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Abstract

The TLS Internet Standard features a mixed bag of cryptographic algorithms and constructions, let-
ting clients and servers negotiate their use for each run of the handshake. Although many ciphersuites
are now well-understood in isolation, their composition remains problematic, and yet it is critical to
obtain practical security guarantees for TLS. We experimentally confirm that all mainstream implemen-
tations of TLS share key materials between different algorithms, some of them of dubious strength. We
outline attacks in their handling of resumption and renegotiation, stressing the need to model multiple
related instances of the handshake.

We study the provable security of the TLS handshake, as it is implemented and deployed. To
capture the details of the standard and its main extensions, we rely on miTLS, a verified reference
implementation of the protocol. miTLS inter-operates with mainstream browsers and servers for many
protocol versions, configurations, and ciphersuites; and it provides application-level, provable security
for some.

We propose new agile security definitions and assumptions for the signatures, key encapsulation
mechanisms (KEM), and key derivation algorithms used by the TLS handshake. By necessity, our
definitions are stronger than those expected with simple modern protocols. To validate our model of
key encapsulation, we prove that both RSA and Diffie-Hellman ciphersuites satisfy our definition for the
KEM. In particular, we formalize the use of PKCS#1v1.5 encryption in TLS, including recommended
countermeasures against Bleichenbacher attacks, and build a 3,000-line EasyCrypt proof of the security
of the resulting master secret KEM against replayable chosen-ciphertext attacks under the assumption
that ciphertexts are hard to re-randomize.

Based on our new agile definitions, we construct a modular proof of security for the miTLS refer-
ence implementation of the handshake, including ciphersuite negotiation, key exchange, renegotiation,
and resumption, treated as a detailed 3,600-line executable model. We present our main definitions,
constructions, and proofs for an abstract model of the protocol, featuring series of related runs of the
handshake with different ciphersuites. We also describe its refinement to account for the whole reference
implementation, based on automated verification tools.
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1 Introduction

TLS is the most widely deployed protocol for securing communications and yet, after two decades of
attacks, patches and extensions, its practical security remains unresolved. One of the most troublesome
aspects of the protocol is its handling of a large number of cryptographic algorithms and constructions.
New extensions are added to the protocol and its implementations, while older features are maintained for
backward compatibility. Thus, TLS clients and servers offer many choices, and each run of the handshake
involves a negotiation of the best protocol version, ciphersuite, and extensions available at both ends. Such
a trade-off between flexibility and security creates several problems:

(1) It makes the security of TLS depend on its correct configuration, inasmuch as some versions (e.g.
SSL2) and algorithms (e.g. MD5 and RC4) are much weaker than others, and may also suffer from
different implementation flaws [see e.g. 12]. In theory, only very restrictive configurations have been
proved secure. In practice, dangerous mis-configurations of TLS and its underlying certificates are
commonplace [see e.g. 26, 21].

(2) It complicates the protocol logic, as the integrity of the negotiation itself relies on algorithms being
negotiated; this is a persistent source of attacks, from protocol regression in SSL2 [62] to version
fallback in current browsers [43].

(3) It demands stronger security assumptions, to reflect the fact that honest parties may use the same
key materials with different algorithms, e.g. the same master secret may be used to key different
pseudo-random functions. Intuitively, TLS on its own enables a range of chosen-protocol attacks
[34, 31]whereby a weak algorithm (chosen by the attacker) may compromise the security of stronger
algorithms (chosen by honest parties). We detail below several constructions of TLS that demand
joint assumptions on collections of algorithms. Surprisingly, prior work on the provable security of
TLS failed to make this observation or left it implicit. The situation is aggravated by the common
practice of buying a single certificate for multiple purposes.

Besides interference between multiple algorithms, TLS features dependencies between multiple runs of
the handshake. For instance, a client connection may first run an RSA-based session to establish a master
secret and keys for the record layer, then run a second session on the same connection, possibly with
different algorithms and certificates. Using a parallel connection, the client may run a third resumption
handshake, re-using the master secret of a prior session to derive new keys. At that point, the security of
those keys depends on algorithms and constructions used in three runs of the handshake. This is in sharp
contrast with prior work on the provable security of TLS [30, 37, 39], which focus on a fixed run of the
protocol, for a fixed choice of algorithms. (See §7.1 for a detailed discussion of related work on provable
security for TLS, and [10] for recent attacks involving triple handshakes.)

1.1 Cryptographic Agility in TLS

Agile security considers families of schemes or protocols, all serving the same purpose, when the same
keys are shared across members of the family. Acar et al. [2] propose agile definitions for pseudo-random
functions (PRF) and encryption schemes, and advocate agility as a major practical concern for protocols
like TLS. Instead, combined, or joint security [28] studies the sharing of keys between constructions serving
different purposes, e.g. encryption and signing. TLS requires both agile and joint security; in the remainder
we let the term agility encompass both concepts. Prior works look at the idiosyncratic use of cryptographic
primitives in TLS such as hash functions and randomness extractors [23, 22], but do not consider agile
security.
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The agility mechanisms of TLS ares primarily driven by ciphersuites of the form TLS e s WITH r, which
indicates a key encapsulation mechanism (KEM) e and signature scheme s for the handshake, and an
authenticated encryption scheme r for the record layer. For instance, the commonly-used ciphersuite
TLS RSA WITH AES 256 CBC SHA indicates an RSA handshake: the client sends a fresh premaster secret
encrypted under the server public key; both parties use it to extract a master secret, used in turn as the
seed of a SHA1-based PRF to derive 4 keys for SHA1-based MACs and AES encryption in CBC mode.
TLS 1.2 currently has 314 registered ciphersuites [29]. More precisely, the choice of algorithms depends
on additional data exchanged during the handshake (hence subject to active attacks), including protocol
versions, certificate requests, certificate chains, Diffie-Hellman group descriptions, and the contents of
various extensions in the first two messages of the handshake (e.g. for choosing hash functions and elliptic
curves). Still, because of key reuse across algorithms, we stress that the security of TLS does not reduce
to the security of a few thousand fixed-algorithm variants of the handshake.

1.2 Empirical Study of Web Servers and Browsers

Using an online analyzer [55], we gathered extended information on server configurations for 215 of the
top 500 domains,1 including the TLS versions, ciphersuites, certificates, and extensions they offer. The full
results are reported in §A.

These servers accept 64 ciphersuites, with an average of 12 and standard deviation of 6. They accept on
average more than 5 encryption algorithms and 2 hash methods. They still widely deploy weak algorithms:
70% accept at least one ciphersuite with MD5 and 90% at least one with RC4.

All servers but one offer several versions; 37% offer only SSL3 and TLS 1.0; 56% offer all 4 versions
from SSL3 to TLS 1.2. Although now forbidden by the standard, 3% still accept SSL2 with compatible
ciphersuites. They all disable TLS-level compression. 86% support the (mandatory) secure renegotiation
extension, leaving the others vulnerable to attacks [56]. 60% support session tickets for resumption.

We also tested 12 TLS clients, including major web browsers (Chrome, Firefox, Internet Explorer,
Safari) and libraries (NSS, OpenSSL, SChannel, Secure Transport). These clients similarly propose a large
number of ciphersuites, ranging from 19 to 36; they all propose weak hash (MD5) or encryption methods
(RC4, or even no encryption). On the other hand, clients tend to support more recent ciphersuites than
servers, notably those based on elliptic curves.

1.3 Cross-Ciphersuite Attacks

As a first, well-known example of key reuse, most TLS servers are configured to use the same RSA certificate
both for signing handshake messages and for decrypting premaster secrets. Experimentally, 69% of the
servers we tested propose at least one ciphersuite using RSA for encryption and one using it for signing,
and, although this practice is discouraged, all 138 of those use the same key for both purposes.

As a second example, Mavrogiannopoulos et al. [49] report an interesting cross-protocol attack be-
tween plain Diffie-Hellman (DH) and Elliptic-Curve Diffie-Hellman (ECDH) ciphersuites, due to a mis-
interpretation of the signed group description sent by the server. Each family of ciphersuites is (a priori)
secure in isolation, but configurations enabling a DH client and an ECDH server are subject to their attack.

Our third example concerns the record algorithms (the r in TLS e s WITH r). Recall that both parties
derive keys for r immediately after the KEM phase, and start using them before verifying the Finished
messages that confirm the integrity of the handshake. As an optimization, the optional False Start TLS
extension [45] lets clients send private application data before key confirmation. Depending on r, the same

1 http://www.alexa.com/topsites/global, as of January 2014, excluding domains with no valid HTTPS certificate.
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key materials are split into IVs, MAC keys, and encryption keys of various lengths. Hence, the client and
the server may start using the same bits with different algorithms rC and rS , for instance as an IV at the
client and as a MAC key at the server. To our knowledge, we are the first to report this cross-algorithm
attack against [45]. We do not have an exploit based on two standard record algorithms (rC , rS) but one
can easily design a pair of schemes strong in isolation and subject to the attack, and key recovery attacks
against any standard algorithm rC could be used to attack strong rS algorithms.

1.4 Multiple Sessions and Connections

Following the standard, we recall TLS terminology for multiple related handshakes; this differs from the
key-exchange model of Bellare & Rogaway [7] with only one kind of sessions and no shared state between
sessions. Local instances of the protocol provide a connection (concretely, taking ownership of a TCP
connection), either as client or as server. Each connection goes through a sequence of epochs, each epoch
running one handshake. For a given connection, we refer to additional handshakes in the sequence as
renegotiations. We refer to epochs performing full handshakes as sessions, and to epochs performing
abbreviated handshakes as resumptions. We have a transition from the current epoch to the next each
time a handshake completes by successfully processing the last message of the handshake. Abstractly, the
local instance never stops; it is then ready to send (or receive) the first message of the next handshake.

Sessions intend to establish a fresh master secret, associated with data extracted from the handshake
messages that record its origin and purpose, and used to derive fresh keys for the record layer. Resumptions
instead rely on a prior complete session to save the cost of public-key cryptography and directly derive
fresh keys using the algorithms and master secret of the original session. For each epoch, the handshake
consists of a series of messages exchanged using the current record-layer protection mechanisms, initially
in the clear, then typically using authenticated encryption.

1.5 Proving the TLS Handshake Secure

The scope of this paper is the TLS handshake, as it is specified in the Internet Standard and (to a lesser
extent) as it is commonly used. We model multiple, related sessions and connections, and the agility issues
caused by multiple ciphersuites featuring RSA and DHE key exchanges. We also model unilateral and
mutual authentication, based on RSA and (EC)DSA signatures. On the other hand, we do not cover PSK,
and ECDHE key exchanges, and we do not investigate the joint usage of keys for signing and encryption.
Our presentation simply treats dual-purpose keys as compromised.

Dual-purpose use of RSA keys is a serious practical concern. Kĺıma and Rosa [35] develop attacks in the
presence of dual-purpose keys, and Degabriele et al. [18] demonstrate their applicability to the context of
the EMV protocol. We further discuss these concerns in §B.2 where we also propose joint security versions
of our agile security definitions for signatures (§2) and KEMs (§3) that may be used to extend our results
to dual-purpose keys.

Our main result is provable security for a standard-compliant, reference implementation of the hand-
shake, seen as a detailed cryptographic model of the protocol. Our provably-secure handshake code consists
of 3,600 lines of F#. Its security relies on new agile assumptions, notably for its KEMs. We reduce them to
lower-level assumptions on RSA encryption and Diffie-Hellman exchange, using a 3,000-line EasyCrypt [5]
proof. Working with a reference implementation, and testing it against mainstream implementations, forces
us to handle the details of multiple handshakes and algorithms. Proving it secure requires both modular-
ity and automation. Conversely, the attacks in §1.3 and §7.2 illustrate the need to jointly model agility,
resumption, and renegotiation.
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A feature of TLS that traditionally resists abstraction is that the handshake releases algorithms and
derived keys to the record layer before the handshake completes, so that its last messages can be exchanged
as TLS fragments protected by the new keys. We revisit the cryptographic folklore that the handshake
can only be proved secure by including these encrypted messages. The kernel of the lore is that it cannot
be proved using a Bellare & Rogaway-style key-exchange definition. To achieve modularity, we separate
record-key generation from handshake completion: our main definition releases the record keys in the
middle of the handshake, before signaling its completion a few messages later. Since the handshake does
not rely on record-layer protection, we can safely let the handshake adversary control both the network and
the record layer. Completion is still necessary to confirm that the record keys are secure before encrypting
any application data, e.g. to guarantee that the adversary did not manipulate the ciphersuite negotiation—
but not for encrypting handshake Finished messages. This resolves the Finished message controversy of
Jager et al. [30] in a novel and surprisingly elegant way.

We stress that this paper establishes the security of the handshake, seen as a component of TLS, not
the full communications protocol. Our main construction provides key indistinguishability, and ensures
agreement on parameters for the record layer. Our results complement those of Bhargavan et al. [9], who
describe miTLS, an implementation of TLS verified in the computational model of cryptography; they focus
on the main TLS API and application security, but rely on stronger, ad hoc assumptions for RSA and
Diffie-Hellman ciphersuites. Our handshake is integrated with miTLS, which provides additional definitions
and verified code for the record layer and the protocol logic. (Their security model ensures in particular
that the record keys are used for protecting application data only after handshake completion [9].) By
composing our results with theirs, we obtain security for a reference implementation of the TLS standard
and the sample applications built and verified on top of miTLS.

1.6 Overview of the Paper

We see the use of a verified reference implementation and automated tools as essential to precisely account
for multiple related epochs and algorithms in the TLS handshake; §6 briefly describes our use of high-level
programming, type systems, and provers to carry out modular cryptographic verification at this scale.
To present our result and explain its proof structure, however, we rely on more succinct definitions and
constructions, given in §2–5 and outlined below. This more abstract treatment suffices to convey the main
ideas, but it necessarily omits many aspects of the handshake, such as its message formats. We refer to the
standard [19] or the implementation for the details. Also, for simplicity, we do not model forward secrecy
and state reveal e.g. for master secrets, and we consider only static compromise for long-term keys.

Agile signatures(§2) and certificates We begin with a relatively simple agile definition. TLS supports
three core signature algorithms, s ∈ {RSA,DSA,ECDSA}, used with a range of algorithms h to hash the
text before signing. The hash algorithm depends on protocol versions, ciphersuites and extensions. TLS
does not enforce any key-based hash algorithm policy, so we need a notion of security that tolerates some
weak algorithms in the standard. For instance, a verifier tricked into using MD5 may remain secure,
provided the signer only uses SHA1, and vice-versa. For each core algorithm s, we define h?-H-security
against an adversary that must forge a valid signature for algorithms (s, h?), given access to signing oracles
for any algorithms (s, h) with h ∈ H. We describe the hash-then-sign construction of TLS, and show that
a family of secure schemes may not be jointly secure, but we leave open its concrete analysis for the range
of algorithms used in TLS.

Our model excludes any validation rules for certificates and their PKI, an important problem outside
the scope of the TLS standard. Our constructions simply authenticate the exchanged certificate chains,
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and use a specification function to extract from them the public keys used in the handshake.

Master secrets, key encapsulation, and key derivation (§3) Following Krawczyk et al. [39], we
use key encapsulation mechanisms [17] to model key-exchange; this allows us to unify RSA and Diffie-
Hellman within the same formalism. Instead of treating the whole handshake as a KEM, however, following
Morrissey et al. [51], we decompose it into premaster secret, master secret, and record-key derivation phases;
this yields the modularity we need e.g. for modeling the re-use of master secrets between handshakes.

We show how to securely construct a master secret KEM from a premaster secret KEM for RSA
and Diffie-Hellman ciphersuites (Theorem 3) and, independently, how to derive record keys and Finished
messages from master secrets (§B.3). We formalize the proof of Theorem 3 in EasyCrypt. For RSA, this
involves showing that countermeasures to Bleichenbacher’s and follow-up attacks [11, 36] provide enough
protection against chosen-ciphertext attacks. We rely on the assumption that PKCS#1v1.5 ciphertexts
are hard to re-randomize; we leave open the problem of further reducing this conjecture to standard RSA
assumptions.2

Our result does not directly compare to the one of Krawczyk et al. as their KEM also includes key
derivation and Finished messages, whereas we rely on this new, additional assumption. During the Easy-
Crypt development, we discovered minor flaws in our first informal proof, as well as in the proof of
Krawczyk et al.; the authors acknowledged these flaws, which fortunately do not affect the overall bound,
and fixed them in a long version of their paper [40]. To comply with the standard, we also support agility
in the algorithm used to extract master secrets from a premaster secrets. As for agile signatures in §2,
we arrive at a definition parameterized by an algorithm for the encryptor and a set of algorithms for the
decryptor.

Once established, the master secret is used to key a pseudo-random function (PRF) for multiple epochs
for two purposes: (1) to derive the record-layer key materials for the epoch; and (2) to compute the MACs
of all messages exchanged in an epoch to verify its integrity. The corresponding security definition is given
in §B.3 and requires that adversaries commit to a record-layer algorithm r before deriving keys from a
nonce. This let us support the negotiation of r without having to make agile assumptions for the record
layer, as discussed in §1.3.

Agile security model (§4) and TLS proof (§5) for multiple sequences of handshakes The
main two goals of the handshake are to establish shared keys for the record layer, and to agree on many
parameters, including those used in the handshake itself. To this end, we propose a new security definition
that covers multiple epochs on different connections, related by resumptions and renegotiations. We
equip our adversary (informally including the rest of TLS, the application, and the network) with oracles
to create honest connections and long-term keys for clients and servers, to control their usage, and to
exchange handshake messages. Each honest instance of the protocol represents a connection, and logs a
sequence of local assignments, recording its view on the successive epochs of the connection. This enables
us to capture TLS assignments in a generic manner. Our main integrity result is that, when a handshake
completes, and under suitable conditions on algorithms and keys, honest clients and servers agree on all
assignments for all epochs on the connection. More explicitly, for new sessions, both parties agree on a
unique label (obtained by concatenating their random values); the negotiation algorithms, parameters,
and key-exchange values; and the optional certificate chains for the client and the server. For resumptions,
both parties agree on the label of the session being resumed, as well as a fresh unique label (obtained by
concatenating new random values) for key derivation.

2Kohlweiss et al. [38] use the same assumption and general proof idea to cover RSA ciphersuites.
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We also provide secure key derivation, depending on distinguished exchange-value assignments for each
ciphersuite. They are somewhat similar to session identifiers in Bellare-Rogaway models but are used to
define both safety, akin to freshness, and partnering. A session is safe when honest client and server agree
on these assignments, under suitable conditions on algorithms and long-term keys. As discussed above,
our definition immediately releases all connection keys. We guarantee that the keys of safe sessions are
indistinguishable from fresh random keys; this accounts for selective session key reveal and test queries in
Bellare-Rogaway models. (In TLS, but not within the handshake, these keys will be used e.g. to encrypt
the Finished messages; record encryption plays no role in our definition.) Additionally, we provide verified
safety, that is, sufficient conditions on the recorded long-term keys that enable honest parties to infer that
their session is safe.

Our main result (§5, Theorem 4) reduces the concrete security of the TLS handshake to agile assump-
tions on the constructions used for signatures, KEMs, and PRFs. Each epoch assigns a distinguished agility-
parameter a, selecting all algorithms for the epoch. The theorem statement is parameterized by a predicate
α on a that holds whenever all algorithms selected by a are (assumed to be) secure. Thus, it provides
meaningful security only for epochs where α(a) holds, despite any other epochs. If α is always false, there
is nothing to prove. If we care specifically about one ciphersuite, say TLS DHE DSS WITH 3DES EDE CBC SHA,
we may apply our theorem with α set to true only when a selects that ciphersuite. This already improves
on non-agile results for TLS that assume all honest parties agree in advance on a ciphersuite and reject
any others.

Figure 1 gives a model of the TLS handshake with enough details to follow our proof. Still, the model
shown covers only two epochs (a static handshake with an anonymous client and a resumption), elides
many details and requires some familiarity with the TLS standard. We recall, however, that our main
result also applies to our standard-compliant implementation of the handshake for miTLS. Our proofs
about this abstract model are parametric on the key exchange method and apply to both static RSA and
DH ciphersuites; however, miTLS does not currently support static Diffie-Hellman ciphersuites.

Our model accounts for agility with respect to record algorithms, and yields channel security for miTLS
without agile assumptions on the algorithms r used in the record layer. We thus validate the use of stateful
LHAE [53] for clients and servers that negotiate r. We require, however, that no application data be sent
before the Finished messages are verified. For implementations that violate this requirement, e.g. all Google
servers and various browsers [45], stronger agile assumptions seem unavoidable.

Code-Based Verified Implementation (§6) We finally present the reference implementation of the
handshake we integrated into miTLS, and its verification against our security definition, based on the same
modular proof structure but at a greater level of detail, relying on type-based verification for scalability.

Our code supports the standard and commonly-used extensions; we tested it against various mainstream
TLS clients and servers, using 4 versions ranging from SSL3 to TLS 1.2, 12 ciphersuites, and various subsets
of extensions. It improves on the original miTLS code [9], which supported less features, and whose security
relied on monolithic, TLS-specific assumptions for RSA and DH ciphersuites. We provide experimental
results, showing that our ‘executable model’ within miTLS runs sample client and server applications with
comparable performance.

To handle agile security in TLS, and to enable its automated verification, our code is structured
into small, independent modules (that is, program libraries) parameterized by algorithm descriptors. For
instance, our library code for the HMAC-based PRF used in TLS implements agility before calling selected
core algorithms, e.g. SHA1. In contrast, the code that implements SHA1 is outside the scope of our
verification effort—we document our agile cryptographic assumption on it, and call a standard library.
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Each cryptographic construction used in the handshake corresponds to a separate library in the code. We
define the security of libraries for multiple keys and multiple algorithms; the corresponding definitions and
reductions to single-key security of individual algorithms appear in §B.4. To further align the code with
proofs, we express security as the indistinguishability of concrete and idealized variants of libraries, under
usage restrictions enforced by a type system, as described by Fournet et al. [24] and Bhargavan et al. [9].

In summary, our work sheds light on important design and implementation issues of TLS; it also suggests
simple improvements to strengthen its security. To our knowledge, we provide the first provable-security
results for TLS that account for algorithm agility. We are also the first to give an abstract security model
for handshakes related by resumption and renegotiation.

Further reading The appendix provides raw data for our empirical analysis of TLS usage, and additional
discussions, definitions, constructions, and proofs. A detailed description of triple-handshake attacks on
TLS can be found at https://www.secure-resumption.com/. Further material is available from the
miTLS website at http://www.mitls.org/.

1.7 Notation

We use sans-serif font for algorithm names, e.g. Alg. If such an algorithm uses a more primitive algorithm,
we denote it by alg. In security experiments, we denote ALG the oracle giving access to algorithm Alg.

We use := for deterministic assignments, and← to denote a random assignment, either uniformly from
a finite set or according to a distribution determined by a probabilistic algorithm. When this distribution
is implied by the context we write it as $; e.g., when describing generic key exchange we use $ to denote the
key space. We sometimes abuse notation and write, e.g., (a, b, c) instead of ((a, b), c) to improve readability.

We use identifiers of cryptographic primitives, like h for a hash algorithm, s for a signature scheme, or
e for a KEM, as both the name of the scheme and the scheme itself when there is no confusion. We denote
signature and KEM schemes constructed from, and thus parameterized by these schemes, by Ss and Ee
respectively. In a similar abuse of notation, we use functions such as r = record(a) to parse a cryptographic
primitive identifier r of a certain kind, here a record algorithm, from a collection a of identifiers for different
kind of cryptographic primitives.

2 Agile Signatures

An agile signature scheme consists of three algorithms: KeyGen is a standard key generation algorithm,
while Sign and Verify take an extra agility parameter. For instance, given a core signature scheme
s = (keygen, sign, verify), the hash-then-sign scheme Ss = (KeyGen, Sign,Verify) of TLS is an agile sig-
nature scheme defined as follows: KeyGen

4
= keygen generates a key pair for algorithm s; Sign(h, sk,m)

4
=

sign(sk, h(m)) computes a signature using the core scheme s and hash algorithm h; and Verify(h, pk,m, σ)
4
=

verify(pk, h(m), σ) verifies a purported signature σ for message m hashed with algorithm h.
We define existential unforgeability under chosen-message attacks (EUF-CMA) for agile signatures.

Definition 1 (EUF-CMA). Let (KeyGen,Sign,Verify) be an agile signature scheme, p? a parameter, and
P a set of parameters, and consider the following forgery game:

Game EUF
4
=

pk, sk ← KeyGen(); M := ∅
m ′, σ ← ASIGN(pk)
return m ′ /∈M ∧ Verify(p?, pk,m ′, σ)

Oracle SIGN(p,m)
4
=

if p /∈ P then return ⊥
M := M ∪ {m}
return Sign(p, sk,m)
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The scheme is (ε, t, p?, P )-secure against EUF-CMA if, for any A that runs in time t, the EUF game returns
true with probability at most ε.

This definition generalizes plain EUF-CMA security; the two coincide for a scheme with fixed hash
algorithm h, i.e. (p?, P ) = (h, {h}). We do not require p? ∈ P ; for instance, one may pragmatically assume
that forging an MD5-based signature is hard when given only SHA1-based signatures. Indeed, the attacks
of Stevens et al. [60] rule out (MD5, {MD5, . . .})-security, but (MD5, {SHA1})-security may still hold. On
the other hand, non-agile security does not imply agile security. Consider for instance the scenario where
the pre-image security of MD5 is broken. Then the attacks described by Naccache and Shparlinski [52] are
likely to break (SHA256, {MD5,SHA256})-security, even though (SHA256, {SHA256})-security would still
hold.

The TLS standard features the following hash-then-sign schemes: prior to version 1.2, RSA PKCS#1v1.5
signatures use the concatenation of MD5 and SHA1 hashes and (EC)DSA signatures use SHA1. TLS 1.2
introduces additional agility to facilitate migration from MD5 and SHA1 to stronger algorithms. Designers
are aware of agility problems, and prescribe ad hoc countermeasures [19, §7.4.3]. The standard still requires
that (EC)DSA use SHA1, delaying the migration to stronger algorithms. It also adds an encoding of the
hash algorithm identifier as defined in [32] to guarantee that all hash algorithms have disjoint range.

Given algorithms h and h′ with disjoint ranges, if the core signature scheme itself is (ε, t)-EUF-CMA
secure on their joint range, then we have (ε′, t′, h, {h, h′})-security for the corresponding agile hash-then-
sign signature scheme, where the difference between ε, t and ε′, t′ depends on the reduction to the collision
resistance of h. Sadly, the core signature schemes used in TLS are not EUF-CMA secure. The best
we can do, for now, is thus to assume that the hash-then-sign signature scheme that uses them meets
Definition 1. (As evidenced by Bleichenbacher at the Crypto’06 rump session and elaborated by Kühn
et al. [41], implementations need to be careful.)

3 Master Secrets & Key Encapsulation

Following [33, 39], we model the basic key-exchange functionality of TLS as different variations on KEMs.
However, we separate the derivation of the master secret from the derivation of keys for the record-layer. We
model the premaster secret phase for RSA and Diffie-Hellman exchanges as agile KEMs (keygen, !enc,dec)
parameterized by a 2-byte protocol version string. (Thankfully, TLS never mixes KEM keys between RSA
and Diffie-Hellman.)

RSA keygen generates a fresh RSA key pair (pk, sk); enc(pv, pk) appends a randomly chosen 46-byte
string to pv to obtain the premaster secret pms, and returns it with the ciphertext c resulting from its
PKCS#1v1.5 encryption under pk; dec(pv, sk, c) decrypts c with sk using PKCS#1v1.5. If the padding is
correct and the decrypted pms is exactly 48 bytes long, it returns pms with the first 2 bytes replaced by
pv, otherwise it returns ⊥; such errors are handled in our ms-KEM below.

Diffie-Hellman keygen selects group parameters pp, generates a fresh pair of DH values (gx, x), and
returns pk = (pp, gx) and sk = (pk, x) as public and private KEM keys; enc(pv, (pp, gx)) samples y and
returns pms = gxy and c = gy; dec(pv, (pk, x), c) returns cx = gxy. The ciphertext space guarantees that c
is in a large prime-order subgroup specified by pk. In contrast to the RSA pms-KEM, neither enc nor dec
depend on pv.

On their own, these two premaster secret KEMs are not secure under any indistinguishability notion,
even under relatively weak active attacks such as, for instance, plaintext-checking attacks (PCA): recall the
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Bleichenbacher attack, and the lack of active security for basic Diffie-Hellman (e.g., querying a plaintext-
checking oracle on cr and pmsr for any r 6= 1, suffices to distinguish a random pms from the one encapsulated
in c). Rather than using pms as a key, TLS feeds it through an agile key extraction function (KEF)
parameterized by a hash algorithm, to compute the master secret ms.

We model the master secret KEM of TLS as an agile labeled KEM (KeyGen,Enc,Dec) whose agility
parameters are pairs composed of a valid protocol version and a hash algorithm name, and where labels
are the concatenation of the client and server nonces.

Generic ms-KEM construction We model this phase of the handshake as an agile labeled KEM,
extending the labeled KEMs of [33, 39] with an agility parameter. Given an agile (unlabeled) pms-KEM
e = (keygen, enc, dec) and an agile key extraction function family KEF, the master secret KEM Ee =
(KeyGen,Enc,Dec) of TLS is defined as follows:

• KeyGen()
4
= keygen();

• Enc(pv, h, pk, `)
4
= pms, c← enc(pv, pk); ms← KEF(pv, h, pms, `); return ms, c

generates a premaster secret pms and a ciphertext c using e, then derives a master secret ms for `
using KEF.

• Dec(pv, h, sk, `, c)
4
= pms← dec(pv, sk, c); if pms = ⊥ then pms← pv‖$; return KEF(pv, h, pms, `)

decrypts the ciphertext c to obtain pms. If decryption fails, it computes a fake pms by appending a
random 46-byte string to pv (this is never the case for DH). It returns the value obtained from pms
and ` using the agile KEF.

We assume sufficient checks to ensure that all arguments are well-formed before calling the master secret
KEM algorithms, otherwise there are practical attacks [46]; e.g., for Diffie-Hellman, our code validates
group parameters and checks that pk and c belong to a large prime-order subgroup before calling Dec. For
RSA, checking that the argument of the DEC oracle is in the ciphertext space does not exclude ciphertexts
with invalid padding—the padding is checked after RSA decryption.

We define security for agile labeled KEMs as indistinguishability under replayable chosen-ciphertext
attacks (IND-RCCA), a relaxation of CCA security, first introduced for public-key encryption by Canetti
et al. [16].

Definition 2 (IND-RCCA). Let (KeyGen,Enc,Dec) be an agile labeled KEM, p? a parameter, P a set of
parameters; and consider the following game:

Game RCCA
4
=

pk, sk ← KeyGen()
K,L := ∅
b← {0, 1}
b′ ← AENC,DEC(pk)
return (b′ = b)

Oracle ENC(`)
4
=

if ` ∈ L then return ⊥
k0, c← Enc(p?, pk, `)
k1 ← $
K(`) := K(`) ∪ {k0, k1}
return kb, c

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {`}
k ← Dec(p, sk, `, c)
if k ∈ K(`) then return ⊥
return k

The RCCA advantage of A, AdvRCCA
p?, P (A) is defined as 2 Pr[RCCA : b′ = b]−1. The scheme is (ε, t, p?, P )-

secure against IND-RCCA-n when the advantage of any adversary A running in time t and making at
most n queries to ENC is at most ε. We write IND-RCCA instead of IND-RCCA-1.

The check ` ∈ L in the decryption oracle reflects a property of TLS: honest servers decrypt at most
once for each nonce. The check ` ∈ L in the encryption oracle is analogous to the restriction of Krawczyk
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et al. [39] to define IND-CCCA security for non-agile KEMs. In §3.3 we remove this usage restriction, and
replace it with the requirement that the adversary (the reduction in the proof) calls a commit oracle before
calling the DEC oracle. This is natural for TLS, where the server commits to a label when it generates its
nonce.

The lemma below enables us to prove security for a single query, then use the multi-query variant for
reasoning about TLS in our main theorem.

Lemma 1. If a KEM (KeyGen,Enc,Dec) is (ε/n, t′, p?, P )-secure against IND-RCCA, then it is (ε, t, p?, P )-
secure against IND-RCCA-n, where t′ = t+O(n · tEnc) and tEnc is the worst-case cost of algorithm Enc.

Proof. Let A be an adversary against IND-RCCA-n and consider the hybrid game RCCAi run with A
whose encryption oracle returns k1 (a random key) for the first i queries and k0 (a real key) for the rest.
The RCCA advantage of A can be written as

AdvRCCA
p?, P (A) = Pr[RCCA0 : b′ = 1]− Pr[RCCAn : b′ = 1]

If A can distinguish between RCCA0 and RCCAn with advantage ε, then using A one can construct an
adversary B that queries ENC only once and has advantage ε/n. Adversary B chooses uniformly an index
i ∈ {1, . . . , n}, answers to A’s first i − 1 queries with a random key and a ciphertext computed using the
Enc algorithm, to the i-th query using its own ENC oracle, and to the rest with real keys as the game
RCCA would do if b = 0. B answers decryption queries forwarding them to its own DEC oracle, returning
⊥ if the answer is a key computed during the simulation of an encryption query with the same label, and
eventually returns the same response as A. When b = 0, for a chosen i the output of the RCCA game for
B is the same as the output of RCCAi−1, and when b = 1 it is the same as the output of RCCAi. We write
RCCA(B) to denote the RCCA game for B. Summing over all i,

AdvRCCA
p?, P (B) = Pr[RCCA(B) : b′ = 1 | b = 0]− Pr[RCCA(B) : b′ = 1 | b = 1]

=
1

n

n∑
i=1

Pr[RCCAi−1 : b′ = 1]− Pr[RCCAi : b′ = 1]

=
1

n

(
Pr[RCCA0 : b′ = 1]− Pr[RCCAn : b′ = 1]

)
=

1

n
AdvRCCA

p?, P (A)

The running time of B is simply that ofA plus the cost of choosing the index i and simulating the encryption
oracle of A, which is essentially n · tEnc.

Next, we define the assumptions for our main theorem on the TLS master secret KEM: non-randomizability
under plaintext-checking attacks (NR-PCA) and one-wayness under plaintext-checking attacks (OW-PCA).

Definition 3 (NR-PCA, OW-PCA). Let (keygen, enc, dec) be an agile (unlabeled) KEM, p? a parameter,
and P a set of parameters. Consider the following games:

Game OW-PCA
4
=

pk, sk ← keygen()
k?, c? ← enc(p?, pk)
k ← APCO(pk, c?)
return (k = k?)

Game NR-PCA
4
=

pk, sk ← keygen()
k?, c? ← enc(p?, pk)
c← APCO(pk, c?)
return (c 6= c? ∧ k? = dec(p?, sk, c))

Oracle PCO(p, k, c)
4
=

if p /∈ P ∨ k = ⊥ then
return ⊥

k′ ← Dec(p, sk, c)
return (k′ = k)

The NR-PCA advantage of A, AdvNR-PCA
p?, P (A) is the probability that the NR-PCA game returns true. The

KEM is (ε, t, p?, P )-secure against NR-PCA if the advantage of any adversary A running in time t is at
most ε. OW-PCA advantage and security are defined analogously.

10



3.1 Security of Premaster Secret KEMs

We give some preliminary theorems and conjectures about the NR-PCA and OW-PCA security of TLS
pms-KEMs, and relate our agile IND-RCCA KEMs to prior work and more standard assumptions. We
hope this will stimulate further cryptanalytic work on TLS.

Conjecture 1 (Non-randomizability of RSA pms-KEM). Due to the random self-reducibility of RSA
encryption, we conjecture that re-randomizing an RSA pms-KEM ciphertext is as hard as solving the
RSA problem (with a considerable reduction loss). In fact, NR-PCA follows from OW-PCA and the
common-input extractability assumption of [6] (swapping the role of randomness and plaintexts). This
latter assumption holds unconditionally for small exponent RSA and certain parameters—not those of
TLS—of the PKCS#1v1.5 encoding.

Note that the DH pms-KEM is trivially non-randomizable, as it has unique ciphertexts, and that
security against NR-PCA implies security against OW-PCA as long as it is easy to find more than one
ciphertext of a given plaintext.

Conjecture 2 (OW-PCA security of RSA pms-KEM). [33] gives us reason to believe that the RSA pms-
KEM is (ε, t)-OW-PCA secure under the (ε′, t′)-partial-RSA decision oracle assisted RSA assumption where
ε′, t′ are, however, not tight.

Theorem 1 (OW-PCA security of DH pms-KEM). The DH pms-KEM is (ε, t)-OW-PCA secure under
the (ε, t′)-Strong Diffie-Hellman assumption [1], where t′ is essentially t. This is the assumption that it is
hard to compute gxy given gx, gy and access to a DDH oracle with the first argument fixed to gx.

Proof. The reduction B receives pp, gx, gy as input and has access to a restricted DDH oracle DDH(gx, ·, ·).
B calls the OW-PCA adversary with parameters (pp, gx) as pk and gy as c, and answers a plaintext-checking
query PCO(pv, pms, c) using DDH(gx, c, pms). B returns to its challenger the key output by the OW-PCA
adversary. If the OW-PCA adversary succeeds, then this key equals gxy and B wins its game.

Theorem 2 (Security under PRF-ODH). The ms-KEM EDH = (KeyGen,Enc,Dec) is (ε, t, p, {p})-IND-
RCCA under the (ε, t)-PRF-ODH assumption for the group parameters pp generated by KeyGen and the
pseudo-random function fguv(·) defined as KEF(p, guv, ·).

In fact under the PRF-ODH formulation of Krawczyk et al. [39], EDH is (ε, t, h, {h})-IND-CCA secure,
even if TLS would allow the reuse of nonces.

3.2 Security of Master Secret KEM

Our main result on KEMs is that the generic ms-KEM Ee of TLS is IND-RCCA secure if the underlying
pms-KEM e is both NR-PCA and OW-PCA secure. The proof has been formalized using EasyCrypt.
The proof is in the random oracle model for the agile KEF. As weaker hash algorithms like MD5 are still
widely supported by TLS, a proof in the random oracle is particularly problematic for TLS as it is used
today. We investigate ways to avoid the random oracle assumption for all hash algorithms except the one
being attacked in §B.1, but it is instructive to consider the setting where all KEF functions are modeled as
random oracles first.

We prove security in the single-challenge case and rely on Theorem 1 to extend it to the multi-challenge
setting.
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Theorem 3 (RCCA from NR-PCA and OW-PCA). Let A be a (p?, P )-RCCA adversary for Ee running
in time tA and making at most qKEF and qDEC queries to the random and decryption oracle, respectively.
Let p? = (pv?, h?) and P ′

4
= {pv | (pv, h) ∈ P}. There exist an OW-PCA adversary B and an NR-PCA

adversary C against e, both running in time tA +O(qDEC · qKEF), such that

AdvRCCA
p?, P (A) ≤ 2

(
AdvNR-PCA

pv?, P ′ (B) + AdvOW-PCA
pv?, P ′ (C) + 2|pv|−|pms| (qKEF + qDEC)

)
.

The factor 2|pv|−|pms| is the entropy of the value pv ‖ $ used to derive the master secret when RSA
decryption fails, as recommended by TLS 1.2 to mitigate Bleichenbacher attacks. With the DH pms-KEM,
decryption never fails (as the ciphertext validation is done beforehand) so the last term in the bound above
can be omitted.

Proof. In the single-challenge setting, we can represent the adversary A as a pair of procedures (A1,A2)
sharing state, the procedure A1 chooses the label for the single query to the encryption oracle, while A2

tries to guess the challenge bit b. The initial game in the ROM is thus:

Game RCCA
4
=

pk, sk ← KeyGen()
Q,K,L := ∅; b← {0, 1}
`? ← AKEF,DEC

1 (pk)
if `? ∈ L then return false
ms0, c

? ← Enc(p?, pk, `?)
ms1 ← $; K(`?) := {ms0,ms1}
b′ ← AKEF,DEC

2 (msb, c
?)

return (b′ = b)

Oracle KEF(p, pms, `)
4
=

if (p, pms, `) /∈ dom(Q) then
Q(p, pms, `)← $

return Q(p, pms, `)

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {`}
ms← Dec(p, sk, `, c)
if ms ∈ K(`) then return ⊥
return ms

The proof proceeds by a sequence of games; we describe them below.

• RCCA0. We inline the definition of Dec in the initial game, and move the call to the enc algorithm of the
pms-KEM used to compute pms? before the first call to the adversary. This game is perfectly equivalent
to the initial game because the label chosen by A1 is not needed to compute pms?.

• RCCA1. At the beginning of the game, for each pair (pv, `), sample a random string F (pv, `). When
decryption of the pms fails during a decryption query, use pv‖F (pv, `) in place of pv‖$ to compute the
master secret. Since each label ` appears at most once in a decryption query, each of the used values is
random and independent as in RCCA0 and the two games are equivalent.

• RCCA2. When decryption of the pms fails during a decryption query, simply use a random ms rather
than KEF((pv, h), pv‖F (pv, `), `). This only makes a difference if the adversary makes this query directly
and hence

Pr[RCCA1 : b = b′] ≤ Pr[RCCA2 : b = b′] + Pr[RCCA2 : ∃pv h `, ((pv, h), pv‖F (pv, `), `) ∈ dom(Q)]

Moreover, since dom(Q) contains at most qKEF + qDEC values, and each one determines a unique pair
(pv, `), the latter probability is at most 2|pv|−|pms|(qKEF + qDEC). Note that in game RCCA2 the values
F (pv, `) are independent of dom(Q) because they are never used to answer decryption queries.

• RCCA3. Same as RCCA2, but using a random ms0. The game aborts when either A1 or A2 query
directly KEF(p?, pms?, ·), or A2 queries the decryption oracle with p?, `? and a valid ciphertext c 6= c?
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that decrypts to pms?. Note that the first abort condition would allow one to compute pms? from A’s
queries using a plaintext-checking oracle, while the second condition yields a re-randomization of the
challenge ciphertext. Moreover, since both ms0 and ms1 are random, the view of the adversary in this
game is independent of the challenge bit b, which means that Pr[RCCA3 : b = b′] = 1/2. Thus,

Pr[RCCA2 : b = b′]− Pr[RCCA3 : b = b′] = Pr[RCCA2 : b = b′]− 1/2 ≤ Pr[RCCA3 : abort]

• RCCA4. Since the view of the adversary is independent of the bit b and we only care about the probability
of the simulation aborting, we drop b and give the adversary a random challenge ms0 (unrelated to pms?).
We reformulate the simulation of KEF and decryption queries using two maps Q1 and Q2 as follows:

Game RCCA4
4
=

pk, sk ← KeyGen()
Q1, Q2,K, L := ∅
(pms?, c?)← enc(pv?, pk)

`? ← AKEF,DEC
1 (pk)

ms0,ms1 ← $
K(`?) := {ms0,ms1}
b′ ← AKEF,DEC

2 (ms0, c
?)

Oracle KEF(p, pms, `)
4
=

if (p, pms, `) /∈ dom(Q1) then
Q1(p, pms, `)← $
if ` ∈ dom(Q2) then

(pv, h,ms, c) := Q2(`)
if (pv, h) = p ∧ pms = dec(pv, sk, c)
then Q1(p, pms, `)← ms

return Q1(p, pms, `)

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {`}
if (p, `, c) = (p?, `?, c?) then return ⊥
(pv, h) := p; pms← dec(pv, sk, c)
if (p, pms, `) ∈ dom(Q1)
then ms := Q1(p, pms, `) else ms← $
Q2(`) := (p,ms, c)
if ms ∈ K(`) then return ⊥
return ms

The simulation is such that if (pv, h, pms, `) is an entry in Q in RCCA3, then either it is also in Q1

and the associated ms values coincide, or else Q2 maps ` to (pv, h,ms, c) where ms = Q(pv, h, pms, `)
and dec(pv, sk, c) = pms. This allows the simulator to answer KEF and decryption queries consistently.
Moreover, we have

Pr[RCCA3 : abort] ≤
Pr[RCCA4 : ∃`, (p?, pms?, `) ∈ dom(Q1)] +
Pr[RCCA4 : `? ∈ dom(Q2) ∧ let (pv, h,ms, c) = Q2(`

?) in (pv, h) = p? ∧ c 6= c? ∧ dec(pv, sk, c) = pms?]

We bound each of the terms on the right-hand-side of this inequality independently using reductions to
OW-PCA and NR-PCA.

• We use the following adversaries against OW-PCA and NR-PCA:

Adversary BPCO(pk, c?)
4
=

Q1, Q2,K, L := ∅
`? ← AKEF,DEC

1 (pk)
ms0,ms1 ← $
K(`?) := {ms0,ms1}
b′ ← AKEF,DEC

2 (ms0, c
?)

foreach (pv, h, pms, `) ∈ dom(Q1) do
if PCO(pv, pms, c?) then return pms

return $

Adversary CPCO(pk, c?)
4
=

Q1, Q2,K, L := ∅
`? ← AKEF,DEC

1 (pk)
ms0,ms1 ← $
K(`?) := {ms0,ms1}
b′ ← AKEF,DEC

2 (ms0, c
?)

(pv, h,ms, c) := Q2(`?)
return c

Both adversaries simulate oracles KEF and DEC as in game RCCA4, except that all checks are imple-
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mented using the PCO oracle rather than the secret key:

Oracle KEF(p, pms, `)
4
=

if (p, pms, `) /∈ dom(Q1) then
Q1(p, pms, `)← $
if ` ∈ dom(Q2) then

(pv, h,ms, c) := Q2(`)
if (pv, h) = p ∧ PCO(pv, pms, c)
then Q1(p, pms, `)← ms

return Q1(p, pms, `)

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {`}
if (p, `, c) = (p?, `?, c?) then return ⊥
(pv, h) := p; pms := ⊥
foreach (p′, pms′, `′) ∈ dom(Q1) do

if p = p′ ∧ ` = `′ ∧ PCO(pv, pms′, c) then pms := pms′

if pms 6= ⊥ then ms := Q1(p, pms, `) else ms← $
Q2(`) := (p,ms, c)
if ms ∈ K(`) then return ⊥
return ms

We have Pr[RCCA4 : ∃`, (p?, pms?, `) ∈ dom(Q1)] ≤ AdvOW-PCA
pv?, P ′ (B) and

Pr[RCCA4 : `? ∈ dom(Q2) ∧ let (pv, h,ms, c) = Q2(`
?) in (pv, h) = p? ∧ c 6= c? ∧ dec(pv, sk, c) = pms?]

≤ AdvNR-PCA
pv?, P ′ (C)

Putting all the above results together,

Pr[RCCA : b′ = b]− 1/2 ≤ AdvOW-PCA
pv?, P ′ (B) + AdvNR-PCA

pv?, P ′ (C) + 2|pv|−|pms| (qKEF + qDEC)

from which the bound in the statement follows. Moreover, observe that under the convention that oracle
calls have unit cost, the overhead of B and C is dominated by the cost of simulating decryption queries,
which is O(qKEF) for a single query and O(qDEC · qKEF) overall.

3.3 Committed RCCA Security

The RCCA game has a seemingly artificial restriction, namely that an adversary has to query ENC on a
label ` before using the same ` in a decryption query. Unless one designs reductions carefully, it is unlikely
that such a restriction will be met by an arbitrary adversary in an interactive protocol. Indeed in TLS the
adversary is in control of the network, and upon learning a server’s nonce (completing a label), can ask
it to decrypt a ciphertext under that label before sending the nonce on to the client. We found that an
earlier version of [39] and our proof of the handshake did not account for such attackers.

The following asymptotically equivalent committed RCCA definition removes this usage restriction, and
replaces it with the requirement that the reduction (the adversary in the game) calls a COMMIT oracle
before calling the DEC oracle. This is natural for TLS, where the server can commit to a label when it
generates its nonce. The definition also replaces a result of ⊥ upon decryption of a challenge master secret,
by ideal decryption using table lookup. This makes the oracles easier to use in reductions and more similar
to the idealized libraries of [9].

Definition 4 (Committed RCCA Security). Let (KeyGen,Enc,Dec) be an agile labeled KEM, P a set of
agility parameters and p? a public parameter. Consider the following game played between an adversary A
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and the challenger:

Game CRCCA
4
=

pk, sk ← KeyGen()
S, T := ∅
b← {0, 1}
b′ ← ACOMMIT,ENC,DEC(pk)
return (b′ = b)

Oracle COMMIT(`)
if S(`) 6= ∅ then return ⊥
S(`) := S(`) ∪ {c}
if b then
k0, c← Enc(p?, pk, `)
k1 ← $
T (`) := (c, k0, k1)

Oracle ENC(`)
4
=

if e ∈ S(`) then return
S(`) := S(`) ∪ {e}
if b then

if c /∈ S(`) then
k0, c← Enc(p?, pk, `);
k ← $
T (`) := (c, k0, k)

else (c, k0, k) := T (`)
else k, c← Enc(p?, pk, `)
return k, c

Oracle DEC(p, `, c)
4
=

if c /∈ S(`) ∨ d ∈ S(`) ∨ p /∈ P
then return ⊥
S(`) := S(`) ∪ {d}
k ← Dec(p, sk, `, c)
if b then

(c0, k0, k1) := T (`)
if k = k0 then k := k1

return k

The challenger maintains a set of flags S(`) for each label `. S(`) is initially ∅, flag c is added when
the adversary commits to `, e when it queries ENC on ` and d when it queries DEC on `. Encrypting or
decrypting twice with the same label yields uninformative answers, and the adversary can query both ENC
and DEC on ` only if it first committed to the label.

The IND-CRCCA advantage of A, AdvCRCCA
p?, P (A) is defined as 2 Pr[CRCCA : b′ = b] − 1. We say the

KEM is (ε, t, p?, P )-secure against IND-CRCCA if the advantage of any adversary A running in time t is
at most ε.

Let ENC′ and DEC′ refer to the oracles of RCCA. An adversary A against CRCCA that makes qENC and
qDEC decryption queries, respectively, can be turned into an RCCA adversary B that achieves essentially
the same advantage, but makes qDEC extra decryption queries to ENC′. All that B has to do is to explicitly
query its oracle ENC′ on ` when A makes a decryption query with label `; B answers using its oracle DEC′,
returning the key it gets from ENC′(`) if DEC′ returns ⊥.

Tolerating Weak Hash Functions and Ad Hoc Long-Term-Key Usage As shown in §1.2, many
servers still accept MD5 for backward compatibility, so it is pragmatically important to protect (at least)
clients that never accept MD5. To this end, instead of assuming a global random oracle for KEF, §B.1 pro-
vides a more realistic definition for pms-KEMs that suffices to prove security of the ms-KEM construction
despite weak hash algorithms at the server.

Another practical concern is the sharing of long-term secret keys between signatures and KEMs. Ac-
cordingly, §B.2 gives joint security definitions, one for signatures schemes with a ms-KEM decryption
oracle, and one for ms-KEM schemes with a signing oracle. This merely makes this real-world deployment
assumption explicit—its assessment is left for future work.

4 Defining Agile Security for Multiple Sequences of Handshakes

Our security definition for handshakes is general enough to apply to TLS, as specified in the standard
and coded in miTLS, while hiding implementation details like message formats and specific cryptographic
constructions. The adversary creates and interacts with multiple instances i of a handshake protocol Π by
calling Π’s oracles, detailed below. Each instance has a fixed role R, either C for Client or S for Server,
and models a connection endpoint.
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• KeyGen(v) creates and stores a new honest keypair for the long-term public-key algorithm v (in
TLS, ranging over s for signing and e for key encapsulation) and returns the associated public key.
Similarly, KeyInject(v, pk, sk) stores a dishonest keypair (assuming pk is not yet in the store).

• Init(R, cfgR) creates an instance with role R and local configuration cfgR; it returns a fresh handle i.
The handle i is global (it identifies an instance of the handshake and indirectly, through a certificate
in cfgR, a party) rather than local (identifying a “session” for a specific party) as in models like
Bellare & Rogaway’s.

• Sendi(frag) lets an existing instance i process a fragment, depending on its current state. An empty
string is used when there is no fragment to process. As a result, the instance may update its state,
assign local variables, and return a response. (In TLS, responses range over sequences of handshake
and CCS message fragments, intended to be sent to the peer, as well as error messages.)

• Controli(env) changes the global, internal state of the handshake, e.g., enabling the adversary to
control access to stored sessions and private keys by the protocol the next time Send will be called,
or to trigger a renegotiation request for an existing instance i. This single oracle accounts for
many control functions in the miTLS handshake implementation. For example, Control provides the
environment with means to reject certificates that it deems invalid.

Each instance maintains its private local state (e.g. using local variables and the state machine depicted
in Figure 4). Each instance can go through a sequence of epochs (e.g. recording the number of cycles in
the state machine). For each epoch, it records a sequence of variable assignments, extended as the result
of calls to Send and Control. Each variable is assigned at most once in every epoch. The selection and
ordering of assignments within an epoch depends on the protocol; for instance, a client epoch may assign
its client-certificate variable, then send a message to the server, causing the server epoch to record the
same assignment later in the protocol.

Our definition is based on local variable assignments, which summarize the view of clients and servers
so far about each epoch. This is adequate to model the handshake as a component within TLS, but
this differs from models based on matching conversations [7] that compare the (unparsed) messages they
have sent and received so far. We use assignments to express the main goals of the protocol, for instance
assigning a fresh random value to the record key variable k; and agreeing on all assignments as a session
completes. We list below the main variables used in our presentation, but our definition can account for a
more detailed model of the TLS handshake.

` epoch identifier; in TLS, the concatenation of the client and server random values.
`session resumption identifier; in TLS, the identifier of the epoch that completed the session being

resumed. (The miTLS code also assigns the TLS sessionId, chosen by the server, but we do
not use it as an identifier as it is not necessarily unique.)

aC , aS client and server negotiation parameters; in TLS, they consist of protocol versions, cipher-
suites, and extension messages.

a agility parameter; in TLS, the protocol version, the negotiated ciphersuite, and data ex-
tracted from the first flight of messages sent by the server.

certC ,certS client and server certificate chains. In TLS, these certificates are optional; e.g. the assignment
certC := ⊥ denotes the absence of client certificate.

exC , exS client and server exchange variables, possibly secret, used to specify safety.
k record key for the epoch; in TLS, depending on a, this key is usually split into 4 keys for

MAC & encrypt.
complete successful completion flag, marking the end of the handshake for this epoch.

16



Unless explicitly mentioned for key-exchange materials, these variables are public: the adversary can
read them, but not change them; the protocol can write them once in every epoch, but not read them.
In particular, the adversaries we consider in compositional proofs of TLS can use the key k e.g. to
encrypt Finished messages. (Conversely, the no-read restriction prevents the handshake from leaking k
in subsequent messages; this matters once we replace k with a random value.) The agility-parameter
variable a determines the algorithms and constructions used by the handshake. Our security properties
are conditioned by a strength predicate α(a) that indicates whether those algorithms are strong enough to
secure the epoch. When the role of an epoch is clear from the context, the peer refers to the opposite role,
and the peer-exchange variable refers to the exchange variable of the opposite role (e.g. exC when R is S).

We deliberately avoid modeling certificate validation. For the handshake, certificate chains are authenti-
cated, uninterpreted bitstrings. We leave as future work supplementing our model with an application-level
certificate infrastructure above the miTLS API. We assume given a public specification function pk(cert)
that returns either the public key associated with a certificate chain, or ⊥. The session state does not need
to explicitly mention public keys, but public keys can appear in exchange variables.

A security model for a protocol describes how queries are answered and how session variables are
assigned. Next, we define properties of these models as they interact with an adversary.

Definition 5 (Honesty, Safety, Matching Algorithms and Completion). For a handshake protocol Π and
a strength predicate α(·), an adversary that calls Π’s oracles any number of times produces a trace of
interleaved variable assignments for a series of epochs for each instance. In this trace:

• As determined by its assigned agility parameter a: an epoch is either a session, with distinguished
client- and server-exchange variables, or a resumption, with an `session variable; sessions (and their
exchange variables) are either static or ephemeral; a static session has at least one static exchange
variable; an ephemeral session has only ephemeral exchange variables.

• A (long-term) public key is honest for algorithm v if it was returned by a call to KeyGen(v). All other
keys are generated by the adversary and thus not honest. A session’s ephemeral server-exchange
variable assignment is honest if there is a server session with the same assignment to its server-
exchange variable—and conversely for ephemeral client-exchange variables.

• A client session is safe if (i) α(a) holds; (ii) honest public keys for a’s algorithms are assigned to
all static exchange variables; and (iii) there is a server session with the same assignment to the
ephemeral server-exchange variable. A server session is safe if the converse holds.
(Said otherwise, a session is safe if α(a) holds and all static exchange variables and ephemeral peer-
exchange variable assignments are honest.)

• A resumption is safe if α(a) holds and `session is the identifier of a safe and complete session.
• An epoch has matching algorithm r = record(a) when there is a peer epoch with the same identifier `

and algorithm r.
• An epoch is complete when it includes the assignment complete := 1.

Anticipating on §5, for TLS we define the client exchange value exC to be the master secret ms together
with the KEM public key pk, and the server-exchange variable exS to be the public key pk of the KEM. The
latter is static for TLS-RSA, but ephemeral for TLS-DHE. Here ms is explicitly secret and ephemeral.3

Definition 6 (Handshake Security). Let Π be a handshake protocol, α(·) a strength predicate, and A an
adversary that calls Π’s oracles any number of times. Consider the following security properties:

3The use of ms instead of the KEM ciphertext and other public values allows us to prove security of the handshake, even
if PKCS#1v1.5 ciphertexts are re-randomizable, despite NR-PCA being broken, as long as the ms-KEM is still IND-RCCA
secure.
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(1) Uniqueness: epoch identifiers are used at most once in each role.

Let AdvU(A) be the probability that two different epochs with the same role assign the same value to
` when A terminates.

(2) Verified Safety: if the peer of a session uses a strong signature algorithm to authenticate and the
public-key for the peer signature is honest, then the peer-exchange variable assignment is honest.

Let AdvS(A) be the probability that, when A terminates, there is an epoch such that α(a) holds; the
public key of the peer is honest; and the assignment to the peer exchange value is not honest (i.e. not
assigned by any peer);

(3) Agile Key Derivation: depending on a random bit b, replace the record key assigned in safe epochs
with matching algorithm r with a fresh k ← KeyGen(r), assigning the same value to epochs that have
the same identifier `, algorithms kdf(a) and exchange variables or resumption identifier.

Let AdvK(A) = 2p− 1 where p is the probability that A returns b.

(4) Agreement: for every safe and complete epoch, there is a safe epoch in the other role such that their
two protocol instances agree on all prior assignments.

Let AdvI(A) be the probability that, when A terminates: an instance created by Init(R, cfg) assigns
complete := 1 in a safe epoch; and no instance created by Init(R, cfg′) begins with a series of epochs
with the same assignments to all variables (up to, but possibly excluding complete := 1).

Let AdvTLS
α (A) be maxG∈{U,S,K,I}AdvG(A). The handshake is (ε, t, α)-secure when for any adversary A

running in time t, we have AdvTLS
α (A) ≤ ε.

Discussion The properties above are given in chronological order: in TLS in particular, protocol in-
stances first exchange fresh random values, then derive keys, and finally confirm the integrity of the session
negotiation.

Property (1) simply ensures that ` provides a unique identifier, later authenticated using (4); we use
these identifiers for matching client and server sessions.

Property (2) enables, for instance, a client that trusts both the negotiated algorithm and the server
certificates to deduce that its server-exchange variable is honest, and conclude that its session is safe.

Property (3) idealizes the derived key; this is key indistinguishability. Recall that TLS uses the key
before the two parties actually agree on the record algorithms. Conservatively, (3) idealizes the key only
when the record algorithms match. (§B.5 defines an alternative property for constructions that deliver fixed-
sized keys irrespective of the algorithm, but constructions that use those keys with different algorithms
require record agility.) As Krawczyk et al. [39], our model does not consider forward secrecy. We discuss
forward secure variants of Verified Safety and Agile Key Derivation in §B.5.

Property (4) guarantees agreement on all variable assignments at the client and server instances since
their creation, not just the assignments of the current epoch. Hence, as soon as one epoch safely com-
pletes, the peers agree also on all prior epochs on that connection—even those that were not safe, or not
verifiably safe. However, the final assignment to complete is not itself authenticated, as the two instances
asynchronously complete the epoch. Similarly, the ordering of assignments at the client and at the server
may differ, as illustrated in Figure 1. For TLS, this property holds only thanks to the (mandatory) secure
renegotiation extension, which links each epoch to its predecessor. This property is closely related to
the TLS renegotiation results of Giesen et al. [27]. They additionally propose an extension of TLS that
would guarantee agreement on the full stream of application data, not just the handshake epochs. On the
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other hand, our model and security definition also cover resumptions and RSA ciphersuites, which are not
covered by their results.

Unlike previous analyses of TLS, our definition accounts for session resumptions. Property (4) guaran-
tees agreement on the new epoch identifier ` and the identifier `session of the resumed session (and hence
on the new record keys), as long as the original session is safe. The epochs of the original session may be
on a different connection, between a different pair of instances; for those instances, safety for the original
session independently guarantees agreement on all its original variable assignments.

TLS applications often group connections that use the same session or the same long-term key, allow-
ing them to share resources and access rights. For example, web browsers allow all connections to the
same server to share resources via the Same Origin Policy. It may seem desirable to guarantee a strong
relationship between such connections, but our Property (4) guarantees agreement only for the sequence
of epochs over a single connection. Indeed, the natural extension of this property to multiple connections
does not hold for TLS, as shown by the triple handshake attack of Bhargavan et al. [10]. In this attack, an
unsafe server-authenticated session is resumed on a new connection and then renegotiated with a new safe
mutually-authenticated session. For the new safe epoch, Property (4) retroactively guarantees agreement
on the prior resumption, but not on the original unsafe session that was resumed. Consequently, it is
possible for a client and server instance to have a safe epoch but inconsistent variable assignments for the
session associated with a prior resumed epoch; this leads to a variety of attacks, similar to the renegotia-
tion attacks of Ray [56]. A stronger agreement can be achieved either at the application level, by checking
agreement on prior connections, or by a protocol extension that includes a hash of the log of the original
session in resumption handshakes [10]; we leave the modeling of this extension and its security for future
work.

Compared with classic key exchange models [7] and the key exchange part of ACCE [30], our definition
yields useful additional properties. Property (4) guarantees agreement on the negotiation parameters aC
and aS for safe and complete epochs, thereby preventing version and ciphersuite rollback attacks (see §7.2).

Our definition also provides (some) security for anonymous connections, which can be composed with
other authentication mechanisms to achieve application security. For example, renegotiation with client and
server certificates may provide mutual authentication on top of an initial, safe, but anonymous handshake.
Late application-level, client password authentication may also yield mutual authentication, as illustrated
by miTLS [9].

5 Proving Agile Security for TLS Handshakes

We are now ready to reduce the security of TLS handshakes to the security of agile signatures, KEMs and
PRFs. From these primitives we build three agile libraries S , E , D for signing (§2), key encapsulation (§3),
and KDF-MAC (§B.3). This last library provides an intermediate abstraction, keyed by master secrets
and used both for deriving record keys (using KDF) and producing Finished message tags (using MAC).

In §B.3, we define its security and show that the construction used in TLS, essentially a keyed hash with
separate labels for key derivation and for MACing, is secure under the agile-PRF assumption proposed
by Acar et al. [2]. We model key derivation in two steps, first as an agile family of PRFs, then as an agile
functionality that separates its different usages and ensures that the derived record key is used with the
same algorithms by the client and by the server. To elide details handled in the miTLS implementation,
such as output lengths depending on agile parameters, we assume that PRF supports arbitrary size inputs
and that its output is long enough to cover all TLS ciphersuites. Let b.cr and b.cp be functions that truncate
to the record-key and MAC sizes, respectively. We define functionally correct algorithms by truncations:
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Client Server

`C ← $; aC := cfgC .aC ClientHello[`C , aC ] `S ← $; ` := `C ‖`S ; sid← $
certS := cfgS .cert; certC := ⊥
pk := pk(certS)
sk := lookup sk using pk
a, aS := algS(cfgS , aC); exS := pk
E .Commit(e, pE , pk, `)
D.Commit(r, pD , `)

ServerHello[`S , aS , sid]
ServerCertificate[certS ]
ServerHelloDone

` := `C ‖`S ; a := algC(cfgC , aS)
pk := pk(certS)
c,ms← E .Enc(e, pE , pk, `)
exS := pk; exC := (pk,ms)
k := D.KDF(pD ,ms, `, r)
logC := 〈all prior epoch messages〉
tagC := D.MAC(pD ,ms, “C”, logC)

ClientKeyExchange[c]

ClientFinished[tagC ]

ms← E .Dec(e, pE , sk, `, c)
exC := (pk,ms)
logC := 〈all prior epoch messages〉
tagC

?
= D.MAC(pD ,ms, “C”, logC)

k := D.KDF(pD ,ms, `, r)
logS := 〈all prior epoch messages〉
tagS := D.MAC(pD ,ms, “S”, logS)
complete := 1; store (`, sid,ms)ServerFinished[tagS ]

logS := 〈all prior epoch messages〉
tagS

?
= D.MAC(pD ,ms, “S”, logS)

complete := 1

Client resumes session (`, sid,ms) using configuration aC and previous epoch’s tagC, tagS
`C ← $; `session := ` ClientHello[`C , aC , sid, tagC ] lookup (`session,ms, tagS) using sid

`S ← $; `session := `session

ServerHello[`S , aS , sid, tagC , tagS ] ` := `C ‖`S
k := D.KDF(pD ,ms, `, r)
logS := 〈all prior epoch messages〉
tagS := D.MAC(pD ,ms, “S”, logS)
logC := 〈all prior epoch messages〉

ServerFinished[tagS ]

` := `C ‖`S
k := D.KDF(pD ,ms, `, r)
logS := 〈all prior epoch messages〉
tagS

?
= D.MAC(pD ,ms, “S”, logS)

logC := 〈all prior epoch messages〉
tagC := D.MAC(pD ,ms, “C”, logC)
complete := 1

tagC
?
= D.MAC(pD ,ms, “C”, logC)

complete := 1
ClientFinished[tagC ]

Two epochs on the same connection: the first handshake establishes a session without client authentication using
non-ephemeral (RSA) keys; the second handshake resumes the session. The protocol uses libraries for signatures (S ),
KEMs (E) and KDF-MAC (D). (1) Failed checks

?
= stop the instance; (2) We use := for assigning epoch variables

and assume variables exchanged in messages are implicitly assigned. For instance, the client assigns `C before sending
the first message, and the server assigns `C and aC after parsing it. (3) We omit the extraction of the negotiated
algorithms e, pE , s, pS , pD , r from a. For instance, we write r for record(a). (4) We omit ChangeCipherSpec messages.
(5) 〈all prior epoch messages〉 means the concatenation of all messages sent and received so far, starting from the
latest ClientHello message.

Figure 1: Abstract model of the TLS handshake protocol (Static Handshake; Resumption)
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Client Server

`C ← $; aC := cfgC .aC ClientHello[`C , aC ] `S ← $; ` := `C ‖`S ; sid← $
certS := cfgS .cert; certC := ⊥
pk := pk(certS)
sk := lookup sk using pk
a, aS := algS(cfgS , aC)
ske, pke ← E .KeyGen(e)
σ ← S .Sign(s, pS , sk, pke)
E .Commit(e, pE , pke, `)
D.Commit(r, pD , `)
exS := pke

ServerHello[`S , aS , sid]
ServerCertificate[certS ]
ServerKeyExchange[pke, σ]
ServerHelloDone

` := `C ‖`S ; a := algC(cfgC , aS)

S .Verify(s, pS , pk, pke, σ)
?
= 1

c,ms← E .Enc(e, pE , pke, `)
exS := pke; exC := (pke,ms)
k := D.KDF(pD ,ms, `, r)
logC := 〈all prior epoch messages〉
tagC := D.MAC(pD ,ms, “C”, logC)

ClientKeyExchange[c]

ClientFinished[tagC ]

ms← E .Dec(e, pE , ske, `, c)
logC := 〈all prior epoch messages〉
exC := (pke,ms)

tagC
?
= D.MAC(pD ,ms, “C”, logC)

k := D.KDF(pD ,ms, `, r)
logS := 〈all prior epoch messages〉
tagS := D.MAC(pD ,ms, “S”, logS)
complete := 1; store (`, sid,ms)

ServerFinished[tagS ]

logS := 〈all prior epoch messages〉
tagS

?
= D.MAC(pD ,ms, “S”, logS)

complete := 1

Figure 2: Abstract model of the TLS handshake protocol for ephemeral sessions

KDF(p,ms, `, r)
4
= bPRF(p,ms, "key expansion" ‖ `S ‖ `C)cr and MAC(p,ms, t, v)

4
= bPRF(p,ms, t ‖ v)cp

where t is either "client finished" or "server finished". We let AdvUCR
p?, P (A) be the probability that

A produces a collision p, k, v, k′, v′, p ∈ P , (k, v) 6= (k′, v′) such that bPrf(p?, k, t‖v)cp? = bPrf(p, k′, t‖v′)cp.
As Prf is unkeyed, we formulate the theorem as suggested in [59].

We structure the proof to apply simultaneously to the protocol, illustrated in Figures 1 and 2, and to
its miTLS implementation. Figure 1 shows the assignments performed by a client instance and a server
instance that run two successive, matching handshakes on the same connection: for both instances, a
static session, followed by a (renegotiated) resumption. Figure 2 similarly shows the assignments for an
ephemeral session. Figure 4 in §C depicts when these assignments are performed in the state machine of
the miTLS implementation. As discussed in §3.3, we restructured the game-based definition for the KEM
library E in such a way that the oracle calls in the proof can follow the flow of the protocol and preserve
the input-output behaviour of the cryptographic primitives. In §B.3 we perform a similar restructuring
for D. Following the flow, the server first calls E .Commit(e, pE , pk, `) and D.Commit(r, pD , `) to fix input
values for these algorithms to be used later with a particular nonce `, e.g. the record algorithm r for
key derivation. As a first step, our proof in §B.4 employs lemmas (proved using hybrid arguments that
range over all honest keys) for the signature game (see §2), and these extended KEM and KDF games (see
§3.3 and §B.3) to lift security to multi-key libraries. These libraries also implement weak algorithms and
support dishonest keys. This yields the constructions S, E , and D of the figures, tightly related to the
modules of our reference implementation of the handshake.

The agility parameter a of the handshake indicates which algorithm to use for each underlying func-
tionality. We write for instance a := algC(cfgC , aS) to retrieve a from the client configuration and the
negotiation parameter of the server; e, p := kem(a) to retrieve the core algorithm e and public parameter
of the master secret KEM from a.

Our second main theorem reduces the security of TLS handshakes to their underlying algorithms,
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depending on a strength predicate on their agility parameters. Its proof is in §B.4, and relies on intermediate
definitions in §3.3 and §B.3.

Theorem 4 (TLS Handshake). Let a range over the agility parameters supported by TLS and α be a
strength predicate (Definition 5). Let Ps = {p | s, p := sig(a)}, P ?s = {p | s, p := sig(a) ∧ α(a)}, Pe = {p |
e, p := kem(a)}, P ?e = {p | e, p := kem(a)∧α(a)}, P = {p | p := prf(a)}, and P ? = {p | p := prf(a)∧α(a)}.
Assume the following holds:

(1) If α(a) and s, p :=sig(a) then Ss is (εs,p, ts,p, p, Ps)-secure against EUF-CMA.

(2) If α(a) and e, p :=kem(a) then Ee is (εe,p, te,p, p, Pe)-secure against IND-RCCA-nms.

(3) If α(a) and p :=prf(a) then PRF is an (εp, tp, p, P )-secure PRF.

Let ns bound the number of calls to Ss.KeyGen. Let n and nms bound the number of epochs and sessions.
Let ne bound the number of calls to Ee.KeyGen, both for ephemeral and static KEMs.
Let macsize = minp∈P ?|b.cp| be the minimum secure finished message MAC size.

Given an adversary A against Π, there exists an adversary B running in about the same time (given
explicitly in the proof of this theorem) such that

AdvTLS
α (A) ≤

∑
s

∑
p∈P ?

s

nsεs,p +
∑
e

∑
p∈P ?

e

neεe,p + nms

∑
p∈P ?

εp + max
p∈P

AdvUCR
p, P (B) + n2

(
2−225 + 2−macsize

)
and where each t∗ in the assumptions is at most the running time of A plus the cost of simulating Π in the
reduction.

Discussion In the theorem, the sets Ps, Pe, and P represent the worst case. Indeed, signers may, for
those keys that they consider honest, stop using signature algorithm s together with weak hash functions,
like MD5, while TLS may still support verification using such hash algorithms for backward compatibility.
To model such scenarios, one could instead add Ps, Pe, and P to the state of the experiment to record
which hash algorithms have been used so far for signing, decrypting and deriving keys to obtain a more
precise statement.

6 Verified Reference Implementation

We jointly programmed the TLS handshake and developed its proof. We finally outline our code, and
explain how its structure and automated verification relate to the cryptographic models of §2–5; we provide
additional details and performance results in §C. Our handshake implementation for miTLS consists of
3,600 lines of F# code plus 2,050 lines of F7 specifications; it supports four protocol versions, three key
exchange mechanisms, two signature algorithms, and four hash functions (see Table 1). It deals mostly
with the protocol aspects; indeed, our cryptographic proof for Theorem 3, conducted with EasyCrypt,
concerns less than 200 lines of F#. Conversely, Theorem 4 involves the full codebase and proving it requires
a modular design and automated program verification techniques.

We adopt the type-based cryptographic verification method of Fournet et al. [24], previously applied
to miTLS by Bhargavan et al. [9, §2]. The miTLS library consists of 45 modules, not counting application
code or platform libraries, as depicted in Figure 3. Each module implements a single cryptographic func-
tionality or protocol component and represents an abstraction boundary through its interface. A module is
either trusted to be implemented correctly (e.g. the session database), or idealized under a cryptographic
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assumption (e.g. signatures) then verified, or perfectly verified (e.g. the protocol state machine). Each
module interface specifies preconditions, postconditions, and type abstractions that govern the conditions
under which secrets (keys, plaintexts, etc.) may be read or written by other modules.

We discuss the design of three important components that we modified during the course of this
paper. TLSInfo defines agility parameters and logical predicates (corresponding to α in Definition 5)
that specify algorithmic strength, honesty for both long-term-keys and ephemeral secrets, matching record
algorithms, and handshake completion events. This new logical model is more detailed than the original
one [9]; furthermore, we extended the session structure and logical model to provide a general treatment
of protocol extensions. HandshakeMessages implements message formatting and parsing, including input
validation for the KEM; agreement (Definition 6(4)) depends on its details, since only formatted data
is cryptographically authenticated. This code is complicated but not especially deep, and best handled
using automated verification. Handshake implements the handshake state machine (Send in §5), shown in
Figure 4 for the client. Its code is not as simple as suggested by the KEMs of §3, since the TLS standard
employs different sequences of messages for (say) RSA and DHE handshakes. Hence, we have similar but
separate code for them, each of their interfaces complying with the KEM abstraction of §3. Also, our code
handles errors and warnings, omitted in this presentation but also verified.

Our new results on the handshake, composed with prior results on miTLS [9] (the record layer, the
top-level API, and various applications) yield agile, verified application security for TLS as it is.

7 Related Work

7.1 Prior Security Results on the TLS Handshake

Research on secure key exchange usually follows either a game-based approach or a simulation-based
approach, as pioneered by Bellare and Rogaway [7] and Canetti and Krawczyk [15], respectively. Gajek
et al. [25] outline a proof of security of TLS in the simulation-based model of [14]. However, Küsters and
Tuengerthal [42] correctly note that their (ab)use of a crucial theorem to obtain multi-session security relies
on pre-established identifiers not available in TLS, and suggest a framework for overcoming this limitation.

Most of the cryptographic work on TLS follows the game-based approach. Jonsson and Kaliski [33]
analyze the core of the RSA ciphersuites. Morrissey et al. [51] analyze a variant of the protocol using
a modular approach that decomposes the handshake into premaster secret, master secret, and record-key
derivation phases. Both of these works influence our analysis. To pinpoint some differences, Jonsson
and Kaliski already propose to model part of the handshake as a KEM with one-time nonces, but their
KEM includes the record-key derivation and Finished messages, and is thus not modular in the sense of
Morrissey et al.. Although Morrissey et al. show how to boost security using a weakly secure (only one-way
secure) premaster secret phase, they do not separately model this phase as a KEM. An advantage of their
construction is that the same master secret can be used to derive multiple keys. However, they still rely
on one-way security for record-key derivation, hence their analysis is more globally dependent on random
oracles than ours.

Recently, there has been renewed interest in the security (and insecurity) of TLS. Jager et al. [30]
perform a game-based security analysis of the TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA ciphersuite, relying
on the analysis of Paterson et al. [53] for the record protocol. A defining feature of their analysis is that
they do not give a definition of security for the TLS handshake. Instead they define authenticated and
confidential channel establishment (ACCE) security for the whole TLS protocol. Similarly, Kohlar et al.
[37] study the ACCE security of TLS-RSA ciphersuites when instantiated with an IND-CCA secure key
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transport encryption scheme. Again, this defeats the modularity goals of Morrissey et al.. Brzuska et al.
[13] propose a more composable game-based analysis technique and use TLS as a case study. They do,
however, also assume that the key transport encryption scheme is IND-CCA. Giesen et al. [27] extend the
work of Jager et al. with an analysis of secure session renegotiation, while Krawczyk et al. [39] extend it to
support RSA and server-only authentication ciphersuites without having to assume IND-CCA security for
PKCS#1v1.5. Similarly to Jonsson and Kaliski and us, they use a KEM abstraction for the cryptographic
core of TLS. However, their analysis is for one fixed ciphersuite at a time, and all bets are off if the
adversary tricks the client and server into using different algorithms. Moreover, it inherits the monolithic
structure of ACCE, which makes it hard to reason modularly, e.g. to cover resumption.

The first work analyzing security of TLS as it is used is the work of Bhargavan et al. [9], which reports
on a proof of security of a reference implementation of the TLS standard, using a combination of type
checking and automated verification tools. In the present work, starting from the same code base, we
develop a more abstract, human-readable, game-based proof that improves on Bhargavan et al. and makes
their results more accessible. Like them we support renegotiation, resumption, and multiple ciphersuites.
In the process, we clarify their definitions and modular structure. In particular we adapt the KEM concept
to reason about both the premaster secret and master secret phases, which allows us to generalize the
result of Jonsson and Kaliski, similarly to Krawczyk et al. but without sacrificing modularity (Krawczyk
et al. consider KEM keys that include unencrypted Finished messages). Moreover, we use EasyCrypt to
machine check the proof of this theorem.

Recently, and independently of our work, Dowling et al. [20] studied the ACCE security of generic
multi-ciphersuite protocols that reuse long-term keys. They “open” the ACCE definition, and show that
under a global condition on key reuse, single ciphersuite security implies multi-ciphersuite security. Their
positive results apply to the SSH protocol but not to TLS. Indeed, they acknowledge that in general
TLS is not multi-ciphersuite secure and point to our present work for a finer analysis of whether certain
combinations of ciphersuites are secure.

In parallel with our work, Kohlweiss et al. [38] conduct an extensive proof of TLS following the construc-
tive cryptography paradigm of Maurer [47]. Their results and ours co-evolved. In particular, they adopted
our approach for proving TLS-RSA modularly based on the assumption that PKCS#1v1.5 ciphertexts are
hard to re-randomize. In a nutshell, their work can be seen as a simulation-based and single-ciphersuite
analogue to ours.4 It demonstrates the power, and some limitations, of the constructive cryptography
approach to deal with real-world protocols. Irrespective of the elegance of the modeling language, we are,
however, convinced that tool support is crucial to deal with the haystack of details of the TLS standard.

7.2 Attacks Involving Multiple Algorithms and Handshakes

Meyer and Schwenk [50] conducted a survey of previous attacks on SSL and TLS. Here, we mention a
few attacks to motivate our definitions and theorems. We begin with historical attacks and end with new
attacks discovered by us.

Version and Ciphersuite Rollback Attacks SSL version 2.0 is vulnerable to both version and ci-
phersuite rollback attacks [62], because its handshake protocol does not protect the integrity of these
parameters. Hence, if a client and server support both TLS 1.0 and SSL2, a man-in-the-middle adversary
can force them to use SSL2. Furthermore, he can force them to use a weak authenticated encryption
scheme, e.g. 40-bit RC2 even if they both support AES.

4To our knowledge, in this case “simulation-based” does not imply that their definitions are strictly stronger than ours.
Rather, they are of a similar flavor, but because of the sheer amount of details most likely formally incomparable.
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All TLS versions since SSL3 protect the integrity of the full handshake and SSL2 has been depre-
cated [61]. miTLS does not support SSL2, and our Theorem 4 guarantees agreement over all handshake
parameters, including the version and ciphersuite, on safe epochs, that is, when both peers are honest and
negotiate strong handshake algorithms.

Key Exchange Confusion Attacks on Server Signatures The ServerKeyExchange message in the
TLS handshake typically contains a signature on the KEM’s public key. For example, in DHE ciphersuites,
this key consists of the server-chosen Diffie-Hellman group and the server’s public key. In ECDHE, it
indicates the elliptic curve and contains the server’s public key. In the (now rarely used) ephemeral RSA
KEMs, it is a short-lived RSA modulus and exponent.

If a server signature generated for one KEM can be successfully used at a recipient who is using a
different KEM, i.e. if the public keys of different KEM schemes can be confused, then an adversary can
potentially impersonate the server without needing to know its private key. Wagner and Schneier [62]
show how DHE public keys can be confused with ephemeral RSA, and Mavrogiannopoulos et al. [49] show
how ECDHE public keys can be confused with DHE. The success probability of these attacks depends on
implementation details; in practice, this is small but not negligible.

In miTLS, the Sig module that implements signatures specifies all the possible usages of a signature key,
including the possible contents of ServerKeyExchange and ClientCertificateVerify. If the same key
may be used to sign two different messages, we must prove that the formats of these messages are disjoint
and hence, that the signature is unambiguous. miTLS does not support ECDHE or ephemeral RSA, but
we prove, for example, that the implementation cannot confuse client logs (used for client authentication)
with DHE group parameters. When adding new KEMs to the implementation, we would need to prove
such disjointness properties for those KEMs’ public keys as well.

Client Impersonation Attacks on Renegotiation A mutually authenticated TLS handshake commu-
nicates client and server identities in the clear. To increase privacy, one may instead start a TLS connection
with a handshake where one or both peers are anonymous, and then run a new mutually-authenticated
renegotiation handshake within the protected channel. There may also be other reasons to use renegoti-
ation, such as rekeying a long-lived connection, upgrading to a different ciphersuite, or replacing expired
certificates.

Whenever a key exchange protocol is tunneled within another, it becomes vulnerable to a generic man-
in-the-middle attack on the outer protocol [3]. Indeed, two instances of such attacks were found on TLS
renegotiation by Ray [56] and Rex [58]. In the first instance, if a client starts an initial handshake with
a server, an adversary could forward these handshake messages as a renegotiation within an existing TLS
connection between the adversary and the server. Both client and server will successfully complete the
handshake. However, the server will believe the client’s messages to be a continuation of the adversary’s
connection, whereas the client is oblivious to this tunneling and believes it is beginning a new connection.

The recommended countermeasure is to link the renegotiation handshake with its preceding epoch,
and has been standardized as a mandatory extension for all versions of TLS [57]. miTLS supports this
extension and consequently, Theorem 4 guarantees that at the completion of a safe epoch, both client and
server agree upon all previous epochs on the connection. However, this guarantee does not carry over to
link different connections that resume the same original session, as we discuss below.

Plaintext Recovery Attacks on Encrypted Extensions Many recent proposed extensions to TLS
optimistically send encrypted data even before the handshake is fully complete. One motivation is to
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improve latency by reducing the number of roundtrips that a client needs to wait for before sending
application data. For example, the False Start extension of Langley and Moeller [45] allows the client to
send data immediately after the ClientFinished message, without waiting for ServerFinished. This
extension is implemented by all Google websites, and by Chrome and Firefox. A second motivation is to
improve the privacy of the handshake by sending some messages encrypted. The Next Protocol Negotiation
(NPN) extension of Langley [44] (implemented by all major websites and browsers) sends an encrypted
message after the ChangeCipherSpec message but before the Finished message. Such extensions are
fragile against both implementation flaws and ciphersuite weaknesses. We outline a concrete plaintext-
recovery attack against some client implementations and then discuss the agility requirements imposed by
such extensions.

We found that some client implementations, such as Firefox and Chrome, only validate the server
certificate (say against the server name) at the end of the handshake. So, if an active attacker replaces the
server certificate with his own, all messages sent before the handshake is complete are encrypted for the
adversary, leading to a plaintext-recovery attack. When the handshake completes, the invalid certificate is
detected and the connection is torn down, but it is too late for the messages that were already sent. We
mounted such attacks on encrypted NPN messages sent by Firefox and Chrome. More seriously, we were
also able to recover encrypted user-identifying Channel IDs of [4] sent by Chrome.

The confidentiality of optimistically encrypted messages relies on the ciphersuites accepted by the
client, since a man-in-the-middle adversary will be able to downgrade the client to its weakest ciphersuite
regardless of the server; this ciphersuite rollback will be detected only when the handshake completes.
As a countermeasure, extensions like False Start restrict the agility of the TLS handshake by requiring
the ciphersuite to use symmetric ciphers with at least 128 bit keys (RC4!, AES) and strong key-exchange
methods (DHE RSA, ECDHE RSA, DHE DSS, ECDHE ECDSA). However, MD5 is still allowed as a hash
algorithm during False Start.

In our implementation, we forbid sending application and handshake data between ChangeCipherSpec

and Finished. Our handshake definition does not guarantee confidentiality for keys before handshake
completion. To support False Start, we would need to modify our definition as described in B.5 and would
require record algorithms that satisfy stronger agile security properties, since the algorithms used by the
client for encryption and the server for decryption may differ. More generally, using the same record keys
with different algorithms makes security proofs more difficult. Instead, we advocate a new master secret
derivation algorithm (also described in the draft paper at https://www.secure-resumption.com/) that
ensures that record keys are context-bound to their intended ciphersuites.
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A Empirical Results on TLS Configurations

We present empirical results on the TLS configurations deployed at 215 out of the 500 most popular websites
as measured by Alexa. These results were compiled with the aid of Qualys SSL Labs analyzer [55].

Supported Protocol Versions

SSL2 7 3.26 %
SSL3 212 98.60 %
TSL 1 214 99.53 %
TSL 1.1 129 60.00 %
TSL 1.2 124 57.67 %

Avg. supported TLS versions per host: 3.19

Popular Protocol Extensions

Secure renegotiation 185 86.05 %
Session ticket 128 59.53 %

Agility Summary

Ciphersuites count 64
Ciphersuites avg. per host 11.88
Ciphersuites std. dev. 6.44

Avg. hash algorithms per host 2.52
Avg. encryption algorithms per host 5.36
Avg. signature algorithms per host 1.06
Avg. KEMs per host 1.73
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Hash algorithms

MD5 149 69.30 %
SHA 215 100.00 %
SHA256 103 47.91 %
SHA384 74 34.42 %

Signature algorithms

ECDSA 13 6.05 %
RSA 215 100.00 %

KEMs

DHE 61 28.37 %
ECDH 2 0.93 %
ECDHE 94 43.72 %
RSA 215 100.00 %

Encryption algorithms

3DES EDE CBC 207 96.28 %
AES 128 CBC 212 98.60 %
AES 128 GCM 78 36.28 %
AES 256 CBC 212 98.60 %
AES 256 GCM 74 34.42 %
CAMELLIA 128 CBC 34 15.81 %
CAMELLIA 256 CBC 34 15.81 %
DES40 CBC 17 7.91 %
DES CBC 23 10.70 %
IDEA CBC 14 6.51 %
NULL 3 1.40 %
RC2 CBC 40 17 7.91 %
RC2 CBC 56 1 0.47 %
RC4 128 195 90.70 %
RC4 40 17 7.91 %
RC4 56 3 1.40 %
SEED CBC 11 5.12 %

Supported Ciphersuites

SSL CK DES 192 EDE3 CBC WITH MD5 7 3.26% SSL CK DES 64 CBC WITH MD5 6 2.79%
SSL CK IDEA 128 CBC WITH MD5 1 0.47% SSL CK RC2 128 CBC EXPORT40 WITH MD5 6 2.79%
SSL CK RC2 128 CBC WITH MD5 6 2.79% SSL CK RC4 128 EXPORT40 WITH MD5 6 2.79%
SSL CK RC4 128 WITH MD5 7 3.26% TLS DHE RSA EXPORT WITH DES40 CBC SHA 5 2.33%
TLS DHE RSA WITH 3DES EDE CBC SHA 57 26.51% TLS DHE RSA WITH AES 128 CBC SHA 61 28.37%
TLS DHE RSA WITH AES 128 CBC SHA256 9 4.19% TLS DHE RSA WITH AES 128 GCM SHA256 9 4.19%
TLS DHE RSA WITH AES 256 CBC SHA 61 28.37% TLS DHE RSA WITH AES 256 CBC SHA256 9 4.19%
TLS DHE RSA WITH AES 256 GCM SHA384 9 4.19% TLS DHE RSA WITH CAMELLIA 128 CBC SHA 25 11.63%
TLS DHE RSA WITH CAMELLIA 256 CBC SHA 25 11.63% TLS DHE RSA WITH DES CBC SHA 8 3.72%
TLS DHE RSA WITH SEED CBC SHA 6 2.79% TLS ECDHE ECDSA WITH 3DES EDE CBC SHA 13 6.05%
TLS ECDHE ECDSA WITH AES 128 CBC SHA 13 6.05% TLS ECDHE ECDSA WITH AES 128 CBC SHA256 13 6.05%
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 13 6.05% TLS ECDHE ECDSA WITH AES 256 CBC SHA 13 6.05%
TLS ECDHE ECDSA WITH AES 256 CBC SHA384 13 6.05% TLS ECDHE ECDSA WITH AES 256 GCM SHA384 13 6.05%
TLS ECDHE ECDSA WITH RC4 128 SHA 13 6.05% TLS ECDHE RSA WITH 3DES EDE CBC SHA 77 35.81%
TLS ECDHE RSA WITH AES 128 CBC SHA 94 43.72% TLS ECDHE RSA WITH AES 128 CBC SHA256 74 34.42%
TLS ECDHE RSA WITH AES 128 GCM SHA256 73 33.95% TLS ECDHE RSA WITH AES 256 CBC SHA 92 42.79%
TLS ECDHE RSA WITH AES 256 CBC SHA384 72 33.49% TLS ECDHE RSA WITH AES 256 GCM SHA384 73 33.95%
TLS ECDHE RSA WITH NULL SHA 1 0.47% TLS ECDHE RSA WITH RC4 128 SHA 75 34.88%
TLS ECDH anon WITH 3DES EDE CBC SHA 2 0.93% TLS ECDH anon WITH AES 128 CBC SHA 2 0.93%
TLS ECDH anon WITH AES 256 CBC SHA 2 0.93% TLS ECDH anon WITH NULL SHA 1 0.47%
TLS ECDH anon WITH RC4 128 SHA 2 0.93% TLS RSA EXPORT1024 WITH DES CBC SHA 3 1.40%
TLS RSA EXPORT1024 WITH RC2 CBC 56 MD5 1 0.47% TLS RSA EXPORT1024 WITH RC4 56 MD5 1 0.47%
TLS RSA EXPORT1024 WITH RC4 56 SHA 3 1.40% TLS RSA EXPORT WITH DES40 CBC SHA 17 7.91%
TLS RSA EXPORT WITH RC2 CBC 40 MD5 17 7.91% TLS RSA EXPORT WITH RC4 40 MD5 17 7.91%
TLS RSA WITH 3DES EDE CBC SHA 207 96.28% TLS RSA WITH AES 128 CBC SHA 210 97.67%
TLS RSA WITH AES 128 CBC SHA256 96 44.65% TLS RSA WITH AES 128 GCM SHA256 76 35.35%
TLS RSA WITH AES 256 CBC SHA 210 97.67% TLS RSA WITH AES 256 CBC SHA256 96 44.65%
TLS RSA WITH AES 256 GCM SHA384 72 33.49% TLS RSA WITH CAMELLIA 128 CBC SHA 33 15.35%
TLS RSA WITH CAMELLIA 256 CBC SHA 33 15.35% TLS RSA WITH DES CBC SHA 22 10.23%
TLS RSA WITH IDEA CBC SHA 14 6.51% TLS RSA WITH NULL MD5 3 1.40%
TLS RSA WITH NULL SHA 3 1.40% TLS RSA WITH RC4 128 MD5 149 69.30%
TLS RSA WITH RC4 128 SHA 194 90.23% TLS RSA WITH SEED CBC SHA 10 4.65%
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Clients statistics

Browser TLS version (max) Secure renegotiation # Ciphers
Chrome 30.0.1599.69 (MAC,win8) TLS1.2 Yes 20
Firefox 24 (MAC,win8) TLS1 Yes 36
Safari 6.0.5 (MAC) TLS1 No 27
Opera 12.16 (MAC) TLS1 Yes 27
Opera 16 (win8) TLS1.1 Yes 20
IE 11.0.9431 (win8) TLS1.2 Yes 19
Chrome 30.0.1599.82 (android) TLS1.2 Yes 38
Android Browser 4.2.2 (android) TLS1 Yes 33
Dolphin v10 (android) TLS1 Yes 33
CyanogenMod/10.1.3 (android) TLS1 Yes 33
Safari (iOS 6.1.3) TLS1.2 Yes 43

Browser KEM Hash Signature
Chrome 30.0.1599.69 (MAC,win8) ECDHE, DHE, RSA SHA, SHA256, MD5 ECDSA, RSA
Firefox 24 (MAC,win8) ECDHE, DHE, ECDH, RSA SHA, MD5 ECDSA, RSA, DSS, FIPS
Safari 6.0.5 (MAC) ECDHE, ECDH, RSA, DHE SHA, MD5 ECDSA, RSA, DSS
Opera 12.16 (MAC) DHE, DH, RSA SHA, MD5 RSA, DSS
Opera 16 (win8) ECDHE, DHE, RSA SHA, MD5 ECDSA, RSA, DSS
IE 11.0.9431 (win8) RSA, ECDHE, DHE SHA256, SHA, SHA384 RSA, ECDSA, DSS
Chrome 30.0.1599.82 (android) ECDHE, DHE, RSA SHA, SHA256, MD5 ECDSA, RSA
Android Browser 4.2.2 (android) SHA, MD5 ECDSA, RSA, DSS
Dolphin v10 (android) ECDHE, SRP, DHE, RSA SHA, MD5 ECDSA, RSA, DSS
CyanogenMod/10.1.3 (android) ECDHE, SRP, DHE, ECDH, RSA SHA, MD5 RSA, ECDSA, DSS
Safari (iOS 6.1.3) ECDHE, ECDH, RSA, DHE SHA256, SHA, MD5 ECDSA, RSA

Browser Encryption
Chrome 30.0.1599.69 (MAC,win8) AES 256 CBC, RC4 128, AES 128 CBC, 3DES EDE CBC
Firefox 24 (MAC,win8) AES 256 CBC, CAMELLIA 256 CBC, RC4 128, AES 128 CBC, CAMELLIA 128 CBC,

SEED CBC, 3DES EDE CBC
Safari 6.0.5 (MAC) AES 256 CBC, AES 128 CBC, RC4 128, 3DES EDE CBC
Opera 12.16 (MAC) AES 256 CBC, AES 128 CBC, RC4 128, 3DES EDE CBC
Opera 16 (win8) AES 256 CBC, AES 128 CBC, RC4 128, 3DES EDE CBC
IE 11.0.9431 (win8) AES 128 CBC, AES 256 CBC, 3DES EDE CBC
Chrome 30.0.1599.82 (android) AES 256 GCM, AES 256 CBC, RC4 128, AES 128 CBC, 3DES EDE CBC
Android Browser 4.2.2 (android) AES 256 CBC, 3DES EDE CBC, AES 128 CBC, RC4 128
Dolphin v10 (android) AES 256 CBC, 3DES EDE CBC, AES 128 CBC, RC4 128
CyanogenMod/10.1.3 (android) AES 256 CBC, 3DES EDE CBC, AES 128 CBC, RC4 128
Safari (iOS 6.1.3) AES 256 CBC, AES 128 CBC, RC4 128, 3DES EDE CBC, NULL

B Additional Materials and Proofs for Sections 3–5

B.1 Tolerating Weak Hash Functions

The extent to which we still have to trust MD5 ciphersuites, even if clients are configured to never negotiate
a ciphersuite that uses it, is an important practical concern. Assume, for instance, that it is easy to compute
MD5 pre-images. An attacker could intercept the client’s encrypted pms in a session configured to use
a strong hash function h and forward it to the same server in a session configured to use MD5. Once
the server starts using the master secret derived using MD5, this could reveal information about the key
derived using h.

To study the extent to which one-wayness of hash functions in H is sufficient for agile IND-RCCA
security we define agile variants of NR-PCA and OW-PCA security: non-randomizability under plaintext-
checking oracle and key extraction oracle attacks (NR-PCA-KEF) and one-wayness under plaintext-checking
oracle and key extraction oracle attacks (OW-PCA-KEF).

Definition 7 (NR-PCA-KEF). Let (keygen, enc, dec) be an agile unlabeled KEM, P be a set of agility
parameters and p? a public parameter (not necessarily in P ). Let KEF be an agile KEF and P ′ a set of
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agility parameters for it (the sets P and P ′ need not be related in any meaningful way). Consider the game
below for an adversary A given oracle access to PCO and EXT:

Game NR-PCA-KEF
4
=

pk, sk ← keygen()
k?, c? ← enc(p?, pk)
c← APCO,EXT(pk, c?)
return c 6= c? ∧ k? = dec(p?, sk, c)

Oracle PCO(p, k, c)
4
=

if p /∈ P ∨ k = ⊥ then return ⊥
k′ ← dec(p, sk, c)
return (k′ = k)

Oracle EXT(p, p′, `, c)
4
=

if p′ /∈ P ′ then return ⊥
k ← dec(p, sk, c)
if k = ⊥ then k ← p‖$
return KEF(p′, k, `)

The NR-PCA-KEF advantage of A, AdvNR-PCA-KEF
p?, P, P ′ (A) is defined as the probability that the NR-PCA-KEF

game returns true. The scheme (keygen, enc, dec) is (ε, t,KEF, P, P ′)-secure against NR-PCA-KEF if the
advantage of any adversary A running in time t is at most ε.

Definition 8 (OW-PCA-KEF). Let (keygen, enc, dec) be an agile unlabeled KEM, P be a set of agility
parameters and p? a public parameter (not necessarily in P ). Let KEF be an agile KEF and P ′ a set of
agility parameters for it (the sets P and P ′ need not be related in any meaningful way). Consider the game
below for an adversary A given oracle access to PCO and EXT:

Game OW-PCA-KEF
4
=

pk, sk ← keygen()
k?, c? ← enc(p?, pk)
k ← APCO,EXT(pk, c)
return (k = k?)

Oracle PCO(p, k, c)
4
=

if p /∈ P ∨ k = ⊥ then return ⊥
k′ ← dec(p, sk, c)
return (k′ = k)

Oracle EXT(p, p′, `, c)
4
=

if p′ /∈ P ′ then return ⊥
k ← dec(p, sk, c)
if k = ⊥ then k ← p‖$
return KEF(p′, k, `)

The OW-PCA-KEF advantage of A, AdvOW-PCA-KEF
p?, P, P ′ (A) is defined as the probability that the OW-PCA-KEF

game returns true. The scheme (keygen, enc, dec) is (ε, t,KEF, P, P ′)-secure against OW-PCA-KEF if the
advantage of any adversary A running in time t is at most ε.

Theorem 5 (IND-RCCA from NR-PCA-KEF and OW-PCA-KEF). Let A be an adversary against the
single-challenge RCCA security of the generic TLS ms-KEM with p? = (pv?, h?) assuming KEF(p?, ·, ·)
is a random oracle. Assume A runs in time tA, makes at most qKEF queries to the random oracle and
at most qDEC queries to the decryption oracle. Then, there exist a OW-PCA-KEF adversary B and an
NR-PCA-KEF adversary C against the underlying pms-KEM, both running in time tA + O(qDEC · qKEF)
such that

AdvRCCA
p?, P (A) ≤ 2

(
AdvNR-PCA-KEF

pv?, P ′, P \ p?(B) + AdvOW-PCA-KEF
pv?, P ′, P \ p?(C) + 2|pv|−|pms| (qKEF + qDEC)

)
where P ′

4
= {pv | (pv, h) ∈ P}.

The proof is similar to Theorem 3, except that the reductions simulate KEF(p?, ·, ·) as a random oracle,
while queries of the form KEF(p, k, `) with p 6= p? are answered using the concrete key extraction function.
Decryption queries for p = (pv, h) 6= p? are answered using EXT(pv, p, ·, ·) and the rest as in Theorem 3.

B.2 Tolerating Unorthodox Long-term Key Usage

In theory we know from [28, 54] how to define the joint security of encryption and signature schemes. Analo-
gously, a combined signature and key derivation scheme consists of algorithms (KeyGen, Sign,Verify,Enc,Dec).
We extend the agile notions of EUF-CMA and IND-RCCA security by giving the attacker additional access
to a decryption and signing oracle respectively. Both definitions are parameterized by two sets of agility
parameters P and P ′:
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Definition 9 (Dual-purpose EUF-CMA). Let (KeyGen,Sign,Verify) be an agile signature scheme, Dec the
decryption algorithm of a labeled KEM, p? a parameter, and P and P ′ sets of parameters; and consider
the following forgery game:

Game EUF
4
=

pk, sk ← KeyGen(); M,L := ∅
m ′, σ ← ASIGN,DEC(pk)
return m ′ /∈M ∧ Verify(p?, pk,m ′, σ)

Oracle SIGN(p,m)
4
=

if p /∈ P then return ⊥
M := M ∪ {m}
return Sign(p, sk,m)

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P ′ then return ⊥
L := L ∪ {`}
k ← Dec(p, sk, `, c)
return k

The scheme is (ε, t, p?, P )-secure against dual-purpose EUF-CMA if, for any A that runs in time t, the
game returns true with probability at most ε.

Definition 10 (Dual-purpose IND-RCCA). Let (KeyGen,Enc,Dec) be an agile labeled KEM, Sign a sig-
nature algorithm, p? a parameter, P and P ′ sets of parameters; and consider the following game:

Game RCCA
4
=

pk, sk ← KeyGen()
K,L := ∅
b← {0, 1}
b′ ← AENC,DEC,SIGN(pk)
return (b′ = b)

Oracle ENC(`)
4
=

if ` ∈ L then return ⊥
k0, c← Enc(p?, pk, `)
k1 ← $
K(`) := K(`) ∪ {k0, k1}
return kb, c

Oracle DEC(p, `, c)
4
=

if ` ∈ L ∨ p /∈ P
then return ⊥
L := L ∪ {`}
k ← Dec(p, sk, `, c)
if k ∈ K(`) then return ⊥
return k

Oracle SIGN(p,m)
4
=

if p /∈ P ′ then return ⊥
return Sign(p, sk,m)

The IND-RCCA advantage of A, AdvRCCA
p?, P (A) is defined as 2 Pr[RCCA : b′ = b]− 1.

The scheme is (ε, t, p?, P )-secure against dual-purpose IND-RCCA-n when the advantage of any adver-
sary A running in time t and making at most n queries to ENC is at most ε.

By and large, our goal in this work is not to minimize the assumptions that TLS relies upon, but to
make them explicit and to provide the correct notation for talking in a constructive manner about them.
If one is reluctant to make such assumptions about the primitives employed by TLS—as one indeed should
be, then one should only consider keys to be honest if they have very restricted usages: only decryption,
only signing, only for use in server authentication or in client authentication, with one common/DNS name,
and no other defined/allowed usages. Proving a version of Theorem 4 that applies to dual-purpose keys,
under weaker assumptions than the ones given in this section, is an important open problem.

B.3 Agile PRFs, Key Derivation, and Finished Messages

An agile PRF is a family of keyed functions Prf(p, ·, ·) parameterized by p. We define the PRF security of
Prf for a fixed p? as the indistinguishability of Prf(p?, k, ·) for a uniformly random key k from a random
function, even when given oracle access to Prf(p, k, ·) for p ∈ P , where P is a set of agility parameters.

Definition 11 (PRF security). Let Prf be an agile PRF, p? a parameter, and P a set of parameters.
Consider the indistinguishability game:

Game PR
4
=

k ← $; Q := ∅
b← {0, 1}
b′ ← APRF()
return (b′ = b)

Oracle PRF(p, x)
4
=

if p /∈ P then return ⊥
if p 6= p? ∨ ¬b then return Prf(p, k, x)
if x /∈ dom(Q) then Q(x)← $
return Q(x)

The PRF advantage of A, AdvPRF
p?, P (A) is defined as 2 Pr[PR : b′ = b] − 1. Prf is an (ε, t, p?, P )-secure

PRF when the advantage of any adversary A running in time t is at most ε.
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This definition implicitly requires that the algorithms Prf(p, ·, ·) with p ∈ P do not leak the key k; we
assume that the output of Prf is long enough to cover all TLS ciphersuites. This allows us to elide details
handled in the miTLS implementation, such as variable output lengths for different agility parameters.

The key-derivation and MAC scheme Dp = (Kdf,Mac) of TLS is constructed as: Kdf(p,ms, `, r)
4
=

bPrf(p,ms, "key expansion" ‖ `S ‖ `C)cr and Mac(p,ms, t, v)
4
= bPrf(p,ms, t ‖ v)cp, defined only for t =

"client finished" or t = "server finished", where b.cr and b.cp are functions that truncate to the
record-key and MAC sizes for the algorithms specified by the parameters r and p, respectively.

This truncation of the PRF output is particularly important for finished message computation. The
finished message is used to authenticate the transcript of the current handshake, but also to bind handshakes
on the same connection together in the renegotiation extension. In the latter settings the adversary may
have (partial) control of the PRF key, the master secret of the previous handshake. We thus also consider
unkeyed collision security of the Prf function.

Definition 12 (Unkeyed Collision Resistance (UCR)). Let Prf be an agile PRF, p? a parameter, and P a
set of parameters. Consider the game:

Game UCR
4
=

p, k, v, k′, v′ ← A()
return bPrf(p?, k, v)cp? = bPrf(p, k′, v′)cp ∧ (k, v) 6= (k′, v′)

The unkeyed collision resistance advantage of A, AdvUCR
p?, P (A) is the probability that the game UCR returns

true.

We give a definition for a KDF & MAC scheme which in addition to a MAC oracle has KDFS ,
COMMIT(`, r), KDFC(p, `, r), and KDFS(p, `, r) oracles. The definition is analogous to PRF security, except
that (p?, `, r) queries to KDFC are only answered with a random value (for b = 1) if (`, r) was queried to
COMMIT, and queries to KDFS are answered with the same value when KDFC is queried on (p?, `, r).

Definition 13 (Joint KDF & MAC security). Let Kdf(p, ·, ·, ·) and Mac(p, ·, ·, ·) be agile functions parame-
terized by p, P a set of agility parameters, and p? a public parameter. Consider the following game played
between an adversary A and the challenger:

Game KDF-MAC
4
=

x← $
Q,R,K, S := ∅
b← {0, 1}
b′ ← ACOMMIT,MAC,KDFC,KDFS ()
return (b′ = b)

Oracle MAC(p, t, v)
4
=

if p /∈ P then return ⊥
if p 6= p? ∨ ¬b then

return Mac(p, x, t, v)
if (p, t, v) /∈ dom(Q) then
Q(p, t, v)← $

return Q(p, t, v)

Oracle COMMIT(`, r)
4
=

if ` ∈ dom(S) then return ⊥
S(`) := c; R(`) := r

Oracle KDFC(p, `, r)
4
=

if p /∈ P ∨ S(`) ∈ {d, f}
then return ⊥

k ← Kdf(p, x, `, r)
if p = p? ∧ S(`) = c ∧R(`) = r then

if b then k ← $r
S(`) := d; K(`) := k

else S(`) := f
return k

Oracle KDFS(p, `, r)
4
=

if p /∈ P ∨ r 6= R(`) ∨ S(`) = f
then return ⊥

k ← Kdf(p, x, `, r)
if p = p? ∧ b then

if S(`) = d then
k := K(`) else k ← $r

S(`) := f
return k

The challenger maintains a state variable S(`) for each label `. The state S(`) is initially ⊥, transitions to
c when the adversary commits to use ` with a particular parameter r, to d once it is used in a KDFC query,
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and finally to f once it is used in a KDFS query. If this order is not respected, the state is set to fand the
result of any further query with that label is independent of b. MAC queries can be freely interleaved, and
for b = 0 are answered using the shared key x.

The joint KDF & MAC advantage of A, AdvKDF-MAC
p?, P (A), is 2 Pr[KDF-MAC : b′ = b]− 1. We say that

(Kdf,Mac) are jointly (ε, t, p?, P )-secure if the advantage of any adversary A running in time t is at most
ε.

We confirm the following lemma for the KDF & MAC construction used in TLS, by verifying that Prf
is used by Kdf and Mac on disjoint domains.

Lemma 2 (KDF & MAC). If Prf is an (ε, t, p?, P )-secure PRF, then (Kdf,Mac) are jointly (ε, t′, p?, P )-
secure, where t′ is t plus a small cost for multiplexing between different functions.

Define the advantage AdvUCR-MAC
p?, P (A) of an adversary A against the unkeyed collision reistance of Mac

as the probability that the following game returns true:

Game UCR-MAC
4
=

p, t, x, v, x′, v′ ← A()
return Mac(p?, x, t, v) = Mac(p, x′, t, v′) ∧ (x, v) 6= (x′, v′) ∧

t ∈ {“client finished”, “server finished”}

The collision resistance of Mac follows from the unkeyed collision resitant of Prf.

Lemma 3 (UCR MAC). Given an adversary A against the unkeyed collision resistance of Mac, there
exists an adversary B against the unkeyed collision resistance of Prf (given explicitly in the proof of this
lemma) running roughly in the same time such that

AdvUCR-MAC
p?, P (A) ≤ AdvUCR

p?, P (B)

Proof. Take B()
4
= p, t, x, v, x′, v′ ← A(); return (p, x, t‖v, x′, t‖v′).

From a protocol design viewpoint, more robust, modern constructions such as SP-800-108 additionally
hash the target algorithm and key length for the derived key, to ensure that different algorithms always
yield (computationally) independent keys. This is however not required by our definition, as it does not
idealize keys in case of algorithm mismatch.

Discussion. Agreeing on the parameter r as the key is derived is important for compositional proofs,
and in particular to ensure that our model of the handshake fits within our model for the whole TLS
protocol. Assume given a generic family of schemes (~or(k, . . . )) whose algorithms are parameterized by
a key k. These schemes may provide, for instance, authenticated encryption (Encr(k, t),Decr(k, c)), or
more advanced LHAE variants, such as those used in the TLS record layer of the miTLS implementation.

Suppose their security is expressed using a game of the form k ← $;A~Or(k,·). Then, for each safely-derived
key k for algorithm r, relying on the fact that all users of k will use that key with (at most) the algorithm
r, we can create a shared instance for r and continue the proof with the corresponding game—provided
the algorithms denoted by r are secure in isolation. Conversely, if both parties may start using the same
fresh key k, or parts of it, with (potentially) different algorithms r1 and r2, then we would need a joint,
stronger, agile security assumption for these schemes.
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B.4 Proof of Theorem 4

Initial hybrids The code of [9] implements cryptographic libraries for signatures, the ms-KEM, and
key derivation. In addition to being compiled in the concrete way, these libraries can be compiled with
an #ideal flag; the resulting code then expresses an idealized functionality, whose stronger properties can
be checked and used for automated verification. For example, for any instance with an honest key and
a strong algorithm, the ideal implementation of signatures rejects the messages that were not previously
signed. Similarly, the ideal code for key encapsulation and key derivation provides fresh random master
secrets and record keys. Each idealization step may depend on others. For example, key derivation assumes
that the master secret is random; it will thus be idealized only after idealizing key encapsulation. (These
dependencies are checked by type-checking.) Like ideal functionalities, idealized libraries can intuitively
be understood as implemented by a trusted third party that performs the checks and distributes perfectly
random keys to the instances involved. In the miTLS code, we implement them (in code flagged by #ideal)
using table lookup with tables only accessible from the miTLS implementation.

miTLS provides multi-key, a.k.a. multi-user [8], variants of the primitives described and proven secure
in §2, §3, and §B.3. Let αL , L ∈ {S ,E ,D} be library specific strength predicates. For honest keys, library
L compiled with the #ideal flag set provides ideal functionality for all agility parameters aL for which
αL holds. In addition to implementing weak algorithms L also support dishonest keys through its own
implementation of KeyInject queries. For dishonest keys, the #ideal flag does not change the behavior of
the library. Formally, for each (ε, t, αL)-secure library, we prove that the implementations compiled with
and without the #ideal flag are computationally indistinguishable.

Next, we show how to match these requirements to the definitions and proofs in this paper, relying on
hybrid-arguments to deal with multiples instances. Let Ps, Pe, P be algorithm specific agility sets, either
defined statically for the worst case, or dynamically updated as part of the experiment, as discussed in §5.
For conciseness, we omit P ?s , P ?e , P ? restrictions for indexes when they are clear from the context.

Lemma 4 (Signature library). If for all s, p for which αS (s, p), the signature scheme Ss is (εs,p, ts,p, p, Ps)-
secure against EUF-CMA, then the signature library S is (

∑
s

∑
p nsεs,p, t, αS )-secure, letting s and p range

over all strong algorithmic choices, ns bound the number of keys generated for algorithm s, and ts,p be at
most t plus the maximum cost of the corresponding reductions Bi,j.

Proof sketch: Let A be an adversary against S . The proof is via a hybrid argument over honest
signature public keys for strong algorithms. Assume agility parameters are totally ordered by <. Define
the hybrid library Si,j as follows: up to the i-th honest public key and any agility parameter, and for the
i-th honest key and p ≤ j, it behaves as if #ideal is set. For the i-th honest key and agility parameter
p > j, and for the rest of the honest keys, behaves as if #ideal is not set. Let s be the public key algorithm
of the i-th honest signature key. We describe a reduction Bi,j that uses an εs,j difference in the advantage
of A between two hybrids to break EUF-CMA security. For the i-th public key, the reduction uses the
public key from the EUF-CMA game. The reduction uses its oracle SIGN to sign using the corresponding
private key.

Until A produces a forgery for the i-th key and agility parameter j, the reduction Bi,j behaves exactly
like hybrid Si,j−1 or Si,j (respectively hybrid Si−1,pmax or Si,j at key borders). When A terminates, Bi,j
simply forwards the output of A, and thus succeeds when A does.

The key encapsulation library E is a multi-scheme and multi-key version of the agile ms-KEM defined
and constructed in §3. Like Definition 4, the E library provides a Commit(pk, `, p) function which, when
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the #ideal flag is set, calls Enc to derive a KEM ciphertext and a master secret k0 and samples a fake
master secret k1. It stores (pk, `, e, pE , c0, k0, k1) to answer both encryption and decryption queries related
to public key pk and label `.

Lemma 5 (Key encapsulation library). If for all e, p for which αE (e, p), the key encapsulation scheme Ee
is (εe,p, te,p, p, Pe)-secure against IND-CRCCA, then the key encapsulation library E is (

∑
e

∑
p neεe,p, t,

αE )-secure, letting e and p range over all strong algorithms, ne bound the number of keys generated for
algorithm e, and te,p be at most t plus the maximum cost of the corresponding reductions Bi,j.

Proof sketch: Let A be an adversary against E . The proof is via a hybrid argument over honest KEM
keys for strong algorithms. Assume agility parameters are totally ordered by <. Consider hybrid libraries
Ei,j defined as follows: up to the i-th honest public key, Ei,j uses KEMs with random master secrets in
safe instances. For the i-th honest key and p ≤ j it uses random master secrets in safe instances; for p > j
it uses concretely generated master secrets. For the rest of public keys, it uses KEMs with concretely
generated master secrets.

Let e be the public key algorithm of i-th honest KEM. We describe a reduction Bi,j that uses an εe,j
difference in the probabilities of A between two hybrids to break IND-CRCCA security. For the i-th honest
public key Bi,j use the public key of the CRCCA game. Upon a call to Commit(pki, `, j), call COMMIT(`).
Upon a call to Enc for the i-th public key and agility parameter j, call ENC(`) to obtain c and k. For other
agility parameters, run the concrete KEM encryption on demand. For the i-th public key, the reduction
uses calls to DEC to compute the key returned by the Dec library function. Depending on the bit b of
CRCCA, reduction Bi,j behaves exactly like hybrid Ei,j−1 or Ei,j (respectively hybrid Ei−1,pmax or Ei,j at
key borders). Bi,j simply forwards the guess of A.

The key derivation and finish MAC library D is a multi-key (multi-ms) version of the agile joint KDF
& MAC scheme defined and constructed in §B.3.

Lemma 6 (Key derivation and finish MAC library). If for all p for which αD(p) the joint KDF & MAC
scheme Dp is (εp, tp, p, P )-secure, then the key derivation and Finished MAC library D is (nms

∑
p εp, t, αD)-

secure, letting p range over all strong algorithms, nms bound the number of (honest) master secrets, and tp
be at most t plus the maximum cost of the corresponding reductions Bi,j.

Proof sketch: Let A be an adversary against D. The proof is via a hybrid argument over the safe KDF
keys ms and their strong algorithms. Assume agility parameters are totally ordered by <. Consider hybrid
libraries Di,j defined as follows: up to the i-th master secret, Di,j randomly samples keys using KeyGenr()
and produces random MAC tags (idealized output). For the i-th master secret with p ≤ j it also provides
idealized output; for p > j it uses concretely generated keys and MAC tags. For honest master secrets
greater than i, it uses KDFs with concretely generated keys and tags.

We now describe a reduction Bi,j that uses an εj difference in the advantage of A between two hybrids
to break joint KDF & MAC security. For the i-th master secret, Bi,j uses the KDFMAC game. It calls
COMMIT(`, r) when the corresponding Commit function is called in the library. It calls KDFC to obtain the
keys of client epochs and KDFS to obtain the keys of server epochs. The reduction uses calls to MAC to
obtain MAC tags for both client and server Finished messages. Depending on the bit b of KDFMAC, the
reduction behaves exactly like hybrid Di,j−1 or Di,j (respectively hybrid Di−1,pmax or Di,j at master secret
borders). Bi,j simply forwards the guess of A.

In the last hybrid the output for safe keys and strong algorithm parameters is random.
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In addition the idealized functionality guarantees for all p? such that α′D(p?) that MAC(·, ·, t, ·) is
injective for t = "client finished" and t = "server finished", i.e. ∀p?, p,ms,ms′, log, log′ : α′D(p?) ∧
MAC(p?,ms, t, log) = MAC(p,ms′, t, log′)⇒ ms = ms′ ∧ log = log′.

Lemma 7 (Injectivity of key derivation and finish MAC library). Given an adversary A with advantage
Advinj

α′D
(A) in breaking the injectivity of the key derivation and finished MAC library D, one can construct

an adversary B (given explicitly in the proof of this lemma) such that

Advinj
α′D

(A) ≤ max
p|α′D(p)

AdvUCR-MAC
p, P (B)

where AdvUCR-MAC
p, P (B) is the adventage against the unkeyed collision resistance of the MAC scheme in Dp.

Proof sketch: ForA to successfully break injectivity, he has to makes library calls such that MAC(p?,ms,
t, log) = MAC(p,ms′, t, log′), α′D(p?), (ms, log) 6= (ms′, log′), t ∈ {"client finished", "server finished"}.
If this is the case, adversary B returns p, t,ms, log,ms′, log′ as a collision for Mac for some strong parameter
p?, and thus:

Advinj
α′D

(A) ≤ max
p?|α′D(p?)

AdvUCR-MAC
p?, P (B)

We are now ready to employ these lemmas in the proof of our main theorem. We look both at full
(sessions) and abbreviated handshakes (resumptions) at once, as the proof and the bounds are shared.

Proof Outline. Global type checking guarantees that libraries are called with correct parameters. For
instance the ciphertext parameter in a call to the Dec function of a DH KEM must be elements of the right
prime order subgroup. This is enforced by checks when parsing network messages.
(1) Uniqueness. Let n be the total number of epochs. Irrespective of timestamps, the length of the
randomness in client and server nonces is 224 bits. The probability that n randomly generated 224 bit
values give rise to a collision is approximately

(
n
2

)
2−224. This is the worst case as it assumes that the

adversary controls half of ` and that all of them are of the same role. We thus bound AdvU(A) by
n22−225. This also implies uniqueness both for sessions and resumptions.

(2) Verified Safety. We need to show that, if there is a peer signature, its public key is honest, and its
signing algorithm is strong, then there is a peer session with the same assignments to all peer-exchange
variables.

For anonymous peers there is nothing to prove: they do not have public keys and their communication
partners cannot verify the safety of their session. Conversely, the servers of static ciphersuites like TLS-
RSA and static Diffie-Hellman have only static server exchange values: their safety may be independently
inferred by the application, e.g. by validating their certificate chains, but this is outside our TLS handshake
model. This leaves two cases that require a reduction proof to agile EUF CMA (Definition 1): Clients using
ephemeral Diffie-Hellman verify a signature on the server’s ephemeral DH contribution.5 Conversely, servers
with authenticated clients verify a signature on the clients transcript up to sending the ClientKeyExchange
fragment. Since we allow the same signature keys to be used both by clients and servers, we consider both
cases at once. The proof involves two games.

• Game 1 is the original verified safety game, in which A interacts with the TLS handshake protocol
by calling KeyGen, KeyInject, Init, Send, and Control any number of times, in any order.

5Some legacy ciphersuites also support ephemeral variants of RSA key transport; they could be modeled in a similar fashion,
but are not supported by miTLS.
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• Game 2 is the same as Game 1, except that signature verification is corrected to fail (irrespective of
the tag) when the signature scheme is strong, the signing key honest, and yet (1) for client verification
on pke, there is no server epoch that assigns pke to its server-exchange variable; and (2) for server
verification of the log till CertificateVerify excluded, there is no client epoch with a matching log.

In this final game, we check that the attacker never wins, because

(1) Clients and servers sign only payloads formatted from their local exchange variables and logs.

(2) Client and server signed payloads have disjoint formats, so their respective signatures cannot be
confused.

(3) Client-signed payloads are injective in the inputs to the MS computation, so the server will compute
and assign the same client-exchange variable.

(4) Server-signed payloads are injective in (i.e., unambiguously determines) the DH KEM, so the client
will assign the same server-exchange variable. In this presentation, we do not support both DHE
and ECDHE simultaneously, so formally there is no risk of confusing their signed exponentials [48];
otherwise we would require that the honestly-signed payloads for DHE and ECDHE have disjoint
formats and that clients in addition to verifying signatures check for these format differences.

As the assumptions in Theorem 4 are sufficient to derive that library S is (εS , tS , αS )-secure, we have
that the difference of the advantage of A in G1 and G2 is bounded by εS . Moreover, because in Game 2
the advantage of A is zero, we have AdvS(A) ≤

∑
s

∑
p nsεs,p, as required.

(To prove Verified safety we only had to consider sessions. Our proof does not rely on the freshness of
the nonces. In a more general model, e.g. when the adversary can eventually decrypt KEM ciphertexts, we
would insert an intermediate game between Games 1 and 2 and then rely on the freshness of the verifier’s
nonce to exclude KEM replay attacks.)

(3) Agile Key Derivation. The proof proceeds using a sequence of games. Let Pr[Gi : b′ = 1] be the
probability that A outputs 1 in Game i.

• Game 1. This is the agile key derivation game for b = 0.
• Game 2. This is the same as Game 1, except that we abort if there are colliding nonces. We bound the

probability of aborting by the Uniqueness advantage: Pr[G1 : b′ = 1]− Pr[G2 : b′ = 1] ≤ AdvU(A).
• Game 3. The same as Game 1 except that we set the #ideal flag in E . As the assumptions in

Theorem 4 are sufficient to derive that library E is (εE , tE , αE )-secure, we have that

Pr[G2 : b′ = 1]− Pr[G3 : b′ = 1] ≤ εE =
∑
e

∑
p

neεe,p .

• Game 4. Same as Game 3, except that we set the #ideal flag in D. This means that we sample
fresh keys (in exactly the same way as in the b = 1 branch).
As the assumptions in Theorem 4 are sufficient to derive that library D is (εD , tD , αD)-secure, we
have that

Pr[G3 : b′ = 1]− Pr[G4 : b′ = 1] ≤ εD = nms

∑
p

εp .

Collision resistance is not necessary here.
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• Game 5. Same as Game 4 except that we unset the #ideal flag in E . This means that we revert to
generating master secrets for the b = 0 branch as in Game 2. Again, as the assumptions in Theorem 4
are sufficient to derive that library E is (εE , tE , αE )-secure, we have that

Pr[G4 : b′ = 1]− Pr[G5 : b′ = 1] ≤ εE =
∑
e

∑
p

neεe,p .

• Game 6. Same as Game 5, but we revert to allowing collisions on `. We bound the probability of
aborting by the Uniqueness advantage: Pr[G5 : b′ = 1]− Pr[G6 : b′ = 1] ≤ AdvU(A) .

Game 6 behaves just like the agile key derivation game for b = 1, thus

AdvK(A) ≤ Pr[G1 : b′ = 1]− Pr[G6 : b′ = 1]| ≤ 2 ·

(
AdvU(A) +

∑
e

∑
p

neεe,p

)
+ nms

∑
p

εp .

(To prove Agile Key Derivation we had to consider sessions and resumptions simultaneously. Only
changes in Game 3 and Game 5 do not affect resumptions, as the master secret is reused from the resumed
session.)
(4) Agreement. The proof proceeds using a sequence of games.

• Games 1-4 are the same as the corresponding games for agile key derivation, thus

AdvG1(A)−AdvG4(A) ≤ AdvU(A) + εE + εD .

In Game 4 MACs of safe epochs are generated at random. Recall that the safe renegotiation extension
requires that the log includes the MAC of the log of prior epochs. Here the idealizations justified using
unkeyed collision resistance are crucial as these prior epochs may not be safe. We let α′D be a predicate
that is always true. This means that we authenticate all assignments up to the current epoch and thus

AdvG4(A) ≤ Advinj
α′D

(B) + 2 ·
((

n

2

)
2−minp|Macp|

)
≤ Advinj

α′D
(B) + n2 · 2−minp|Macp|

by the collision probability of MAC tags and thus

AdvI(A) ≤ εE + εD + Advinj
α′D

(B) + n2 · 2−minp|Macp|

≤ AdvU(A) +
∑
e

∑
p

neεe,p + nms

∑
p

εp + Advinj
α′D

(B) + n2 · 2−minp|Macp| .

(To prove Agreement we had to consider sessions and resumptions simultaneously. Only the changes
in Game 3 did not affect resumptions, as the master secret is reused from the resumed session.)

By taking the maximum of these bounds, we conclude

AdvTLS
α (A) ≤

∑
s

∑
p

nsεs,p +
∑
e

∑
p

neεe,p + nms

∑
p

εp + Advinj
α′D

(B) + n2
(

2−225 + 2−minp|Macp|
)
.

B.5 Additional Handshake Security Properties

Definition 14 (Additional Handshake Games). Let Π be a handshake protocol and A an adversary that
calls Π’s oracles any number of times, in any order. Consider the following security properties:
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(1) Forward Secure Verified Safety: To model forward secrecy, give A an additional action Corrupt
that returns the private key of a long-term key pair and marks the corresponding public key as no
longer honest; otherwise the definition is unchanged from verified safety.
Let AdvFS(A) be the probability that one epoch has the following properties when A terminates:
α(a) = 1; the public key is honest for the signing algorithm indicated by a; and the assignment to the
the peer exchange value is not honest (i.e. not assigned by any peer);

(2) Raw Key Derivation: depending on a random bit b, replace the record key assigned in safe epochs
with a fresh k of maximum length, i.e. as produced by Prf, assigning the same value to epochs that
have the same identifier `, algorithms kdf(a) and exchange variables or resumption identifier.
Let AdvR(A) = 2p− 1 where p is the probability that A returns b.

(3) Agile Forward Secure Key Derivation: give A access to an additional oracle Corrupt that returns
the private key of a long-term key pair; depending on a random bit b, replace the record key assigned
in safe ephemeral epochs with matching algorithm r with a fresh k ← KeyGen(r), assigning the
same value to epochs that have the same identifier `, algorithms kdf(a) and exchange variables or
resumption identifier.
Let AdvF(A) = 2p− 1 where p is the probability that A returns b.
(Analogously to above, define Raw Forward Secure Key Derivation by not require matching record
algorithms r and replace the keys with fresh random values of maximum key length.)

Forward Secure Verified Safety. The proof of forward secure verified safety is identical to the proof of
verified safety, as it is not affected by the corruption of long-term KEM keys and as nothing needs to be
proven about corrupted signature keys.
Forward Secure Agile Key Derivation. The proof of forward secure key derivation is analogous to agile key
derivation, except that in Game 3 and Game 5 only ephemeral sessions are idealized while in Game 4 only
the keys derived from master secrets generated in ephemeral sessions are idealized. This means that in the
proof static KEM keys are treated as dishonest by the E library.
Raw (Forward Secure) Key Derivation. The protocol in Figure 1 does not meet the raw key derivation
property if KDF returns different keys for different record algorithms, as is the case in TLS since keys are
cut to the required length. Raw forward security can be recovered by returning constant-size keys. The
proof is similar to the proof above, except that the reduction calls Commit for both the client and the
server with an a with a constant record algorithm. Note that Agile Key Derivation is not sufficient for
providing guarantees for False Start as it guarantees that the same record keying material will never be
used with different record algorithms. Instead, False Start requires Raw Key Derivation security for the
handshake and stronger agile security properties for record algorithms that may share raw keys.

C Verified Reference Implementation of the miTLS Handshake

We refer to Bhargavan et al. [9, §2] for a description of the type-based cryptographic verification method
used for miTLS. The full modular structure of the miTLS implementation is depicted in Figure 3 and
the protocol features it supports are listed in Table 1. We highlight four aspects of the miTLS handshake
implementation and our proofs, before presenting performance results.

C.1 Agility Parameters

The various cryptographic algorithms, protocol versions, and extensions supported by the implementa-
tion are defined in the modules: TLSConstants and Extensions. The module TLSInfo specifies agility
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Figure 3: Modular structure of miTLS, and main sequence of game for its security proof.

parameters for various cryptographic constructions and indexes and data structures to represent sessions
and connections. Its interface defines a series of predicates that define the strength various algorithms
(e.g. StrongKDF, StrongAE), the honesty of various long-term keys and short-term secrets (e.g. HonestSig,
HonestPMS), and safety for epochs.

C.2 The Handshake API

The application can control the TLS client and server by calling functions in the TLS module, which in
turn calls the relevant functions in the Handshake module. The main functions in this interface are:

val init: rl:Role → c:config → (ci:CI ∗ s:(;ci)state){Config(ci,s) = c ...}
val authorize: r:Role → si:SessionInfo → unit {Authorize(r,si)}
val resume: nextSID:sessionID → c:config → (ci:CI ∗ s:(;ci)state){ Config(ci,s) = c ...}

This interface formally corresponds to the adversary’s Control interface. The init function creates a
connection and initiates the first handshake on it. The authorize function enables the application to inspect
and authorize a peer’s certificate (and other session parameters) before the handshake is completed. Once
a handshake is completed, the application may send data on the new epoch, but we do not show those
record-layer functions here. An application may resume a previous session over a new connection by calling
resume. Other function (not shown here) allow the application to renegotiate and resume sessions over the
same connection.
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Table 1: Supported protocol versions, ciphersuites and extensions.
Protocol Versions Key exchange Signature Record encryption Hash Extensions
TLS 1.2 RSA RSA AES 256 GCM SHA384 Secure renegotiation
TLS 1.1 DHE DSA AES 128 GCM SHA256 Extended length-hiding
TLS 1.0 DH AES 256 CBC SHA Session hashes
SSL3 DH anon AES 128 CBC MD5 Secure resumption

3DES EDE CBC
RC4 128

C.3 Message Formats

After initialization, the Handshake module listens to messages from the network, which represent the adver-
sary’s Send interface. It parses each message and then calls the relevant function to modify the handshake
state and adds the message to the log for eventual authentication in the Finished (and CertificateVerify)
messages.

The HandshakeMessages module constructs and parses handshake messages. Detailed message formats
are traditionally ignored in protocol models and cryptographic proofs, but are crucial in TLS to establish
Agreement, which depends on both the client and server having the same parsed interpretation of their
Handshake message logs. To give an example, the first message in the log, ClientHello, has the following
format:

struct {
ProtocolVersion client version;
Random random;
SessionID session id;
CipherSuite cipher suites<2..2ˆ16−2>;
CompressionMethod compression methods<1..2ˆ8−1>;
select (extensions present) {

case false: struct {};
case true: Extension extensions<0..2ˆ16−1>;

};
} ClientHello;

To ensure that this message can be parsed unambiguously at both client and server, we define a logical
function ClientHelloMsg(pv,crand,sid,cs,cl,ext) that precisely details this message format. We then prove
that the functions in HandshakeMessages that generate and parse client hello messages obey this logical
specification. For example:

val clientHelloBytes: c:config → cr:random → sid:sessionID → ext:bytes →m:bytes{B(m) =
ClientHelloMsg(c.maxVer,cr,sid,c.ciphersuites,c.compressions,ext)}
Then, we prove that the logical function is injective, so that there is a unique way to parse its compo-

nents.

theorem !pv,crand,sid,cs,cl,ext,pv’,crand’,sid’,cs’,cl’,ext’.
ClientHelloMsg(pv,crand,sid,cs,cl,ext) = ClientHelloMsg(pv’,crand’,sid’,cs’,cl’,ext’) ⇔
(pv = pv’ ∧ crand = crand’ ∧ ...)

Finally, we extend this injectivity theorem to the full handshake log. Any two equal logs must begin
with the same ClientHello message, and hence with the same parameters. More generally, we show that
they agree on all the handshake parameters and hence on all the variable assignments in the current epoch.
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Figure 4: State machine of the client handshake module.

C.4 State Machine

The bulk of the protocol logic is encoded in the handshake state machine, as depicted in Figure 4. Encoding
and verifying such a complex state machine is a challenge—not only does it implement different control
flow paths for different key exchanges, different protocol versions, and client authentication modes, it must
also be ready to receive messages that trigger any handshake at any time.

In such code, it is easy to make some implementation decisions that end up bypassing security. For
example, if a client renegotiates a full handshake with the server, then during this second handshake it may
continue to receive data over the connection established from the first handshake. It should accept this
data until it receives the new ChangeCipherSpec message, at which point it should stop accepting data
until the handshake is complete, since new keys have been committed on but not confirmed. However,
many TLS implementations make the mistake of accepting data even in this inconsistent state. The miTLS
implementation carefully enforces such state machine invariants.

As a second example, suppose a client has sent its Finished message and is waiting for the server’s
Finished message. It is tempting for the client to start sending its data already to reduce the latency
of the TLS connection. This is the design of the TLS False Start extension, and a similar rationale is
used in the TLS NPN NextProtocolMessage. In both cases, if the ciphersuite negotiated is strong enough,
the confidentiality of the data being sent seems to be preserved. But cryptographically, it is difficult to
justify a design where a client and server may use the same keys with different algorithms. Moreover, we
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Ciphersuite F# (BC) F# (EVP) OpenSSL Oracle JSSE
KEX Enc MAC HS/s MiB/s HS/s MiB/s HS/s MiB/s HS/s MiB/s
RSA RC4 MD5 268.22 43.44 273.81 89.54 1257.50 255.99 410.55 64.59
RSA RC4 SHA 272.32 38.13 270.84 84.76 1214.58 216.20 419.67 59.47
RSA 3DES SHA 259.86 8.54 272.32 18.82 1147.40 22.12 383.58 10.47
RSA AES128 SHA 266.23 22.84 269.96 50.10 1121.55 261.74 406.55 58.84
RSA AES128 SHA256 268.80 19.37 271.13 43.12 1121.56 122.36 401.56 47.87
RSA AES256 SHA 261.77 20.11 271.13 41.21 1185.66 221.06 - -
RSA AES256 SHA256 257.45 17.39 270.84 35.94 1087.29 111.88 - -
DHE 3DES SHA 20.83 8.46 20.96 18.32 336.92 22.19 - -
DHE AES128 SHA 21.02 22.69 20.85 47.72 343.43 277.64 - -
DHE AES128 SHA256 20.94 19.16 20.84 43.46 338.76 123.19 - -
DHE AES256 SHA 20.56 20.12 20.95 40.04 344.86 246.14 - -
DHE AES256 SHA256 21.11 17.62 20.79 35.69 339.22 113.37 - -

Figure 5: Performance benchmarks (OpenSSL 1.0.1e as server).

found several conditions where such encrypted data may be sent too optimistically, and may be leaked to
a network-based adversary. The miTLS implementation strictly forbids such early data transmission.

We verify that the miTLS state machine preserves its logical invariants; this proof is for a 1,700-line
program module and requires the use of an SMT solver. We also verify that the state machine treats all
secrets parametrically, as a precondition to the game-based transformations of earlier sections.

C.5 Performance Evaluation

We evaluate the performance of the miTLS implementation, written in F# and linked to the Bouncy
Castle C# and the OpenSSL EVP cyrptographic providers, against two popular TLS implementations:
OpenSSL 1.0.1e, written in C and using its own aforementioned cryptographic libraries (EVP), and Oracle
JSSE 1.7, written in Java and using the SunJSSE cryptographic provider.

We tested clients and servers for each implementation against one another, running on the same host to
minimize network effects. Figure 5 reports our results for different clients and ciphersuites with OpenSSL as
server. We measured (1) the number of handshakes completed per second; and (2) the average throughput
provided on the transfer of a 400 MB random data file.

At first glance, when comparing to OpenSSL, these results highlight that the miTLS reference imple-
mentation has been designed primarily for modular verification, and has not been optimized for speed. For
example, all buffers are implemented using plain functional byte arrays which involve a lot of dynamic al-
location and copying as record fragments are processed. However, when compared to VM-based languages,
the slow-down is less prominent (order of magnitude of 2 for JSSE), and we consistently outperform the
rudimentary TLS client distributed with Bouncy Castle. Moreover, when changing the miTLS crypto
provider from BouncyCastle to OpenSSL EVP, one can notice that throughput is then 1.5 faster in the
miTLS implementation than in the JSSE case.
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