
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Interstellar Medium in [O III]-selected Star-forming Galaxies at z ˜
3.2

Citation for published version:
Suzuki, TL, Kodama, T, Onodera, M, Shimakawa, R, Hayashi, M, Tadaki, K, Koyama, Y, Tanaka, I, Sobral,
D, Smail, I, Best, PN, Khostovan, AA, Minowa, Y & Yamamoto, M 2017, 'The Interstellar Medium in [O III]-
selected Star-forming Galaxies at z ˜ 3.2', Astrophysical Journal, vol. 849, no. 1, pp. 39.
https://doi.org/10.3847/1538-4357/aa8df3

Digital Object Identifier (DOI):
10.3847/1538-4357/aa8df3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Astrophysical Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. May. 2024

https://doi.org/10.3847/1538-4357/aa8df3
https://doi.org/10.3847/1538-4357/aa8df3
https://www.research.ed.ac.uk/en/publications/a073206d-c7f7-4b5f-b62c-c8e10b54715a


Draft version September 21, 2017
Typeset using LATEX twocolumn style in AASTeX61

THE INTERSTELLAR MEDIUM IN [OIII]-SELECTED STAR-FORMING GALAXIES AT Z ∼ 3.2

Tomoko L. Suzuki,1, 2 Tadayuki Kodama,3 Masato Onodera,4, 2 Rhythm Shimakawa,5 Masao Hayashi,1

Ken-ichi Tadaki,1 Yusei Koyama,4, 2 Ichi Tanaka,4 David Sobral,6, 7 Ian Smail,8 Philip N. Best,9

Ali A. Khostovan,10 Yosuke Minowa,4, 2 and Moegi Yamamoto2, 1

1National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo, 181-8588, Japan
2Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), Osawa 2-21-1, Mitaka, Tokyo,

181-8588, Japan
3Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
4Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 650 North Aohoku Place,

Hilo, HI 96720, USA
5UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
6Department of Physics, Lancaster University, Lancaster, LA1, 4YB, UK
7Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
8Centre for Extragalactic Astrophysics, Durham University, South Road, Durham DH1 3LE, UK
9SUPA, Institute for Astronomy, Royal Observatory of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
10Department of Physics and Astronomy, University of California, 900 University Ave., Riverside, CA 92521, USA

ABSTRACT

We present new results from near-infrared spectroscopy with Keck/MOSFIRE of [Oiii]-selected galaxies at z ∼
3.2. With our H and K-band spectra, we investigate the interstellar medium (ISM) conditions, such as ionization

states and gas metallicities. [Oiii] emitters at z ∼ 3.2 show a typical gas metallicity of 12 + log(O/H) = 8.07± 0.07

at log(M∗/M�) ∼ 9.0− 9.2 and 12 + log(O/H) = 8.31± 0.04 at log(M∗/M�) ∼ 9.7− 10.2 when using the empirical

calibration method. We compare the [Oiii] emitters at z ∼ 3.2 with UV-selected galaxies and Lyα emitters at the

same epoch and find that the [Oiii]-based selection does not appear to show any systematic bias in the selection of

star-forming galaxies. Moreover, comparing with star-forming galaxies at z ∼ 2 from literature, our samples show

similar ionization parameters and gas metallicities as those obtained by the previous studies using the same calibration

method. We find no strong redshift evolution in the ISM conditions between z ∼ 3.2 and z ∼ 2. Considering that

the star formation rates at a fixed stellar mass also do not significantly change between the two epochs, our results

support the idea that the stellar mass is the primary quantity to describe the evolutionary stages of individual galaxies

at z > 2.
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1. INTRODUCTION

Recent near-infrared (NIR) spectroscopic surveys have

suggested that star-forming galaxies at high redshifts

(z > 1) typically have different interstellar medium

(ISM) conditions from those found in local star-forming

galaxies (e.g. Masters et al. 2014; Steidel et al. 2014;

Hayashi et al. 2015; Shapley et al. 2015; Holden et al.

2016; Kashino et al. 2017). Star-forming galaxies at high

redshifts show a systematic offset from local galaxies on

the Baldwin-Phillips-Terlevich diagram (so called BPT

diagram; Baldwin et al. 1981; Veilleux & Osterbrock

1987), i.e. they have higher [Oiii]/Hβ ratios with re-

spect to [Nii]/Hα (e.g. Erb et al. 2006a; Masters et al.

2014; Steidel et al. 2014; Shapley et al. 2015; Kashino

et al. 2017). Also on a stellar mass versus [Oiii]/Hβ ratio

diagram (Mass–Excitation diagram; Juneau et al. 2011),

star-forming galaxies at high redshifts show systemati-

cally higher [Oiii]/Hβ ratios than local ones at a fixed

stellar mass (e.g. Cullen et al. 2014; Shimakawa et al.

2015a; Holden et al. 2016; Strom et al. 2017; Kashino

et al. 2017). These differences suggest that ISM condi-

tions at high redshifts are different as a result of lower

gas metallicities, higher ionization parameters, harder

spectra of ionizing sources, and the combination of all

these factors (e.g. Kewley et al. 2013; Nakajima & Ouchi

2014; Steidel et al. 2014, 2016; Trainor et al. 2016; Strom

et al. 2017; Kashino et al. 2017).

The relation between stellar mass and gas metallicity

of star-forming galaxies has been investigated by sev-

eral studies. It has been known that there is a posi-

tive correlation between stellar mass and gas metallicity

since about 40 years ago (Lequeux et al. 1979). Now the

stellar mass–gas metallicity relation is observed for star-

forming galaxies from z = 0 even up to z ∼ 5 (Tremonti

et al. 2004; Erb et al. 2006a; Maiolino et al. 2008; Man-

nucci et al. 2009; Henry et al. 2013; Stott et al. 2013;

Cullen et al. 2014; Steidel et al. 2014; Troncoso et al.

2014; Wuyts et al. 2014; Yabe et al. 2015; Zahid et al.

2014; Sanders et al. 2015; Faisst et al. 2016; Onodera

et al. 2016), and star-forming galaxies at higher red-

shifts have lower gas metallicities than local star-forming

galaxies at a fixed stellar mass.

When estimating the gas metallicities of star-forming

galaxies, the strong line methods are often used. The

relations between strong emission line ratios and gas

metallicities are obtained empirically using local star-

forming galaxies (e.g. Pettini & Pagel 2004; Maiolino

et al. 2008; Curti et al. 2017, and at z = 0.8 by Jones

et al. 2015) or with the photoionization models (e.g.

Kewley & Dopita 2002). It has been suggested that,

however, the locally calibrated relations are no longer

applicable to star-forming galaxies at high redshifts be-

cause the typical ISM conditions of star-forming galaxies

seem to change from z = 0 to higher redshifts (e.g. Kew-

ley et al. 2013; Nakajima & Ouchi 2014; Steidel et al.

2014; Kashino et al. 2017). It is still under discussion

whether we can adopt the locally calibrated methods to

star-forming galaxies at higher redshifts because some

studies have reported that the physical conditions of Hii

regions do not evolve with redshifts at a fixed metallicity

(e.g. Jones et al. 2015; Sanders et al. 2016a). Moreover,

it is known that the gas metallicities calibrated with dif-

ferent emission line ratios show systematic offsets from

one another (Kewley & Ellison 2008).

Studies of the ISM conditions and the mass–metallicity

relation mainly target star-forming galaxies at z < 2–

2.5, up to the highest peak of galaxy formation and

evolution (e.g. Hopkins & Beacom 2006; Madau & Dick-

inson 2014; Khostovan et al. 2015). However, the epoch

of z > 3 is also important because the cosmological

inflow is likely to be prominent at this epoch (e.g. Man-

nucci et al. 2009; Cresci et al. 2010; Troncoso et al.

2014). The gas-phase metallicity of a galaxy reflects the

relative contributions from star formation, gas outflow

and gas inflow. Therefore, the metal content of galaxies

is one of the key quantities in order to reveal how the

gas inflow/outflow processes, as well as star formation,

have an impact on galaxy formation and evolution.

NIR spectroscopic observations of star-forming galax-

ies at z > 3 have been carried out by targeting UV-

selected galaxies, such as Lyman break galaxies (LBGs)

and Lyα emitters (LAEs; e.g. Steidel et al. 1996, 2003;

Maiolino et al. 2008; Mannucci et al. 2009; Troncoso

et al. 2014; Holden et al. 2016; Onodera et al. 2016;

Nakajima et al. 2016). However, the evolution of the

ISM conditions and the mass–metallicity relation espe-

cially at z > 3 has not yet been fully understood be-

cause of the large uncertainties related to the estima-

tion of gas metallicities and the limited sample sizes at

this epoch (e.g. Onodera et al. 2016). Additionally, at

z > 3, it is difficult to obtain a representative sample

of star-forming galaxies because available indicators of

star-forming galaxies are limited. Since the UV-selected

galaxies tend to be biased towards less dusty galaxies

(Oteo et al. 2015), it is important to obtain a sample of

star-forming galaxies using other selection techniques,

which are less affected by dust extinction than the UV

light. Rest-frame optical emission lines are very useful

for this purpose.

There are some methods to select galaxies based on

the strength of emission lines. The grism spectroscopy

at the H-band by the Hubble Space Telescope (HST) can

pick up galaxies at z ∼1–3 with strong emission lines

in the rest-frame optical (e.g. Momcheva et al. 2016).
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Maseda et al. (2013, 2014) selected extreme emission

line galaxies at z ∼1-2 based on the emission line flux

and equivalent width from the HST NIR grism spec-

troscopy. Their sample consists of low mass galaxies of

log(M∗/M�) ∼ 8 − 9. They showed that the extreme

emission line galaxies are in the starburst phase with

high specific star-formation rates (SFRs) and have high

[Oiii]/Hβ ratios (≥ 5). Hagen et al. (2016) also used the

HST NIR grism data to construct a sample of the optical

emission line-selected galaxies at z ∼ 2. Comparing the

sample with LAEs at similar redshifts, they found that

the two galaxy populations have similar physical quanti-

ties in a stellar mass range of log(M∗/M�) ∼ 7.5− 10.5.

Imaging observations with a narrow-band (NB) filter

are also a very efficient way of constructing a sample

of emission line galaxies in a particular narrow redshift

slice (e.g. Bunker et al. 1995; Teplitz et al. 1999; Moor-

wood et al. 2000; Geach et al. 2008; Sobral et al. 2013;

Tadaki et al. 2013). At z > 3, the Hα emission line,

which is one of the most reliable tracers of star-forming

galaxies, is no longer accessible from the ground. We

need to use other emission lines at shorter wavelengths,

such as [Oiii], Hβ, and [Oii] (Khostovan et al. 2015,

2016). As mentioned above, normal star-forming galax-

ies at high redshifts tend to show brighter [Oiii] emis-

sion lines. While there is a clear trend of decreasing

[Oiii]/Hβ ratio with increasing stellar mass (Juneau

et al. 2011, 2014; Strom et al. 2017), the [Oiii] emission

lines would be observable even for massive star-forming

galaxies at z > 3 because they are bright in [Oiii] in-

trinsically.

Is the [Oiii] emission line a useful tracer of star-

forming galaxies at higher redshifts actually? Suzuki

et al. (2015) have found that the [Oiii]-selected galaxies

at z > 3 show a positive correlation between stellar mass

and SFR, which is known as the “main-sequence” of

star-forming galaxies (e.g. Whitaker et al. 2012; Kashino

et al. 2013; Tomczak et al. 2016). This suggests that we

can trace the typical star-forming galaxies at z > 3 using

the [Oiii] emission line. Moreover, Suzuki et al. (2016)

have shown that the [Oiii]-selected galaxies show similar

distributions of stellar mass, SFR, and dust extinction

as those of normal Hα-selected star-forming galaxies at

z ∼ 2.2, supporting the idea that the [Oiii] emission

line can be used as a tracer of star-forming galaxies at

high redshifts. Therefore, the [Oiii]-selected galaxies

can probe dustier star-forming galaxies which are likely

to be missed by the UV-based or [Oii] selection (Hayashi

et al. 2013). We also note that another great advantages

of NB-selected galaxies is the high efficiency of follow-up

observations because their line fluxes and redshifts are

obtained in advance by the NB imaging observations.

In this paper, we present the results obtained from the

spectroscopic observation of [Oiii] emitters at z = 3.24

in the COSMOS field obtained by the HiZELS sur-

vey (Geach et al. 2008; Sobral et al. 2009, 2013; Best

et al. 2013; Khostovan et al. 2015). We carried out

H and K-band spectroscopy of the [Oiii] emitters with

Keck/MOSFIRE. We investigate the physical conditions

of the [Oiii] emitters at z > 3 such as their ionization

states and gas metallicities.

This paper is organized as follows: in Section 2, we

present our parent sample of [Oiii] emitters at z ∼ 3.2.

We also describe our NIR spectroscopy of the [Oiii]

emitters with Keck/MOSFIRE, and the details of the

observations and data reduction/analyses. In Section 3,

we show our results about the ISM conditions of our

sample, and compare with other galaxy populations at

the same epoch. In Section 4, we discuss the evolution

of star-forming activities and ISM conditions of star-

forming galaxies between z ∼ 3.2 and z ∼ 2.2. Finally

we summarize this work in Section 5.

Throughout this paper, we assume the cosmologi-

cal parameters of Ωm = 0.3, ΩΛ = 0.7, and H0 =

70 km s−1Mpc−1. All the magnitudes are given in AB

system, and we adopt the Chabrier initial mass func-

tion (IMF; Chabrier 2003) unless otherwise noted. We

refer to wavelengths of all emission lines using vacuum

wavelengths.

2. SAMPLE SELECTION, OBSERVATIONS, AND

REDUCTION

2.1. Selection of [OIII] candidate emitters at z ∼ 3.24

HiZELS (the High-z Emission Line Survey; Sobral

et al. 2012, 2013, see also Best et al. 2013) is a system-

atic NB imaging survey using NB filters in the J , H, and

K-bands of the Wide Field CAMera (WFCAM; Casali

et al. 2007) on the United Kingdom Infrared Telescope

(UKIRT), and the NB921 filter of the Suprime-Cam

(Miyazaki et al. 2002) on the Subaru Telescope. Emis-

sion line galaxy samples used in this study are based

on the HiZELS catalogue in the Cosmological Evolution

Survey (COSMOS; Scoville et al. 2007) field.

With the H2S1 filter (hereafter NBK λc = 2.121 µm,

and FWHM = 210 Å) of WFCAM, HiZELS selects the

[Oiii]λ5008 emission from galaxies at z = 3.235± 0.021.

Here we construct a catalog of [Oiii] emitters at z ∼ 3.24

by combining the NBK emitter catalog from HiZELS

(Sobral et al. 2013) and the latest photometric cata-

log in the COSMOS field (COSMOS2015; Laigle et al.

2016) in a similar way to Khostovan et al. (2015).

The COSMOS2015 catalog includes the new deep NIR

and IR data from UltraVISTA-DR2 survey and from

the SPLASH (Spitzer Large Area Survey with Hyper-
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Suprime-Cam) project (Laigle et al. 2016). Such deep

IR photometry becomes more important when estimat-

ing photometric redshifts and stellar masses of galaxies

at higher redshifts.

In the first place, we search for counterparts of the

NBK emitters in the COSMOS2015 catalog with a

searching radius of 0′′.6. The selection of the NB emit-

ters are based on the color excess of NB with respect to

broad band (BB), and the equivalent width. A parame-

ter Σ is introduced to quantify the significance of a NB

excess relative to 1σ photometric error (Bunker et al.

1995). This parameter Σ is represented as a function of

NB magnitude as follows (Sobral et al. 2013):

Σ =
1− 10−0.4(K−NB)

10−0.4(ZP−NB)
√
πr2

ap(σ2
NB + σ2

K)
, (1)

where NB and BB are NB and BB magnitudes, ZP is

the zero-point of the NB (the BB images are scaled to

have the same ZP as the NB images), rap is the aperture

radius in pixel, and σNB and σBB are the rms per pixel

of the NB and BB images, respectively (Sobral et al.

2013). Emission line fluxes, Fline, and the rest-frame

equivalent widths, EWrest, are calculated with

Fline = ∆NB
fNB − fBB

1−∆NB/∆BB
, (2)

and

EWrest = ∆NB
fNB − fBB

fBB − fNB(∆NB/∆BB)
, (3)

where fNB and fBB are the flux densities for NB and

BB, and ∆NB and ∆BB are the FWHMs of the NB

and BB filters, respectively (e.g. Tadaki et al. 2013).

The selection criteria of the NB emitters are Σ > 3 and
the observed-frame equivalent-width of EWobs ≥ 80.8 Å

(the rest-frame EW ∼ 19 Å for [Oiii] at z =3.24, Sobral

et al. 2013; Khostovan et al. 2015). We select [Oiii] can-

didate emitters at z ∼ 3.24 with photometric redshifts

of 2.8 < zphoto < 4.0. Additionally, we employed color–

color diagrams (UV z and V iz) for the emitters with

no photometric redshifts in the COSMOS2015 catalog

following the methods introduced in Khostovan et al.

(2015). We finally obtained 174 [Oiii] candidate emit-

ters at z ∼ 3.24 in the COSMOS field.

2.2. H and K-band spectroscopy with Keck/MOSFIRE

Observations were carried out on the first half night on

27th March 2016 with the Multi-Object Spectrometer

For Infra-Red Exploration (MOSFIRE; McLean et al.

2010, 2012) on the Keck I telescope as a Subaru-Keck

time exchange program (S16A-058; PI: T. Suzuki). The

wavelength resolution of MOSFIRE is R ∼ 3600. Slit

widths were set to be 0.7′′. Our primary targets are

ten [Oiii] candidate emitters at z ∼ 3.24, which are

chosen so that we can maximize the number of [Oiii]

emitters in one MOSFIRE pointing. We filled the un-

used mask space with ten photometric redshift-selected

sources with K < 24 mag at 3.0 < zphoto < 3.5. We

obtained their spectra in K and H-bands in order to de-

tect the major emission lines, such as [Oiii]λλ5008,4960,

Hβ, and [Oii]λλ3727,3730. The total integration time

was 120 min and 90 min for K and H-band, respectively.

The seeing (FWHM) was 0.7′′–1.0′′.

2.3. Data reduction and analyses

The obtained raw spectra were reduced using the

MOSFIRE Data Reduction Pipeline1 (MosfireDRP),

which is described in more detail in Steidel et al. (2014).

The pipeline follows the standard data reduction proce-

dures: flat-fielding, wavelength calibration, sky subtrac-

tion, rectification, and combining the individual frames.

Finally we obtained the rectified two-dimensional (2D)

spectra. One-dimensional (1D) spectra were extracted

from the 2D spectra with 1.3′′–1.8′′ diameter aperture

in order to maximize the signal-to-noise (S/N) ratio.

The telluric correction and flux calibration were carried

out by using a standard A0V star, HIP43018, which

were taken at the same night.

All of the ten NB-selected [Oiii] candidate emitters

clearly show the [Oiii] doublet lines in the K-band

(100% detection), and are identified as [Oiii] emitters

at z = 3.23–3.27. Our observations demonstrate the ex-

tremely low contamination of the NB-selected galaxies

(Sobral et al. 2013; Khostovan et al. 2015) and also the

high efficiency of follow-up observations. The Hβ and

[Oii] emission lines are also visually identified in the 1D

spectra in the K- and H-band, respectively, for all of the

[Oiii] emitters. As for the photometric redshift-selected

targets, seven sources are identified as the galaxies at

z =3.00-3.45 with their [Oiii] doublets yielding a 70%

detection.

We included a monitoring star in our mask so that

we can use it to correct for different seeing conditions

when observing the science targets and the standard

star. By comparing the observed fluxes of the star with

the 2MASS magnitudes, we determine the correction

factors of 1.22±0.04 and 0.89±0.03 for H and K-band,

respectively. We note that we have corrected for the

slit loss by using the standard star and the monitoring

star, if the sources are well approximated by the point

1 https://keck-datareductionpipelines.github.io/

MosfireDRP/

https://keck-datareductionpipelines.github.io/MosfireDRP/
https://keck-datareductionpipelines.github.io/MosfireDRP/
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sources. Even if the sources are extended, slit losses

would be not very important here because our analysis

is not strongly depend on absolute fluxes.

In order to measure the emission line fluxes, we per-

form Gaussian fitting for the emission lines using the

SPECFIT 2 (Kriss 1994) in STSDAS of the IRAF environ-

ment. At first, we fit the [Oiii] doublet and Hβ with

a Gaussian by assuming a common velocity dispersion.

The [Oiii] doublet lines are fitted by assuming the line

ratio [Oiii]λ5008/[Oiii]λ4960 of 3.0 (Storey & Zeippen

2000). Redshifts of the sources are determined using

the [Oiii] line at 5008.24 Å. The redshift distribution

of our sample is shown in Figure 1. Then, the Hβ line

and [Oii] doublet lines are fitted assuming the deter-

mined redshifts and velocity dispersions. We also fit rel-

atively weak lines, such as Heiiλ4687 and [Neiii]λ3870,

by assuming the determined redshifts and velocity dis-

persions. Errors of the fitted line fluxes are obtained by

taking into account the wavelength-dependent sky noise

due to the O/H sky lines and the errors from χ2 fitting.

For all of the [Oiii] emitters, the [Oiii]λ5008 lines are

detected with very high S/N ratios, S/N > 20. The Hβ

line is also detected for all the emitters at more than

3σ significance levels. Although there are some cases

of the [Oii]λ3727 doublet lines being affected by OH

skylines, the summed flux of the doublet lines is detected

at more than 3σ levels for all the emitters. As for the

[Neiii] emission line, it is detected from six emitters at

more than 3σ significance levels. The Heii line is not

detected at S/N > 3 for any of the [Oiii] emitters. For

the photo-z-selected sources, the [Oiii]λ5008 and the

summed [Oii]λ3727 fluxes are detected at more than 3σ

significance levels. For some sources, their Hβ or [Neiii]

emission lines overlap with OH skylines. We find that

two of the photo-z-selected sources, which are within

the redshift coverage of the NBK filter, are not selected

as the emitters due to their relatively weak [Oiii]λ5008

fluxes. The reduced spectra and estimated fluxes are

shown in Appendix-A all together.

The velocity dispersions obtained by the emission line

fitting for each galaxy yield values of 140–310 km s−1

in the rest-frame. From the fact that all Hβ lines are

narrow (� 1000km s−1), we consider that there is no ob-

vious broad-line AGN in our sample. We also note that

none of our sources is detected at X-ray with Chandra

(Civano et al. 2016).

The redshift distribution of our sample is shown in

Figure 1. We find that three [Oiii] emitters are located

at slightly higher redshifts than the redshift range ex-

2 http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?specfit
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Figure 1. Redshift distribution of the spectroscopically
confirmed sources from this observation. The filled his-
togram shows the [Oiii] emitters and the hatched histogram
shows that of our secondary targets, i.e. the photo-z-selected
sources. The transmission curves of the NBK filter are also
shown. The wavelength range of the NBK filter is converted
to the redshift ranges for the [Oiii]λ5008 emission line (the
solid curve) and the [Oiii]λ4960 emission line (the dashed
curve), respectively.

pected for the [Oiii]λ5008 line with the NBK filter. In

Figure 1, we show the transmission curves of the NBK
filter as a function of redshift in the two cases; one for the

[Oiii]λ5008 line and the other for the [Oiii]λ4960 line.

The three [Oiii] emitters at slightly higher redshifts turn

out to be detected by their strong [Oiii]λ4960 with the

NBK filter. The fraction of the [Oiii]λ4960 emitters is ∼
30 %, and this is consistent with our estimation from the

luminosity function at z = 2.23 in Suzuki et al. (2016)

and the result of the spectroscopy of [Oiii]+Hβ emitters

at z = 1.47 by Sobral et al. (2015). Hβ emitters are not

found in our target sample.

2.4. Stellar absorption correction for Hβ

In the following analyses, we use the Hβ fluxes cor-

rected for the stellar absorption. We assume the typical

EW of the absorption line of 2 Å (Nakamura et al. 2004),

and use the continua estimated from the Ks-band mag-

nitudes after subtracting the contributions from emis-

sion lines. The stellar-absorption-corrected Hβ fluxes

are estimated by

FHβ,corr = FHβ,obs + 2 (Å)× (1 + z)× fc, (4)

where fc is a continuum flux density. The correction

factors for the Hβ stellar absorption (FHβ,corr/FHβ,obs)

are ∼1.0–1.2.

2.5. Estimation of physical quantities

http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?specfit
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The stellar masses of the spectroscopically confirmed

sources are estimated by SED fitting with the public

code EAZY (Brammer et al. 2008) and FAST (Kriek et al.

2009). We use the total magnitudes of 14 photometric

bands; u,B, V, r, i′, z′′, Y, J,H,Ks, 3.6, 4.5, 5.8, and 8.0

µm from the COSMOS2015 catalog. We subtract the

contributions of the emission lines, the [Oiii] doublet

and Hβ, and [Oii] doublet, from the Ks and H-band

magnitudes, respectively, before the SED fitting. When

running the FAST, we fix their redshifts to those mea-

sured from the spectroscopy. We use the population

synthesis models of Bruzual & Charlot (2003) with a

Chabrier IMF (Chabrier 2003), and the dust extinction

law of Calzetti et al. (2000). We assume exponentially

declining SFHs with log(τ/yr) = 8.5–11.0 in steps of 0.1,

and metallicities of Z = 0.004, 0.008, and 0.02 (solar).

SFRs are estimated from UV continuum luminosities

in order to compare with a whole sample of [Oiii] can-

didate emitters (Figure 3). Dust extinction is corrected

for using the slope of the rest-frame UV continuum spec-

trum (e.g. Meurer et al. 1999; Heinis et al. 2013). The

UV slope β is defined as fλ∝λβ . We estimate β by fit-

ting a linear function to the five broad-bands from the

B to i-band. The slope β is converted to dust extinc-

tion AFUV with the following equation from Heinis et al.

(2013):

AFUV = 3.4 + 1.6β. (5)

Then, the intrinsic flux density fν,int is obtained from

fν,int = fν,obs 100.4AFUV . (6)

SFRUV is estimated from the r-band (λc = 6288.7 Å

which corresponds to λ0 = 1500Å at z = 3.2) magnitude

using the equation from Madau et al. (1998):

SFR (M�yr−1) =
4πD2

Lfν,int

(1 + z)× 8× 1027 (erg s−1cm−2Hz−1)

=
L(1600Å)

8× 1027 (erg s−1Hz−1)
, (7)

where DL is the luminosity distance. Considering the

difference between Chabrier and Salpeter (Salpeter

1955) IMFs, we divide the SFRs by a factor of 1.7

(Pozzetti et al. 2007) so that we always use Chabrier

IMF throughout this paper.

For the two photo-z-selected sources, which are not

included in the COSMOS2015 catalog, we use the pho-

tometric data (u,B, V, g, r, i, z, J,K) from the catalog of

Ilbert et al. (2009). The estimated stellar mass, dust

extinction, and SFRUV for each galaxy are summarized

in Appendix-A.

Comparing the estimated SFRUV with those obtained

by FAST, the results of the SED fitting show a systematic

offset of ∼ +0.25 dex with respects to those obtained

from the rest-frame UV luminosities. Since we compare

SFRs obtained with the same method in Section 2.6,

such a systematic offset does not affect our results. As

for AFUV, there is no systematic offset and differences

between the two methods are within 0.4 mag.

In addition to SFRUV, we also estimate SFRs from

the Hβ luminosities. The dust extinction for Hβ is cor-

rected for by using the UV slope β (Heinis et al. 2013),

and the Calzetti extinction law (Calzetti et al. 2000)

assuming E(B − V )nebular = E(B − V )stellar (e.g. Erb

et al. 2006b; Reddy et al. 2010, 2015). We convert the

dust-extinction-corrected Hβ luminosity to the Hα lumi-

nosity using the intrinsic Hα/Hβ ratio of 2.86 under the

assumption of Case B recombination with a gas temper-

ature Te = 104 K and an electron density ne = 102 cm−3

(Osterbrock & Ferland 2006).

Then we convert the estimated Hα luminosities to

SFRs using the equation from Kennicutt & Evans

(2012);

log(SFRHα/M�yr−1) = log(LHα/erg s−1)− 41.27. (8)

Here we account for the difference between the Chabrier

and Kroupa IMF by subtracting 0.013 dex (Pozzetti

et al. 2007; Marchesini et al. 2009).

In Figure 2, we compare the two SFRs derived from

UV and Hβ luminosities. We find that the two SFRs

derived from UV luminosities and from Hβ luminosities

have similar values within a factor of two except for a

few sources. The mean SFRHβ/SFRUV for our sample

is 1.6±0.2. We can estimate their SFRs reasonably well

from the UV luminosities with dust correction based on

the UV slope at z > 3.

2.6. Stellar mass–SFR relation

In Figure 3 we show the relation between the stellar

masses and SFRUV of the spectroscopically confirmed

galaxies in this studies together with the [Oiii] candi-

date emitters at z ∼ 3.24 from HiZELS. This figure

shows that our targets are not biased towards a par-

ticular region on the stellar mass–SFRUV diagram with

respect to the parent sample of the [Oiii] emitters at

z ∼ 3.24. This indicates that they are normal star-

forming galaxies at the epoch.

We also show the [Oiii] candidate emitters at z ∼ 2.23

after matching the NBH emitter catalog in the COS-

MOS field from HiZELS (Sobral et al. 2013) with the

COSMOS2015 catalog. The selection criteria of the

NBH emitters are the same as those mentioned in Sec-

tion 2.1 with the NBH filter being used instead of the
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Figure 2. SFRUV versus SFRHβ/SFRUV ratio of our spec-
troscopically confirmed galaxies. Here we do not consider
the extra extinction to the nebular emission, i.e. we assume
E(B − V )nebular = E(B − V )stellar (e.g. Erb et al. 2006b;
Reddy et al. 2010, 2015). Dust extinction is corrected for by
using the UV slope β (Eq. 5). The solid line represents the
case where the two SFRs are identical, and the dashed lines
represent the cases where the difference between the two is
a factor of two. The arrow shows how dust correction with
AFUV = 1 mag moves the points on this diagram. For most
of our targets, SFRs derived from the two different indicators
are identical with each other within a factor of two.

NBK(Sobral et al. 2013). We select [Oiii] candidate

emitters at z ∼ 2.23 with photometric redshifts of

1.7 < zphoto < 2.8. We also employ the color–color dia-

grams (BzK, izK, and UV z) for the emitters with no

photometric redshifts as introduced in Khostovan et al.

(2015). We obtained 117 [Oiii] candidate emitters at

z ∼ 2.23 in total.

Stellar masses and SFRUV of the [Oiii] candidate

emitters at z ∼ 3.24 and z ∼2.23 are estimated fol-

lowing the same procedure as described in Section 2.5.

As for [Oiii] emitters at z ∼ 2.23, we use the V -band

magnitude to estimate SFRUV. The redshift is fixed of

each source is fixed to z = 3.24 or 2.23. We note that

we take into account the different luminosity limit of the

[Oiii] emission line when comparing the [Oiii] emitters

at different redshifts in Figure 3.

We find that the [Oiii] emitters at z ∼ 3.24 show sim-

ilar SFRs as those of [Oiii] emitters at z ∼ 2.23 at a

fixed stellar mass. The distribution of the [Oiii] can-

didate emitters at z ∼ 2.23 is consistent with the fit

to the [Oiii] candidate emitters at z ∼ 3.24 statisti-

cally. While the normalization of the stellar mass–SFR

relation is almost consistent, the distribution along the

relation seems to be different. The [Oiii] emitters at
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Figure 3. Relation between stellar mass and SFRUV. The
spectroscopically confirmed galaxies in this study are iden-
tified. [Oiii] candidate emitters at z ∼ 3.24 (open circles)
and z ∼ 2.23 (open triangles) in the COSMOS field are
also shown. Top and right histogram shows the stellar mass
and SFR distribution, respectively. Hatched and open his-
tograms correspond the [Oiii] candidate emitters at z ∼ 3.24
and z ∼ 2.23, respectively. The spectroscopically confirmed
[Oiii] emitters are not biased towards a particular region on
the stellar mass–SFRUV plane with respect to the parent
sample at z ∼ 3.24.

z ∼ 3.24 show an offset towards the lower stellar mass

range as seen in the top and right panels of Figure 3

(Suzuki et al. 2015; comparison between the [Oiii] emit-

ters at z ∼ 3.2 and the Hα emitters at z ∼ 2.2).

2.7. Stacking analysis

In order to investigate the averaged properties of the

[Oiii] emitters at z ∼ 3.2, we carry out the stacking

analysis of the spectra by dividing the ten [Oiii] emitters

into two stellar mass bins, i.e. 9.76 ≤ log(M∗/M�) ≤
10.21 and 9.07 ≤ log(M∗/M�) ≤ 9.23.

We transform the individual spectra to the rest-frame

wavelength based on the derived redshifts, and normal-

ize them by integrated [Oiii]λ5008 flux. The wave-

length dispersion of the spectrum in K and H-band

is 2.1719 Å/pix and 1.6289 Å/pix, respectively. When

converting them to the rest-frame spectra, we fix the

wavelength interval to 0.25 Å, and interpolate the spec-

tra linearly. Noise spectra for the individual galaxies are

also scaled by integrated [Oiii]λ5008 flux, and are simi-

larly converted to the rest-frame wavelength. Then, the
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stacking of the individual spectra is carried out with the

following equation:

fstack =

N∑
i

fi(λ)

σi(λ)2
/

N∑
i

1

σi(λ)2
, (9)

where fi(λ) is a flux density of the individual spectra

and σi(λ) is a sky noise as a function of the wavelength

(Shimakawa et al. 2015b). The noise spectrum for the

stacked spectrum is calculated by an error propagation

from the individual noise spectra. The stacked spectra

in the two stellar mass bins are shown in Figure 4.

3. ISM CONDITIONS OF [OIII] EMITTERS

AMONG OTHER SAMPLES AT Z > 3

3.1. Line ratios and its stellar mass-dependence at

z > 3

The left panel of Figure 5 shows the relation between

two line ratios, namely, theR23-index (([Oiii]λλ5008,4960

+ [Oii]) / Hβ) and [Oiii]λλ5008,4960/[Oii] ratio. While

the R23–index and [Oiii]/[Oii] ratio depend on both

the gas metallicity and ionization parameter, the R23 is

more sensitive to the gas metallicity and [Oiii]/[Oii] is

more sensitive to the ionization parameter (e.g. Kewley

& Dopita 2002; Nakajima & Ouchi 2014).

We show our sample on the R23–[Oiii]/[Oii] diagram

together with star-forming galaxies at the same epoch

from the literature, namely, UV-selected galaxies from

Onodera et al. (2016) and LAEs from Nakajima et al.

(2016). The model predictions are also shown on the

diagram. The theoretical line ratios in the Hii regions

are estimated using the photoionization code MAPPINGS

V 3 (MAPPINGS; Sutherland & Dopita 1993). In the

MAPPIGNS, we assume a Hii region with a constant pres-

sure of P/k = 106.5cm−3 K, where k is the Boltzmann

constant. The temperature of the Hii region is set

to be ∼ 104 K, and then the density becomes ∼ 300

cm−3, which corresponds to the typical electron den-

sity of star-forming galaxies at high redshifts (e.g. Stei-

del et al. 2014; Shimakawa et al. 2015b; Sanders et al.

2016b; Onodera et al. 2016; Strom et al. 2017). We

change the metallicity and ionization parameter inde-

pendently as follows: Z = 0.05, 0.2, 0.4, 1.0, 2.0 Z�,

and log(q [cms−1]) = 8.35, 8.00, 7.75, 7.50, 7.25, and

7.00.

In this paper, we use the ionization parameter defined

as:

q =
QH0

4πR2
snH

, (10)

3 https://miocene.anu.edu.au/mappings/

where QH0 is the flux of the ionizing photons produced

by the existing stars above the Lyman limit, Rs is the

Strömgren radius, and nH is the local density of hy-

drogen atoms (Kewley & Dopita (2002); and see also

Sanders et al. (2016b) for detailed discussions about the

definitions of the ionization parameter).

In the right panel of Figure 5, we show the relation be-

tween the stellar mass and the [Oiii]λλ5008,4960/[Oii]

ratio of the same samples shown in the left panel in order

to clarify the differences in the stellar mass distributions

among the samples.

In Figure 5, we also show local star-forming galaxies

from SDSS Data Release 8 (DR8), whose physical quan-

tities are provided by the MPA-JHU group4 (Abazajian

et al. 2009; Aihara et al. 2011). We clearly see that

star-forming galaxies at z > 3 show very different line

ratios from those of local star-forming galaxies, in the

sense that those of z > 3 galaxies tend to have higher

[Oiii]/[Oii] ratios at a fixed R23-index and stellar mass.

This confirms the results already reported in the litera-

ture using the UV-selected galaxies that the ionization

states of star-forming galaxies at z > 3 are higher than

those of star-forming galaxies at z = 0 (e.g. Holden et al.

2016; Onodera et al. 2016; Nakajima et al. 2016).

When we compare our sample to the sample of On-

odera et al. (2016) in Figure 5, there is no clear dif-

ference between the two samples. The [Oiii] emitters

are not systematically biased towards higher R23-index

or higher [Oiii]/[Oii] ratios with respect to the UV-

continuum-selected star-forming galaxies at the same

epoch. When comparing the LAEs at z ∼ 3 from

Nakajima et al. (2016), at a lower stellar mass regime

of log(M∗/M�) ∼ 9.0, the [Oiii] emitters are likely to

be consistent with being the same population as LAEs.

Our results suggest that the selection based on the [Oiii]

emission line strength does not cause any significant bias

in terms of the ISM conditions, and moreover, that we

can pick up star-forming galaxies in a wide range of ISM

conditions from ones with extreme conditions such as

LAEs to ones with moderate conditions at z > 3.

3.2. Metallicity estimation with the empirical

calibration method

We use the fully empirical relations calibrated using

local star-forming galaxies from SDSS by Curti et al.

(2017). They introduced the empirical relations between

the gaseous metallicities and six line ratios, and in this

study, we use four line ratios with [Oiii], Hβ, and [Oii]

lines. Hereafter, we estimate gas metallicities only for

the sources with all of these emission lines being de-

4 http://wwwmpa.mpa-garching.mpg.de/SDSS/

https://miocene.anu.edu.au/mappings/
http://wwwmpa.mpa-garching.mpg.de/SDSS/
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Figure 5. Relation between the R23-index and [Oiii]λλ5008,4960/[Oii] ratio (left) and between the stellar mass and the
[Oiii]λλ5008,4960/[Oii] ratio (right) of our sample at z ∼ 3.2, [Oiii] emitters and photo-z-selected sources. We also plot UV-
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represent the model prediction of the R23-index and the [Oiii]/[Oii] ratio calculated using the photoionization code MAPPINGS

V. Star-forming galaxies at z > 3 have different ISM conditions from those of local star-forming galaxies. Comparing among
samples at z > 3, massive [Oiii] emitters (log(M∗/M�) ∼ 9.8–10.2) seem to show similar line ratios as UV-selected galaxies,
while less massive [Oiii] emitters (log(M∗/M�) ∼ 9.0) are similar to LAEs. When Hβ is detected with S/N < 3.0, we replace it
with the 3σ flux limit. The source not detected with Hβ is not shown in the left panel.
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tected with S/N ≥ 3. Also, we remove the source with a

large uncertainty of AFUV. Note that all of the removed

sources are the photo-z-selected sources.

We fit the four line ratios simultaneously, and deter-

mine the best-fit metallicity that can minimize the χ2

value. Here the χ2 is defined as follows:

χ2 =

N∑
i=1

(log Ri,obs − log Ri,fit)
2

σ2
i,obs + σ2

i,int

, (11)

where log Ri,obs and log Ri,fit are the i-th line ratio ob-

tained from the observed spectra and one obtained from

the relation of Curti et al. (2017) at a given metallicity

(Onodera et al. 2016). σi,obs is the error of each line ra-

tio from the observed spectra, and σi,int is the intrinsic

scatter of a line ratio at a given metallicity, respectively.

We apply the root-mean-square estimated for each re-

lation (Table 2 in Curti et al. (2017)) as the intrinsic

scatter. In Figure 6, we show the relations between the

metallicity, which is determined with two different cali-

bration methods, and line ratios. Note that the four line

ratios shown in Figure 6 are not independent, and the

1σ errors in the metallicities are determined from values

of 12+log(O/H) with ∆χ2 = 3 compared to the best fit

solution.

We note that locally calibrated relations between line

ratios and gas metallicity might not be applicable to

star-forming galaxies at high redshifts because their typ-

ical ISM conditions seem to change from z = 0 (Kew-

ley et al. 2013; Nakajima & Ouchi 2014; Steidel et al.

2014; Strom et al. 2017; Kashino et al. 2017 and Fig-

ure 5), while some previous studies have suggested that

physical conditions of Hii regions do not evolve with

redshifts at a fixed metallicity (e.g. Jones et al. 2015;

Sanders et al. 2016a). Nevertheless, since it is shown

that the gas metallicities estimated with different line

ratios show systematic offsets from one another (Kew-

ley & Ellison 2008), we here use the locally calibrated

empirical relations to estimate gas metallicities for a fair

comparison with Onodera et al. (2016) in the next sec-

tion.

3.3. Mass–Metallicity relation at z > 3

In Figure 7, we show the relation between stellar mass

and gas metallicity for our sample. As already shown in

a number of previous studies, stellar mass and metal-

licity of our galaxies at z ∼ 3.2 show a correlation such

that more massive galaxies have higher metallicities (e.g.

Tremonti et al. 2004; Erb et al. 2006a; Maiolino et al.

2008; Stott et al. 2013; Zahid et al. 2013, 2014; Steidel

et al. 2014; Troncoso et al. 2014; Sanders et al. 2015).

UV-selected galaxies at the same epoch from the On-

odera et al. (2016) are also shown. We find no clear dif-

ference of gas metallicities between the [Oiii] emitters

and the UV-selected galaxies at a fixed stellar mass.

As also suggested in Figure 5, [Oiii] emitters are

not biased towards a particular population with respect

to their ISM conditions and metal contents as com-

pared to the UV-continuum-selected galaxies at least

in the stellar mass range covered by our observation,

i.e. log(M∗/M�) ∼ 9.0–10.2. It is expected that the

effect of dust extinction is not significant in our stel-

lar mass range, and therefore, there is no difference be-

tween the [Oiii]-selected and the UV-selected galaxies.

If the [Oiii]-selected galaxies can trace more massive

and dustier star-forming galaxies, the difference might

appear in more massive stellar mass range, and a larger

sample of the [Oiii] emitters and their follow-up obser-

vations are required.

4. COMPARISON WITH STAR-FORMING

GALAXIES AT Z ∼ 2

4.1. Metallicity calibration based on photoionization

modelling

We apply the calibration method, which is introduced

by Kobulnicky & Kewley (2004, KK04), as well as the

empirical calibration method by Curti et al. (2017) as

described in Section 3.2 in order to compare our sample

with previous studies at z ∼ 2 in the following sections.

KK04 used strong emission lines and determined rela-

tions between line ratios, gas metallicities and ioniza-

tion parameters based on the photoionization model,

MAPPINGS. In this method, the gas metallicity and ion-

ization parameter are determined simultaneously using

the two line ratios of the R23-index and [Oiii]/[Oii].

We estimate the gas metallicity and ionization param-

eter by following KK04. The relation between ioniza-

tion parameter log(q) and [Oiii]λλ5008,4960/[Oii] ratio

is given by

log (q) = {32.81− 1.153y2 (12)

+ [12 + log(O/H)](−3.396− 0.025y + 0.1444y2)

× {4.603− 0.3119y − 0.163y2

+ [12 + log(O/H)](−0.48 + 0.0271y + 0.02037y2)}−1,

where y = log([Oiii]λλ5008, 4960/[Oii]). The rela-

tion between gas metallicity 12+log(O/H) and the R23-

index is separated into the two equations according

to gas metallicity. At the lower metallicity branch of

12 + log(O/H) < 8.4,

12 + log(O/H)lower = 9.40 + 4.65x− 3.17x2 (13)

− log(q)(0.272 + 0.547x− 0.513x2),
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and at the upper metallicity branch of 12 + log(O/H) ≥
8.4,

12 + log(O/H)upper = 9.72− 0.777x− 0.951x2

−0.072x3 − 0.811x4 − log(q)(0.0737− 0.0713x

−0.141x2 + 0.0373x3 − 0.058x4), (14)

where x = logR23. Consistent metallicity and ionization

parameter are determined in an iterative manner using

Eq.(12) and Eq.(13) or Eq.(14) according to the value

of 12+log(O/H) (KK04).

We compare gas metallicities obtained by the KK04

method with those obtained in Section 3.2. When we see

the upper metallicity branch, the gas metallicities based

on the photoionization models are systematically higher

(∼ 0.25 dex) than those from the empirical relations. As

for the solutions at the lower metallicity branch, there

is no systematic offset with respect to the results from

the empirical relations but they seem to show a negative

trend with respect to the stellar mass (Appendix B).

In order to determine the metallicity branch at a given

R23-index, an additional line ratio, such as [Nii]/[Oii],

is required (KK04). Since we cannot observe [Nii]λ6585

lines for z > 3 galaxies from the ground, it is difficult to

determine the metallicity branch for each object in our

sample. In the following sections, we only show the gas

metallicities at the upper branch for clarity.

We note that Steidel et al. (2014) suggested the pos-

sibility that metallicity calibration methods using the

R23-index do not work well in the metallicity range of

12 + log(O/H) = 8.0–8.7. However, here we use the

KK04 method due to the limited available emission lines

of our sample and also for a fair comparison with previ-

ous studies at z ∼ 2. Kewley & Ellison (2008) showed
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that the gas metallicities with the calibration meth-

ods using different line ratios show systematic offsets

from one another. Therefore, we attempt to compare

gas metallicities estimated with the same calibration

method.

4.2. Comparison of the ionization parameter and gas

metallicity

In Figure 8 (a), we show gas metallicities and ioniza-

tion parameters of our sample estimated in Section 4.1.

Here we show the two solutions at the upper and lower

metallicity branch while some sources have the same so-

lution at the two branches indicating that they lie at the

cross-over metallicity. We also show the results of LBGs

and LAEs at z ∼ 2–3 from Nakajima & Ouchi (2014),

who estimated gas metallicities and ionization param-

eters with the KK04 method. Comparing our sample

with LBGs and LAEs of Nakajima & Ouchi (2014) on

this diagram, our sample at z ∼ 3.2 shows similar gas

metallicities and ionization parameters as those of the

LBGs at z ∼ 2–3.

In Figure 5, we find that star-forming galaxies at z > 3

clearly show different line ratios from those of the local

star-forming galaxies, indicating that they are likely to

have higher ionization parameters at a fixed metallicity

or stellar mass. Figure 8 (a) indicates that the redshift

evolution of ISM conditions is unlikely to be strong be-

tween z ∼ 3.2 and z ∼ 2. The sample of LBGs of Naka-

jima & Ouchi (2014) covers a wider stellar mass range

than that of our sample, log(M∗/M�) = 8.0− 10.8. We

also note that their LBG sample includes galaxies at

z ∼ 3 from AMAZE (Maiolino et al. 2008), and this

might contribute to similar ionization parameters and

gas metallicities between the two samples.

4.3. Comparison of mass–metallicity relation

In Figure 8 (b), we show the relation between stellar

mass and gas metallicity again, but gas metallicities are

estimated with the KK04 method for a fair comparison

with previous studies about star-forming galaxies at z ∼
2 (Zahid et al. 2013; Cullen et al. 2014; Steidel et al.

2014; Sanders et al. 2015).

We introduce some previous studies at z ∼ 2. Cullen

et al. (2014) investigated ISM conditions of star-forming

galaxies at z ∼ 2.2 selected from the 3D-HST grism

survey data. Their sample is basically selected by their

strong [Oiii] emission lines. They stacked their samples

into six stellar mass bins and measured the fluxes of the

[Oii], Hβ, and [Oiii] lines. We here directly estimate

gas metallicities of their sample with the KK04 method.

We show the solutions at the upper metallicity branch

in Figure 8 (b).

We also show the results from Steidel et al. (2014)

and Sanders et al. (2015), who calibrated gas metallic-

ities using the [Nii]/Hα lines ratios (N2) by Pettini &

Pagel (2004, PP04). We converted their gas metallici-

ties using the formula given by Kewley & Ellison (2008)

so that gas metallicities correspond to those estimated

using the KK04 method. We show one more previous

study, Zahid et al. (2013). They obtained the mass–

metallicity relation at z ∼ 2.2 with the KK04 method

by converting the mass–metallicity relation obtained by

Erb et al. (2006a) with the N2 (PP04) method with the

formula by Kewley & Ellison (2008).

The thick dash-dotted line in Figure 8 (b) shows the

best-fitted mass–metallicity relation derived using the

solutions at the upper metallicity branch of our sample

at z ∼ 3.2. We compare this best-fitted relation at z ∼
3.2 with that estimated for Cullen et al. (2014) sample.

The slopes and intercepts of the best-fitted lines for the

two samples are consistent with each other within errors,

indicating that the gas metallicities of our sample at

z ∼ 3.2 are similar those of star-forming galaxies at

z ∼ 2.2 at a fixed stellar mass. This is also the case

when comparing the solutions at the lower metallicity

branch (Appendix B).

On the other hand, comparing with other previous

studies, which estimated gas metallicity with N2 (PP04)

method originally, they tend to have higher metallicities

with respect to our sample and the sample of Cullen

et al. (2014). It is suspected that there is still a system-

atic difference due to using different calibration meth-

ods even after the correction. The correction factors

for local star-forming galaxies introduced in Kewley &

Ellison (2008) might not be applicable for star-forming

galaxies at z > 2 due to their different physical condi-

tions. Therefore, comparing our targets with the sam-

ples whose metallicities are originally calibrated by the

N2 (PP04) method might not be fair. We conclude

that our sample at z ∼ 3.2 has similar ISM conditions

and mass–metallicity relation as star-forming galaxies at

z ∼ 2 under the same calibration method.

4.4. ISM conditions and star-forming activity between

z ∼ 3.2 and z ∼ 2

In Figure 3, we show that the normalization of star-

forming main sequence seems to be similar at z ∼ 3.2

and z ∼ 2. Also, as shown in Figure 8, it is suggested

that the ISM conditions and the mass–metallicity re-

lation do not seem to evolve between the two epochs.

These results suggest that the properties of star-forming

galaxies at z ∼ 2.0–3.2 (the difference of cosmic age of

∼ 1.3 Gyr) are primarily determined by their stellar

masses rather than cosmic epoch since galaxies are very
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young and their ages are getting closer to the age of the

Universe (∼ a few Gyr).

As discussed in Suzuki et al. (2015) and as suggested

distributions between the [Oiii] emitters at z ∼ 3.2 and

z ∼ 2.2 along the main sequence (Figure 3), the individ-

ual galaxies should experience significant growth in stel-

lar masses. These results probably reflect that galaxies

are in the vigorous formation phase at this epoch, and

such a significant growth must be supported by ample

gas accretion from the outside throughout these early

epochs (e.g. Kereš et al. 2005, 2009; Dekel et al. 2009;

Bouché et al. 2010).

Onodera et al. (2016) also showed that the gas metal-

licity difference between their sample at z > 3 and

Cullen et al. (2014) sample at z ∼ 2.2 is relatively small

at a fixed stellar mass. They found that a simple gas

regulator model with mildly evolving star formation ef-

ficiency (Lilly et al. 2013) could well predict the ob-

servational trend of the redshift evolution of the mass–

metallicity relation.

By obtaining the gas mass fractions for our sample

and combining them with gas metallicities and stellar

masses, it will become possible to give constraints on the

inflow and outflow rates by combining with gas metallic-

ities and stellar masses (e.g. Troncoso et al. 2014; Yabe

et al. 2015; Seko et al. 2016). Dust continuum or CO

line observations with ALMA will enable us to directly

measure the molecular gas mass of individual galaxies

at z > 3.

5. SUMMARY

In this paper, we present the results from NIR spec-

troscopic follow-up of star-forming galaxies at z ∼ 3.2.

Our primary targets are the NB-selected [Oiii] emission

line galaxies obtained by HiZELS in the COSMOS field

(Sobral et al. 2013; Khostovan et al. 2015). We obtain

H and K band spectra of all ten [Oiii] emitters and

seven photo-z-selected galaxies (our secondary targets).

Our results demonstrate the high efficiency of follow-up

observations of NB-selected galaxies with all candidates

being confirmed as [Oiii] emitters. By exploiting our

deep NIR spectra, we find that:

1. In comparison with local galaxies, our sample

shows different ISM conditions, such as higher

R23-index and higher [Oiii]/[Oii] ratio, and lower

gas metallicity at a fixed stellar mass, consistent

with many previous studies (e.g. Troncoso et al.

2014; Nakajima & Ouchi 2014; Steidel et al. 2014;

Onodera et al. 2016).

2. We compare our spectroscopically confirmed

galaxies at z ∼ 3.0 − 3.5 with other galaxy

populations at similar redshifts (Onodera et al.

2016; Nakajima et al. 2016) on the R23-index –

[Oiii]/[Oii] ratio diagram and the stellar mass–

[Oiii]/[Oii] ratio diagram. The [Oiii] emitters

show broadly similar line ratios as UV-selected

galaxies. Moreover, the line ratios of less massive

[Oiii] emitters (log(M∗/M�) ∼ 9.0) are consistent

with those of LAEs. The [Oiii]-selection seems to

cause no significant bias in terms of the ISM con-

ditions, and the [Oiii]-selected galaxies can cover

a wide range of stellar masses and ISM conditions

of star-forming galaxies at z > 3. The mass–

metallicity relation of our sample is consistent

with that of Onodera et al. (2016).

3. We also compare our sample at z ∼ 3.2 with star-

forming galaxies at z ∼ 2 from literature (Zahid

et al. 2013; Cullen et al. 2014; Nakajima & Ouchi

2014; Steidel et al. 2014; Sanders et al. 2015).

Our sample shows similar ionization parameters,

gas metallicities, and mass–metallicity relation as

those obtained by Nakajima et al. (2016) and

Cullen et al. (2014) using the same calibration

method. This suggests that the ISM conditions

of star-forming galaxies do not strongly evolve at

a fixed stellar mass between z ∼ 3.2 and z ∼ 2.2.

Considering that the [Oiii] emitters at z ∼ 3.2

have similar SFRs as those at z ∼ 2.2 at a fixed

stellar mass, our results support the idea that the

evolutionary stages of star-forming galaxies, such

as SFRs and ISM conditions, at z & 2 are primar-

ily determined by their stellar masses rather than

redshift.

Since our current spectroscopic sample is very small, it

is necessary to carry out more observations on a larger

sample in order to statistically reveal the evolution of

ISM conditions and star-forming activities from z > 3

to z ∼ 2. The low contamination of the NB-selected

emitters will lead to high efficient follow-up observations

making it ideal for such studies.
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error.
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Figure 9. The H and K-band spectra and the emission line fitting results of the ten [Oiii] emitters. The reduced spectra
are shown with the gray curves. The blue shaded regions represent the 1σ sky noise. The emission line fitting result with a
Gaussian component is shown with the red curves for each source. Three panels show the emission lines, [Oii]λ3727, [Oii]λ3730
(left panel), [Neiii]λ3870 (middle panel), and Hβ, [Oiii]λ4960, and [Oiii]λ5008 (right panel), respectively. We can see that the
[Oiii] doublet, Hβ, and [Oii] doublet lines are clearly detected with high signal-to-noise ratios for most of the [Oiii] emitters.

APPENDIX

A. H AND K-BAND SPECTRA

In Figure 9 and 10, we show the H and K-band spectra of the individual sources, namely the [Oiii] emitters (zspec =

3.23–3.27) and the photo-z-selected galaxies (zspec = 3.03–3.42). The emission line fitting results with a Gaussian

component is shown in the red curves, and the results of the emission line fit are summarized in Table 1. In Table 2,

we summarize the estimated physical quantities, such as stellar masses, dust extinctions, SFRUV, and correction factors

for stellar absorption for Hβ.

B. GAS METALLICITIES AT THE TWO BRANCHES OF THE KK04 METHOD

In Figure 11, we show the two solutions obtained by the KK04 method for our sample and Cullen et al. (2014)

sample. Although it is difficult to choose the appropriate branch for our sample with the current data, we note that

there is no large difference of gas metallicities at a fixed stellar mass between our sample at z ∼ 3.2 and Cullen et al.
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Figure 10. The H and K-band spectra and the emission line fitting results of the seven photo-z-selected galaxies at
zspec = 3.00 − 3.45. he reduced spectra are shown with the gray curves. The blue shaded regions represent the 1σ sky noise.
The emission line fitting result with a Gaussian component is shown with the red curves for each source. Three panels show
the emission lines, [Oii]λ3727, [Oii]λ3730 (left panel), [Neiii]λ3870 (middle panel), and Hβ, [Oiii]λ4960, and [Oiii]λ5008 (right
panel), respectively. Comparing the [Oiii] emitters (Figure 9), the [Oiii] fluxes of these galaxies are weaker.

(2014) sample at z ∼ 2.2 when we compare the solutions at the same branch. This is consistent with what we see in

Figure 8 (a).
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Table 1. Summary of the emission line properties of the confirmed [Oiii] emitters and photo-z-selected sources with
Keck/MOSFIRE.

ID ID15 IDS13 R.A. Dec. zspec FWHM F[OIII]λ5008 FHβ F[OII] F[NeIII]

(1) (2) (3) (J2000) (J2000) [km s−1] (4) (5) (6) (7)
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(1) For the [Oiii] emitters, IDs are unique in this paper only. For the photo-z-selected sources, IDs are extracted from the
catalog of Ilbert et al. (2009).
(2) IDs in the COSMOS2015 catalog (Laigle et al. 2016).
(3) IDs in the catalog of NBK emitters from HiZELS (Sobral et al. 2013). We only show numbers here while the IDs given in
the catalog are “HiZELS-COSMOS-NBK-DTC-S12B-**”.
(4)(5)(6)(7) Fluxes are shown in the unit of 10−17[erg s−1cm−2], and not corrected for the dust extinction.
(5) The stellar absorption is not corrected for.
(6) [Oii]λ3726 + [Oii]λ3729 fluxes
(7) The fluxes with S/N < 3.0 are replaced with the 3σ limit values, if a line flux is not listed then it was affected by OH
skylines.
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