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Transceiver Design of Optimum Wirelessly
Powered Full-Duplex MIMO IoT Devices

J. Xue, Member, IEEE, S. Biswas, Member, IEEE,
A. C. Cirik, Member, IEEE, H. Du, Member, IEEE, Y. Yang, Member, IEEE,

T. Ratnarajah, Senior Member, IEEE and M. Sellathurai, Senior Member, IEEE

Abstract—In this paper, we investigate the energy harvesting
(EH) technique and accordingly design transceivers for a K link
multiple-input multiple-output (MIMO) interference channel.
Each link consists of two full-duplex (FD) internet of things (IoT)
nodes exchanging information simultaneously in a bi-directional
communication channel. All the nodes suffer from interference,
in particular strong self-interference and inter-node interference,
due to operating in FD mode and simultaneous transmission at
each link, respectively. Further, we divide the received signal at
each node into two parts. While one part of the signal is used for
information decoding, the other part is used for EH. We jointly
design the transmit and receive beamforming vectors and receiver
power splitting ratios by minimizing the total transmission power
of the system, subject to both signal-to-interference-plus-noise
ratio (SINR) and EH threshold constraints. Furthermore, the
case of multiple-input single-output (MISO) interference channel
is also included for the sake of comparison. We also revisit the
above problems for the case when the available channel state
information (CSI) at the transmitters is imperfect, where the
errors of the CSI are assumed to be norm bounded. Simulation
results show that the EH technique can harvest enough energy
to support power consumption limited IoT devices by aiding in
recharging their respective batteries.

Index Terms—Beamforming, energy harvesting, full-duplex,
MIMO interference channels, power splitting, self-interference.

I. INTRODUCTION

Wireless data traffic has exponentially increased over the
last decade and it is projected to increase even further. As a
result, effective and efficient utilization of the scarce spectrum
resources has become an extremely important issue. The
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currently deployed half-duplex (HD) wireless communication
systems do not utilize the spectrum efficiently as transmission
and reception happen orthogonally, either in time, denoted
as time division duplexing (TDD), or in frequency, denoted
as frequency division duplexing (FDD). Among the emerg-
ing technologies for next-generation wireless networks, full-
duplex (FD) communication is considered as a way to poten-
tially double the capacity of wireless communications. Simul-
taneous transmission and reception of overlapping signals in
the same frequency had generally been assumed impossible
in wireless communications due to the challenges involved in
handling the self-interference [1], which is caused due to the
signal received at the receive antennas of a FD node from
its own transmitter antennas. However, thanks to the recent
progress of cancellation made on self-interference suppression,
FD communication systems have triggered enormous research
interests [2], [3], Consequently, FD is being considered as a
key enabling technique for 5G and beyond systems [4], since
it enables available spectral resources to be fully utilized in
both time and frequency.

A single-antenna FD system was investigated in [5], while
in [6], a multiple-antenna FD system was studied. Many
feasible solutions including antenna, analog and digital can-
cellation have been demonstrated experimentally to mitigate
the overwhelming self-interference, which is the fundamental
challenge in implementing a full-duplex radio [7]–[10]. How-
ever, due to imperfect self-interference channel knowledge
and hardware impairments in the transmitter chain, the self-
interference cannot be completely eradicated in practice. In
this case, the performance is limited by the residual self-
interference, which is induced by the imperfection of the
transmit and receive front-end chain [11]–[19]. In addition to
self-interference, co-channel interference (CCI) from uplink
(UL) to downlink (DL) nodes is another challenge in FD
networks that needs to be overcome to fully exploit the multi-
access nature of the wireless medium in conjunction with FD
systems. To optimize the system performance, self-interference
and CCI in FD systems should be addressed jointly through
beamforming [15], [20], [21].

It is a common practice in wireless communication devices
that energy is supplied to an energy constrained wireless
device with the help of rechargeable or replaceable batteries.
However, these batteries have limited operation time and they
need to be replaced or recharged frequently. Not only is this
inconvenient, but also usually incurs high costs. According
to the analyses in literature and the fact that radio signals
can potentially carry wireless information and energy simul-
taneously, a new promising solution, energy harvesting (EH)
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through simultaneous wireless information and power transfer
(SWIPT), has been proposed [22]–[24]. This is seen as a key
enabling technique for next generation wireless devices. In
particular, the recent advent of low powered internet of things
(IoT) devices and device to device (D2D) communications has
made EH an interesting proposition. Such IoT/D2D devices
will mainly make use of the current state of the art technolo-
gies such as bluetooth 5.0 low energy (LE), IEEE 802.11n,
IEEE 802.11ac, etc., along with other future communication
technologies such as mmWave transmission. The emergence of
these low power consumption technologies makes it possible
to realize wireless power transfer, which can act as a cor-
nerstone for future green communications. This EH technique
can be realized by two practical means, namely time-switching
(TS) and power splitting (PS) which were introduced in [25].
The single-input single-output (SISO) system with additive
white Gaussian noise (AWGN) was considered in [26], where
a capacity-energy function to characterize the fundamental
trade-off between wireless information and energy transmis-
sion was proposed. Moreover, SWIPT for multiple-antenna
systems was studied in [27].

Further from a market perspective (Global Market Forecast
(GMF) upto 2023), the EH system market by technology
(light, vibration, RF, thermal), component, application (build-
ing and home automation, consumer electronics, IoT, indus-
trial, transportation, security) is expected to witness a growth
from USD 311.2M in 2016 to USD 645.8M by 2023, at a
CAGR of 10.62% between 2017 and 2023. The key players
in this market are EnOcean GmbH (Germany), Mide Tech-
nology Corporation (US), Lord Microstrain (US); secondary
battery and capacitor providers such as Cymbet Corporation
(US), Linear Technologies (US), Murata Manufacturing Co.
Ltd., (Japan), and Infinite Power Solution Inc. (US); power
management IC manufacturers such as Linear Technologies
(US), Cypress Semiconductor Corp. (US), STMicroelectronics
(Switzerland), Texas Instruments (US), and Fujitsu (Japan).

Motivated by the potential of FD and EH in future wire-
less communication systems, such as IoT/D2D, in this paper
we investigate the EH potential of multiple-input multiple-
output (MIMO) interference channels consisting of K pairs
of IoT/D2D FD nodes with SWIPT. The consideration of
interference channel is suitable for IoT/D2D devices as mul-
tiple low powered devices will interact among each other in
an IoT/D2D communication scenario. Each IoT/D2D node is
assumed to have Na

i transmit and Ma
i receive antennas, where

i ∈ {1, 2, ...,K} and a ∈ {1, 2} and operates in FD mode. The
consideration of FD and EH techniques at each node allows all
the participating nodes to transmit/receive signal and harvest
energy simultaneously. The harvested energy can then be used
by the nodes to recharge their batteries without the need for
external power supply1.

Indeed, the studied system in our paper shares many sim-
ilarities to the traditional interference channel networks, both
in terms of the system concept, service requirements, as well
as the design guidelines. Nevertheless, the application of FD

1This paper does not focus on the modeling of charging of the battery.
Analysis of the battery dynamics is beyond the scope of this paper. Interested
readers can refer to [28], [29] for details on battery modelling.

technology for EH in a IoT/D2D network introduces new
fundamental challenges to the traditional interference channel
models, which is the main focus of this paper. The main
distinctions are summarized as follows:

• The EH requirements of an IoT network need to be
revised when operating in a FD mode. This is because
in a FD interference channel network, all the nodes
share the same channel resource for transmission and
reception, which results in the imposition of a higher
interference intensity on the network. This issue becomes
more critical considering the fact that the acquisition of
an accurate CSI regarding the interference paths from the
multiple users is relatively unrealistic, and calls for the
consideration of a joint robust transmission strategy.

• In an FD MIMO interference channel network, the self-
interference at each node is a critical challenge, and
strongly relates the performance/design of the UL/DL
reception to the DL/UL transmission. In this respect, the
consideration of an accurate transceiver model, including
the impacts of transmission and reception distortions are
critical, as it is well-established in the context of FD
system design and analysis.

• In an FD MIMO interference channel network, apart
from the self-interference, the interference paths among
all nodes should be additionally taken into account. This
impacts both the system performance, as well as the
design strategy.

Note that the aforementioned considerations regarding the
design of a robust FD multi-node MIMO IoT network, result in
a relatively complicated problem structure. For perfect channel
state information (CSI) at the nodes, the optimization problem
is defined according to the SINR and EH constraints, which
results in a non-convex optimization problem. When the CSI
availability at the transmitters is imperfect, the errors of the
CSI are assumed to be norm bounded, resulting in a semi-
infinite problem. Moreover, due to the transmit and receive
distortions at the FD nodes in addition to imperfect CSI, EH
and SINR become complicated functions, which make the
transformation of the constraints in the optimization problems
complicated. This, in turn, calls for a rigorous optimization and
analysis, together with a dedicated computational complexity
study. Numerical results demonstrate the feasibility of EH for
FD. It is shown that the harvested energy can support small
IoT devices with minimal power requirements to recharge their
batteries.

Notations: The following notations are used in this paper.
Matrices and vectors are denoted as bold capital and lowercase
letters, respectively. (·)T is the transpose, (·)H represents the
conjugate transpose, and (·)∗ the conjugate. E {·} denotes
the statistical expectation and diag (A) is the diagonal matrix
with the same diagonal elements as A. IN is the N by N
identity matrix, and tr {·} is the trace operator. CN

(
µ, σ2

)
denotes a complex Gaussian distribution with mean µ and
variance σ2. CN×M denotes the set of complex matrices with
a dimension of N by M . |·| and ‖·‖ denote the absolute
value and the Euclidean norm, respectively. The operator for
multidimensional array is denoted by vec(·). A � 0 indicates
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Fig. 1. An illustration of a bi-directional full-duplex MIMO interference
channel involving K pairs of IoT nodes.

that matrix A is positive semidefinite, and rank (A) is the
rank of matrix A.

The rest of the paper is organized as follows. The system
model is introduced in Section II. Section III and IV present
the beamforming design problem for the MISO and MIMO
interference channels with perfect CSI, respectively. The im-
perfect CSI case is presented in Section V followed by the
numerical results in Section VI. Finally, Section VII provides
the conclusion of the paper.

II. SYSTEM MODEL

As shown in Fig. 1 on the top of next page, the system under
consideration consists of K pairs of FD IoT nodes, where each
IoT node pair exchanges information simultaneously in a two
way communication. For simplification, we assume that the
MIMO FD IoT nodes in the ith link have Ni transmit antennas
and Mi receive antennas.

The node i(a), where i ∈ {1, . . . ,K} and a ∈ {1, 2} re-
ceives signals from all the transmitters in the system. H

(ab)
ii ∈

CMi×Ni is the desired channel between node a and b of the
ith transmitter-receiver pair, where b ∈ {1, 2} and b 6= a.
The self-interference channel of the node i(a) is denoted as
H

(aa)
ii ∈ CMi×Ni , a ∈ {1, 2} and the inter-user interference

channel from the transmitter antennas of the node c in the
jth pair to the receiver antenna of the node a in the ith
pair, (i, j) ∈ {1, . . . ,K} and j 6= i is denoted as H

(ac)
ij ∈

CMi×Nj , (a, c) ∈ {1, 2}.
Hereinafter, different mathematical methods will be applied

to obtain optimal EH solutions for both MISO and MIMO FD
systems. We begin our analysis by considering the perfect CSI
MISO and MIMO cases, which are then extended to MISO
and MIMO cases with imperfect CSI later in the paper.

III. FULL DUPLEX SYSTEMS WITH PERFECT CSI

In this section, we assume that perfect CSI is available at
all the IoT nodes. The MISO scenario will be investigated first
followed by the MIMO case2.

A. Transceiver design for MISO interference channel

The transmitted data stream of node i(a) is denoted as
d

(a)
i , i ∈ {1, . . . ,K}, a ∈ {1, 2}, and is assumed to be

2The consideration of both the MISO and MIMO cases is due to the fact
that the MIMO case requires certain approximations to derive the covariance
matrix of the signal. However, the MISO case doesn’t require any such
approximations and hence the MISO case may not be a straigtforward
extension of the MIMO case in our analysis.

complex, zero mean, independent and identically distributed
(i.i.d.) with unit variance. The Ni×1 signal vector transmitted
by node i(a) is given by

x
(a)
i = v

(a)
i d

(a)
i , i = 1, . . . ,K, a ∈ {1, 2}, (1)

where v
(a)
i ∈ CNi×1 represents the precoding vector.

The received signal at node i(a) is a combination of the
signals transmitted by all the IoT nodes plus the additive noise,
which is written as

y
(a)
i =

(
h

(ab)
ii

)H (
x

(b)
i + c

(b)
i

)
+
(
h

(aa)
ii

)H (
x

(a)
i + c

(a)
i

)
+

K∑
j 6=i

2∑
c=1

(
h

(ac)
ij

)H (
x

(c)
j + c

(c)
j

)
+ e

(a)
i

+ n
(a)
i , i ∈ {1, . . . ,K}, (a, b) ∈ {1, 2}, a 6= b. (2)

Here, n(a)
i is the additive white Gaussian noise (AWGN) at

node i(a) with zero mean and variance σ2
n.

In (2), c
(a)
i ∈ CNi , i ∈ {1, . . . ,K}, a ∈ {1, 2} is the noise

at the transmitter antennas of node i(a), which models the
effect of limited transmitter dynamic range (DR) and closely
approximates the effects of additive power-amplifier noise,
non-linearities in the DAC and phase noise [12]. The mean
of c

(a)
i is 0, and the variance of c

(a)
i is proportional to the

energy of the intended signal at each transmit antenna, i.e.,

c
(a)
i ∼ CN

(
0, κ diag

(
v

(a)
i

(
v

(a)
i

)H))
, c

(a)
i ⊥ x

(a)
i , (3)

where ⊥ denotes the statistical independence3.
In (2), e(a)

i , i ∈ {1, . . . ,K}, a ∈ {1, 2} is the additive
distortion at the receiver antenna of node i(a), which models
the effect of limited receiver DR and closely approximates the
combined effects of additive gain-control noise, non-linearities
in the ADC and phase noise. The mean of e(a)

i is 0 and
the variance is proportional to the energy of the undistorted
received signal at the receive antenna. In particular, e(a)

i is
modeled as

e
(a)
i ∼ CN

(
0, βΦ

(a)
i

)
, e

(a)
i ⊥ u

(a)
i , (4)

where Φ
(a)
i = Var{u(a)

i } is the variance of u(a)
i , and u

(a)
i is

the undistorted received signal at the node i(a), i.e., u(a)
i =

y
(a)
i − e

(a)
i .

Node i(a) has the knowledge of the interfering codewords
x

(a)
i and the channel h

(aa)
ii . So the self-interference term(

h
(aa)
ii

)T
x

(a)
i is known, and thus can be canceled [12]. The

received signal after self-interference cancellation can then be
written as

ỹ
(a)
i = y

(a)
i −

(
h

(aa)
ii

)T
x

(a)
i

=
(
h

(ab)
ii

)T
x

(b)
i + v

(a)
i , (5)

3Considering the measurements of various hardware setups which were
shown in [30], [31], the received signal modeled as (2) closely approximates
the combined effects of additive power-amp noise, non-linearities in the DAC
and power-amp, and oscillator phase noise. Meanwhile, by the definition of
limited dynamic range, the transmitter-noise variance is dependent on intended
signal power [16].
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Σ
(a)
i =

(
h

(ab)
ii

)H (
κ (1 + β) diag

(
v

(b)
i

(
v

(b)
i

)H)
+ βv

(b)
i

(
v

(b)
i

)H)(
h

(ab)
ii

)
+
(
h

(aa)
ii

)H (
κ (1 + β) diag

(
v

(a)
i

(
v

(a)
i

)H)
+ βv

(a)
i

(
v

(a)
i

)H)(
h

(aa)
ii

)
+
∑K

j 6=i

∑2

c=1
(1 + β)

[(
h

(ac)
ij

)H (
v

(c)
j

(
v

(c)
j

)H
+ κdiag

(
v

(c)
j

(
v

(c)
j

)H))(
h

(ac)
ij

)]
+ (1 + β)σ2

n. (7)

where v(a)
i is the unknown interference-plus noise component

after self-interference cancellation, and is given by

v
(a)
i =

(
h

(ab)
ii

)T
c

(b)
i +

(
h

(aa)
ii

)T
c

(a)
i + e

(a)
i + n

(a)
i

+
∑K

j 6=i

∑2

c=1

(
h

(ac)
ij

)T (
x

(c)
j + c

(c)
j

)
. (6)

Now, using (3)-(4), Σ
(a)
i , the variance of v(a)

i is given as (7).
By means of a power splitter, the received signal is now

divided into two parts, one for the information decoder and
another for EH. Let ρ(a)

i denote the PS ratio for receiver i(a),
which means that a portion ρ(a)

i of the signal power is used for
signal detection while the remaining portion 1−ρ(a)

i is diverted
to an energy harvester. Accordingly, the available signal for
information decoding at receiver i(a) can be expressed as

r
(a)
i =

√
ρ

(a)
i ỹ

(a)
i +m

(a)
i , (8)

where m(a)
i is the additional AWGN circuit noise with zero

mean and variance σ2
i(a)

due to phase offset and non-linearities
during baseband conversion [32]. Using (8), the SINR at
receiver i(a) is given by

SINR
(a)
i =

ρ
(a)
i

∣∣∣∣(h
(ab)
ii

)T
v

(b)
i

∣∣∣∣2
ρ

(a)
i Σ

(a)
i + σ2

i(a)

. (9)

Besides, the total harvested energy that can be stored by
receiver i(a) is given as

EH
(a)
i = ξ

(a)
i

(
1− ρ(a)

i

)
E
{∣∣∣y(a)

i

∣∣∣2}
= ξ

(a)
i

(
1− ρ(a)

i

)(∣∣∣∣(h
(ab)
ii

)T
v

(b)
i

∣∣∣∣2
+

∣∣∣∣(h
(aa)
ii

)T
v

(a)
i

∣∣∣∣2 + Σ
(a)
i

)
, (10)

where ξ(a)
i ∈ (0, 1) denotes the energy conversion efficiency

of the i(a)th EH unit.
We focus on transmit filter and PS ratio design, in order to

minimize the total transmitted power, subject to SINR and EH
constraints. The optimization scheme is formulated as follows.

min
v
(b)
i ,ρ

(a)
i

∑K

i=1

∑2

b=1
‖v(b)

i ‖
2 (11a)

s.t. SINR
(a)
i ≥ γ(a)

i , ∀(i, a), (11b)

EH
(a)
i ≥ δ(a)

i , 0 ≤ ρ(a)
i ≤ 1, ∀(i, a), (11c)

where γ(a)
i and δ

(a)
i are the SINR and EH thresholds at the

i(a)th IoT receiver, respectively. The EH constraint represents
the minimum amount of energy required in order to ensure that
sufficient amount of energy is harvested in each transmission
time. To obtain the optimal solution, the sufficient conditions
to obtain a feasible solution and the procedure and techniques
will be discussed in the following sections.

B. Extension to MIMO Interference Channel

In this section, we extend the model proposed in the
previous section to multiple-antenna IoT receivers, where the
nodes at the ith link now has Mi receive antennas. Note that
the channel vectors h

(ac)
ij , ∀ (i, j, a, c) in the MISO case is

now replaced with the channel matrices H
(ac)
ij , ∀ (i, j, a, c)

for the MIMO case. Accordingly, for this case, the SINR
(a)
i

and EH
(a)
i are defined as

SINR
(a)
i =

ρ
(a)
i

∣∣∣∣(u
(a)
i

)H
H

(ab)
ii v

(b)
i

∣∣∣∣2
ρ

(a)
i

(
u

(a)
i

)H
Σ

(a)
i u

(a)
i + σ2

i(a)
‖u(a)

i ‖2
, (12)

EH
(a)
i = ξ

(a)
i

(
1− ρ(a)

i

)
tr

{
H

(ab)
ii v

(b)
i

(
v

(b)
i

)H (
H

(ab)
ii

)H
+ H

(aa)
ii v

(a)
i

(
v

(a)
i

)H (
H

(aa)
ii

)H
+ Σ

(a)
i

}
. (13)

In (12) and (13), Σ
(a)
i is the covariance matrix of the total

interference-plus noise components, which is approximated by
ignoring the terms that include κβ � 1, and is expressed as
(14)4

Now, the optimization problem (11) can be reformulated for
the MIMO case, as

min
v
(b)
i ,u

(a)
i ,ρ

(a)
i

∑K

i=1

∑2

b=1
‖v(b)

i ‖
2 (15a)

s.t. SINR
(a)
i ≥ γ(a)

i , ∀(i, a), (15b)

EH
(a)
i ≥ δ(a)

i , ∀(i, a), (15c)

0 ≤ ρ(a)
i ≤ 1, (15d)

‖u(a)
i ‖

2 = 1,∀(i, a), (15e)

where u
(a)
i ∈ CMi×1, i ∈ {1, . . . ,K}, a ∈ {1, 2} is the

linear receiver applied at the receiver i(a).
Problem (15) is non-convex and difficult to solve due

to the quadratic terms involving all transmit beamforming

4Note that approximation of Σ
(a)
i is a practical assumption [12], as the

terms κ and β are much smaller than 1.
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Σ
(a)
i ≈ κH

(ab)
ii diag

(
v

(b)
i

(
v

(b)
i

)H)(
H

(ab)
ii

)H
+ κH

(aa)
ii diag

(
v

(a)
i

(
v

(a)
i

)H)(
H

(aa)
ii

)H
+
∑K

j 6=i

∑2

c=1

[
H

(ac)
ij

(
v

(c)
j

(
v

(c)
j

)H
+ κdiag

(
v

(c)
j

(
v

(c)
j

)H))(
H

(ac)
ij

)H]
+
∑K

j=1

∑2

c=1
βdiag

(
H

(ac)
ij v

(c)
j

(
v

(c)
j

)H (
H

(ac)
ij

)H)
+ σ2

nIMi
. (14)

Algorithm 1 : SWIPT for MIMO Full-Duplex Systems.

1: Initialize u
(a),[n]
i , ∀ (i, a) and set n = 0.

2: Repeat
3: Compute v

(a),[n+1]
i and ρ(a),[n+1]

i , ∀ (i, a) by solving the opti-
mal problem with fixed u

(a),[n]
i .

4: Compute u
(a),[n+1]
i , ∀ (i, a) using (19) with fixed v

(a),[n+1]
i and

ρ
(a),[n+1]
i .

5: n = n+ 1.
6: Until convergence

vectors. In order to solve this problem, we introduce a new

variable W
(b)
i , v

(b)
i

(
v

(b)
i

)H
, ∀(i, b) with rank(W

(b)
i ) = 1,

and relax the corresponding problem by dropping the rank
constraint. The reformulated problem can be expressed as

min
W

(b)
i ,u

(a)
i ,ρ

(a)
i

∑K

i=1

∑2

b=1
tr
{

W
(b)
i

}
(16a)

s.t. A−
σ2
i(a)
‖u(a)

i ‖2

ρ
(a)
i

≥ 0, (16b)

B −

(
δ

(a)
i

)2

1− ρ(a)
i

≥ 0, (16c)

0 ≤ ρ(a)
i ≤ 1, (16d)

W
(a)
i � 0, ∀(i, a), (16e)

where the variables A and B are obtained after performing
some simple algebraic manipulations, and are defined as

A =
1

γ
(a)
i

((
u

(a)
i

)H
H

(ab)
ii W

(b)
i

(
H

(ab)
ii

)H
u

(a)
i

)
−
(
u

(a)
i

)H
Σ

(a)
i u

(a)
i , (17)

B =ξ
(a)
i tr

{
H

(ab)
ii v

(b)
i

(
v

(b)
i

)H (
H

(ab)
ii

)H
+H

(aa)
ii v

(a)
i

(
v

(a)
i

)H (
H

(aa)
ii

)H
+ Σ

(a)
i

}
. (18)

To obtain the optimal v
(b)
i , we propose an iterative alter-

nating algorithm given on top of this page to solve problem
(16). Some insightful discussion for the original problem and
its solution is given in the following.

Finding the optimal V: First, under fixed u
(a)
i , we drop

the constraint rank
(
W

(b)
i

)
= 1 for numerical tractability to

solve for the optimal W
(b)
i and ρ(a)

i . Note that, the rank of the
solution W

(b)
i can be guaranteed as rank one in general, and

the randomization procedure is proposed to generate a feasible

but suboptimal solution. Suppose W∗ is the optimal solution
to the relaxed problem. Due to the relaxation, rank(W∗)
may not satisfy (15) in general. As a result, we adopt the
randomization technique [1], [2], in which the solution W∗ is
eigen-decomposed as W∗ = UW∗ΛW∗UH

W∗ and the solution
to (15) is chosen as W = UW∗Λ

1/2
W∗vvHΛ

1/2
W∗UH

W∗ with
Ni×1 uniform or Gaussian distributed random vector v [33],
[34].

Secondly, under fixed v
(b)
i and ρ(a)

i , the problem to compute
the optimal u

(a)
i boils down to a feasibility problem, which

has a closed form solution, and it is given by [16], [35]

u
(a)
i =

(
ρ

(a)
i Σ

(a)
i + σ2

i(a)
IMi

)−1

H
(ab)
ii v

(b)
i∥∥∥∥(ρ(a)

i Σ
(a)
i + σ2

i(a)
IMi

)−1

H
(ab)
ii v

(b)
i

∥∥∥∥ . (19)

The steps of the proposed algorithm are shown in Algorithm
1.

Remark: Since the sum transmission power decreases (or
stays at the same value) at each iteration, and it is lower
bounded by zero, the sum transmission power will converge.
But since the primal problem (15) is non-convex, global
optimality is not guaranteed.

C. Complexity Analysis
In this subsection, we discuss the computational complexity

of the proposed algorithm. The number of arithmetic opera-
tions required to solve a standard real-valued SDP problem

min
x∈Rn

cT x (20)

subject to A0 +
∑n

i=1
xiAi � 0, and ‖x‖2 ≤ X, (21)

where Ai denotes the symmetric block-diagonal matrices with
P diagonal blocks of size el × el, l = 1, . . . , P , is upper-
bounded by [36]
O (1)

(
1 +

∑P

l=1
el

)1/2

n

(
n2 + n

∑P

l=1
e2l +

∑P

l=1
e3l

)
. (22)

The main computational complexity of Algorithm 1 arises
from computing the optimal v

(a)
i and u

(a)
i . For simplicity,

let us assume same number of transmit and receive antennas
at each node, i.e., Mi = M and Ni = N , i = 1, . . . ,K.
Accordingly the complexity analysis is given as below.

1) Computations required to calculate v
(a)
i : Since the

proposed algorithm solves a SDP problem in Step 2, the
number of arithmetic operations required to compute optimal
vi is calculated from (22) as follows. In computing vi,
the number of diagonal blocks P is equal to 8K. For the
constraint (16b) for each node, the dimension of blocks are
e

(a)
i = M + 1, i = 1, . . . ,K, a ∈ {1, 2}. For the constraint
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(16c), e(a)
i = 3M2 + 1, i = 1, . . . ,K, a ∈ {1, 2}. For the

constraint (16d), and (16e), e(a)
i = 1, and e

(a)
i = N2, i =

1, . . . ,K, a ∈ {1, 2}, respectively. The unknown variables to
be determined are of size n = 2N2 + 2M + 1, where the first
and second terms correspond to the real and imaginary parts
of W

(a)
i and u

(a)
i , respectively, while the third term represents

the slack variable.
2) Computations required to calculate u

(a)
i : The compu-

tation of the receive beamformer is calculated from (19) as
follows [37].
• Term in numerator inside the inverse:

2
∑K
j=1N

(
N +

(
1− N+1

2

))
+ 2M2

• Term in numerator outside the inverse: 2MN −M
• Inverse term in numerator: M3 +M2 +M
• Product of the terms in numerator (outside the inverse

and the inverse): 2M2 −M
Accordingly, the total computational complexity to calculate
the receiver matrix is in the order of O(φ(K2X+KM2(M+
5))), where X = 2N

(
N +

(
1− N+1

2

))
.

IV. TRANSCEIVER DESIGN WITH IMPERFECT CSI
Considering a more realistic scenario, it may not be pos-

sible to obtain perfect CSI at all the IoT nodes due to,
for example error of channel estimation, quantization errors,
feedback delay, etc. Hence, it is necessary and important to
optimize the system under imperfect CSI and design robust
transceivers. In this section, we will investigate the FD MISO
and MIMO interference channels again, but with the important
discrepancy that the channels are now imperfectly known at
the IoT nodes.

A. FD MISO system with imperfect CSI
Considering the well-known norm-bounded error (NBE)

model [38], the actual CSI from the transmitter antennas of
node b in the jth tier to the receiver antenna of node a in the
ith tier is given by

h
(ab)
ij = h̃

(ab)
ij + eabij , (23)

(i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2},

where h̃
(ab)
ij is the estimated channel vector and eabij denotes

the CSI error vector, which is bounded by its known positive
constant Euclidean norm as∥∥eabij ∥∥ ≤ ηabij , (i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2}. (24)

In this case, the uncertainty set of h
(ab)
ij can be defined as

S(ab)
ij =

{
h|h = h̃

(ab)
ij + eabij ,

∥∥eabij ∥∥ ≤ ηabij } , (25)

(i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2}.
Accordingly, we can rewrite the optimization problem

in (11) as

min
v
(b)
i ,ρ

(a)
i

∑K

i=1

∑2

b=1
‖v(b)

i ‖
2 (26a)

s.t. SINR
(a)
i ≥ γ(a)

i , ∀(i, a), (26b)

EH
(a)
i ≥ δ(a)

i , 0 ≤ ρ(a)
i ≤ 1, ∀(i, a), (26c)

h
(ab)
ij = h̃

(ab)
ij + eabij , (26d)

∥∥eabij ∥∥2 ≤ ηabij
2
, (27)

(i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2},

where SINR
(a)
i and EH

(a)
i are given by (9) and (10), re-

spectively. Now, introducing several auxiliary variables and
applying the S-procedure [39] lemma, the problem for the
MISO case can be expressed as (28), detailed steps of which
are included in Appendix A. In (28), λabij and µabij are slack
variables for (i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2}, and
variables aabii , b

aa
ii , c

ac
ij , â

ab
ii , b̂

aa
ii , ĉ

ac
ij and d

(aa)
ii are defined in

(32), (33), (34), (40), (41), (42) and (43) in Appendix A
respectively. The above problem can be solved iteratively by
using the standard CVX toolbox, a package in Matlab for
specifying and solving convex programs [40], [41].

B. FD MIMO system with imperfect CSI

Similarly, for the MIMO scenario the actual CSI from the
transmitter antennas of the node b in the jth tier to the receiver
antennas of the node a in the ith tier can be expressed as

H
(ab)
ij = H̃

(ab)
ij + Eab

ij , (29)

(i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2},

where H̃
(ab)
ij is the estimated channel matrix and Eab

ij denotes
the CSI error matrix, which is bounded by its known positive
constant Frobenius norm as∥∥Eab

ij

∥∥
F
≤ ηabij ,(i, j) ∈ {1, . . . ,K} and (a, b)∈{1, 2}. (30)

Now reformulating the SINR and EH constraints
and introducing slack variables, the problem for the
MIMO case can be expressed as (31), the lengthy proof
of which is relegated to Appendix B. The variables
aabii , b

aa
ii , c

ac
ij , d

(aa)
ii , aaaii , â

ab
ii , b̂

aa
ii , ĉ

ac
ij and d̂

(aa)
ii are defined

in (69), (70), (71), (72), (80), (81), (82), (83) and (84) in
Appendix B, respectively. The optimal solutions can now be
obtained via an alternating minimization approach.

Remark: By solving the problem (31), the matrices W
(b)
i

are not guaranteed to be of rank one mathematically. Generally
speaking, the solution provides a lower bound to the original
problem. As we mentioned before, it is worth noting that
our solutions are of rank one in most cases, which means
the principal eigenvector v

(b)
i of W

(b)
i is the optimal solution

to the original problem. Otherwise, as explained before ran-
domization procedure is proposed to generate a feasible but
suboptimal solution [33], [34], [42].

C. CSI Acquisition

In this paper, we consider the IoT nodes to be low powered
devices. These devices can range from smart wearables to
smart home appliances, which may use bluetooth 4.0 LE/
5.0 LE, IEEE 802.11n, IEEE 802.11ac, etc., along with
other future communication technologies such as mmWave
transmission.

We assume that the IoT devices are connected to a parent
device (PD), such as a smartphone with high end signal pro-
cessing capabilities. The PD has the knowledge of the nominal
channels and the radius of uncertainty regions. We undertake
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min
W

(b)
i , ρ

(a)
i , λabij , µ

ab
ij , a

ab
ii ,

baaii , c
ac
ij , â

ab
ii , b̂

aa
ii , ĉ

ac
ij , d

(aa)
ii

K∑
i=1

2∑
b=1

tr
{

W
(b)
i

}
(28a)

s.t. (50), (51), (52), (53), (57), (28b)
(58), (59), (60), (61), (28c)

W
(b)
i � 0, 0 ≤ ρ(a)

i ≤ 1, (28d)
λabij ≥ 0, µabij ≥ 0, (28e)

aabii ≥ 0, baaii ≥ 0, (28f)
cacij ≥ 0, âabii ≥ 0, (28g)

b̂aaii ≥ 0, ĉacij ≥ 0, d
(aa)
ii ≥ 0, (28h)

(i, j) ∈ {1, . . . ,K} and (a, b, c) ∈ {1, 2},

min
W

(b)
i , ρ

(a)
i , λabij , µ

ab
ij , a

ab
ii , b

aa
ii ,

cacij , d
(aa)
ii aaaii , â

ab
ii , b̂

aa
ii , ĉ

ac
ij , d̂

(aa)
ii

K∑
i=1

2∑
b=1

tr
{

W
(b)
i

}
(31a)

s.t. (63), (64), (65), (66), (67), (68), (31b)
(73), (74), (75), (76), (77), (78), (79), (31c)

W
(b)
i � 0, 0 ≤ ρ(a)

i ≤ 1, (31d)
λabij ≥ 0, µabij ≥ 0, (31e)

aabii ≥ 0, baaii ≥ 0, (31f)

cacij ≥ 0, d
(aa)
ii ≥ 0, (31g)

aaaii ≥ 0, âabii ≥ 0, (31h)

b̂aaii ≥ 0, ĉacij ≥ 0, d̂aaii ≥ 0, (31i)
(i, j) ∈ {1, . . . ,K} and (a, b, c) ∈ {1, 2}.

a centralized approach where the PD collects all channel
matrices, computes the beamforming matrices based on the
imperfect CSI, and then distributes them to the IoT nodes.
The estimation of CSI matrices follows a similar strategy to
that of traditional systems, as the IoT nodes cooperate with
the PD. This is performed via the exchange of the training
sequences and feedback, and the application of usual CSI
estimation methods [43].

Accordingly, from a practical implementation perspective,
it is important to note the following points:

• The devices considered for EH in this paper are mainly
indoor devices, where the variation in channel is min-
imum. So once acquired, the channel can be estimated
later with minimum error and less complicated signal
processing.

• Devices such as smart watches, heart rate monitors,
fitness trackers, etc., are usually required to be connected
to a parent smart phone through bluetooth LE. These
low powered devices are not required to do any complex
processing to acquire the CSI, which will be the task
of the more capable smart phones. Once acquired, the
smart phones can transmit the information to the wearable
devices.

• Devices such as Nest thermostat, Google home, Microsoft

Hololens, Amazon Echo, Echo Show, etc., are usually
connected to a central WiFi device. Centralized algo-
rithms can be processed at the central device, which
will aggregate all CSI and perform the optimization. This
would however incur heavy signaling overhead and limit
the network scalability, which is not an issue here as
scalability is not a factor in an indoor home network.

V. NUMERICAL RESULTS

In this section, we numerically investigate the SWIPT
optimization problem for FD MISO and MIMO interference
channels involving IoT nodes as a function of SINR constraints
and inter-user interference power. Accordingly, we set the
number of transmit and receive antennas at each node as
Ni = 3 and Mi = 2, i = 1, . . . ,K. For simplicity, the
EH and SINR thresholds are assumed to be equal5 for all
receivers, i.e., δ = δ

(a)
i , γ = γ

(a)
i , ∀ (i, a), respectively.

Unless otherwise stated, the parameters used for the simulation
are: κ = β = −40dB, ξ(a)

i = 0.5, σ2
i(a)

= −70dBm, ∀ (i, a),

5In practice however, thresholds for devices will depend on their transmis-
sion power and battery capacity. For example, small devices such as wearables,
might only be interested in EH, while larger devices such as smart speakers
may perform EH while also transmit substantial energy for others to harvest
without its quality of service (QoS) being affected.
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Fig. 2. Convergence of the proposed algorithm

TABLE I
TOTAL PORTION OF POWER DEDICATED TO EH CONSIDERING DIFFERENT

EH THRESHOLDS WHEN K = 2.

τ = 0.1 τ = 0.4 τ = 0.7 τ = 1.0

δ = −5dBm 0.6874 0.8687 0.8831 0.8872
δ = 0dBm 0.7568 0.8953 0.9348 0.941
δ = 5dBm 0.7986 0.9646 0.9394 0.966

τ = 1.3 τ = 1.6 τ = 1.9

δ = −5dBm 0.8761 0.8949 0.885
δ = 0dBm 0.9243 0.9355 0.9306
δ = 5dBm 0.966 0.9518 0.9625

and σ2
n = −50dBm. Iteration method’s performance may

rely on the initialization state. As a result, it is important
to select good initialization points to achieve a suboptimal
solution with a good performance. While various initializa-
tion techniques, such as random initialization, right singular
matrix initialization, etc., are used in literature [44], due to
the problem complexity, in this paper we use the random
intialization method, which is also very common in litera-
ture [45]. The tolerance (the difference between cost function
of two iterations) of the proposed iterative algorithm is set
to 10−5, the maximum number of iterations is set to 50,
and the results are averaged over 1000 independent channel
realizations. The entries of the channel H

(ac)
ij , ∀ (i, j, a, c) are

i.i.d. zero-mean with variance σ2
ij,ac. For the direct channels,

i.e., H
(ab)
ii , i = 1, . . . ,K, a 6= b, σabii

2
= 10−4. For the inter-

user interference channels, i.e., H
(ac)
ij , i 6= j, σacij

2 = 10−4

τ ,
with τ being the inter-user interference suppression factor and
for the self-interference channel H

(aa)
ii , ∀ (i, a), σaaii

2 = 10−3.
We begin by showing the evolution of the proposed algo-

rithm, i.e., its convergence in Fig. 2. Here, the SINR threshold
= 20 dB. The monotonic decrease of the cost function (sum
power in dBm) can be verified from the figure.

After establishing the convergence of the proposed algo-
rithm, we now show the amount of power dedicated to EH
with different EH thresholds in Table I when K = 2 and the
SINR threshold γ(a)

i = 10dB. It is worth noting that the values
in this table are the portions of total power dedicated to EH
in the system. The portions increase when the EH threshold

TABLE II
PORTION OF POWER AT EACH NODE DEDICATED TO EH WHEN

γ
(a)
i = 10dB AND δ

(a)
i = 0dBm.

τ = 0.1 a = 1 a = 2 τ = 0.7 a = 1 a = 2
K = 1 0.0569 0.0560 K = 1 0.0141 0.0155
K = 2 0.0758 0.0545 K = 2 0.0155 0.0201
τ = 1.3 a = 1 a = 2 τ = 1.9 a = 1 a = 2
K = 1 0.0222 0.0204 K = 1 0.0166 0.0206
K = 2 0.0183 0.0148 K = 2 0.0164 0.0158
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Fig. 3. Power consumption of FD MIMO interference channel with different
EH and SINR thresholds.

increases which is quite intuitive. However, the variance of
inter-user interference channel decreases with the increase in
τ . However, no linear relation can be explicitly seen between
the values of τ and the portions of power. Nonetheless, it
can be seen that achieved power portion values are minimum
when τ = 0.1. In other words, when the inter-user interference
is more, the amount of dedicated power required for EH is
less. This result clearly shows the usefulness of inter-user
interference in EH arising due to operating in FD mode.
Furthermore, the optimal portion of power for each node has
also been derived. For example, the optimal portion of EH for
each node when γ

(a)
i = 10dB and δ

(a)
i = 0dBm is shown in

Table II.
Next, the minimum power consumption of FD MIMO

interference channel with different EH and SINR thresholds
is shown in Fig. 3 when K = 2. It can be observed
that the system power consumption increases for higher EH
threshold requirements. Thus, more power is required as SINR
threshold increases. For a specific EH threshold, the power
consumption increases slowly with the SINR threshold. This
can be attributed to the fact that the system requires more
power for signal detection.

In Fig. 4, the importance of smart channel assignment,
at a stage prior to the precoder/decoder design is depicted
for the proposed algorithm. The value of τ represents the
provided isolation among the nodes responsible for inter user
interference. In particular, the power consumption of FD
MIMO interference channel with respect to the different values
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Fig. 5. Average normalized total transmitted power versus EH threshold of
FD MISO interference channel.

of τ and EH threshold when K = 2 is presented. The SINR
threshold is fixed in this figure at 10dB. It can be seen that
the power consumption increases with τ , but becomes flat
later. It is worth noting that the inter-user interferences are
stronger when τ is small and the system can harvest more
energy from the interferences. However, the system doesn’t
harvest enough energy from the interference channels when τ
increases. Like before, this figure also illustrates the benefits
of inter-user interference in EH.

In Fig. 5, we give the simulations for the MISO scenario.
Assuming SINR threshold to be 20dB, we compare the
performance of average normalized total transmitted power
versus EH threshold for the case of 2, 4 and 6 nodes when
τ = 1. It can be seen that the average value of the total
transmitted power increases monotonically with the increase
of the EH threshold. Furthermore, with the increase in the
number of nodes, the average normalized transmitted power
also increases. It is worthwhile to note that the average
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Fig. 6. Power consumption of imperfect FD MIMO interference channel for
different SINR thresholds and error bounds.
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Fig. 7. Power consumption of imperfect FD MIMO interference channel for
different values of τ and EH thresholds.

normalized power increases slightly when EH threshold is less
than −15dB. It means that the EH technique can be applied
when the required energy is small, which was also applicable
for the MIMO case.

Finally, Fig. 6 and 7 present the total system power con-
sumption of imperfect FD MIMO IoT nodes. The numbers
of transmit and receive antennas at each node are set as
Ni = 2 and Mi = 2, i = 1, . . . ,K and K = 2. In Fig. 6,
the power consumption is much higher than the perfect CSI
scenario and the difference in power consumption for different
SINR thresholds are more obvious. Meanwhile, it shows that
more power is needed when the EH threshold increases.
Further, the bound of CSI error is verified in Fig. 6 from
η =
√

0.1 to η =
√

0.5. As expected, the power consumption
increases with the increase in channel uncertainty. Finally,
the total power consumption is plotted with respect to τ and
different EH thresholds in Fig. 7, where the SINR threshold
is 10dB and the CSI error is bounded by η =

√
0.1. Similar
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to the perfect CSI scenario, the power consumption increases
with τ , but becomes flat later. More power is needed owing
to the uncertainty of the channel, but it also shows that the
EH process is the primary beneficiary from the inter-user
interference.

At this point it is worthwhile to mention that the EH
threshold value chosen for the numerical analysis, satisfies
the power consumption requirement of small devices, such
as small low power IoT devices. Accordingly, the harvested
power can definitely be considered to be utile if not sufficient
to recharge their individual batteries.

VI. CONCLUDING REMARKS

The joint transceiver design problem for the SWIPT FD
MISO/MIMO interference channels involving IoT nodes was
studied under both perfect and imperfect CSI cases. An itera-
tive alternating algorithm was proposed to design the transmit
and receive filters. Meanwhile, the optimal power splitting
ratio minimizing the total transmit power was derived.

The simulation results show that the EH technique works
efficiently on FD MIMO IoT systems and the harvested
power from EH can support charging of batteries of power
consumption limited IoT devices with a specific guaranteed
transmission quality.

Furthermore, in the current work for the sake of simplicity,
we do not consider the dynamics of the battery to be charged.
Several discretization techniques can be used to approximate
the battery level after storing the harvested energy. In future,
we will use steady-state probability analysis to derive the
probability of having sufficient energy to charge the battery.

Also, we consider linear EH circuits in this work for
analytical simplicity. While in linear EH model, the RF-to-
direct current (DC) power conversion efficiency is independent
of the input impedence of the EH circuit, in a non-linear end-
to-end wireless power transfer circuit, this is not the case. The
non-linear EH model will ensure better resource allocation for
SWIPT, which will be considered in future as an extension to
this work.

APPENDIX A
PROBLEM REFORMULATION (IMPERFECT CSI-MISO

CASE)

Here, we show the steps for reformulating the problem (26).
To begin, for the SINR constraint, we introduce three auxiliary
variables as

aabii = max
∀eab

ii
Heab

ii ≤ηab
ii

2

(
h

(ab)
ii

)H
(κ (1 + β)

× diag
(

v
(b)
i

(
v

(b)
i

)H)
+βv

(b)
i

(
v

(b)
i

)H)(
h

(ab)
ii

)
,

(32)

baaii = max
∀eaa

ii
Heaa

ii ≤ηaa
ii

2

(
h

(aa)
ii

)H
(κ (1 + β)

× diag
(

v
(a)
i

(
v

(a)
i

)H)
+βv

(a)
i

(
v

(a)
i

)H)(
h

(aa)
ii

)
,

(33)

cacij = max
∀eac

ij
Heac

ij ≤ηac
ij

2

(
h

(ac)
ij

)H (
v

(c)
j

(
v

(c)
j

)H
+κdiag

(
v

(c)
j

(
v

(c)
j

)H))(
h

(ac)
ij

)
, (34)

where aabii , baaii and cacij are the maximum (worst cases)
cross tier and self-interference. By using these three auxiliary
variables, Σ

(a)
i in eq. (7) can be rewritten as

Σ
(a)

i = aabii + baaii + (1 + β)

 K∑
j 6=i

2∑
c=1

cacij + σ2
n

 . (35)

Then, the SINR constraint can be rewritten as

ρ
(a)
i

(
h̃

(ab)
ii + eabii

)H
W

(b)
i

(
h̃

(ab)
ii + eabii

)
− γ(a)

i ρ
(a)
i Σ

(a)

i − γ
(a)
i σ2

i(a)
≥ 0,

∥∥eabii ∥∥2 ≤ ηabii
2
, (36)

aabii ≥
(
h̃

(ab)
ii + eabii

)H (
κ (1 + β) diag

(
W

(b)
i

)
+ βW

(b)
i

)
×
(
h̃

(ab)
ii + eabii

)
,
∥∥eabii ∥∥2 ≤ ηabii

2
, (37)

baaii ≥
(
h̃

(aa)
ii + eaaii

)H (
κ (1 + β) diag

(
W

(a)
i

)
+ βW

(a)
i

)
×
(
h̃

(aa)
ii + eaaii

)
, ‖eaaii ‖

2 ≤ ηaaii
2, (38)

cacij ≥
(
h̃

(ac)
ij + eacij

)H (
W

(c)
j + κdiag

(
W

(c)
j

))
×
(
h̃

(ac)
ij + eacij

)
,
∥∥eacij ∥∥2 ≤ ηacij

2, (39)

for (i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2}.

Similarly, for EH constraint, we introduce four auxiliary
variables as (40), (41), (42) and (43), where âabii , b̂aaii , ĉacij and
daaii denote the minimum (worst cases) available power for
EH from all the nodes. The covariance matrix in EH can be
rewritten as

Σ
(a)

i = âabii + b̂aaii + (1 + β)

 K∑
j 6=i

2∑
c=1

ĉacij + σ2
n

 . (44)

Then, the EH constraint can be rewritten as

ξ
(a)
i

(
1− ρ(a)

i

)((
h̃

(ab)
ii + eabii

)H
W

(b)
i

(
h̃

(ab)
ii + eabii

)
+daaii + Σ̂

(a)
i

)
− δ(a)

i ≥ 0,
∥∥eabii ∥∥2 ≤ ηabii

2
, (45)

âabii ≤
(
h̃

(ab)
ii + eabii

)H (
κ (1 + β) diag

(
W

(b)
i

)
+βW

(b)
i

)(
h̃

(ab)
ii + eabii

)
,
∥∥eabii ∥∥2 ≤ ηabii

2
, (46)

b̂aaii ≤
(
h̃

(aa)
ii + eaaii

)H (
κ (1 + β) diag

(
W

(a)
i

)
+βW

(a)
i

)(
h̃

(aa)
ii + eaaii

)
, ‖eaaii ‖

2 ≤ ηaaii
2, (47)
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âabii = min
∀eab

ii
Heab

ii ≤ηab
ii

2

(
h

(ab)
ii

)H (
κ (1 + β) diag

(
v

(b)
i

(
v

(b)
i

)H)
+ βv

(b)
i

(
v

(b)
i

)H)(
h

(ab)
ii

)
, (40)

b̂aaii = min
∀eaa

ii
Heaa

ii ≤ηaa
ii

2

(
h

(aa)
ii

)H (
κ (1 + β) diag

(
v

(a)
i

(
v

(a)
i

)H)
+ βv

(a)
i

(
v

(a)
i

)H)(
h

(aa)
ii

)
, (41)

ĉacij = min
∀eac

ij
Heac

ij ≤ηac
ij

2

(
h

(ac)
ij

)H (
v

(c)
j

(
v

(c)
j

)H
+ κdiag

(
v

(c)
j

(
v

(c)
j

)H))(
h

(ac)
ij

)
, (42)

daaii = min
∀eaa

ii
Heaa

ii ≤ηaa
ii

2

(
h

(aa)
ii

)H (
v

(a)
i

(
v

(a)
i

)H)(
h

(aa)
ii

)
, (43)

 W
(b)
i + λabii I W

(b)
i

(
h̃

(ab)
ii

)
(
h̃

(ab)
ii

)H
W

(b)
i

(
h̃

(ab)
ii

)H
W

(b)
i

(
h̃

(ab)
ii

)
− γ(a)

i ρ
(a)
i Σ

(a)

i − γ
(a)
i σ2

i(a)
− λabii ηabii

2

 � 0, (50)

 −F1 + λabii I −F1

(
h̃

(ab)
ii

)
−
(
h̃

(ab)
ii

)H
F1 aabii −

(
h̃

(ab)
ii

)H
F1

(
h̃

(ab)
ii

)
− λabii ηabii

2

 � 0, (51)

 −F2 + λaaii I −F2

(
h̃

(aa)
ii

)
−
(
h̃

(aa)
ii

)H
F2 baaii −

(
h̃

(aa)
ii

)H
F2

(
h̃

(aa)
ii

)
− λaaii ηaaii 2

 � 0, (52)

 −F3 + λacij I −F3

(
h̃

(ac)
ij

)
,

−
(
h̃

(ac)
ij

)H
F3 cacij −

(
h̃

(ac)
ij

)H
F3

(
h̃

(ac)
ij

)
− λacij ηacij 2

 � 0, (53)

ĉacij ≤
(
h̃

(ac)
ij + eacij

)H (
W

(c)
j + κdiag

(
W

(c)
j

))
×
(
h̃

(ac)
ij + eacij

)
,
∥∥eacij ∥∥2 ≤ ηacij

2, (48)

daaii ≤
(
h̃

(aa)
ii + eaaii

)H (
W

(a)
i

)
×
(
h̃

(aa)
ii + eaaii

)
, ‖eaaii ‖

2 ≤ ηaaii
2, (49)

for (i, j) ∈ {1, . . . ,K} and (a, b) ∈ {1, 2}.

However, this problem is still computationally intractable,
because it involves an infinite number of constraints, which
have to be reformulated into finite convex constraints. By
applying the S-procedure [39], the SINR constraints in (36),
(37), (38) and (39) can be reformulated to finite convex
constraints which are equivalent to (50), (51), (52) and (53),
where

F1 = κ (1 + β) diag
(
W

(b)
i

)
+ βW

(b)
i , (54)

F2 = κ (1 + β) diag
(
W

(a)
i

)
+ βW

(a)
i , (55)

F3 = W
(c)
j + κdiag

(
W

(c)
j

)
. (56)

Meanwhile, the EH constraints in (45), (46), (47), (48) and
(49) can be reformulated to finite convex constraints which
are equivalent to (57), (58), (59), (60) and (61).

Accordingly, after some simple mathematical manipula-
tions, we obtain (28).

APPENDIX B
PROBLEM REFORMULATION (IMPERFECT CSI-MIMO

CASE)

Here, we show the steps for reformulating the problem (31).
To begin, the SINR constraint can be rewritten as (62).

Then, the SINR constraint of this MIMO scenario can be
reformulated as (63), (64), (65), (66), (67) and (68), where

Σ
(a)

i ,κ
(
aabii + baaii

)
+

K∑
j 6=i

2∑
c=1

cacij +

K∑
j=1

2∑
c=1

βdacij

+ (uai )
H
σ2
nIuai ,

V S1 , min
‖E(ab)

ij ‖F≤η
(ab)
ij

1

γ
(a)
i

((
u

(a)
i

)H (
H̃

(ab)
ii + E

(ab)
ii

)
×W

(b)
i

(
H̃

(ab)
ii + E

(ab)
ii

)H
u

(a)
i

)
,

F4 =
(
W

(c)
j + κdiag

(
W

(c)
j

))
,

aabii , max
∀‖Eab

ii ‖2F≤ηab
ii

2
(uai )

H
H

(ab)
ii diag

(
W

(b)
i

)(
H

(ab)
ii

)H
uai ,

(69)

baaii , max
∀‖Eaa

ii ‖2F≤ηaa
ii

2

(uai )
H

H
(aa)
ii diag

(
W

(a)
i

)(
H

(aa)
ii

)H
uai ,

(70)
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 W
(b)
i + µabii I W

(b)
i

(
h̃

(ab)
ii

)
(
h̃

(ab)
ii

)H
W

(b)
i

(
h̃

(ab)
ii

)H
W

(b)
i

(
h̃

(ab)
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)
+ d

(aa)
ii + Σ̂

(a)
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δ
(a)
i
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ab
ii η

ab
ii

2

 � 0, (57)

 F1 + µabii I F1

(
h̃

(ab)
ii

)
(
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)H
F1

(
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F1

(
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− âabii − µabii ηabii

2

 � 0, , (58)

 F2 + µaaii I F2

(
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(
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F2

(
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)H
F2

(
h̃
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)
− b̂aaii − µaaii ηaaii 2

 � 0, , (59)

 F3 + µacij I F3

(
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ij

)
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h̃
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ij

)H
F3

(
h̃

(ac)
ij

)H
F3

(
h̃
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ij

)
− ĉacij − µacij ηacij 2

 � 0, (60)

 W
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i + µaaii I W
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i

(
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(aa)
ii

)
(
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W
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i
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 � 0, (61)

ρ
(a)
i ≥ σ2
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i
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W

(b)
i
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i
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−
(
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i
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i
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i
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,

⇒
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i σi(a)

σi(a)

((
u

(a)
i

)H(
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i
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(
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i
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 ρ
(a)
i σi(a)

σi(a) V S1−
(
u

(a)
i

)H
Σ̄

(a)
i u

(a)
i

 � 0 , (63)


1
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(a)
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(
u
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(
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(
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i

)H
H̃
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(b)
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(a)
i

)H
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(b)
i
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W

(b)
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η
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 � 0 , (64)

 − (uai )
H

diag
(
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i
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H
diag
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)(
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H
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ii diag

(
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H̃
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ii diag

(
W

(b)
i

)(
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)H
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 � 0, (65)
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H

diag
(
W

(a)
i
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diag
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(aa)
ii

)H
uai

− (uai )
H

H̃
(aa)
ii diag
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 � 0, (66)
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H

F4u
a
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a
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 � 0, (67)

 − (uai )
H

diag
(
W

(c)
j

)
uai + λacij − (uai )
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diag

(
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(c)
j

(
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 � 0, (68)
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 ξ
(a)
i (1− ρ(a)

i )

√
δ

(a)
i√

δ
(a)
i V S2 + āaaii + Σ̂

(a)
i

 � 0 , (73)
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(
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i ⊗ I
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i ⊗ I
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 � 0 , (75)
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i )⊗ I

)
+

µab
ii

ηab
ii

2 I


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� 0 , (77) vec
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− ĉacij − µacij vec

(
H̃

(ac)
ij

)H
(F4 ⊗ I)(

vec
(
H̃

(ac)
ij

)H
(F4 ⊗ I)

)H
(F4)⊗ I) +

µac
ij

ηac
ij
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 � 0 , (78)
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(
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cacij , max
∀‖Eac

ij ‖2F≤ηac
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2

(uai )
H
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(ac)
ij F4
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H

(ac)
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dacij , max
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2

(uai )
H

diag
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H
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(
H

(ac)
ij

)H)
uai .

(72)

and λabij are the slack variables. Note that, the slack variables
in (64) and (65) should be marked differently for simulations,
which use the same λabii . Similarly, the EH constraint can be
reformulated as (73), (74), (75), (76), (77), (78) and (79),
where

Σ̂
(a)
i ,κ

(
âabii + b̂aaii

)
+

K∑
j 6=i

2∑
c=1
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2
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∀‖Eab

ii ‖2F≤ηab
ii

2
tr

(
H

(ab)
ii diag

(
W

(b)
i

)(
H

(ab)
ii

)H)
,

(81)

b̂aaii , min
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ii

2

tr

(
H

(aa)
ii diag

(
W

(a)
i

)(
H

(aa)
ii

)H)
,

(82)

ĉacij , min
∀‖Eac

ij ‖2F≤ηac
ij

2

tr

(
H

(ac)
ij F4

(
H

(ac)
ij

)H)
, (83)

d̂acij , min
∀‖Eac

ij ‖2F≤ηac
ij

2

tr

(
diag

(
H

(ac)
ij W

(c)
j

(
H

(ac)
ij

)H))
.

(84)

and µabij are the slack variables. Accordingly, with some simple
mathematical manipulations, we obtain (31).
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