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Abstract: This paper presents a low cost, compact and lightweight RF switching system for wearable head imaging 
applications. The proposed switching system is made from commercial off-the-shelf components (COTS). The switching 
system provides a wideband performance which covers operating frequency band from DC to 4 GHz. A low power 
microcontroller is integrated with two RF switches as a control system. An array of twelve wideband monopole antennas 
were connected to the proposed switching circuit and its performance was evaluated using an artificial human head phantom. 
To verify the performance of the system, a haemorrhagic stroke was mimicked by placing a spherical target of 30 mm in 
diameter inside the fabricated head phantom. Two data acquisition methods were applied using the switching system. In the 
first method, the reflection coefficients of the antennas were collected for healthy and unhealthy brain injury cases. For the 
second method, the transmission coefficients of the antennas were collected by utilising four antennas in the array as 
transmitting antennas while the rest of the antennas act as receiving antennas. We demonstrates that the proposed compact 
switching system could be used for future real-time wearable detection systems embedded in various headgear products.  
 

1. Introduction 

Over the past few decades, microwave imaging for medical 

applications has attracted significant interest due to its many 

advantages such as low cost, fast, non-invasive and non-

ionisation characteristics [1]. Microwave imaging techniques 

provide an alternative method to conventional modalities such 

as computed tomography, magnetic resonant imaging system, 

and ultrasound for detection of various diseases inside a 

human body. One of the widely research area in medial 

microwave imaging is radar-based systems which utilise ultra-

wideband antennas to create a useful image of diseases inside 

a human body.  Several attempts on using radar-based 

microwave systems have been reported for early detection of 

breast cancer [2–4]. A clinical trial was conducted on real 

patients for breast cancer detection shows the feasibility of 

using microwave technology to complement the existing 

medical imaging systems in the future [5]. 

Recently, microwave technology has also been utilised for 

head imaging and detection of diseases such as stroke and 

traumatic brain injury [6–8].  Compared to breast, human head 

has more complex biological structure which consists of 

several lossy tissue layers and skull [9].  Feasibility study of 

using ultra-wideband (UWB) microwave technology for head 

imaging technique has been carried out using simulation tools 

as presented in [10]. It is reported that that there is detectable 

difference between the scattered signals from a healthy head 

and a head embedded with tumour. The proposed Vivaldi 

antenna used high operating frequency range thus limits the 

penetration depth of the electromagnetic wave inside the head 

model and only tumour close to the outer head region could be 

detected. Moreover, no switching system was used since the 

antenna was manually positioned around the head.     

A microwave head imaging systems utilising UWB Vivaldi 

antennas for stroke detection was presented in [11]. An array 

of 16 Vivaldi antennas was positioned around the artificial 

head phantom where the distance between the antennas and 

the head phantom was kept at 0.5 cm. An ellipsoidal-shaped 

target of size 2 cm × 1 cm × 0.5 cm was inserted into the head 

phantom to mimic the occurrence of haemorrhagic stroke. The 

proposed system was successful in showing the location of the 

stroke target. The switching system implemented in this work 

utilised microwave coaxial switches in order to connect the 

elements of the array. The size of the switching device is 

relatively large and only suitable for a static testing 

environment.  

A portable microwave head imaging system to detect 

traumatic brain injuries was reported in [6] by utilising a 

compact directional antenna and microwave transceiver. The 

proposed system was tested on a realistic human head 

phantom to verify its detection capabilities. The antenna was 

rotated at 32 different angular positions to scan the head 

phantom. Since there was only one antenna used in the setup, 

no switching device is required.  

The microwave head imaging systems above were 

developed to operate either in static diagnostic setup at 

hospitals or as a portable system such as in an ambulance to 

provide rapid response to patients. Recently, there have been 

an emerging trend of using wearable devices to monitor a 

person health in real-time [12]. The wearable devices could be 

embedded or integrated inside a person’s garment to act as a 

sensing or imaging system [13]. By providing a real-time 

detection, an alerting system could be set up where rapid 
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response could be delivered.   In addition, a medical database 

could be created to store the measured signals which could be 

used for future analysis which would help identifying fatal 

diseases in advance. The wearable health detection concept 

could potentially prevent a patient from suffering a permanent 

health damage or in extreme cases from dying such as a person 

suffering from stroke. An example of the wearable system for 

health monitoring is a wearable pulmonary edema monitoring 

sensor presented in [14]. The sensor is made of 17 electrodes 

with 16 ports in-between where it will be placed on the human 

chest. The system was built to detect lung irregularities by 

measuring the lung’s average permittivity in a non-invasive 

way. The system was integrated with body-area network 

(BAN) to provide remote data transfer.  On the other hand, a 

wearable system for breast cancer detection is presented in 

[15]. 4 × 4 antenna array was developed in a bra-like format. 

The antenna design was validated on a phantom mimicking 

breast tissue. However, no switching system is proposed in 

this work. A flexible circuit board integrated with solid-state 

switching network and 16 wideband antennas is presented in 

[16]. By integrating the switching matrix and the antenna array 

on the same substrate, the overall size of the microwave 

imaging system was reduced. The idea of using compact RF 

switch system paves the way for future wearable microwave 

medical imaging applications.  

In order to move towards wearable systems for head sensing 

or imaging, it is first necessary to replace some of the main 

components in the system with smaller and eventually 

wearable solutions. As a proof of concept, a compact and 

lightweight RF switching system is presented in this paper 

using commercial off-the-shelf components. This study is a 

modified version of our work presented in [17], with the major 

improvement of using an additional solid-state switch which 

is one-pole four-throw (1P4T) type in combination with the 

previous one-pole eight-throw (1P8T) switch. The utilisation 

of two RF solid-state switches in the switching system permits 

the use of two data acquisition methods namely reflection 

coefficient and transmission coefficient as compared to only 

the former method in the previous work. In the first method, 

the two switches are combined to form a single-pole twelve 

throw (1P12T) switch which can accommodate an additional 

four antennas in the wearable imaging system. In this case, 12 

antennas could be utilised in the system. For the next method, 

a total of 32 transmission coefficient channels could be 

measured. This is realised by using the 1P4T switch for the 

transmitting antennas and the 1P8T switch for the receiving 

antennas. To investigate the performance of the switches, 

measurements were carried out separately for each of the 

switches in terms of their impedance matching and insertion 

loss. 

To further verify the feasibility of the proposed switching 

system, the switching circuit is connected to an array of twelve 

wideband flexible monopole antennas previously presented in 

[18] for evaluation using a realistic head phantom.  

Measurement results for the final design of the proposed 

system are discussed and analysed. It is intended that the 

proposed compact and low cost RF switching system to serve 

as a proof of concept for future development of real-time 

monitoring wearable head imaging systems. 

 

 

2. RF Switching System Architecture 

To realise a wearable head imaging system, a compact and 
lightweight RF switching circuit for an antenna array (sensors) 
is developed using commercial off-the-shelf (COTS) 
components. Two evaluation boards of MMIC single-pole 
eight-throw (1P8T) switch, HMC321LP4E and single-pole 
four-throw (1P4T) switch, HMC241ALP3E from Analog 
Device are chosen [19][20]. The switches offer wideband 
operating frequency range from DC to 4 GHz which is 
sufficient to cover the operating frequency typically used for 
head imaging application. In order to provide enough 
penetration and sensible resolution inside the human head, 
most of the research in the literature utilise frequency band 
between 1GHz to 4GHz [6, 11, 21]. The diagram of the 
proposed switching architecture is shown in Fig. 1.  

In order to operate the switches, an Arduino Nano board 
from Arduino was chosen based on several criteria mainly its 
compact size and low power consumption. Both of the 
switches and the board operate at 5 V and could be easily 
powered up using a 9 V battery. The microcontroller 
embedded inside the Arduino Nano, Atmel ATMega328, 
consumes only 0.2 mA during its operation mode. The reason 
for integrating a microcontroller with the switches is due to 
further prove the wearable concept for head imaging system 
where it would be integrated with ultra-wideband transceiver 
as system on a chip (SoC) in the future work. However, in this 
research, the main function of the micro-controller is to 
control the switches during operation and testing.  

Five control pins from the Arduino board are connected to 
both of the switches which will control the selection of each 
individual port. A wireless connection is also implemented on 
the system to control the proposed switching circuit using an 
android based smartphone via Bluetooth module. The 
selection of Bluetooth module was due to its low power usage 
compared to WiFi module thus further reducing the power 
consumption of the overall system. An android application 
was coded and installed into a mobile phone to provide the 
graphical user interface. 

To investigate the performance of the RF switches, their 
insertion losses (S21) at frequency band up to 3 GHz were 
measured using a vector network analyser at all the ports as 
illustrated in Fig. 2. Next, their impedance matching 
performance was evaluated in terms of reflection coefficient.  
Finally, the proposed switching system was then connected to 
an array of twelve ultra-wideband monopole antennas. The 
reflection and transmission coefficient measurements were 
taken with the presence of an artificial head phantom for 
further analysis. 

Fig. 1.  Diagram of the proposed RF switching system 



3 

 

3. Measurements of the solid-state RF switches 

The performance of both of the switches is first evaluated 

in terms of their insertion losses and reflection coefficients at 

each of the RF port. The measurements were carried out using 

the two-port vector network analyser, HP8753C. Due to the 

limitation of the VNA, only measurements up to 3 GHz could 

be conducted. Nevertheless, considering that the RF switches 

are to be used for microwave head imaging and detection 

systems, most of the antennas designed for these applications 

work below 3 GHz in order to provide enough 

electromagnetic wave penetration inside the human head 

[6][22]. The insertion losses of the 1P4T switch and the 1P8T 

switch are shown in Fig. 3 and Fig. 4 respectively. It can be 

seen that the insertion loss of the 1P4T switch is lower than 

the 1P8T switch by 1.06 dB up to 3 GHz. The maximum 

measured insertion loss at 2.5 GHz is -2.54 dB at port 7 of the 

1P8T switch.  

The switches’ reflection coefficient characteristics are 

illustrated in Fig. 5 and Fig. 6 respectively. The average 

measured reflection coefficients of the 1P4T and 1P8T 

switches at 2.5 GHz are -26.2 dB and -18.9 dB. The 

maximum measured reflection coefficient value is -17.5 dB 

at port 7 of the 1P8T switch. The difference in S11 responses 

between the two switches is mainly due to the manufacturing 

factor. Nevertheless, the measurement results show excellent 

impedance matching characteristic up to 3 GHz which match 

the values provided by the datasheets. It is important to ensure 

that the switches’ impedance matching performance would 

not deteriorate the performance of the antenna array that is to 

be integrated later in the final system.  

To further validate the performance of the switching 

system, an array of twelve wideband monopole antennas is 

connected to the switches.   An artificial head phantom that 

mimics the electrical properties of the actual human head was 

fabricated as shown in Fig. 7. The soft brain tissue was 

created by mixing tab water, sugar, agar and salt following 

the procedures proposed in [7]. However, the proportions of 

the materials was slightly changed due to the use of tab water 

instead of deionised water in order to get similar electrical 

properties of actual grey matter [23]. The recipes of the head 

phantom is provided in Table I.  In addition, a liquid 

mimicking blood will be used to mimic the occurrence of 

haemorrhagic stroke inside the head phantom. 

(a) 

Fig. 3. Measured insertion loss of single-pole-four-throw 

(1P4T) RF switch 

Fig. 4. Measured insertion loss of single-pole-eight-throw 

(1P8T) RF switch 

Fig. 5. Measured reflection coefficient of the single-pole-

four-throw (1P4T) RF switch 

(b) 

Fig. 2. (a) Photograph and (b) the diagram of the 

measurement setup for the RF switches  
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4. Performance Verification using an Artificial 
Head Phantom 

Most of the wideband microwave techniques for head 

imaging or detection applications rely on the differences of 

the reflection coefficients and/or transmission coefficients 

between a healthy brain and unhealthy brain i.e. stroke 

induced condition or traumatic brain injuries [7, 11, 22, 24]. 

The blood clot inside the brain causes the reflection 

coefficient of the transmitting antennas to change depending 

on its distance from the antenna and size. On the other hand, 

it has been reported in [7] that the transmission coefficients 

of the antenna pair where a blood clot was positioned along 

its path show noticeable differences between healthy and 

various clot sizes. By exploiting these findings, two methods 

of data acquisition could be applied for wearable imaging 

systems using the proposed RF switching system. In this 

section, we will investigate and compare both of the methods 

by mimicking injuries inside the brain by placing a spherical 

target that mimics the formation of a blood clot inside the 

head. Moreover, to verify the performance of the proposed 

switching system, an imaging algorithm based on confocal 

delay-and-sum (CDAS) algorithm is utilised to determine the 

location of the stroke inside the head phantom [11, 25, 26].  

 

4.1. Reflection coefficient (S11) measurements 
 

For our initial investigation, we use differential signals 

where a head scan with a healthy head (no bleeding) and then 

with a head phantom with a blood clot. The size of the 

spherical blood clot placed inside the head phantom is 30 mm 

in diameter as shown in Fig.8. The reflection coefficients of 

the antennas closer to the blood clot are then compared 

between these two scenarios. Since there are twelve antennas 

in the array, twelve reflection coefficient responses were 

recorded as shown in Fig. 9 and Fig. 10 for healthy and 

unhealthy cases respectively. This method can be viewed as 

mono-static radar approach where only one antenna is active 

at a certain time. The location of the antennas placed on the 

head phantom is shown in Fig. 11 where the lossy dielectric 

absorber was removed for clarity. During the measurements, 

the absorber was attached to the antennas to suppress the back 

lobe radiation in order to prevent the system from measuring 

the unwanted surrounding noise. Based on Fig. 12, it can be 

seen that the reflection coefficient values of the three 

antennas (referred as Ant1, Ant2 and Ant3) which locations 

were the closest to the spherical target show noticeable 

differences between healthy and unhealthy head which 

confirms the finding reported in [27] . This is due to the 

changes in the dielectric constant of the materials along the 

propagation path of the signal transmitted and received by 

those antennas due to the existence of the blood clot. As for 

the other antennas, their responses were not affected since the 

blood clot was not within their signal propagation paths or 

their location were too far from the target. By using this 

information, an image of the location of the blood clot is 

Fig. 6. Measured reflection coefficient of the single-pole-

eight-throw (1P8T) RF switch 

Fig. 7. Fabricated artificial head phantom 

 

Table 1 Recipes for grey matter and blood  

Ingredients Grey matter (%) Blood (%) 

Tab water 50 70 

Sugar 50 30 

Agar 15 - 

Salt 0.1 0.2 

Sodium 

Benzoate 

0.1 - 

 

Fig. 8. Location of the blood clot inside the head phantom 
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created by applying the CDAS algorithm [6, 11]. Since the 

data is collected in the frequency domain, an inverse discrete 

fast Fourier transform (IDFT) is applied to the reflection 

coefficients to convert it to the time domain signal. The 

differential signals are input into the imaging algorithm to 

remove any unwanted reflections from the surrounding [15]. 

The images of the head for healthy and unhealthy cases are 

shown in Fig. 13. As a comparison with a system without the 

RF switching circuit, another image of the head with the 

stroke created without utilising the switching circuit is also 

shown. Both images show that the stroke is clearly detected 

and localised. This indicates that the proposed RF switching 

circuit gives similar performance compared to the system 

without the switching circuit.  The resolution and accuracy of 

the imaging system can be improved by using more antennas 

at the expense of larger wearable device to accommodate the 

additional antennas and increased data acquisition time. 

 

 

 

 

Fig. 9. Measured reflection coefficient of the antennas with 

the presence of healthy head phantom 

Fig. 10. Measured reflection coefficient of the antennas with 

the presence of unhealthy head phantom 

(b) 

(a) 

(c) 

Fig. 12. Measured reflection coefficient of the antennas with 

healthy and unhealthy head  

(a) Ant1 (b) Ant2 (c) Ant3 

Fig. 11. Location of the antennas and the switching system 

(top view)   
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4.2. Transmission coefficient measurements 
 

By using four of the antennas from the array as 

transmitting antennas and the remaining eight antennas as 

receiving antennas, thirty two transmission coefficient 

channels were collected for both scenarios.  This method has 

been implemented in [7, 8] for the detection of subdural 

hematoma and stroke types where machine learning 

algorithms are utilised for the classification of the diseases. 

In this method, the 1P4T switch is connected to the four 

transmitting antennas while the remaining eight antennas are 

connected to the 1P8T switch. The amplitudes of S21 were 

measured for all the thirty two communication channel pairs. 

However, for brevity only S21 between antenna 2 (as 

transmitting antenna) and the eight receiving antennas will be 

analysed. The measured S21 results between antenna 2 and the 

receiving antennas are plotted in Fig. 14 and Fig. 15 for both 

healthy and unhealthy head conditions. In general, from the 

S21 results, we can conclude that antenna pairs that are further 

apart have higher insertion loss due to longer path taken by 

the signal to travel between them. Moreover, the insertion 

loss also increases with frequency since the head phantom 

and biological tissues in general have higher loss at higher 

frequencies. To investigate the differences in amplitude of S21 

between healthy and unhealthy cases, the transmission 

coefficients for two antenna pairs namely Ant2-Ant1 and 

Ant2-Ant3 are plotted in Fig. 16.  It can be seen that the 

insertion loss for antenna 2 and antenna 1 pair for the 

unhealthy case is lower than the healthy case between 2 GHz 

to 2.5 GHz. This could be attributed to the existence of the 

blood clot in the path of the antenna pair where the higher 

conductivity of the blood clot compared to the brain tissue 

causes the transmission path loss to increase. The trend could 

also be observed for Ant2-Ant3 pair at 1.6 GHz and 2.5 GHz 

frequency range where the transmission loss is higher for the 

unhealthy case than the heathy brain due to the formation of 

the blood clot in its path. Nevertheless, by applying advanced 

post-processing techniques such as machine learning 

algorithm, detection or imaging of potential head diseases 

such as stroke or traumatic brain injuries could be 

implemented using this transmission coefficient method.  

5. Conclusion 

In this work, a low cost, compact and lightweight RF 
switching system for wearable microwave head imaging has 
been presented. Two monolithic microwave integrated circuit 
(MMIC) RF switches which consist a single-pole-four-throw 
(1P4T) switch and a single-pole-eight-throw (1P8T) switch 
are utilised in the system. The switching system offers 
wideband characteristic covering frequency band from DC to 
4 GHz. A low power microcontroller is integrated with the 
switches to control the switches via Bluetooth connection. 
The maximum measured insertion loss and reflection 
coefficient are -2.54 dB and -18.9 dB respectively. An array 
of twelve wideband flexible antennas was connected to the 
switching system and tested on an artificial human head 
phantom. Experiment results show that there were noticeable 

Fig. 14. Measured transmission coefficients between antenna 

2 and the receiving antennas for healthy head phantom 

Fig. 15. Measured transmission coefficients between antenna 

2 and the receiving antennas for unhealthy head phantom 

Fig. 16. Measured transmission coefficients of the antennas 

with healthy and unhealthy head for antenna 2-antenna 1and 

antenna 2-antenna 3 

(a)                           (b)                           (c) 

Fig. 13. Imaging results for (a) healthy head and unhealthy 

head (b) without the switching circuit (c) and with the 

switching circuit. The exact locations of the bloods are 

indicated by the dashed black circles. 
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difference in both reflection coefficients and transmission 
coefficients when the antenna array was used to scan between 
a healthy head phantom and a head phantom with a blood clot 
of size 30 mm in diameter. The location of the blood clot was 
successfully detected by applying the confocal delay-and-
sum imaging technique. The proposed switching system 
serves as a proof of concept for future development of real-
time monitoring wearable head imaging systems. 

6. References 

1 Fear, E.C., Meaney, P.M., Stuchly, M.A.: 

‘Microwaves for breast cancer detection?’Potentials, 

IEEE, 2003, 22, pp. 12–18.  

2 Fear, E.C., Stuchly, M.A.: ‘Microwave detection of 

breast cancer’IEEE Trans. Microw. Theory Tech., 

2000, 48, (11), pp. 1854–1863.  

3 Porter, E., Bahrami, H., Santorelli, A., Gosselin, B., 

Rusch, L.A., Popovic, M.: ‘A wearable microwave 

antenna array for time-domain breast tumor 

screening’IEEE Trans. Med. Imaging, 2016, 35, (6), 

pp. 1501–1509.  

4 Bond, E.J., Li, X., Hagness, S.C., Van Veen, B.D.: 

‘Microwave imaging via space-time beamforming 

for early detection of breast cancer’IEEE Trans. 

Antennas Propag., 2003, 51, (8), pp. 1690–1705.  

5 Preece, A.W., Craddock, I., Shere, M., Jones, L., 

Winton, H.L.: ‘MARIA M4: clinical evaluation of a 

prototype ultrawideband radar scanner for breast 

cancer detection’J. Med. Imaging, 2016, 3, (3), p. 

33502.  

6 Mobashsher, A.T., Abbosh, A.M., Wang, Y.: 

‘Microwave system to detect traumatic brain injuries 

using compact unidirectional antenna and wideband 

transceiver with verification on realistic head 

phantom’IEEE Trans. Microw. Theory Tech., 2014, 

62, (9), pp. 1826–1836.  

7 Candefjord, S., Winges, J., Malik, A.A., et al.: 

‘Microwave technology for detecting traumatic 

intracranial bleedings: tests on phantom of subdural 

hematoma and numerical simulations’Med. Biol. Eng. 

Comput., 2016, pp. 1–12.  

8 Persson, M., Fhager, A., Dobsicek Trefna, H., et al.: 

‘Microwave-based stroke diagnosis making global 

prehospital thrombolytic treatment possible’IEEE 

Trans. Biomed. Eng., 2014, 61, (11), pp. 2806–2817.  

9 Ireland, D., Bialkowski, M.E.: ‘Microwave head 

imaging for stroke detection’Prog. Electromagn. Res. 

M, 2011, 21, pp. 163–175.  

10 Zhang, H., Flynn, B., Erdogan, A.T., Arslan, T.: 

‘Microwave imaging for brain tumour detection 

using an UWB Vivaldi Antenna array’Loughbrgh. 

Antennas Propag. Conf., 2012, (November).  

11 Mohammed, B.J., Abbosh, A.M., Mustafa, S., Ireland, 

D.: ‘Microwave system for head imaging’IEEE 

Trans. Instrum. Meas., 2014, 63, (1), pp. 117–123.  

12 Zheng, Y.L., Ding, X.R., Poon, C.C.Y., et al.: 

‘Unobtrusive sensing and wearable devices for health 

informatics’IEEE Trans. Biomed. Eng., 2014, 61, (5), 

pp. 1538–1554.  

13 Kiourti, A., Volakis, J.L.: ‘Wearable antennas using 

electronic textiles for RF communications and 

medical monitoring’2016 10th Eur. Conf. Antennas 

Propagation, EuCAP 2016, 2016.  

14 Salman, S., Wang, Z., Colebeck, E., Kiourti, A., 

Topsakal, E., Volakis, J.L.: ‘Pulmonary edema 

monitoring sensor with integrated body-area network 

for remote medical sensing’IEEE Trans. Antennas 

Propag., 2014, 62, (5), pp. 2787–2794.  

15 Bahramiabarghouei, H., Porter, E., Gosselin, B., 

Popovi, M., Rusch, L.A.: ‘Flexible 16 antenna array 

for microwave breast cancer detection’IEEE Trans. 

Biomed. Eng., 2015, 62, (10), pp. 2516–2525.  

16 Santorelli, A., Porter, E., Kang, E., Piske, T., Popovi, 

M., Schwartz, J.D.: ‘A Time-Domain Microwave 

System for Breast Cancer Detection Using a Flexible 

Circuit Board’IEEE Trans. Instrum. Meas., 2015, 64, 

(11), pp. 2986–2994.  

17 Bashri, M.S.R., Arslan, T., Zhou, W., Haridas, N.: ‘A 

compact RF switching system for wearable 

microwave imaging’, in ‘Loughborough Antennas & 

Propagation Conference (LAPC)’ (2016), pp. 2–5 

18 Bashri, M.S.R., Arslan, T., Zhou, W., Haridas, N.: 

‘Wearable device for microwave head imaging’, in 

‘46th European Microwave Conference (EuMC)’ 

(2016), pp. 671–674 

19 ‘GaAs MMIC SP8T Non-reflective positive control 

switch’, http://www.analog.com/media/en/technical-

documentation/data-sheets/hmc321.pdf 

20 ‘GaAs MMIC SP4T non-reflective positive control 

switch’, http://www.analog.com/media/en/technical-

documentation/data-sheets/hmc241alp3e.pdf 

21 Ahdi Rezaeieh, S., Zamani, A., Abbosh, A.M.: 

‘Three Dimensional Wideband Antenna for Head 

Imaging System with Performance Verification in 

Brain Tumor Detection’IEEE Antennas Wirel. 

Propag. Lett., 2015, 14, pp. 910–914.  

22 Mobashsher, A.T.: ‘Wideband Microwave Imaging 

System for Brain Injury Diagnosis’. 2016 

23 Gabriel, S., Lau, R.W., Gabriel, C.: ‘The dielectric 

properties of biological tissues:II. Measurements in 

the frequency range 10Hz to 20 GHz’Phys Med Biol, 

1996, 41, (11), pp. 2251–2269.  

24 Mohammed, B.J., Abbosh, A.M., Ireland, D.: ‘Stroke 

Detection Based on Variations in Reflection 

Coefficients of Wideband Antennas’, in ‘IEEE 

Antennas and Propagation Society International 

Symposium (APSURSI)’ (2012), pp. 1–2 

25 Li, X., Hagness, S.C.: ‘A confocal microwave 

imaging algorithm for breast cancer detection’IEEE 

Microw. Wirel. Components Lett., 2001, 11, (3), pp. 

130–132.  

26 Fear, E.C., Sill, J., Stuchly, M.A.: ‘Experimental 

feasibility study of confocal microwave imaging for 

breast tumor detection’IEEE Trans. Microw. Theory 

Tech., 2003, 51, (3), pp. 887–892.  

27 Mobashsher, A.T., Abbosh, A.M.: ‘Compact 3-D 

Slot-Loaded Folded Dipole Antenna with 

Unidirectional Radiation and Low Impulse Distortion 

for Head Imaging Applications’IEEE Trans. 

Antennas Propag., 2016, 64, (7), pp. 3245–3250.  

  


