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Abstract
1.	 Monitoring abundance is essential for vector management, but it is often only pos-
sible in a fraction of managed areas. For vector control programmes, sampling to 
estimate abundance is usually carried out at a local-scale (10s km2), while interven-
tions often extend across 100s km2. Geostatistical models have been used to inter-
polate between points where data are available, but this still requires costly 
sampling across the entire area of interest. Instead, we used geostatistical models 
to predict local-scale spatial variation in the abundance of tsetse—vectors of human 
and animal African trypanosomes—beyond the spatial extent of data to which mod-
els were fitted, in Serengeti, Tanzania.

2.	 We sampled Glossina swynnertoni and Glossina pallidipes >10 km inside the Serengeti 
National Park (SNP) and along four transects extending into areas where humans 
and livestock live. We fitted geostatistical models to data >10 km inside the SNP to 
produce maps of abundance for the entire region, including unprotected areas.

3.	 Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense 
woodland was 166 (± 24 SE), compared to 3 (±1) in grassland. Glossina swynnertoni 
was more homogenous with respective means of 15 (±3) and 15 (±8). In general, 
models predicted a decline in abundance from protected to unprotected areas, re-
lated to anthropogenic changes to vegetation, which was confirmed during field 
survey.

4.	 Synthesis and applications. Our approach allows vector control managers to identify 
sites predicted to have relatively high tsetse abundance, and therefore to design 
and implement improved surveillance strategies. In East and Southern Africa, trypa-
nosomiasis is associated with wilderness areas. Our study identified pockets of 
vegetation which could sustain tsetse populations in farming areas outside the 
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1  | INTRODUCTION

In sub-Saharan Africa, the edges of protected areas, including national 
parks and game reserves, have experienced human population growth 
twice that of other rural areas (Wittemyer et al., 2008). These regions 
present a complex transmission context for zoonotic diseases, includ-
ing Rhodesian human African trypanosomiasis (r-HAT; Auty, Morrison, 
Torr, & Lord, 2016; Hassell, Begon, Ward, & Fèvre, 2016). In these 
areas, Trypanosoma brucei rhodesiense—the causative agent of r-HAT—
circulates in wildlife and livestock, alongside the trypanosome species 
which cause animal African trypanosomiasis (AAT). A better under-
standing of trypanosome transmission dynamics and approaches to 
improve control are current priorities for these regions (Auty et al., 
2016; Diall et al., 2017).

Tsetse control is the only method available for reducing r-HAT 
within and around the edges of protected areas. Savanna tsetse—the 
Morsitans group of Glossina—are the primary vectors of the trypano-
somes which cause r-HAT and AAT inside and adjacent to protected 
areas in east and southern Africa (Gondwe et al., 2009; Mweempwa 
et al., 2015). For livestock-owning communities, use of insecticide-
treated cattle is the most cost-effective method of tsetse control but 
it requires sufficient densities of cattle (Shaw et al., 2015). Where cat-
tle are sparse, insecticide-impregnated targets baited with attractants 
can be used. Application of these vector control methods over large 
and remote protected areas is not feasible, but control can be targeted 
in interface areas to reduce human and livestock exposure. In order 
to concentrate resources for optimal cost-effective control requires 
information on the distribution and abundance of tsetse at a local lev-
el—10s km2, but district/country-level maps are often only available 
(Albert, Wardrop, Atkinson, Torr, & Welburn, 2015; Dicko et al., 2014; 
Hendrickx et al., 1999; Wint & Rogers, 2000). Although atlases of HAT 
and AAT exist (Cecchi et al., 2014; Simarro et al., 2010), for Tanzania, 
local-scale and contemporary knowledge of tsetse distribution and 
abundance is lacking.

Extensive grid-based sampling of tsetse using traps to estimate 
abundance coupled with vegetation mapping using remotely-sensed 
data has previously been applied to inform tsetse control (Albert 
et al., 2015; Dicko et al., 2014; Hendrickx et al., 1999). However, 
such sampling is logistically intensive and expensive. This is particu-
larly so within or at the edges of protected areas which are often re-
mote and difficult to access. The ability to predict where vegetation is 
suitable for tsetse, using remotely-sensed data, would be valuable for 

informing surveillance and control (Kalluri, Gilruth, Rogers, & Szczur, 
2007).

Remotely-sensed data can be included in geostatistical models 
to identify areas where vegetation may be suitable for tsetse (Albert 
et al., 2015; Bouyer et al., 2010; Dicko et al., 2014; Ducheyne et al., 
2009; Kitron et al., 1996; Mweempwa et al., 2015). However, few 
studies have linked tsetse abundance, habitat and remotely-sensed 
variables on a local scale (Kitron et al., 1996). Moreover, local-scale 
statistical models for tsetse have not been tested for their ability to 
predict abundance in regions other than those for which the original 
model was produced (Albert et al., 2015; Bouyer et al., 2010; Dicko 
et al., 2014; Ducheyne et al., 2009; Kitron et al., 1996; Mweempwa 
et al., 2015).

In regions >10 km inside protected areas, the drivers of tsetse 
population dynamics are limited to be natural variation in vegetation 
and wildlife densities associated with vegetation (Allsopp, Baldry, & 
Rodrigues, 1972). Rather than interpolation (Albert et al., 2015; Dicko 
et al., 2014; Hendrickx et al., 1999), comparing extrapolated predic-
tions from models fitted to data inside protected areas with data from 
across the interface would be a way of testing the robustness of rela-
tionships between remotely-sensed data as indicators of habitat and 
tsetse abundance. It may also allow insight into the drivers of tsetse 
distribution at the interface between protected and unprotected areas 
(Miller, Turner, Smithwick, Dent, & Stanley, 2004).

We quantified mean daily numbers of tsetse caught in traps as 
a function of vegetation type, for areas >10 km inside the Serengeti 
National Park (SNP), Tanzania. We then used geostatistical models 
based on remotely-sensed data fitted to these tsetse catches to pre-
dict how abundance varies spatially in regions across the interface be-
tween protected and unprotected areas. We tested model predictions 
with new field data from the interface.

2  | MATERIALS AND METHODS

2.1 | Study area

The protected areas in the study, comprising approximately 3,000 km2 
(Figure 1) support a gradient of habitats from dense woodland to 
grassland (Reed, Anderson, Dempewolf, Metzger, & Serneels, 2009). 
To the northwest of the SNP, communities practice livestock keep-
ing and mixed crop-livestock farming. Some unprotected areas here 
however still support natural vegetation (Estes, Kuemmerle, Kushnir, 

Serengeti National Park. Our method will assist countries in identifying, monitoring 
and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific appli-
cation to tsetse, but the approach could also be developed for vectors of other 
pathogens.

K E Y W O R D S

disease, geostatistical models, Glossina, pathogens, protected areas, remote-sensing, surveillance, 
trypanosomiasis, tsetse, vector control
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Radeloff, & Shugart, 2012). The northern region of Tanzania, including 
the SNP, has been known as an r-HAT focus since the 1920s (Davey, 
1924; Swynnerton, 1923). More recently, human infective T. brucei 
rhodesiense has been identified by PCR in cattle and wildlife in the 
study area (Auty, 2009; Kaare et al., 2007). Although r-HAT cases 
in residents are likely underreported (Odiit et al., 2005), 30 cases in 
travellers to the region were reported between 1990 and 2007 (Auty, 
2009). The SNP supports three species of tsetse: Glossina swynnertoni, 
Glossina pallidipes and Glossina brevipalpis—although the last species is 
present in smaller numbers than Morsitans group species (Auty et al., 
2012).

2.2 | Quantifying tsetse abundance

Surveys were carried out in February 2010 >10 km inside the SNP 
and in February 2015 across the interface between protected and 
unprotected areas (Figure 1). Sampling was carried out in February, 
prior to the rains to minimise water damage to traps and because 
tsetse abundance in Tanzania has previously been found to be high-
est between February and June (Glasgow & Welch, 1962). Tsetse 
were sampled using Nzi traps (Mihok, 2002) baited with a blend 
of acetone (100 mg/hr), 1-octen-3-ol (0.5 mg/hr), 4-methylphenol 
(1 mg/hr) and 3-n-propylphenol (0.1 mg/hr; Torr, Hall, Phelps, & 
Vale, 1997). Trap locations were recorded using a GPS. Catches 
from traps were collected daily for three consecutive days and the 
numbers of tsetse of each sex and species were recorded. We use 
the term “abundance” to describe mean numbers of tsetse caught 
per trap per day.

In February 2010, traps were deployed in each of four vegetation 
types, categorised, using an existing vegetation map (Hopcraft, 2008) 

and ground-truthing, as grassland (<2% tree cover), savanna (2%–
20% tree cover), open woodland (20%–50% tree cover) and dense 
woodland (50%–100% tree cover). Traps were deployed along three 
transects (Figure 1) extending from c. 10 to c. 30 km inside the SNP, 
based on accessibility from roads. Eighteen traps were placed in dense 
woodland, 14 in grassland, 14 in open woodland and 14 in savanna. 
Traps in each vegetation type were at least 50 m apart in dense/open 
woodland or 100 m apart in grassland/savanna, because traps are 
more visible to tsetse in open areas.

In February 2015, four transects of Nzi traps were set from 5 km 
inside, up to 10 km outside the protected area boundary (Figure 1). 
Transects were selected based on their accessibility from roads. 
Along each transect, we set pairs of odour-baited Nzi traps at ap-
proximately 1.5-km intervals irrespective of vegetation type. The 
Euclidean distance of traps from the protected area boundary was 
estimated.

We assume that our trapping did not affect the tsetse population. 
An odour-baited insecticide-treated target, which will catch similar 
numbers of tsetse as an odour-baited trap, kills c. 1% of tsetse per 
day within a km2 (Vale, Hargrove, Cockbill, & Phelps, 1986). To have an 
impact on a tsetse population requires >3% of the population within 
a km2 to be captured or killed per day and this has to be applied for 
months to impact the population (Hargrove, 1988).

2.3 | Remotely-sensed variables

Numbers of G. pallidipes caught in traps have previously correlated 
inversely with Landsat shortwave infrared values—an indicator of 
moisture (Barsi, Lee, Kvaran, Markham, & Pedelty, 2014; Kitron et al., 
1996). Normalized Difference Vegetation Index (NDVI) values above 
0.39 have previously been used as an indicator of vegetation suit-
able for tsetse (Lin, DeVisser, & Messina, 2015; Moore & Messina, 
2010), based on the observation that mortality rates decrease as 
NDVI increases (Rogers & Randolph, 1991). The NDVI is a measure 
of the density of plant matter—using the near-infrared and visible red 
wavelengths. We also included elevation and land surface tempera-
ture (LST), given the importance of temperature to tsetse mortality 
rates (Hargrove, 2004). For estimates of LST, the Landsat 8 Thermal 
Infrared Band 10 image was converted to at-satellite brightness tem-
perature. We then used NDVI to estimate emissivity and calculate LST 
as previously described (Sobrino, Jiménez-Muñoz, & Paolini, 2004). 
For elevation, we used the ASTER Global Digital Elevation Model 
(GDEM), which is a product of NASA and METI and has a resolution 
of 30 × 30 m.

Three Landsat 8 images (30 × 30 m resolution) with less than 10% 
cloud cover—Path/Row 169/061, 169/062 and 170/061—and the 
GDEM were acquired from Earth Explorer (https://earthexplorer.usgs.
gov/) from 13 February 2015 and 20 February 2015. The 2015 images 
had lower cloud cover than that available from 30 January 2010, and 
both sets of images appeared sufficiently similar to use the 2015 set 
for both time points. Histogram matching, conversion to near-surface 
reflectance, calculation of NDVI and application of a cloud mask was 
done in r (R Core Team, 2014).

F IGURE  1 Study area and Nzi trap locations. Triangles: 2010 
Nzi trap sampling sites >10 km inside the Serengeti National Park. 
Circles: 2015 Nzi trap sampling sites across the interface between 
protected and unprotected areas. WMA, wildlife management area

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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2.4 | Data analysis

Only 56 G. brevipalpis were caught throughout our studies and 
numbers were too low for analysis. Glossina pallidipes and G. sw-
ynnertoni count data were overdispersed. To compensate for this, 
daily catches (y) from 3 days for each trap were transformed to 
log10(y + 1) before calculation of mean numbers per trap per day 
and SE.

For each species, we first explored the variation in numbers per 
trap per day, >10 km inside the SNP during February 2010, between 
vegetation types. To determine the significance of the difference in 
log-transformed abundance observed between vegetation types 
for each species, we used ANOVA followed by the Tukey Honest 
Significant Difference test (Tukey HSD). We then fitted a Bayesian 
linear geostatistical model (Brown, 2015; Diggle, Tawn, & Moyeed, 
1998) only to the February 2010 data from >10 km inside the SNP. 
The function glgm within geostatsp (Brown, 2015) was used as it pro-
vided a user-friendly method for fitting and comparing models within 
a Bayesian framework. The glgm function implements integrated 
nested Laplace approximation (Rue, Martino, & Nicolas, 2009) for fit-
ting and prediction and outputs cross-validation measures for model 
comparison.

Allowing for savanna tsetse daily dispersal rates (Hargrove, 
1981), a buffer of 500 m around each trap was used to calculate 
the average LST, Landsat Band 7, NDVI and elevation. We used a 
systematic model fitting approach focused on the predictive ability 
of the model, rather than identifying a causal relationship between 
the environmental variables and the trap data. Separate linear re-
gression models were first fitted using each of the four individual 

environmental variables. Model fits, initially without a spatially ex-
plicit error term, to the G. pallidipes and G. swynnertoni data, were 
compared using the negative of the sum of the log conditional pre-
dictive ordinates (log-CPO score; Held, Schrödle, & Rue, 2010). 
Conditional predictive ordinates indicate the ability of a model 
to predict the value of a data point omitted from the fitting step. 
Starting with the univariate model with the lowest log-CPO score, 
each of the remaining variables was added to the model one at a 
time. The log-CPO was recalculated with each additional variable, 
and the combination with the lowest log-CPO was determined to be 
the most parsimonious.

Rasters of environmental variables remaining in the most parsi-
monious model were resampled to a resolution of 500 × 500 m, con-
sidering tsetse daily dispersal rates and to reduce computing time, 
covering an area including both 2010 transects inside the SNP and 
2015 transects across the interface. We then compared the fit, to 
the 2010 data, of a geostatistical model including a spatially struc-
tured error term to a model including an unstructured error term 
by comparing log-CPO scores. Normally distributed errors were as-
sumed, and prior 95% intervals for the practical range were 500 and 
5,000 m.

To test the ability of our models to predict tsetse abundance, pre-
dictive maps were simultaneously produced. Log10(y + 1) transformed 
geostatistical model predictions for new locations sampled during 
2015 across the interface were then compared with log10(y + 1) trans-
formed observed values and residuals between predicted and ob-
served counts calculated.

All data and r scripts required to produce the figures are available 
online (Lord et al., 2018).

F IGURE  2 Number of tsetse caught 
per trap per day by habitat type inside the 
Serengeti National Park, February 2010. 
Y-axes on a log scale. (a) Glossina pallidipes 
was significantly lower in grassland and 
savanna than in open and dense woodland 
and was lower in grassland compared with 
savanna (ANOVA F 38.46, p < .001, Tukey 
HSD p < .001 for each pairing with either 
grassland or savanna, p = .02 for grassland-
savanna); (b) Glossina swynnertoni—no 
significant difference between habitat 
types (p > .05)
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3  | RESULTS

3.1 | Tsetse abundance >10 km inside the SNP

During 2010 surveys >10 km inside the SNP, mean numbers of G. pal-
lidipes per trap per day were 123 (±24) in open woodland, and 166 

(±17) in dense woodland (Figure 2a). This was c. 30 times greater than 
that observed in grassland habitat and six times greater than in sa-
vanna habitat (Figure 2a). The mean number of G. swynnertoni caught 
per trap per day was more homogenous across vegetation types 
(Figure 2b).

For G. pallidipes, the model, using remotely-sensed data, with 
the lowest log-CPO score included all the environmental variables 
(Table 1). Although the distribution of G. swynnertoni appeared ho-
mogenous between habitat types (Figure 2b), the model including 
NDVI, elevation and Band 7 had better predictive ability than other 
models (Table 1). The mean NDVI between grassland and savanna 
sites was similar—0.40 (±0.01) in grassland and 0.38 (±0.01) in savanna 
which may indicate why similar numbers of G. swynnertoni were caught 
between these two habitats.

Models including a spatially structured error term provided 
better fits to the data for both G. pallidipes (log-CPO score 25.5) 
and G. swynnertoni (log-CPO score 8.4), than models including an 
unstructured error term (log-CPO score 37.5 and 23.4). Posterior 
estimates of model coefficients for the most parsimonious models 
including a spatially structured error term are provided in Table 2. 
The distance beyond which abundance was no longer correlated 
was 3,323 m for G. pallidipes and 2,477 m for G. swynnertoni. For 
both species, the amount by which abundance declines as eleva-
tion increases was estimated to be equivalent. However, increases 
in Band 7—indicating lower land surface moisture—was related to 
a greater decline in G. pallidipes abundance than G. swynnertoni 
abundance.

For both tsetse species, predicted abundance for the sites surveyed 
in 2010 were overestimates for lower observed values and underesti-
mates for higher observed values (Figure S1). This is likely because the 
relationships between log-transformed abundance and remotely-sensed 
variables were not exactly linear. However, for both species, maps pro-
duced by geostatistical model fits show that most areas predicted to have 
an abundance >100 were inside the protected area (Figures 3a and 4a). 
In addition, to the north of Ikorongo Game Reserve, there was a clear 
change in predicted abundance along the protected area boundary. 
Inside the protected area, the predicted abundance was >100, but within 
5 km into unprotected areas, the predicted abundance was <10. Some 
unprotected areas to the north of the Grumeti Game Reserve had pre-
dicted values of >100 (Figure 3a). Glossina swynnertoni was also predicted 
to be present with abundance >100 in the unprotected areas along the 
SNP transect (Figures 1 and 4a).

3.2 | Tsetse abundance at the interface between 
protected and unprotected areas

Mean values of the environmental variables were similar between 
2010 trap sites inside the SNP and the 2015 trap sites across the in-
terface (Table S1). Therefore, the two areas were assumed comparable 
with respect to the remotely-sensed variables. At the interface during 
2015, on all transects, the abundance of G. swynnertoni and G. pallidipes 
declined to zero by 5 km outside the boundary of the protected area 
in February 2015 (Figure 5a,b). In general, the geostatistical models of 
abundance also predicted a decline from inside to outside protected 

TABLE  1 Negative of the sum of the log conditional predictive 
ordinates (log-CPO score) for linear models using different 
combinations of remotely-sensed environmental variables. Variables 
included Landsat 8 Band 7, Normalized Difference Vegetation Index 
(NDVI), land surface temperature (LST) and elevation. Lower scores 
indicate better predictive ability

Remotely-sensed environmental variables 
included in model Log-CPO score

Glossina pallidipes

Band 7 48.9

NDVI 59.6

LST 57.8

Elevation 59.8

Band 7, elevation 47.8

Band 7, elevation, NDVI 47.1

Band 7, elevation, LST 47.8

Band 7, elevation, NDVI, LST 32.7

Glossina swynnertoni

Band 7 41.1

NDVI 38.0

LST 42.0

Elevation 41.1

NDVI, elevation 29.3

NDVI, elevation, LST 27.3

NDVI, elevation, Band 7 24.2

NDVI, elevation, Band 7, LST 27.3

TABLE  2 Posterior estimates of geostatistical model coefficients. 
Based on fits to log(y + 1) transformed data

M SD
0.025 
quantile

0.5 
quantile

0.975 
quantile

Glossina pallidipes

Intercept 12.42 5.180 0.674 12.90 21.34

NDVI −7.633 4.147 −14.78 −8.023 1.605

Elevation −0.003 0.002 −0.007 −0.003 0.002

Band 7 −43.10 10.97 −62.87 −43.79 −19.41

LST 0.074 0.096 −0.124 0.076 0.259

Range 3,323 1,814 1,118 2,900 7,985

Glossina swynnertoni

Intercept 13.09 3.035 6.862 13.15 18.98

NDVI −10.30 2.723 −15.63 −10.33 −4.793

Elevation −0.003 0.002 −0.006 −0.004 −0.0004

Band 7 −17.65 6.718 −30.78 −17.71 −4.144

Range 2,477 1,199 951 2,214 5,531

NDVI, Normalized Difference Vegetation Index; Band 7, Landsat 8 Band 7; 
LST, land surface temperature.



6  |    Journal of Applied Ecology LORD et al.

areas (Figure 5c,d). Indeed, the protected area boundary to the north of 
Ikorongo Game Reserve is quite clearly depicted in the predictive map 
for G. pallidipes and similarly so for G. swynnertoni (Figures 3a and 4a), 
even though the models were only fitted to data >10 km inside the SNP. 

Although a general decline was predicted, model predictions of abun-
dance were over estimates for approximately 80% of trap sites (G. sw-
ynnertoni—59/72, G. pallidipes—55/72; Figure 5e,f). The only locations 
predicted to have abundance >10, more than 5 km into unprotected 

F IGURE  3 Predictive map of 
Glossina pallidipes abundance based on 
geostatistical models fitted to 2010 data 
>10 km inside the Serengeti National Park 
(triangles). (a) Bayesian posterior mean 
predicted values, circles—abundance 
observed during 2015 across the protected 
area boundary and (b) Bayesian credible 
interval width (log10)—larger values 
indicating greater model uncertainty in 
predicted values. See Figure 1 for details on 
locations of protected areas

F IGURE  4 Predictive map of Glossina 
swynnertoni abundance based on 
geostatistical models fitted to 2010 data 
>10 km inside the Serengeti National Park 
(triangles). (a) Bayesian posterior mean 
predicted values; and (b) Bayesian credible 
interval width (log10)—higher values 
indicating greater model uncertainty in 
predicted values. See Figure 1 for details on 
locations of protected areas
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areas, were along the Grumeti Game Reserve transect (Figure 5c,d). 
Field observations confirmed that along this transect there was woody 
vegetation that may have been sufficient to support tsetse (Figure S2). 
However, beyond 5 km from the protected area boundary, no tsetse 
were caught along any of the transects during 2015 surveys. Sites near 
the boundary where G. pallidipes abundance was on average over 50 
per trap per day were all associated with riparian vegetation.

4  | DISCUSSION

Geostatistical models using remotely-sensed data have potential to 
identify sites of relatively high vector abundance, for surveillance and 
control, beyond the spatial extent of initial sampling. We have tested 
this approach in the case of tsetse flies, by fitting models to the abun-
dance of flies >10 km inside the SNP and testing model predictions 

F IGURE  5 Observed (a, b) and predicted (c, d) tsetse abundance and model residuals (observed—predicted) (e, f) at the interface between 
protected and unprotected areas. (a) Glossina pallidipes observed; (b) Glossina swynnertoni observed; (c) G. pallidipes predicted; (d) G. swynnertoni 
predicted; (e) G. pallidipes residuals; and (f) G. swynnertoni residuals. Geostatistical models fitted to 2010 data from >10 km inside the Serengeti 
National Park. Grey lines in (a) and (b)—SE, grey lines in (c) and (d)—95% credible intervals. Negative distance values on the x-axis indicate 
locations inside the protected area. GGR, Grumeti Game Reserve; IGRS, Ikorongo Game Reserve South; IGRN, Ikorongo Game Reserve North; 
SNP, Serengeti National Park. For map of trap locations see Figure1
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across the interface between protected and unprotected areas. In 
general, the models fitted to data >10 km inside the SNP, predicted a 
decline in tsetse abundance across the interface. A decline was con-
firmed by field sampling.

Similar declines in G. morsitans have been noted in Zambia and 
Malawi (Ducheyne et al., 2009; Gondwe et al., 2009; Mweempwa 
et al., 2015). Our results indicate that loss of woody vegetation ex-
plains, in part, such a decline in northern Serengeti, Tanzania. However, 
our models highlight there may be regions outside protected areas 
where vegetation is still sufficient to support tsetse populations. Our 
approach could be used to assist in identifying these remaining re-
gions on a local scale, so that control or monitoring can be targeted 
effectively.

In our study, sites near the boundary where G. pallidipes abundance 
was on average >50 per trap per day were all associated with riparian 
woody vegetation. Rivers running from inside to outside protected 
areas may be where this species could encounter humans and live-
stock. Control of G. pallidipes in this region using insecticide-treated 
targets should therefore focus on these riparian habitats.

While G. pallidipes was found in higher numbers in dense wood-
land inside the SNP, the abundance of G. swynnertoni did not differ 
significantly between habitat types. This may be due to the actual 
density of G. swynnertoni being similar between habitat types, or 
it may be due to trap bias. Indeed, odour-baited stationary traps 
are biased towards host-seeking flies (Hargrove & Packer, 1993). 
However, the degree of bias is likely different for G. pallidipes com-
pared with G. swynnertoni. Glossina pallidipes is more available to 
stationary hosts and odour-baited traps than G. morsitans and the 
latter is more attracted to mobile visual baits relative to stationary 
ones (Vale, 1974). The resting sites of both species are associated 
with woody vegetation (Chadwick, 1963; Pilson & Leggate, 1962). If 
the majority of G. swynnertoni and G. pallidipes rest in woody vege-
tation, but a smaller proportion of resting G. swynnertoni are stim-
ulated by stationary odour-baited traps, then we may overestimate 
the relative importance of G. pallidipes.

Although the abundance of G. swynnertoni was more homogenous 
between vegetation types than G. pallidipes, models still predicted a 
decline in numbers from protected to unprotected areas. Remotely-
sensed variables may not correlate directly with habitat type and may 
reflect other vegetation characteristics important to tsetse. For exam-
ple, long and short grassland were both grouped as grassland but may 
have different NDVI values. The similar abundance of G. swynnertoni in 
grassland and savanna habitats may also be due, in part, to the context 
within which grassland sampling sites were situated with respect to 
woodland, which we did not account for.

It may be anticipated that regions adjacent to protected areas are 
subject to relatively high numbers of tsetse dispersing from inside pro-
tected areas. However, numbers were already greatly reduced—to 5% 
of the maximum count in our study space—at the boundary. Our mod-
els explained, in part, this observed decline in tsetse abundance, but 
predicted tsetse to be present in numbers >100 in some unprotected 
areas. The presence of suitable vegetation at these locations was con-
firmed by field observations. Even in these regions, abundance was 

usually <10 at distances 1 km from the boundary, and catches were 
zero at >5 km from the boundary.

Models generally overestimated abundance at the interface. 
Overestimates and the predicted more gradual decline across the in-
terface may be expected as the geostatistical models do not account 
for context. This may also be due, in part, to factors affecting tsetse 
population dynamics in different ways between 2010 and 2015. A po-
tential limitation to the study is that there was a lack of contemporary 
Landsat imagery corresponding to the area surveyed in 2010 situated 
>10 km inside the SNP. The use of 2015 Landsat data to represent 
conditions in 2010 may therefore explain the model overpredictions in 
tsetse abundance observed across the interface in 2015, as seasonal 
conditions in the preceding months may have differed in 2010 in com-
parison to 2015. However, as the land within the SNP is protected, we 
expect these changes to be relatively minimal, and unlikely to have a 
large impact on tsetse habitat. This is supported by the results of the 
model both with respect to the relationships observed between 2015 
Landsat data and 2010 observed relative abundance and in the valida-
tion of the model predictions.

The relationships between vector abundance and remotely-sensed 
environmental variables are indirect and likely complex, which are not 
reflected in our linear models. This likely explains why model uncer-
tainty increased with model predicted values. However, the goal of the 
study was not to predict exact numbers of tsetse, but to find general 
patterns and establish relative differences between areas that can help 
to guide surveillance efforts.

Vector-borne disease control programmes often include reducing 
the life span of the vectors (Rozendaal, 1997; WHO Expert Committee 
on Control and Surveillance of Human African Trypanosomiasis, 
2013; World Health Organization Global Malaria Programme, 2007). 
Local spatial variation in vector population dynamics influences the 
efficiency and success of that strategy (Lambrechts, Knox, Wong, 
Liebman, &, 2009; Ostfeld, Glass, & Keesing, 2005). Knowledge of 
local variation in vector abundance is therefore essential in planning 
the control operation, particularly when a disease is close to elimi-
nation or incidence is focal. Vector surveillance at scales relevant to 
control programmes, but sufficient to quantify local-scale variation, 
is however difficult due to logistics, limited resources and costs of 
intensive sampling (Alimi et al., 2015). The ability to correlate vec-
tor abundance with remotely-sensed data can help direct limited 
resources (Kalluri et al., 2007). However, the majority use spatial 
interpolation—predictions made within the same area as the mea-
sured data—rather than extrapolation. Extrapolation and validation 
of predictions within surveillance efforts would require less intensive 
sampling than grid-based sampling spanning an entire area planned 
for control.

We used contemporary open-source remote-sensing data. Our 
approach did not require extensive ground-based information. The 
method may therefore be suitable for providing initial local-scale pre-
dictions over 100s km2. In addition, given rapid land-use change oc-
curring at the edges of protected areas (Wittemyer et al., 2008), using 
models based on remotely-sensed data which is updated monthly is 
advantageous.
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The resulting models will help managers of vector control pro-
grammes to select sites, predicted to have relatively high vector 
abundance, for surveillance prior to targeting control efforts. This will 
reduce the chances that suitable sites are missed. Models should then 
be tested by selecting areas predicted to support relatively high vs. 
low abundance and these sites subject to tsetse surveillance. This will 
help guide surveillance to targeted areas, and lead to more efficient 
intervention efforts.
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