulator
to prove x′, or π′ was never signed under vk ′ot (generated by the simulator).

Using these guidelines, we can therefore split A’s success conditions into three separate events: In
Event1, σ verifies, but either x′ was never queried to S2 or vk ′ot in W was not signed together with
x′ under vk by the simulator. If this event occurs, we show how to construct an adversary B1 that
breaks the unforgeability of the signature scheme. In Event2, x

′ was queried to S2 and signed together
with vk ′ot, (X,W ) ∈ R(pok), x′ = x and vk ′ot = vkot. If this event occurs, we show how to construct
an adversary B2 that breaks the strong unforgeability of the one-time signature scheme. Finally, in
Event3, (X,W ) /∈ R(pok). If this event occurs, we show how to construct an adversary B3 that break
the extractability of the proof system. As all winning conditions for A necessarily lead to one of these
events, we have that ε ≤ e1+e2+e3, where ei denotes the probability that Eventi occurs and A succeeds;
this further implies that at least one of the ei must be non-negligible.

To break unforgeability when Event1 occurs, B1 receives as input the verification key vk . It then

forms (crs, τ ′e)
$←− E′1(1

k) and gives (crs := (crs′, vk), τ ′e) to A. When A queries x to its S2 oracle, B1

generates (vkot, skot)
$←− KeyGen(1k) and gives (x, vkot) to its own signing oracle to get back a value

σ. It then computes π′
$←− PWI(crs′, (x, vk , vkot), (⊥, x, vkot,⊥, σ)) and σot

$←− Signot(skot, (x, π
′)), and

returns (π′, σot, vkot) to A. When A outputs the pair (x, π), B1 parses π = (π′, σot, vkot), computes
(w, x′, vk ′ot, T, σ) ← E′2(crs′, τ ′e, X, π

′), and outputs ((x′, vk ′ot), σ). Because we are in Event1, we know
that Verify(vk , σ, (x′, vk ′ot)) = 1 but x′ was not signed together with vk′ot by the simulator; this implies
that B1 never queried its own oracle on input (x′, vk ′ot), and thus its own output is a valid signature
forgery. As B1 furthermore emulates exactly the behavior that A expects, and wins whenever Event1
occurs, B1 succeeds with probability e1.

To break strong unforgeability when Event2 occurs, B2 receives as input the verification key vk∗ot. It

then generates (vk , sk)
$←− KeyGen(1k) and (crs′, τ ′e)

$←− E′1(1
k) and gives (crs := (crs′, vk), τ ′e) to A. It

then pick at random which S2 query it thinks A will use to form its proof. For this particular query, B2

forms σ
$←− Sign(sk , (x, vk∗ot)) and π′

$←− PWI(crs′, (x, vk , vk∗ot), (⊥, x, vk∗ot,⊥, σ)); it then queries its oracle
on (x, π′) to get back a signature σ∗ot and returns (π′, σ∗ot, vk∗ot) to A. On all other queries, B2 instead

generates fresh (vkot, skot)
$←− KeyGenot(1

k) and forms the one-time signature itself (and otherwise keeps
everything the same). When A outputs the pair (x, π) at the end, B2 parses π = (π′, σot, vkot). If
vkot 6= vk∗ot, B2 is forced to abort. Otherwise, if vkot = vk∗ot, B2 can output ((x, π′), σot). From now
on, because we are in Event2, we know that x′ was queried to S2, that x = x′ and vk∗ot = vk ′ot, and,
because A won, that Verify(vk∗ot, σot, (x, π

′)) = 1. If π′ is different from the π′ computed by B2 for the
query where vk∗ot was used, then as σot is a valid signature on a new message (x, π′), B2’s output is a
valid forgery. If instead π′ is the same then, on this previous query for x, B2 returned π̂ = (π′, σ̂ot, vk∗ot).
Because it must be the case that (x, π) /∈ Q, we therefore know that π 6= π̂, and thus it must be the
case, because π′ and vk∗ot are both the same, that σ̂ot 6= σot; this means that σot is a new signature on
the same message and thus again a valid forgery. As B2 perfectly emulates the behavior that A expects,
and furthermore succeeds whenever Event2 occurs and it guesses the correct query, if there are at most
qS queries then B2 succeeds with probability e2/qS (which is still non-negligible for polynomial qS).
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Finally, to break extractability when Event3 occurs, B3 receives as input (crs′, τ ′e); it then generates

(vk , sk)
$←− KeyGen(1k) and gives ((crs′, vk), τ ′e) to A. As B3 knows sk , it can execute the exact code of S2

in responding to queries. When A outputs (x, π) at the end of the game, B3 parses π = (π′, σot, vkot) and
outputs (X,π′). Because we are in Event3, we know that for W ← E′2(crs′, τ ′e, X, π

′), (X,W ) /∈ R(pok),
which immediately implies that B3 succeeds. As B3 furthermore perfectly executes the behavior that A
expects, B3 succeeds with probability e3.

Theorem 3.13. If the proof system (CRSSetupWI,PWI,VWI,ZKEvalWI) is derivation private for T (pok)

then the signature-binding construction is strongly derivation private for T (cm).

Proof. To show this, we take an adversary A that breaks strong derivation privacy for our construction
with some non-negligible advantage ε and use it to construct an adversary B that breaks derivation
privacy for the underlying proof with the same advantage. To start, B will receive as input some crsWI.

It then generates (vk , sk)
$←− KeyGen(1k) and gives crs := (crsWI, vk) to A; it also keeps sk for itself. On

S2 queries, B will use the signing key to behave exactly as S2 would. On A’s challenge query (xA, πA, TA),

B can generate (vkot, skot)
$←− KeyGenot(1

k) and form w := (⊥, xA, vkot,⊥,Sign(sk , (xA, vkot))); i.e., the

same kind of witness that it uses for simulation. B then generates a new pair (v̂kot, ŝkot)
$←− KeyGenot(1

k)
and queries its own oracle on ((xA, vk , vkot), w, πA, ρ(TA, v̂kot)) to receive a proof π′. It then gives to A
π := (π′, Sign(vkot, (Tinst(x), π′)), vkot). At the end of the game, B will output the same guess bit as A.

To see that interactions with B are indistinguishable from the honest interactions that A expects,
we first note that B behaves completely honestly as S1 and S2, so we need only focus on the challenge
query and its response. As B is here computing the same valid witnesses for the proof system that
S2 uses, there are two options. If its response π is coming from PWI, then the proof it returns to A
is distributed identically to a proof from S2. If the query is instead answered by ZKEvalWI, then the
proof it returns is trivially distributed identically to a proof from ZKEval, as ZKEval is defined using
ZKEvalWI. As B outputs the same guess bit as A, it will therefore succeeds whenever A does.

4 A Compactly Verifiable Shuffle Using SNARGs

Now that we have just constructed our SNARG-based cm-NIZK, we consider how to use it to construct
a compactly verifiable shuffle (as defined in Definition 2.4).

We start by defining formally the relation and transformations we want to use for shuffles. Abstractly,
instances for the correctness of a shuffle are of the form x = (pk , {ci}i, {c′i}i), where pk is a public key
for a re-randomizable encryption scheme, {ci}i are the original ciphertexts, and {c′i}i are the shuffled
ciphertexts. In addition, to allow each mix authority to prove that it participated in the shuffle, instances
also contain a set {pk j}j that consists of the public keys of the authorities that have participated thus
far. Similarly, witnesses are of the form w = (ϕ, {Ri}i, {sk j}j), where ϕ is a permutation, {Ri}i are
the re-randomization factors, and {sk j}j are the secret keys corresponding to {pk j}j . The relation R
is such that

((pk , {ci}i,{c′i}i, {pk j}j), (ϕ, {Ri}i, {sk j}j)) ∈ R
⇔ {c′i}i = {ReRand(pk , ϕ(ci);Ri)}i ∧ (pk j , sk j) ∈ Rpk ∀j.

Briefly, valid transformations in T should be shuffles. Ignoring the authority keys (details can be found
in the original CKLM paper), we define transformations on instances as

Tinst(x) = T(ϕ′,{R′
i}i)(pk , {ci}i, {c′i}i) := (pk , {ci}i, {ReRand(pk , ϕ′(ci);R

′
i)}i)
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and on witnesses as

Twit(w) = T(ϕ′,{R′
i}i)(ϕ, {Ri}i) := (ϕ′ ◦ ϕ, {ϕ′(Ri) ∗R′i}i),

where ∗ is the operation used to compose the randomness (i.e., ReRand(pk ,ReRand(pk , c;R), R′) =
ReRand(pk , c;R ∗R′)).

4.1 Our construction

Recall from Appendix B that the shuffle construction of CKLM [7] used four building blocks: a hard
relation Rpk , a re-randomizable encryption scheme (KeyGen,Enc,Dec,ReRand), a proof of knowledge
(CRSSetup,P,V), and a cm-NIZK (CRSSetup′,P ′,V ′,ZKEval′). As we just constructed a cm-NIZK, we
can simply plug it into this generic construction, which CKLM already proved secure. What it remains
to show is that the requirements placed on transformations in Sections 3.2 and Section 3.3 are met by
the shuffle transformations.

Recall the general requirement for transformations from Section 3.3: because we must encrypt values
of the form (w, x′, vk ′ot, T, σ), we need an encryption scheme (KeyGen,Enc,Dec,Eval) that is homomor-
phic with respect to the set of transformations that map (w, x′, vk ′ot, T, σ) to (T̂wit(w), x′, vk ′ot, T̂ ◦ T, σ)
for any (T̂inst, T̂wit) ∈ T (cm).

In order to meet this requirement for shuffles, we must therefore consider how to encrypt and
appropriately transform all of these values. For all of the values except w and T , however, they are
unchanged by the transformation; our only requirement here is therefore that they can be encrypted,
meaning the spaces they live in are subsumed by the message space. As for the values that do get
transformed, w and T , as they are defined for the shuffle we must consider how to transform the
permutation ϕ, the re-randomization values {Ri}i, and the secret keys {sk j}j . We deal with each of
these in turn.

To encrypt a permutation ϕ ∈ Sn, we represent it as its component-wise action on indices. For-

mally, we first consider the collection (c1, . . . , cn) in which ci
$←− Enc(pk , i) for all i; i.e., the collec-

tion of ciphertexts encrypting their own index within the set. Now, to represent ϕ, we compute

c
(ϕ)
i

$←− Enc(pk , ϕ(i)) for all i, 1 ≤ i ≤ n; the set {c(ϕ)i }ni=1 is then equal to ϕ({ci})ni=1. When
we need to compose this ϕ with a new permutation ϕ′ (e.g., to compute Twit(w)), we can compute

{c(ϕ
′◦ϕ)

i }ni=1 = ϕ′({c(ϕ)i }ni=1) = ϕ′(ϕ({ci}ni=1)), which does represent the composed permutation ϕ′ ◦ϕ as
desired.

Moving on to the re-randomization values {Ri}i, we start in the same vein as with the permutations:

for all i, we compute c
(r)
i

$←− Enc(pk , Ri). We now place our only requirement on the encryption scheme
(KeyGen,Enc,Dec,Eval), which is that it must be homomorphic with respect to the ∗ operation (i.e.,
the operation used to compose randomness); namely that there exist a corresponding operation ~ on
ciphertexts such that if c1 is an encryption of m1 and c2 is an encryption of m2 then c1 ~ c2 is an
encryption of m1 ∗m2. With such an operation in place, when we want to permute using ϕ and add in

new randomness {R′i}i, we can compute c
(r∗r′)
i := ϕ(c

(r)
i )~Enc(pk , R′i). By the homomorphic properties

of ~, c
(r∗r′)
i will then be an encryption of ϕ(Ri) ∗R′i.

Finally, for the keys, we note that as long as all values of sk j lie in the message space then we are
fine, as these values are simply appended to a list and thus do not need to be transformed.

As for the size of the resulting shuffle, we know that the CRS for the construction in Section 3.1
consists of t common references strings for the underlying SNARG. If we use the SNARG due to Gennaro
et al. [17], in which the size of the CRS is linear in the circuit size, then the total size of the CRS is
O(`n). At the next level, in the Enc+NIZK construction, we add a public key pk , and at the next level,
in the signature-binding construction, we add a verification key vk . If the size of each of these values
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is constant with respect to n (or even of size O(n)), then we obtain an overall shuffle parameter size
of O(`n). For the proofs, we know from our discussion in Section 3 that their size will depend on the
representation of the witnesses w, instances x, and transformations T . As we’ve defined things here, the
representations of ϕ and {Ri}i require n ciphertexts each, which means the representations of w and T
are O(n+ `), as they each also contain ` secret keys. Similarly, the size of the instance x is O(n+ `), as
it contains two sets of n ciphertexts and a set of ` public keys. The overall size of the proof is therefore
O(n+ `).

Although the proof size is therefore smaller, having parameters of size O(`n) means that the total
number of bits read by the verifier is still O(`n) and thus there is no benefit over previous shuffles.
To get a parameter size of only O(k`) (for the security parameter k), we assume we have a SNARG
with a CRS of length O(n) and proofs of length O(n), and a collision-resistant hash function H(·) that
produces k-bit strings. Then a straightforward transformation gives a SNARG where the verifier needs
a CRS of length k and proofs are of length O(n) as follows: first, CRSSetup generates a CRS crs for the
underlying scheme, and outputs both crs and H(crs). Then, the prover produces not only a proof π but
also a CRS crs′ such that H(crs′) = H(crs); the proof must then verify under crs′. In order to verify such
a proof, the verifier need only take as CRS input the value H(crs). Knowledge extraction of this SNARG
follows from collision resistance and knowledge extraction of the underlying SNARG: if the adversary
produces a crs′ different from crs but such that H(crs′) = H(crs) then it breaks the collision resistance
of the hash function, and if it produces a proof under crs then the underlying extractor will work. If we
then use this modified SNARG in our construction in Section 3.1, we get a malleable SNARG where the
verifier takes as input a CRS of length O(k`) and proofs of length O(n), meaning the elections monitor
in our shuffle takes in parameters of size O(k`) and proofs of size O(n+ `).
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A Non-interactive Proof Systems

Our formal definition of zero-knowledge proofs is the same as that of CKLM, with the exception that
we add the composable zero knowledge variant that we use in Section 3.1.

Definition A.1. [7] A set of algorithms (CRSSetup,P,V)2 constitute a non-interactive (NI) proof sys-
tem for an efficient relation R with associated language LR if completeness and soundness below are

2Although we deal here with the standard definition of a non-interactive proof, using these three algorithms, we mention
that the definitions can be easily extended to consider the malleable proofs (CRSSetup,P,V,ZKEval) defined in Section 2.
In fact, the definitions can simply ignore the ZKEval algorithm and are thus unmodified.
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satisfied. A NI proof system is extractable if, in addition, the extractability property below is satisfied.
A NI proof system is witness-indistinguishable (NIWI) if the witness-indistinguishability property below
is satisfied. An NI proof system is zero-knowledge (NIZK) if the zero-knowledge property is satisfied. A
NIZK proof system that is also extractable constitutes a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK) system. A NIWI proof system that is also extractable constitutes a non-interactive
witness-indistinguishable proof of knowledge (NIWIPoK) system.

1. Completeness [5]. For all crs
$←− CRSSetup(1k) and (x,w) ∈ R, V(crs, x, π) = 1 for all proofs

π
$←− P(crs, x, w).

2. Soundness [5]. For all PPT A, and for crs
$←− CRSSetup(1k), the probability that A(crs) outputs

(x, π) such that x /∈ L but V(crs, x, π) = 1 is negligible. Perfect soundness is achieved when this
probability is 0.

3. Extractability [24]. There exists a PPT extractor E = (E1, E2) such that E1(1
k) outputs (σext, τe),

and E2(σext, τe, x, π) outputs a value w such that (1) any PPT A given σ cannot distinguish
between the honest CRS and one output by E1; i.e.,

Pr[crs
$←− CRSSetup(1k) : A(crs) = 1] ≈ Pr[(σext, τe)

$←− E1(1
k) : A(σext) = 1], and

and (2) for all PPT A, the probability that A outputs (x, π) such that V(σext, x, π) = 1 but
R(x,E2(σext, τe, x, π)) = 0 is negligible; i.e., there exists a negligible function ν(·) such that

Pr[(σext, τe)
$←− E1(1

k); (x, π)
$←− A(σext) : V(σext, x, π) = 1 ∧ (x,E2(σext, τe, x, π)) /∈ R] < ν(k).

Perfect extractability is achieved if this probability is 0, and σext is distributed identically to crs.

4. Witness indistinguishability [14]. For all (x,w1, w2) such that (x,w1), (x,w2) ∈ R, any PPT A
cannot distinguish between proofs for w1 and proofs for w2; i.e.,

Pr[crs
$←− CRSSetup(1k); (x,w1, w2)

$←− A(crs);π
$←− P(crs, x, w0) : A(π) = 1 ∧ (x,w0), (x,w1) ∈ R]

≈Pr[crs
$←− CRSSetup(1k); (x,w1, w2)

$←− A(crs);π
$←− P(crs, x, w1) : A(π) = 1 ∧ (x,w0), (x,w1) ∈ R].

Perfect witness indistinguishability is achieved when these two distributions are identical.

5. Zero knowledge [14]. There exists a polynomial-time simulator algorithm S = (S1, S2) such that
S1(1

k) outputs (σsim, τs), and S2(σsim, τs, x) outputs a value πs such that for all (x,w) ∈ R, a PPT
adversary A cannot distinguish between proofs produced by the prover and simulator; i.e., for all
PPT adversaries A,

Pr[crs
$←− CRSSetup(1k) : AP (crs,·,·)(crs) = 1] ≈ Pr[(σsim, τs)

$←− S1(1k) : AS(σsim,τs,·,·)(σsim) = 1],

where, on input (x,w), P outputs ⊥ if (x,w) /∈ R and π
$←− P(crs, x, w) otherwise, and S also

outputs ⊥ if (x,w) /∈ R, and returns π
$←− S2(σsim, τs, x) otherwise. Perfect zero knowledge is

achieved if for all (x,w) ∈ R, these distributions are identical, and statistical zero knowledge is
achieved if they are statistically close. Composable zero knowledge [21] is achieved if A is given
σsim produced by S1 in both games and is also allowed to see the associated τs.
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B The Shuffle Construction of CKLM

As defined by CKLM [7], a verifiable shuffle consists of three algorithms: Setup, which outputs param-
eters and the public keys for the (honest) mix authorities; Shuffle, which takes in a set of ciphertexts
and outputs a set of shuffled ciphertext and a proof of the correctness of the shuffle; and Verify, which
checks the validity of the proofs. Their generic construction of a compactly verifiable shuffle (defined
in Definition 2.4) combines a hard relation with generator G, a re-randomizable encryption scheme
(KeyGen,Enc,Dec,ReRand), a proof of knowledge (CRSSetup,P,V), and a cm-NIZK (CRSSetup′,P ′,V ′)
as follows:

• Setup(1k): Generate (pk , sk)
$←− KeyGen(1k), crs

$←− CRSSetup(1k), and crs′
$←− CRSSetup′(1k).

For each mix server i, generate (pk i, sk i)
$←− G(1k), and output (params := (pk , crs, crs′), sk , S :=

{pk i}i, {sk i}i).

• Enc(params, {mi}ni=1). Parse params = (pk , crs, crs′); then each user i can pick randomness

ri and encrypt his message mi as ci
$←− Enc(pk ,mi; ri) and form a proof of knowledge πi

$←−
P(crs, (pk , ci), (mi, ri)). This produces a collection {(ci, πi)}ni=1.

• Shuffle(params, {ci, πi}i, {c′i}i, π, {pk j}j): First check if this is the initial shuffle by seeing if π = ⊥
and {c′i}i = {pk j}j = ∅. If it is the initial shuffle, check that V(crs, ci, πi) = 1 for all i, 1 ≤ i ≤ n.
If this check fails for some value of i, abort and output ⊥. Otherwise, pick a random permutation

ϕ ← Sn and compute c′i
$←− ReRand(pk , ϕ(ci)) for all i. Now form a proof π for the shuffle

performed by the user in possession of the secret key corresponding to pk1 (i.e., the initial mix
server). Output the tuple ({ci, πi}i, {c′i}i, π, {pk1}).
Otherwise, if this is not the initial mix server, again check that V(crs, ci, πi) = 1 for all i,
1 ≤ i ≤ n; check also that V ′(crs′, (pk , {ci}i, {c′i}i, {pk j}j), π) = 1. If any of these proofs
do not pass verification abort and output ⊥. Otherwise, continue by choosing a random per-

mutation ϕ
$←− Sn and randomness {Ri}i for the encryption scheme, and computing c′′i

$←−
ReRand(pk , ϕ(c′i);Ri) for all i. Finally, if the public key for the current mix server is pkk then

define T := T(ϕ,{Ri}i,{skk,pkk},∅) and run π′
$←− ZKEval(crs′, T, (pk , {ci}i, {c′i}i, {pk j}j), π)). Output

the tuple ({ci, πi}i, {c′′i }i, π′, {pk j}j ∪ {pkk}).

• Verify(params, {ci, πi}i, {c′i}i, π, {pk j}j): Check that V(crs, ci, πi) = 1 for all i, 1 ≤ i ≤ n; if this
fails for any value of i abort and return 0. Otherwise, check that V ′(crs′, ({ci}i, {c′i}i, {pk j}j), π) =
1; again, if this fails output 0 and otherwise output 1.

CKLM proved that this generic construction yields a secure compactly verifiable shuffle, as defined
in Definition 2.4. In Section 4, we use this framework to achieve specific efficiency guarantees (namely,
a proof size of O(n+ `)) by plugging in the cm-NIZK constructed in Section 3.
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