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ABSTRACT Cold-formed stainless steel circular hollow section (CHS) columns have been 

increasingly used in construction, due to its aesthetic appearance, long life-span and good ductility. 

It is shown that direct strength method (DSM) is capable of predicting cold-formed steel column 

strengths accurately. However, the DSM is developed for cold-formed steel sections with plate 

rather than curved elements, and thus its applicability for cold-formed stainless steel CHS is worth 

investigating. This paper presents a numerical investigation of cold-formed stainless steel CHS 

columns. A non-linear finite element model was developed and verified against column tests. 

Extensive parametric study of cold-formed duplex, lean duplex and ferritic stainless steel CHS 

columns has been performed to obtain column strengths. A total of 273 experimental and 

numerical cold-formed stainless steel CHS column strengths, which are obtained from previous 

researches and parametric study obtained from this study, are compared with the design strengths 

predicted by the current DSM. Reliability analysis was performed to evaluate the reliability of the 

design rules. It is shown that the current DSM provides unconservative and not reliable prediction 

for cold-formed stainless steel CHS columns. Therefore, modified DSM is proposed for cold-

formed stainless steel CHS columns. It is shown that the modified design rule is more accurate 

than the current DSM, and the modified design rule is considered to be reliable. 
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1. Introduction 

Cold-formed stainless steel has many advantages in construction applications, such as ease to 

construct, shiny appearance, long life span, relatively low maintenance cost, and better ductility 

compared with carbon steel. Therefore, it has been increasingly used in construction projects. 

Specifications [1, 2, 3] have been developed to facilitate engineers in designing stainless steel 

structural members. A wide range of experimental and numerical investigation on cold-formed 

stainless steel circular hollow section (CHS) columns has been conducted by previous researchers, 

including Young and Hartono [4], Ellobody and Young [5], Young and Ellobody [6], Talja [7], 

Gardner and Nethercot [8], Rasmussen and Hancock [9], and Bardi and Kyriakides [10]. Various 

types of austenitic and duplex stainless steel materials have been covered in previous investigation. 

Details of the previous experimental and numerical analysis are presented in Section 2.1 of this 

paper. The existing design rules, including American Specification [1], Australian/New Zealand 

Standard [2], European Code [3] as well as design rules proposed by Rasmussen and Hancock [9] 

and Rasmussen and Rondal [11], have been examined for designing stainless steel CHS section 

columns.  

However, the direct strength method (DSM) proposed by Schafer and Pekoz [12] has not been 

examined for cold-formed stainless steel circular hollow section columns in previous research. The 

direct strength method has shown to be able to accurately predict compressive strengths of cold-

formed steel columns, and it has been adopted by the North American Specification (AISI) [13, 

14] for cold-formed steel structures. Direct strength method predicts the design strengths by 

calculating the nominal strengths of compressive members subjected to flexural, local and 

distortional buckling, and then takes the minimum value of these nominal strengths as the design 

strength. Full cross-sectional area, instead of effective area, is used in the direct strength method. 
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Thus, the calculation procedure of direct strength method is relatively convenient compared with 

the traditional effective method. It should be noted that the current direct strength method in AISI 

[13, 14] does not covers circular hollow section or stainless steel material. Zhu and Young [15] 

performed experimental and numerical analysis on aluminium circular hollow section columns, 

and compared the test and numerical results with design values calculated by the current direct 

strength method in AISI [13, 14]. It is shown that the current direct strength method generally 

provides conservative prediction for the aluminum non-welded columns of circular hollow 

sections. Design equation is proposed for aluminum alloy circular hollow section columns with 

transverse welds at the ends of the columns. Becque et al. [16] and Huang and Young [17] 

examined the direct strength method [13, 14] for designing stainless steel columns, and the 

modified direct strength method was proposed. However, the specimens in experimental and 

numerical program [16, 17] are rectangular and square hollow sections, but not circular hollow 

section. Therefore, there is a lack of investigation to examine the suitability of direct strength 

method for stainless steel circular hollow section columns. 

The purpose of this paper is firstly to investigate the behaviour of stainless steel circular 

hollow section columns by performing extensive parametric study using finite element analysis 

(FEA). The finite element model (FEM) is verified with the available test results. Secondly, the 

suitability of current DSM for stainless steel circular hollow section column is assessed by 

comparing the numerical strength with design strength. Thirdly, design rules for stainless steel 

circular hollow section columns are proposed based on the current DSM. Lastly, reliability analysis 

was performed to assess the reliability of these design rules.   
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2. Summary of available data 

Extensive experimental and numerical investigation on stainless steel circular hollow section 

column has been performed by previous researchers. A total of 165 available experimental and 

numerical data of stainless steel circular hollow section columns are used in this study, as 

summarized in Table 1. The data pool covers four different types of austenitic stainless steel and 

two types of duplex stainless steel, as shown in Table 1. The type 304 austenitic stainless steel 

circular hollow section columns have been investigated by Young and Hartono [4], Ellobody and 

Young [5], Young and Ellobody [6] and Gardner and Nethercot [8]. The available type 304 

austenitic stainless steel circular hollow section column specimens ranged from stocky to slender 

sections with slenderness (D/t) of 5 to 200, where D and t are diameter and thickness of section. 

Tests on other types of austenitic stainless steel (316L and 304L) were conducted by Talja [7] and 

Rasmussen and Hancock [9], respectively. The slenderness of these specimens ranged from 34 – 

48.6. Finite element analysis was performed for duplex stainless steel (EN 1.4462). The sections 

of these specimens ranged from stocky to slender, with D/t of 5 – 62.5. Experimental analysis of 

duplex stainless steel (EN 1.4410) was performed on sections with D/t ranging from 22.9 – 54.7.  

The relationship of Pu/Pne and l for the available data is shown in Figure 1, where Pu is the 

experimental and numerical column strength, Pne is the nominal member capacity and l is the 

non-dimensional slenderness, as specified in the North American Specification [13]. It is shown 

that the slenderness of stainless steel CHS columns in previous researchers are smaller than 0.776 

(l < 0.776), while those with slenderness larger than 0.776 (l ≥ 0.776) are not available. It should 

be noted that the direct strength method predicts the column strength by considering the nominal 

member capacity for flexural buckling (Pne) with l < 0.776 and nominal member capacity for 

local buckling (Pnl) with l ≥ 0.776, and then take the minimum of Pne and Pnl as the design strength. 
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Therefore, the lacking of experimental and numerical data of stainless steel CHS columns with 

slenderness larger than 0.776 leads to difficulties in assessing the suitability of current DSM for 

stainless steel CHS columns. Therefore, the parametric study in this paper focuses on the columns 

with slenderness larger than 0.776, which is detailed in Section 3 of this paper. The relationship of 

Pu/Py and c for the available data is shown in Figure 2, where Py equals to yield stress of the 

material multiply by cross-sectional area, and c is the non-dimensional slenderness to determine 

Pne.  

 

3. Finite element model 

3.1 General 

A non-linear finite element model (FEM) has been developed using the program ABAQUS 

version 6.11 [18]. The buckling behaviour of 15 cold-formed stainless steel circular hollow section 

(CHS) columns conducted by Young and Hartono [4] was simulated with the FEM. The measured 

geometry, material properties, initial local and overall geometric imperfections of the test 

specimens were used in the finite element model (FEM). Young and Ellobody [6] has pointed out 

that the effect of residual stresses on cold-formed stainless steel circular hollow section columns 

is negligible. Therefore, residual stresses are not included in the FEM.  

 

3.2 Type of element and material modelling 

A four-noded shell element with reduced integration S4R was used to model the CHS columns. 

A mesh size of 10 mm × 10 mm (length by width) was adopted. The measured stress-strain curves 

of each CHS were included in the model. Multi-linear stress-strain curves were used, including the 
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elastic part up to the proportional limit and the plastic curves of true stress and logarithmic true 

plastic strain. The measured Young’s modulus reported in Young and Hartono [4] and Poisson’s 

ratio of 0.3 are adopted in modelling the elastic part. The true plastic stress-strain curves calculated 

using Eqs. (1) and (2) were used in modelling the material properties of the columns, where ,  

and Eo are the measured stress, strain and Young’s modulus obtained from tensile coupon tests, 

andtrue and true,pl are the true stress and true plastic strain, respectively.  

 true =  (1+)                            (1) 

true,pl = ln (1+) – true/Eo                        (2) 

 

3.3 Boundary conditions and load applications 

The test specimens [4] were compressed between fixed ends. According to the test procedures 

reported in Young and Hartono [4], the ends of the columns were simulated by restraining against 

all degrees of freedom, except for the displacement at the loaded end in the direction of the applied 

load. The nodes other than the two ends were free to translate and rotate in any directions. The 

boundary conditions were modelled by two reference points located at the centroids of two the 

ends, which are coupled with the surfaces of the cross-section at both ends. The axial loads were 

applied by specifying an axial displacement to the nodes at one end of the columns, which is 

identical to the column tests. The loading was applied by a static RIKS step. The nonlinear 

geometric parameter (*NLGEOM) was used to deal with the large displacement analysis. 

 

3.4 Initial local and overall geometric imperfections 

The measured local and overall geometric imperfections of the columns [4] were also included 

in the FEM. Initial local and overall geometric imperfections for the test specimens were measured 
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by Young & Ellobody [6] and Young & Hartono [4], respectively. The local and overall buckling 

modes were superposed on the column model. The BUCKLE procedure available in the ABAQUS 

library with the load applied within the step was used. The local buckling mode is obtained by 

carrying out Eigenvalue analysis using the first buckling mode (Eigenmode 1) using the measured 

specimen dimension. The overall buckling mode can be obtained by increasing the specimen 

thickness to obtain a small depth-to-thickness (D/t) ratio, and then carry out Eigenvalue analysis 

using the first buckling mode (Eigenmode 1). The values obtained from the first buckling mode 

predicted by the ABAQUS Eigenvalue analysis were normalized to 1.0, thus, the buckling mode 

was then factored by the measured magnitudes of the initial local and overall geometric 

imperfections of each column.   

 

3.5 Validation of finite element model 

      The finite element model was validated with the CHS column tests conducted by Young and 

Hartono [4]. The results of the FEA were compared with the test strengths, as shown in Table 2. 

The mean value of experimental-to-numerical ultimate strength (Pexp/PFEA) and axial shortening at 

ultimate strength (eexp/eFEA) ratio are 0.93 and 1.14, respectively, with the corresponding 

coefficient of variation (COV) of 0.021 and 0.146. The failure modes observed at ultimate load of 

the experimental specimens that involved material yielding (Y), local buckling (L), flexural 

buckling (F) and interaction of local and overall flexural buckling (L+F), are identical to those 

failure modes predicted from the FEA. Figure 3(a) shows the flexural buckling failure of specimen 

C2L2000, while Figure 3(b) shows the local buckling failure of specimen C3L3000.  

 

 



8 

 

4. Parametric study 

Finite element analysis on 108 stainless steel CHS columns was carried out using the validated 

FEM. The parametric study includes cold-formed duplex (EN 1.4462) stainless steel, cold-formed 

lean duplex (EN 1.4162) stainless steel and cold-formed ferritic (EN 1.4003) stainless steel with 

36 specimens for each material. The material properties of cold-formed duplex, lean duplex and 

ferritic stainless steel are obtained by Young & Lui [19], Huang & Young [20], and Huang & 

Young [21], respectively. The Young’s modulus (Eo), 0.2 proof stress (yield strength) (0.2), 

ultimate strength (u) and Ramberg-Osgood parameter (n) used in the FEM for the three materials 

are summarized in Table 3.  

The parametric study focus on specimens with slenderness (l) greater than 0.776, as 

mentioned in Section 2.1 of this paper. Extensive range of cross-section and column slenderness 

is designed for the parametric study, including 12 CHS with 3 different effective lengths in each 

section for each material. The diameter-to-thickness (D/t) of the 12 sections varies from 100 to 

400, where D is the diameter and t is the thickness of the section. The effective length (le) of the 

fixed-ended column in the parametric study is equal to half of the specimen length, with the 

effective length factor (k) taken as 0.5. The non-dimensional slenderness (l) to determine nominal 

member capacity for local buckling (Pnl) ranges from 0.44 to 1.34.  

The average measured overall geometric imperfections for the experimental specimens 

reported in Young and Hartono [4] is L/2559. Thus, slightly conservative rounded numbers of 

L/2500 were used as the overall imperfections in the parametric study. Local imperfection of the 

test specimens were measured by Young & Ellobody [6], which is equal to 3.2% of the plate 

thickness of the specimens. Therefore, local imperfection equals to 3.2% of the plate thickness is 
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used in the parametric study. The column strength (PFEA) and failure modes of the specimens in 

parametric study are summarized in Table 4.  

The specimens are labelled such that the cross-section dimensions and the specimen length 

could be identified, as shown in Table 4. For example, the label “D100×1L1000” defines the 

following CHS column: 

- The first letter indicates that the material is duplex stainless steel (D). The lean duplex stainless 

steel and ferritic stainless steel are represented by letters “L” and “F”, respectively. 

- The cross-section dimension (diameter × thickness) is followed by the first letter. The specimen 

diameter is 100 mm and thickness is 1 mm. 

- The letter “L” after the dimension indicates the length of the specimen. 

- The last four digits are the length of the specimen (1000 mm). 

The reliability of the column design rules was evaluated using reliability analysis. Reliability 

analysis is detailed in the Commentary of the ASCE Specifications [1]. A target reliability index 

() of 2.5 for stainless steel structural members is used in this study. The design rules are 

considered to be reliable if the reliability index is greater than 2.5. The resistance factors () of 

0.85 for concentrically loaded compression members, as recommended by North American 

Specification (AISI) [13, 14], were used in the reliability analysis. The load combination of 

1.2DL+1.6LL in AISI was used for reliability analysis. The Eq. 6.2-2 in the ASCE Specification 

was used in calculating the reliability index. The statistical parameters Mm = 1.10, Fm = 1.00, Vm 

= 0.10 and VF = 0.05, which are the mean values and coefficients of variation for material 

properties and fabrication factors for flexural buckling members in the commentary of the ASCE 

Specification were adopted. The mean value (Pm) and coefficient of variation of tested-to-predicted 

load ratio (VP) are shown in Table 5 for all specimens. In calculating the reliability index, the 
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correction factor Eq. K2.1.1-4 in the AISI [13] was used to account for the influence due to a small 

number of tests. Result of reliability analysis is shown in Table 5. 

 

5. Comparison of experimental and numerical strengths with 

design strengths 

The direct strength method in this study was based on the clauses E3.2.1 for compression 

members subjected to local buckling interacting with global buckling in AISI S100 [13]. The direct 

strength method is developed for sections with plate rather than curved elements. It should be 

noted that circular hollow section is not covered by the direct strength method (DSM). Therefore, 

the applicability of DSM for stainless steel CHS columns can be assessed using the available data 

and numerical data in parametric study. According to clause E3.2.1, the nominal axial strength for 

compressive members subjected to local buckling (Pnl) and global buckling (Pne) shall be 

determined by Eqs (3) and (4). The column capacity calculated by direct strength method PDSM is 

the lower value of Pnl and Pne. It should be noted that distortional buckling does not occur in CHS 

columns. Calculation of the elastic local buckling load (Pcrl) is required in determining the local 

buckling strength. The software Thin-Wall using a rational elastic finite strip buckling analysis 

[22] was used to determine the elastic local buckling stress (fol) by applying buckling analysis to 

each section of the specimens with the accuracy of 5 mm half-wave length. The signature curve 

and local buckling of CHS obtained from the finite strip analysis are shown in Figure 4.  
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where c is the non-dimensional slenderness to determine Pne, Py is the nominal yield capacity of 

the member in compression, Pcrl is the elastic local buckling load = fol × A, and A is the cross-

sectional area of specimen. 

The DSM to predict column strength is assessed by comparing the experimental and numerical 

column strengths with design strengths. The relationship of Pu/Pne and l for all specimens, 

including available data and parametric study, is shown in Figure 1. The relationship of Pu/Py and 

c for specimens with l ≥ 0.776 is shown in Figure 2. Comparison of experimental and numerical 

column strength with design strength is shown in Table 5. Generally speaking, the current DSM is 

unconservative in predicting the stainless steel CHS columns. For all specimens, the mean value 

of Pu / PDSM ratio equals to 0.96, with the coefficient of variation (COV) equals to 0.130. The 

design rule is considered to be not reliable with the reliability index () equals to 2.36, which is 

smaller than the target value. For specimens with l < 0.776 and l ≥ 0.776, the mean values of Pu 

/ PDSM ratio equal to 0.99 and 0.92, with the coefficient of variation (COV) equals to 0.138 and 

Pnl = 

Pne = 
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0.090, respectively. Similarly, the reliability indices () of these two groups of specimens are 

smaller than the target value. Therefore, it is important to modify the current DSM, so that the 

DSM is able to provide accurate and reliable prediction for stainless steel CHS columns. 

It is shown from Figures 1 and 2 that the current DSM general provides accurate prediction 

for the available data with slenderness l < 0.776, while it is unconservative for specimens with 

slenderness l ≥ 0.776. Therefore, it is suggested that the coefficients in Eq. (4) does not need to 

change, except that the intersection point between Pne and Pnl changes from 0.776 to 0.77. The Eq. 

(3) should be modified to provide a more accurate prediction. It is suggested that Pne and Pnl to be 

calculated using Eqs (5) and (6) in the modified direct strength method, and the lower value of Pne 

and Pnl is taken as the design strength (P*
DSM) predicted by the modified DSM: 
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The design strength predicted by the modified DSM is represented by P*
DSM. The comparison 

results of experimental and numerical column strengths (Pu) over design strength (P*
DSM) were 

shown in Table 5 and Figures 1 and 2. It is shown that the modified DSM provides a more accurate 

Pnl = 

Pne = 
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and less scattered prediction for stainless steel CHS columns. The mean values of Pu / P
*

DSM ratio 

equals to 0.99, 0.99 and 1.00, with COV of 0.121, 0.139, and 0.079 for all specimens, specimens 

with slenderness l < 0.77, and specimens with slenderness l ≥ 0.77, respectively. The revised 

DSM method is considered to be reliable for all specimens, with the reliability index () equals to 

the target value of 2.50. Comparison of experimental and numerical column strengths with the 

design strengths calculated by modified DSM is shown in Figure 1. 

 

6. Conclusions 

An investigation on the design of cold-formed stainless steel circular hollow section columns 

using direct strength method is presented in this paper. A total of 165 available experimental and 

numerical cold-formed stainless steel circular hollow section column strengths by previous 

researchers were collected. A finite element model was developed and compared with 

experimental results reported by Young and Hartono [4]. Good agreement between the finite 

element and experimental results was observed. A wide range of parametric study with 108 cold-

formed stainless steel circular hollow section columns was conducted using the verified finite 

element model. The parametric study includes cold-formed duplex, lean duplex and ferritic 

stainless steel. The column strengths obtained from the parametric study, together with the 

available data of stainless steel circular hollow section columns, were compared with the design 

strengths calculated by the current direct strength method in North American Specification (AISI) 

[13]. 

It is shown that the current direct strength method provides unconservative and scattered 

prediction to the specimens investigated in this study, especially to the slender sections with 

slenderness l greater than 0.776, due to the fact that the previous researches do not cover the range 
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of l greater than 0.776 for cold-formed stainless steel circular hollow section columns. A modified 

direct strength method is proposed in this paper, to facilitate the design of cold-formed stainless 

steel circular hollow section columns. It is shown that the modified direct strength method provides 

more accurate and reliable predictions, especially for slender specimens with l greater than 0.776.  
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Notation 

The following symbols are used in this paper: 

A = cross-sectional area; 

D = diameter of specimen; 

Eo = initial Young’s modulus; 

eexp = axial displacement at ultimate load obtained from experimental 

program 

eFEA = axial displacement at ultimate load obtained from finite element 

analysis 

Fm = mean value of fabrication factor; 

fol = elastic local buckling stress; 

k = effective length factor; 

L = length of specimen; 

le = effective length of specimen; 

Mm = mean value of material factor; 

n = Ramberg-Osgood parameter; 

Pcrl = elastic local buckling load; 

PDSM   = design strengths calculated using direct strength method; 

Pexp   = column strength obtained from experimental program; 

PFEA   = column strength obtained from finite element analysis; 

Pne = nominal member capacity of a member in compression for flexural 

buckling; 
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Pnl = nominal member capacity of a member in compression for local 

buckling; 

Pu = compressive capacity of column members; 

Py = the nominal yield capacity of the member in compression; 

P*
DSM = design strengths calculated using modified direct strength method; 

t = thickness of specimen; 

VF = coefficient of variation of fabrication factor; 

Vm = coefficient of variation of material factor; 

Vp = coefficient of variation of tested-to-predicted load ratio; 

 = reliability index; 

 = tensile strain; 

true,pl = plastic true strain; 

 = resistance factor; 

c = non-dimensional slenderness to determine Pne; 

l = non-dimensional slenderness to determine Pnl; 

 = tensile stress or normal stress; 

true     = true stress; 

u = static tensile strength; 

0.2 = static 0.2% tensile proof stress; 
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Reference Approach Material 
Type 

# of data 
EN ASTM 

Young & Hartono  [4] Tests Austenitic 1.4301 304 16 

Ellobody & Young [5] FEA 
Austenitic 1.4301 304 35 

Duplex 1.4462 S31803 35 

Young & Ellobody [6] FEA Austenitic 1.4301 304 42 

Talja [7] Tests Austenitic 
1.4435 316L 5 

1.4541 321 4 

Gardner & Nethercot [8] Tests Austenitic 1.4301 304 4 

Rasmussen & Hancock [9] Tests Austenitic 1.4306 304L 6 

Bardi & Kyriakides [10] Tests Duplex 1.4410 S32750 20 

    Total 165 

Table 1: Summary of available cold-formed stainless steel CHS column strengths 
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Specimen 

Tests* FEA Comparison 

Pexp 

(kN) 

eexp 

(mm) 

Failure 

mode 

PFEA 

(kN) 

eFEA 

(mm) 

Failure 

mode 

Pexp 

PFEA 

eexp 

eFEA 

C1L550 235.2 16.9 Y 247.9 12.9 Y 0.95 1.31 

C1L1000 198.4 10.3 Y 213.3 9.3 Y 0.93 1.10 

C1L1500 177.4 5.8 F 192.1 6.3 F 0.92 0.92 

C1L2000 165.1 4.8 F 176.1 5.0 F 0.94 0.97 

C1L2500 151.6 5.4 F 158.4 5.2 F 0.96 1.04 

C1L3000 133.4 5.0 F 147.4 5.1 F 0.91 0.98 

C2L550 495.6 9.41 Y 528.7 7.2 Y 0.94 1.31 

C2L1000 474.9 14.64 L+F 499.1 10 L+F 0.95 1.46 

C2L1500 461.0 15.92 L+F 487.2 11.9 L+F 0.95 1.34 

C2L2000 431.6 13.32 F 463.4 12 F 0.93 1.11 

C3L1000 1123.9 8.05 Y 1231.8 8.5 Y 0.91 0.95 

C3L1500 1119.7 14.38 Y 1203.1 11.6 Y 0.93 1.24 

C3L2000 1087.8 14.53 L 1170.03 13.48 L 0.93 1.07 

C3L2500 1045.7 19.12 L 1073.9 15.85 L 0.97 1.21 

C3L3000 1009.5 15.64 L 1123.9 15.01 L 0.90 1.04 
      Mean 0.93 1.14 
      COV 0.021 0.146 

 *The test results are reported in Young and Hartono [4] 

Table 2: Comparison between test and finite element results 

 

 

 

Material Eo (GPa) 0.2 (MPa) u (MPa) n 

Duplex (D) [19] 226 757 854 3 

Lean duplex (L) [20] 202 664 788 4 

Ferritic (F) [21] 205 459 464 7 

Table 3: Material properties of stainless steel materials in parametric study 
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Specimen 
PFEA 

(kN) 

Failure 

mode 

fcrl 

(MPa) 
l 

PDSM 

(kN) 

D100×1L1000 219.1 Y 1577.0 0.66 213.6 

D100×1L3000 165.6 L 1577.0 0.59 170.2 

D100×1L5000 90.3 L+F 1577.0 0.47 108.1 

D150×1L1000 320.5 L 1050.0 0.82 316.7 

D150×1L3000 292.3 L+F 1050.0 0.78 295.5 

D150×1L5000 230.1 L+F 1050.0 0.70 241.8 

D200×1L1000 374.6 L 786.9 0.94 387.1 

D200×1L3000 368.5 L+F 786.9 0.92 372.7 

D200×1L5000 365.9 L+F 786.9 0.87 345.3 

D250×1L1000 442.0 L 629.2 1.06 450.7 

D250×1L3000 431.6 L+F 629.2 1.04 440.0 

D250×1L5000 416.3 L+F 629.2 1.00 419.4 

D300×1L1000 495.0 L 524.1 1.16 509.5 

D300×1L3000 471.9 L+F 524.1 1.15 501.1 

D300×1L5000 465.8 L+F 524.1 1.12 484.9 

D350×1L1000 531.1 L 449.2 1.25 564.5 

D350×1L3000 517.9 L+F 449.2 1.24 557.8 

D350×1L5000 511.5 L+F 449.2 1.22 544.5 

D400×1L1000 557.6 L 393.0 1.34 616.6 

D400×1L3000 536.3 L+F 393.0 1.33 611.0 

D400×1L5000 529.1 L+F 393.0 1.31 599.9 

D400×2L1000 1608.7 Y 786.9 0.95 1553.8 

D400×2L3000 1586.5 L 786.9 0.94 1539.2 

D400×2L5000 1566.7 L+F 786.9 0.93 1510.2 

D500×2L1000 1717.6 L 629.2 1.06 1806.9 

D500×2L3000 1709.4 L 629.2 1.05 1796.1 

D500×2L5000 1696.0 L+F 629.2 1.05 1774.7 

D600×2L1000 1898.4 L 524.1 1.16 2041.0 

D600×2L3000 1650.3 L 524.1 1.16 2032.6 

D600×2L5000 1600.4 L 524.1 1.15 2015.9 

D700×2L1000 2066.9 L 449.2 1.25 2260.6 

D700×2L3000 1754.3 L 449.2 1.25 2253.9 

D700×2L5000 1675.5 L 449.2 1.25 2240.4 

D800×2L1000 2161.3 L 393.0 1.34 2468.4 

D800×2L3000 1932.3 L 393.0 1.34 2462.8 

D800×2L5000 1923.1 L 393.0 1.33 2451.6 

L100×1L1000 218.1 Y 1479.0 0.66 200.6 

L100×1L3000 157.3 L 1479.0 0.59 159.8 

L100×1L5000 89.0 L+F 1479.0 0.47 101.3 

L150×1L1000 314.1 L 983.6 0.82 297.2 
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L150×1L3000 283.2 L+F 983.6 0.78 277.3 

L150×1L5000 216.2 L+F 983.6 0.70 226.9 

L200×1L1000 359.0 L 736.8 0.95 363.2 

L200×1L3000 356.0 L+F 736.8 0.92 349.6 

L200×1L5000 348.1 L+F 736.8 0.87 323.9 

L250×1L1000 418.7 L 588.2 1.06 422.6 

L250×1L3000 407.8 L+F 588.2 1.04 412.6 

L250×1L5000 402.1 L+F 588.2 1.00 393.2 

L300×1L1000 466.7 L 489.8 1.16 477.7 

L300×1L3000 449.5 L+F 489.8 1.15 469.8 

L300×1L5000 445.0 L+F 489.8 1.12 454.5 

L350×1L1000 490.1 L 419.8 1.26 529.3 

L350×1L3000 469.1 L+F 419.8 1.24 523.0 

L350×1L5000 464.2 L+F 419.8 1.22 510.5 

L400×1L1000 507.7 L 367.5 1.34 578.2 

L400×1L3000 487.1 L+F 367.5 1.33 572.9 

L400×1L5000 485.7 L+F 367.5 1.32 562.5 

L400×2L1000 1558.8 Y 736.8 0.95 1457.9 

L400×2L3000 1531.0 L 736.8 0.94 1444.1 

L400×2L5000 1512.1 L+F 736.8 0.93 1416.8 

L500×2L1000 1656.3 L 588.2 1.06 1694.4 

L500×2L3000 1612.1 L 588.2 1.06 1684.2 

L500×2L5000 1730.4 L+F 588.2 1.05 1664.1 

L600×2L1000 1772.6 L 489.8 1.16 1913.6 

L600×2L3000 1491.8 L 489.8 1.16 1905.8 

L600×2L5000 1410.3 L 489.8 1.15 1890.1 

L700×2L1000 1910.6 L 419.8 1.26 2119.6 

L700×2L3000 1520.5 L 419.8 1.25 2113.2 

L700×2L5000 1516.1 L 419.8 1.25 2100.5 

L800×2L1000 1958.8 L 367.5 1.34 2314.8 

L800×2L3000 1782.3 L 367.5 1.34 2309.5 

L800×2L5000 1769.2 L 367.5 1.34 2299.0 

F100×1L1000 137.6 Y 1510.0 0.56 147.1 

F100×1L3000 116.6 L 1510.0 0.52 125.2 

F100×1L5000 83.6 L+F 1510.0 0.44 90.6 

F150×1L1000 204.0 L 1005.0 0.69 224.0 

F150×1L3000 191.2 L+F 1005.0 0.67 208.5 

F150×1L5000 168.3 L+F 1005.0 0.62 180.8 

F200×1L1000 260.1 L 753.4 0.80 294.9 

F200×1L3000 257.8 L+F 753.4 0.78 286.9 
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F200×1L5000 245.7 L+F 753.4 0.75 266.3 

F250×1L1000 314.9 L 602.5 0.89 344.2 

F250×1L3000 310.6 L+F 602.5 0.88 338.3 

F250×1L5000 306.9 L+F 602.5 0.86 326.7 

F300×1L1000 366.0 L 502.0 0.98 389.8 

F300×1L3000 347.2 L+F 502.0 0.97 385.2 

F300×1L5000 344.4 L+F 502.0 0.95 376.1 

F350×1L1000 408.1 L 430.1 1.06 432.5 

F350×1L3000 401.1 L+F 430.1 1.05 428.7 

F350×1L5000 397.4 L+F 430.1 1.04 421.3 

F400×1L1000 447.0 L 376.3 1.13 472.9 

F400×1L3000 441.8 L+F 376.3 1.13 469.8 

F400×1L5000 432.6 L+F 376.3 1.12 463.6 

F400×2L1000 1081.7 Y 753.4 0.80 1182.7 

F400×2L3000 1070.6 L 753.4 0.80 1174.6 

F400×2L5000 1062.4 L+F 753.4 0.79 1158.6 

F500×2L1000 1254.2 L 602.5 0.89 1379.0 

F500×2L3000 1243.1 L 602.5 0.89 1373.1 

F500×2L5000 1232.8 L+F 602.5 0.89 1361.2 

F600×2L1000 1440.0 L 502.0 0.98 1560.9 

F600×2L3000 1249.8 L 502.0 0.98 1556.3 

F600×2L5000 1200.3 L 502.0 0.97 1547.0 

F700×2L1000 1612.6 L 430.1 1.06 1731.3 

F700×2L3000 1366.1 L 430.1 1.06 1727.5 

F700×2L5000 1353.4 L 430.1 1.05 1720.1 

F800×2L1000 1748.0 L 376.3 1.13 1892.8 

F800×2L3000 1566.0 L 376.3 1.13 1889.6 

F800×2L5000 1546.0 L 376.3 1.13 1883.4 

Table 4: Summary of finite element results in parametric study 

 

 Pu / PDSM Pu / P
*

DSM 

All l < 0.776 l ≥ 0.776 All l < 0.77 l ≥ 0.77 

# of data 273 181 92 273 180 93 

Mean (Pm) 0.96 0.99 0.92 0.99 0.99 1.00 

COV (Vp) 0.130 0.138 0.090 0.121 0.139 0.079 

Resistance factor ( 0.85 0.85 0.85 0.85 0.85 0.85 

Reliability index ( 2.36 2.42 2.34 2.50 2.41 2.69 

Table 5: Comparison of test and FEA results with design strengths 
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Figure 1: Comparison of tests and numerical results with design strengths by DSM 

 

Figure 2: Comparison of tests and numerical results with design strengths by DSM 
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(a) (b) 

Figure 3: Finite element model of (a) specimen C2L2000 failed by flexural buckling, and (b) 

specimen C3L3000 failed by local buckling 
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Figure 4: A typical signature curve obtained from thin-wall program (Ref. [22]) 

 


