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SUMMARY

Here, we present a large (n = 107,207) genome-wide
association study (GWAS) of general cognitive ability
(‘‘g’’), further enhanced by combining results with a
large-scale GWAS of educational attainment. We
identified 70 independent genomic loci associated
with general cognitive ability. Results showed
significant enrichment for genes causing Mendelian
disorders with an intellectual disability phenotype.
Competitive pathway analysis implicated the biolog-
ical processes of neurogenesis and synaptic regula-
tion, as well as the gene targets of two pharmaco-
logic agents: cinnarizine, a T-type calcium channel
blocker, and LY97241, a potassium channel inhibitor.
Cell Repor
This is an open access article under the CC BY-N
Transcriptome-wide and epigenome-wide analysis
revealed that the implicated loci were enriched for
genes expressed across all brain regions (most
strongly in the cerebellum). Enrichment was exclu-
sive to genes expressed in neurons but not oligoden-
drocytes or astrocytes. Finally, we report genetic
correlations between cognitive ability and disparate
phenotypes including psychiatric disorders, several
autoimmune disorders, longevity, and maternal age
at first birth.

INTRODUCTION

Genome-wide association studies (GWASs) have been highly

successful at uncovering hundreds of genetic loci associated
ts 21, 2597–2613, November 28, 2017 ª 2017 The Author(s). 2597
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with heritable quantitative traits such as height (Wood et al.,

2014) and weight/body mass index (BMI)(Locke et al., 2015).

However, identifying genetic loci underlying cognitive ability

has been much more challenging, despite heritability of 0.5 or

greater, as determined by both classical twin studies (Deary

et al., 2009) and molecular genetic studies (Davies et al.,

2011a). In part, the difficulty with cognitive GWASs may be

caused by the relative heterogeneity in the measurement of the

cognitive phenotype. Traditionally, general cognitive ability (g)

has been defined as a latent trait underlying shared variance

across multiple subdomains of cognitive performance, psycho-

metrically obtained as the first principal component of several
2598 Cell Reports 21, 2597–2613, November 28, 2017
distinct neuropsychological test scores (Johnson et al., 2008).

Using this approach, several cognitive GWASs with fewer than

20,000 subjects yielded no genome-wide significant (GWS) ef-

fects (Benyamin et al., 2013; Davies et al., 2011b; Lencz et al.,

2014), while a few GWS loci were identified in larger GWAS of

35,298 (Trampush et al., 2017) and 53,949 (Davies et al., 2015)

subjects, respectively. By contrast, two independent GWASs

of height with sample sizes of approximately 30,000 subjects

each yielded 20–30 GWS hits (Gudbjartsson et al., 2008; Wee-

don et al., 2008). Allelic effect sizes were �2–5 times larger

than the largest obtained in cognitive GWASs (Trampush et al.,

2017).

mailto:tlencz@northwell.edu
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Very recently, a cognitive GWAS (Sniekers et al., 2017) was

able to leverage a very brief measure of fluid intelligence, highly

correlated with psychometrically defined g, obtained in over

50,000 subjects. In combination with several traditional cognitive

GWAS cohorts, total sample size was 78,308. This sample size

permitted discovery of 18 independent GWS allelic loci, as well

as numerous additional loci from gene-based analysis. This

report was critical in demonstrating that signal could be

enhanced by combining data from cohorts with brief measures

of intelligence with data from more traditional cognitive GWASs.

A further approach to enhancing power in cognitive GWASs

has focused on educational attainment as a proxy phenotype

(Rietveld et al., 2014). It is acknowledged that this phenotype is

‘‘noisy’’, as it is influenced by non-cognitive genetic (e.g., per-

sonality; Belsky et al., 2016) and environmental (e.g., socio-eco-

nomic; Johnson et al., 2010) factors; consequently, observed

allelic effect sizes have been even smaller than those obtained

for GWASs of g (Rietveld et al., 2013). However, by utilizing a sin-

gle-item measure (years of education completed), obtained inci-

dentally in large studies of other phenotypes, this approach has

allowed investigators to obtain extremely large sample sizes.

A recent study of educational attainment in nearly 300,000 indi-

viduals identified 74 independent GWS loci (Okbay et al., 2016).

Moreover, a new technique called multi-trait analysis of GWAS

(MTAG)(Turley et al., 2017) has been developed which permits

integration of GWAS data across related traits, accounting for

the possibility of overlapping samples across studies and

requiring only summary statistics. The developers of MTAG

demonstrated its accuracy and utility in a study of traits (depres-

sion, neuroticism, and subjective well-being) that demonstrate

genetic correlations in the range of �.70–.75; importantly, the

genetic correlation between cognitive performance and educa-

tional attainment has been consistently reported to be in the

same range (Davies et al., 2015, 2016; Okbay et al., 2016; Tram-

push et al., 2017; Sniekers et al., 2017). MTAG is able to quantify

the degree of ‘‘boost’’ to the signal of a single-trait GWAS,

providing an estimate of observed sample size and providing

summary statistics (allelic weights) that can then be utilized in

all downstream annotation pipelines available for GWAS output.

In the present study, we first utilized GWAS meta-analysis to

combine our prior Cognitive Genomics Consortium (COGENT)

consortium GWAS (Trampush et al., 2017) of psychometrically

defined g with the recently reported GWAS (Sniekers et al.,

2017), relying primarily on the brief measure, resulting in a com-

bined cohort of n = 107,207 non-overlapping samples measured

for cognitive performance. Next, we utilized MTAG to combine

these results with the large-scale GWAS of educational attain-

ment, resulting in further enhanced power. At each step, we per-

formed both allelic and gene-based tests. We then performed

downstream analyses on the resulting MTAG summary statis-

tics, including: (1) competitive gene set analyses to identify key

biological processes and potential drug targets implicated,

(2) stratified linkage disequilibrium score regression (LDSC) to

identify differential cell type expression, (3) transcriptome-wide

association study (TWAS) methods, to identify specific effects

of altered gene expression in the brain on cognition, and

(4) LDSC to identify genetic correlations with other anthropo-

metric and biomedical phenotypes.
RESULTS

Meta-Analysis: Cognitive Performance GWASs
Meta-analysis of all non-overlapping cohorts from the two

GWASs of cognitive performance (total n = 107,207) identified

28 independent genomic loci reaching genome-wide signifi-

cance (GWS, p < 5E�8) using default clumping parameters

from the Functional Mapping and Annotation (FUMA) pipeline

(Watanabe et al., 2017; Figure 1A), representing a 55.6% in-

crease in loci compared to the previous GWAS (Sniekers et al.,

2017) of cognitive performance. Two of these loci each con-

tained two uncorrelated variants with independent effects, re-

sulting in 30 independent lead SNPs. Evidence for spurious

inflation of statistical tests was quite limited for a large study of

a highly polygenic trait (l = 1.23; l1000 = 1.001; linkage disequi-

librium (LD) score intercept = 1.03; see also PP plot in Figure S1),

and overall SNP heritability was 0.168. Of the 28 GWS loci,

12 were not previously reported as GWS in published studies

of cognitive or educational phenotypes (Table S1). The majority

of the 5,610 markers reaching a nominal significance threshold

were intronic SNPs followed by those in the intergenic regions

(Table S2). As shown in Table S3, several of the GWS loci overlap

with loci related to schizophrenia, bipolar disorder, and other

neuropsychiatric phenotypes, as well as obesity/BMI and other

traits.

The significant loci harbored 88 known protein-coding genes

(Table S4), about half of which were in three large regions (Fig-

ure S2), including two well-characterized regions: the distal

16p11.2 region, in which deletions have been associated with

schizophrenia and other neuropsychiatric phenotypes (Guha

et al., 2013), and the 17q21 region, in which inversions have

been associated with neuropsychiatric disorders (Cooper

et al., 2011). Using MAGMA (Multi-marker Analysis of GenoMic

Annotation; de Leeuw et al., 2015) gene-based tests, 73 genes

were genome-wide significant (Table S5), of which 39 were over-

lapping with the 88 genes noted above, resulting in a total of 122

candidate genes with statistical evidence of association to

cognitive performance.

MTAG: Combining Cognitive Performance and
Educational Attainment GWASs
MTAG analysis combining the cognitive performance results ob-

tained above with the large educational attainment GWAS previ-

ously reported (Okbay et al., 2016), resulted in a 75% enrichment

of statistical power, effectively boosting the original sample size

of n = 107,207 to a GWAS equivalent of n = 187,812. Default

clumping procedures revealed that 70 independent genomic

loci reached genome-wide significance, with 82 independent

SNPs (Figure 1B). Similar to the GWAS results above, the PP

plot (Figure S3) demonstrated polygenicity without evidence

for artifactual inflation of statistical tests (l = 1.28; l1000 =

1.001; LD score intercept = 0.91), and overall SNP heritability

was 0.336. Of the 70 GWS loci, 34 were not previously reported

as GWS in published studies of cognitive or educational pheno-

types (Figure 2; Table S1). All but two of the 30 loci identified in

the meta-analysis remained genome-wide significant in the

MTAG results. Even these two loci showed the same direction

of allelic effects between cognitive meta-analytic GWASs and
Cell Reports 21, 2597–2613, November 28, 2017 2599



Figure 1. Manhattan Plots for GWAS Meta-Analysis and MTAG Analysis

(A) Manhattan plot depicting results of GWAS meta-analysis of cognitive performance. Dotted red line indicates threshold for genome-wide significance

(p < 5E�08).

(B) Manhattan plot depicting results of MTAG of cognitive performance with educational attainment. Dotted red line indicates threshold for genome-wide sig-

nificance (p < 5E�08).
the educational GWASs. The majority of the 13,549 SNPs reach-

ing a nominal significance threshold in the MTAG analysis were

intergenic or intronic (Table S2; Figure S4). GWAS catalog anno-

tations are listed in Table S3. Within the GWS loci, 265 protein-

coding genes were identified (Table S4). Additionally, 256 genes

were significant in MAGMA gene-based tests (Table S6). Of

these genes, 85 were non-overlapping with the 265 genes within

SNP GWS loci, resulting in a total of 350 genes receiving GWS

support from the MTAG results.

As a formal validation that the MTAG methodology success-

fully predicts phenotype variance for cognitive performance,

MTAG was re-analyzed, excluding the COGENT cohorts (i.e.,

the IQ GWAS of Sniekers et al., 2017 was combined with the

educational GWAS of Okbay et al.2016). The ASPIS (Athens

Study of Psychosis Proneness and Incidence of Schizophrenia)
2600 Cell Reports 21, 2597–2613, November 28, 2017
and GCAP (NIMHGenes, Cognition and Psychosis Program) da-

tasets were held out as target cohorts used for calculation of

polygenic risk score modeling for ‘‘g.’’ Despite the relatively

small size of these hold-out cohorts, results show strongly signif-

icant polygenic prediction of ‘‘g’’ using MTAG-derived allele

weights (Figure 3A and 3C), accounting for more than 4% of

the variance in the GCAP cohort. For both cohorts, polygenic

prediction began to drop at PT thresholds above 0.05, suggest-

ing that theremay be some degree of saturation of signal beyond

the nominal 0.05 significance level at these sample sizes. Addi-

tional comparisons were made with IQ-only predictions (weights

derived from Sniekers et al., 2017) and education-only predic-

tions (weights derived from Okbay et al., 2016) for the same

hold-out cohorts (Figure 3B and 3D), and we found that

the MTAG-derived weights showed a 3.5 times and 3 times



Figure 2. Overlap of Genome-wide Significant Loci in this Study with

Other Recent Reports

Venn diagram depicting overlap and independence of genome-wide signifi-

cant SNP loci observed in three studies: the MTAG analysis of the present

report, the cognitive performance GWAS reported by Sniekers et al. (2017),

and the educational attainment GWAS of Okbay et al. (2016).
improvement in R2 variance explained in the ASPIS cohort, for IQ

and education, respectively. For the GCAP cohort, there was a

5.1 times to 96 times improvement in R2 variance relative to IQ

or education alone.

Overlap with Intellectual Disability Genes
We compared the list of 350 genes emerging from MTAG with a

list of 621 genes known to cause autosomal dominant or

autosomal recessive Mendelian disorders featuring intellectual

disability (Harripaul et al., 2017; Vissers et al., 2016). As shown

in Table 1, a total of 23 genes identified by MTAG appeared

on this list, representing a 2-fold enrichment over chance

(hypergeometric probability p = 0.001). Examining autosomal

dominant and recessive Mendelian genes demonstrated a

somewhat stronger enrichment for autosomal dominant genes

(p = 0.0017) than autosomal recessive genes (p = 0.054).

Tissue Expression Enrichment and Competitive
Pathway Analysis
Downstream MAGMA expression profiles and competitive

pathway analysis were conducted as part of the FUMA pipeline.

MAGMA tissue expression profile analysis revealed that genes

emerging from the MTAG analysis were significantly enriched

for expression in nearly all central nervous system tissues

(except for substantia nigra and spinal cord) and that this enrich-

ment was exclusive to neural tissues (Figure 4A). Notably, the

strongest enrichment was observed for genes expressed in the

cerebellum, followed by the cortex, and slightly weaker (but still

strongly significant) enrichment in subcortical and limbic struc-

tures. Competitive pathway analysis (based on gene ontology

categories) for GWS MAGMA genes identified by MTAG re-

vealed significant enrichment of neuronal and synaptic cellular

components, as well as the biological processes of neurogene-

sis and regulation of synapse organization (Table 2, top).

Because three MTAG loci (at chromosome 3q21.31, 16p11.2,

and 17q21.31) were unusually large, each containingR15 genes

that may have disproportionately impacted enrichment results,

we re-ran the above tissue expression and pathway analyses

excluding these three regions. Results were substantively un-
changed: all of the same neural tissues remained significantly

enriched, in the sameorder of significance as shown in Figure 4A,

and all of the same pathways remained significant (Bonferroni-

corrected p < .05) as shown in Table 2, except for the cellular

compartment ‘‘dendrite’’ (Bonferroni-corrected p = 0.089).

Competitive pathway analysis for drug pathways (Gaspar and

Breen, 2017) revealed that the gene targets of two drugs were

significantly enriched in the MTAG results (Table 2, bottom):

Cinnarizine, a T-type calcium channel blocker, and LY97241, a

potassium channel inhibitor. L-type calcium channel blockers

and anti-inflammatories also showed suggestive evidence of

enrichment. In a related analysis of drug classes, significant

enrichment was observed for voltage-gated calcium channel

subunits (p = 9.28E�06, Bonferroni-corrected p = 5.38E�04).

Stratified LD score regression (Finucane et al., 2017) also

demonstrated an enrichment of cell type expression for neu-

ronal tissues only. Notably, genes found in the neuronal expres-

sion list of Cahoy et al. (2008) were significantly enriched

(p = 0.0129; Bonferroni-corrected p = 0.0386), whereas nega-

tive results were obtained for genes expressed in oligodendro-

cytes (p = 0.4997) and astrocytes (p = 0.9057). Additionally,

using Roadmap annotations, epigenetic enrichment was stron-

gest in fetal brain tissue DNase sites and H3K4me1 primed en-

hancers, followed by adult cortical H3K27ac active enhancer

sites (see Table S7 for further details). No enrichment was

observed for any non-neuronal tissue. Again, results were not

substantively changed when the three large loci were removed

from these analyses.

Gene Expression Analyses
In order to derive specific biological insights from the broad as-

sociation loci implicated by MTAG, we performed a series of an-

alyses designed to identify individual gene expression changes

associated with cognition. First, we performed transcriptome

wide analysis (TWAS) using MetaXcan (Barbeira et al., 2016)

on MTAG SNP results in order to identify transcripts for which

upregulation or downregulation in specific neural compartments

was associated with cognition. Note that TWAS follows a similar

logic to imputation, in that an external reference (in this case,

publicly available GTEx eQTL data for 10 brain regions) is utilized

to link SNP-based summary statistics to tissue-based expres-

sion levels. As shown in Figure 4B (and detailed in Table S8),

most of the significant TWAS results are expressed across all

neural tissues, involving genes such as AMIGO3, RNF123, and

RBM6. Moreover, no individual tissue compartment was much

more strongly enriched for associations compared to the others.

However, a few strong transcriptomic associations were specific

to individual brain regions. For example, the strongest result in

hippocampus was with DAG1. TWAS demonstrated that greater

expression of this gene in the hippocampus was associated with

higher cognitive scores. However, this gene was not expressed

in other neural tissue types in the Genotype-Tissue Expression

(GTEx) database. Similarly, lower levels of ACTR1A were signif-

icantly associated with better cognition, but this transcript was

observed only in the frontal cortex.

Second, we applied a Bayesian fine-mapping approach

(CAVIAR-BF; Chen et al., 2015) to identify putative causal

SNPs within each associated locus, as defined in Table S9.
Cell Reports 21, 2597–2613, November 28, 2017 2601



Figure 3. Leave-One-Out Analyses of Polygenic Risk Scores

(A) Polygenic risk score prediction for MTAG results against held-out ASPIS cohort.

(B) Comparison of MTAG, cognitive (IQ) GWAS (Sniekers et al., 2017), and educational attainment (EDU) GWAS (Okbay et al., 2016) as source of weights for

polygenic risk score prediction against held-out ASPIS cohort.

(C) Polygenic risk score prediction for MTAG results against held-out GCAP cohort.

(D) Comparison of MTAG, cognitive (IQ) GWAS (Sniekers et al., 2017), and educational attainment (EDU) GWAS (Okbay et al., 2016) as source of weights for

polygenic risk score prediction against held-out GCAP cohort.
CAVIAR-BF revealed that there was strong evidence (BF =

3.71E+2) for at least 1 causal SNPwithin each of the 70 indepen-

dent MTAG loci. There is also evidence that there are at least 2

causal SNPs in 65 of the loci (BF = 3E+6) and at least 3 causal

SNPs in 47 of the loci (BF = 2.86E+6). In the extended region

analysis, there was evidence for at least 1 causal SNP (BF =

3.45E+2) and 2 causal SNPs (BF = 2.89E+6) for 70 and 63 loci,

respectively. Model search revealed that there were 386 putative

causal SNPswithin the 70 independent loci (Table S10). Lookups

of these SNPs in two brain expression quantitative trait loci

(eQTL) databases (BrainEAC [Ramasamy et al., 2014] and

CommonMind [Hauberg et al., 2017]) revealed several additional

SNP-eQTL relationships that can explain variance in the cogni-

tive phenotype (Tables S11 and S12). The most notable eQTL ef-
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fect was observed for rs3809912 on chromosome 18. This SNP,

which was GWS in the MTAG results (p = 7.06E�09), was a

strong eQTL for CEP192 (p = 5.1E�38, FDR < 0.01). This eQTL

was confirmed in the CommonMind database (FDR < .01), which

demonstrated that expression of 44 independent transcripts in

the frontal cortex were significantly associated with MTAG

SNPs at the FDR < .01 level. Combining annotation information

from the Mendelian gene analysis, MetaXcan TWAS, Braineac,

and CommonMind databases, we found supporting functional

evidence for 112 of the 350 candidate genes nominated by

MTAG (Table S13). The remaining 238 genes without functional

support had statistical evidence for association to cognition

but are considered to be ‘‘candidate genes’’ requiring further

functional or experimental support.



Table 1. List of Candidate Genes Emerging from MTAG Analysis Associated with Mendelian Disorders Featuring an Intellectual

Disability Phenotype

GENE CHR START MAGMA P Min MTAG P OMIM Mode Phenotype

AFF3 2 100152323 6.53E-12 6.8834E-15 NA AR nonsyndromal intellectual disability

AMT 3 49444211 1.74E-09 8.5543E-09 605899 AR glycine encephalopathy

ARFGEF2 20 47528427 7.28E-10 4.1558E-10 608097 AR periventricular heterotopia with

microcephaly

BCL11A 2 60668302 8.5E-12 3.2174E-13 617101 AD intellectual developmental disorder with

persistence of fetal hemoglobin

C12orf65 12 123707463 1.48E-10 1.8088E-11 613559 AR combined oxidative phosphorylation

deficiency 7

C12orf65 12 123707463 1.48E-10 1.8088E-11 615035 AR spastic paraplegia 55

CLN3 16 28467983 2.31E-08 1.9502E-08 204200 AR ceroid lipofuscinosis, neuronal 3

DPYD 1 97533299 0.005108 4.4603E-08 274270 AR dihydropyrimidine dehydrogenase

deficiency

DPYD 1 97533299 0.005108 4.4603E-08 274270 AR 5-fluorouracil toxicity

ERCC8 5 60159658 2.96E-07 5.5002E�7 216400 AR cockayne syndrome, Type A

ERCC8 5 60159658 2.96E-07 5.5002E�7 614621 AR UV-sensitive syndrome 2

FOXP1 3 70993844 6.32E-07 3.5007E-09 613670 AD mental retardation with language

impairment and autistic features

GMPPB 3 49744277 1.75E-14 6.6613E-16 613530 AR muscular dystrophy-dystroglycanopathy

(congenital w/ brain, eye anomalies),

type A,14

GMPPB 3 49744277 1.75E-14 6.6613E-16 615351 AR muscular dystrophy-dystroglycanopathy

(congenital with mental retardation),

type B,14

GMPPB 3 49744277 1.75E-14 6.6613E-16 615352 AR muscular dystrophy-dystroglycanopathy

(limb--girdle), type C, 14

KANSL1 17 44097282 1.62E-08 5.0278E-12 610443 AD Koolen-De Vries syndrome

KCNH1 1 210846555 1.04E-06 5.2513E-08 135500 AD Zimmermann-Laband syndrome

KMT2D 12 49402758 1.69E-07 4.3422E-08 147920 AD Kabuki syndrome, 1

LARGE 22 33548212 7.99E-07 5.4265E-07 613154 AR muscular dystrophy-dystroglycanopathy

(congenital w/ brain, eye anomalies),

type A, 6

LARGE 22 33548212 7.99E-07 5.4265E-07 608840 AR muscular dystrophy-dystroglycanopathy

(congenital with mental retardation),

type B, 6

MEF2C 5 88003975 1.74E-13 1.1304E-12 613443 AD mental retardation, stereotypic movements,

epilepsy, and/or cerebral malformations

MEF2C 5 88003975 1.74E-13 1.1304E-12 613443 AD chromosome 5q14.3 deletion syndrome

NFIX 19 13096422 2.45E-06 5.3017E-09 602535 AD Marshall-Smith syndrome

NFIX 19 13096422 2.45E-06 5.3017E-09 614753 AD Sotos syndrome

PDE4D 5 58254865 9.13E-08 3.6537E-07 614613 AD Acrodysostosis 2 with or without hormone

resistance

SHANK3 22 51102843 2.7E-10 8.0006E-08 606232 AD Phelan-McDermid syndrome

ST3GAL3 1 44161495 3.58E-13 1.6388E-10 611090 AR mental retardation, autosomal recessive 12

SUOX 12 56380964 3.07E-05 4.1129E-08 272300 AR sulfite oxidase deficiency

TCF4 18 52879562 1.02E-06 3.5713E-05 610954 AD Pitt-Hopkins syndrome

THRB 3 24148651 0.000682 4.6883E-06 188570 AD thyroid hormone resistance

THRB 3 24148651 0.000682 4.6883E-06 274300 AR thyroid hormone resistance, autosomal

recessive

UBA7 3 49832640 2.11E-13 6.6613E-16 NA AR nonsyndromal intellectual disability

AD, autosomal dominant; AR, autosomal recessive.
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Figure 4. Tissue Expression and Transcriptome-wide Gene Expression Results

(A) Tissue expression profile analysis for genome-wide significant genes (as defined by MAGMA) emerging from the MTAG analysis. Gene results were signif-

icantly enriched for expression in nearly all central nervous system tissues (except for substantia nigra and spinal cord) but no tissues outside the central nervous

system.

(legend continued on next page)
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Table 2. Competitive Pathway Analyses of MTAG Results

GO Category Name NGENES BETA BETA_STD SE P Pbon

GO_cc:go_neuron_part 1204 0.155 0.0385 0.0304 1.84E-07 0.002008

GO_cc:go_neuron_projection 898 0.179 0.0388 0.0352 1.84E-07 0.002009

GO_bp:go_neurogenesis 1355 0.148 0.0388 0.0291 1.92E-07 0.002092

GO_cc:go_synapse 718 0.198 0.0386 0.0393 2.25E-07 0.002455

GO_cc:go_synapse_part 580 0.21 0.0369 0.0436 7.37E-07 0.008026

GO_cc:go_dendrite 430 0.229 0.0348 0.0501 2.49E-06 0.027087

GO_bp:go_regulation_of_synapse_organization 106 0.447 0.034 0.0987 2.94E-06 0.031982

GO_bp:go_regulation_of_synapse_structure_or_activity 223 0.291 0.032 0.0671 7.36E-06 0.080154

GO_bp:go_regulation_of_nervous_system_development 723 0.166 0.0325 0.0385 7.84E-06 0.085334

GO_bp:go_modulation_of_synaptic_transmission 291 0.253 0.0317 0.059 9.41E-06 0.102429

GO_bp:go_calcium_dependent_cell_cell_adhesion_

via_plasma_membrane_cell_adhesion_molecules

26 1.06 0.0402 0.259 2.06E-05 0.224726

GO_cc:go_postsynapse 356 0.224 0.031 0.0553 2.64E-05 0.287583

GO_cc:go_neuron_spine 116 0.379 0.0302 0.0939 2.75E-05 0.299998

GO_cc:go_cell_projection 1710 0.103 0.0301 0.0258 3.36E-05 0.365381

GO_bp:go_regulation_of_cell_development 808 0.144 0.0297 0.0365 3.99E-05 0.434751

Drug Name NGENES BETA BETA_STD SE P Pbon

CINNARIZINE 9 1.62 0.036 0.355 2.61E-06 0.007071

LY97241 2 3.65 0.0382 0.842 7.59E-06 0.020535

CELECOXIB 45 0.632 0.0314 0.159 3.49E-05 0.094545

ISRADIPINE 8 1.59 0.0334 0.404 4.18E-05 0.11317

NITRENDIPINE 12 1.19 0.0305 0.323 1.19E-04 0.323151

ABT-639;ML218;TTA-A2;Z944 3 2.31 0.0297 0.641 1.59E-04 0.429388

NEUREGULIN-1;NEUREGULIN-2 2 2.39 0.0251 0.669 1.75E-04 0.473469

FLUNARIZINE 6 1.58 0.0287 0.457 2.67E-04 0.723503

GLUCOCORTICOIDS 2 3.68 0.0386 1.08 3.22E-04 0.872117
Genetic Correlations with Other Phenotypes
LD score regression was carried out across 89 traits in 15 broad

phenotypic categories in LD Hub (Zheng et al., 2017): (1) aging,

(2) anthropometric, (3) autoimmune, (4) brain volume, (5) cardio-

metabolic, (6) education, (7) glycemic, (8) lipids, (9) lung function,

(10) neurological, (11) personality, (12) psychiatric, (13) reproduc-

tive behavior, (14) sleep, and (15) smoking behavior (Figure 5;

Table S14). We performed LD score regression separately for

the results of our initial meta-analysis and for the MTAG results.

For comparison, we also present LD score regression results for

the educational attainment GWAS of Okbay et al. (2016). It

should be noted that only 14 phenotypes were examined for ge-

netic correlation in that publication.

Cognition appeared to be strongly associated at the genetic

level with aging, education, personality, neuropsychiatric disor-

ders, reproductive behavior, and smoking behavior. Strong

association with parental age at death was observed for both

the GWASmeta-analysis and MTAG results. Meanwhile, moder-

ate associations with anthropometric traits were observed,
(B) Circular Manhattan Plot for MetaXcan results based on MTAG of cognitive per

is as follows: ACC, Anterior Cingulate Cortex; CDBG, Caudate – Basal Gang

FCTX, Frontal Cortex; HIPP, Hippocampus; HYPO, Hypothalamus; NACMB, N

corrected p < 0.05.
although associations with brain volumes were surprisingly

modest, except for total intracranial volume (rg for MTAG

results = 0.31, p = 7.37E-19). While many of these correlations

have been described previously (Hagenaars et al., 2016; Okbay

et al., 2016; Sniekers et al., 2017; Trampush et al., 2017), two re-

sults observed in the present study were not reported in those

prior publications. First, we report a strong positive genetic cor-

relation between cognitive performance andmaternal age at first

birth (rg forMTAG results = 0.63, p = 2.36E�163) and inverse cor-

relation with parental number of children ever born (rg for MTAG

results = �0.22; p = 6.91E�13). It is possible that these effects

are mediated by years of higher education, insofar as correla-

tions were even stronger with educational attainment (rg for

parental age at first birth = 0.72, p = 2.24E�244; rg for number

of children =�0.26, p = 3.34E�18). As with any other regression

relationship, a role for unmeasured mediators, such as propen-

sity for delayed gratification, cannot be ruled out. Second, we

observed modest, yet nominally significant, inverse correlations

between cognition and autoimmune diseases such as eczema
formance with educational attainment. From inner circle out, GTEX tissue order

lia; CRBHM, Cerebellar Hemisphere; CRBLM, Cerebellum; CRTX, Cortex;

ucleus Accumbens; PUTM, Putamen. GWAS threshold is set at Bonferroni-
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and Crohn’s disease, attaining Bonferroni significance for rheu-

matoid arthritis (rg for MTAG results = �0.2086; p = 1.60E�08).

There was also a Bonferroni-significant positive genetic correla-

tion with celiac disease (rg for MTAG results = 0.1922;

p = 0.0001). While results of cross-trait analyses were largely

consistent using either the GWAS results, the MTAG results, or

the previously published educational attainment datasets, there

were notable divergences in correlations with psychiatric pheno-

types, especially schizophrenia and bipolar disorder.

DISCUSSION

Uncovering the molecular genetic basis of individual differences

in cognitive performance can have a significant impact on our

understanding of neuropsychiatric disorders, which are both

phenotypically (Burdick et al., 2011; Ferreri et al., 2011; Keefe

and Harvey, 2012; Snyder, 2013) and genetically (Lencz et al.,

2014; Smeland et al., 2017; Stergiakouli et al., 2017) correlated

with cognition, as well as numerous non-psychiatric health-rele-

vant phenotypes (Hagenaars et al., 2016), which also demon-

strate significant genetic correlations with cognitive function.

Here, we have presented the largest GWAS of cognition to

date, with 107,207 individuals phenotypically characterized for

performance on standardized tests measuring general cognitive

ability. Results were further enhanced by utilizing a relatively new

approach to allow meta-analysis with a large-scale GWAS of

educational attainment, which is highly (though not perfectly)

correlated with cognitive ability at the genetic level. With this

approach, we were able to identify 70 genomic loci significantly

associated with cognition, implicating 350 candidate genes un-

derlying cognitive ability. In total, we found that common SNPs

were able to account for roughly half of the overall heritability

of the phenotype as determined by prior family studies (Plomin

and Deary, 2015).

Downstream analysis confirmed an important role for neuro-

developmental processes in cognitive ability, consistent with

implications from the education GWAS (Okbay et al., 2016). Sig-

nificant genes were more strongly enriched for expression in

fetal brain tissue than adult tissue. Results were also enriched

for genes implicated in early neurodevelopmental disorders,

and neurogenesis was the most strongly enriched GO biological

process. At the same time, it is important to emphasize that adult

neural tissues were also strongly represented in the results, and

multiple synaptic components were significant in the pathway

analysis. In this context, it is noteworthy that many cellular pro-

cesses necessary for early neurodevelopment are also involved

in adult synaptic plasticity. This duality is represented by several

significant genes emerging from our analysis. CELSR3 encodes

an atypical cadherin plasma membrane protein involved in long-

range axon guidance in neurodevelopment through planar cell

polarity signaling (Chai et al., 2015) but is also necessary for adult

formation of hippocampal glutamatergic synapses (Thakar et al.,
Figure 5. Genetic Correlations for GWAS Meta-analysis of Cognitive

GWAS of Educational Attainment

Genetic correlations (rg) between cognitive phenotypes and other publicly availab

(labeled METAL and MTAG, respectively) refer to results of the cognitive meta-

educational attainment GWAS of Okbay et al. (2016).
2017). Similarly SEMA3F is a negative regulator of dendritic

spine development in adult hippocampus (Tran et al., 2009) but

embryonically serves as an endogenous chemorepellent, guid-

ing septohippocampal fibers away from non-limbic regions of

developing cortex (Pascual et al., 2005).

While synaptic mechanisms were strongly implicated by our

results, it is noteworthy that there was no statistical evidence

for enrichment of genes expressed in oligodendrocytes or astro-

cytes. While developmental disorders primarily affecting oligo-

dendrocytes, such as metachromatic leukodystrophy, are

marked by cognitive impairment (Faust et al., 2010), it is possible

that individual variation in cognitive ability within the normal

range is less directly under genetic control via white matter

mechanisms. By contrast, strong evidence was provided for

the involvement of genes expressed in the cerebellum.

Converging evidence from functional imaging studies, lesion

studies, structural connectivity, and evolutionary considerations

strongly implicate a role for the cerebellum in higher cognitive

functions (Buckner, 2013), possibly through the mechanism of

prediction and error-based learning (Sokolov et al., 2017).

By utilizing TWAS methodology, we were able to isolate

expression effects of specific genes within some of our broad

GWAS loci. For example, ACTR1A, which lies near the GWAS

peak at chromosome 10q24, encodes a microtubular dynactin

protein involved in retrograde axon transport (Moughamian

et al., 2013). Other genes at this locus were not significant in

the TWAS analysis (although a role in cognition cannot be ruled

out, given the limited sample size in the reference brain expres-

sion datasets in GTEx). However, most of the genes implicated

by TWAS were clustered in a few ‘‘hot’’ genomic loci, which

may represent topologically associated domains (TADs) under

the control of a shared three-dimensional chromatin structure

(Gonzalez-Sandoval and Gasser, 2016). Whether effects on

cognition are driven by all differentially expressed genes within

such loci or if specific effects can be disentangled through

experimental means remains to be determined.

The overlap of 23 genes from our results with known genes for

Mendelian disorders characterized by intellectual disability has

several implications. First, this statistically significant enrichment

provides partial validation of our MTAG results. Second, genes

with known mutations of large effect, when combined with our

data demonstrating SNPs with smaller regulatory effects on

the same phenotype (cognition), can be considered an ‘‘allelic

series’’ (Plenge et al., 2013)—a natural set of experiments

powerfully demonstrating directional information (in the form of

a dose-response curve) regarding gene function. Such informa-

tion can be leveraged for the identification of novel drug

targets. Third, converging evidence across the Mendelian and

GWAS lists can aid interpretation of specific pathways and mo-

lecular processes that are necessary to normal neuronal function

and vice versa. For example, two genes on both the Mendelian

and GWAS lists (GMPPB and LARGE) are associated with
Performance, MTAG of Cognition and Educational Attainment, and

le GWAS results, based on LD score regression. The first and second columns

analyses in the present report. The third column displays correlations for the
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dystroglycanopathies with mental retardation. This information

provides context for the observation that DAG1, which encodes

dystroglycan 1, is the strongest TWAS result in the hippocam-

pus.DAG1 is necessary for GABAergic signaling in hippocampal

interneurons (Fr€uh et al., 2016). While dystroglycanopathies are

most prominently characterized by muscular dystrophy and

retinal abnormalities, it is possible that all of these genes play a

role in hippocampal synapse formation that is relevant to normal

cognitive ability.

As noted above, one of the most important aims of GWAS

studies is the identification of novel drug targets, and it has

been suggested that targets with supporting GWAS evidence

may be twice as successful in clinical development compared

to those without such evidence (Nelson et al., 2015). Our drug

set enrichment analysis pointed to several potential nootropic

mechanisms. Most notably, the strongest signal was for cinnar-

izine, a T-type calcium channel inhibitor typically prescribed for

seasickness. In the present study, we discovered an associa-

tion of cognition to CACNA1I, which encodes one component

of the voltage-dependent T-Type Cav3.3 channel and has

been previously associated with schizophrenia (Schizophrenia

Working Group of the Psychiatric Genomics Consortium,

2014). While cinnarizine has strong antihistamine activity and

may be inappropriate for general cognitive enhancement, a

novel agent targeting Cav3.3 has shown nootropic activity in

preclinical models (Moriguchi et al., 2012). In addition to gene

set results suggesting a potential role for calcium and potas-

sium channel regulation, single-gene results also point toward

a potential role for the metabotropic glutamate receptor en-

coded by GRM3. This gene is also implicated in schizophrenia

(Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014), and drugs targeting GRM3 have been sug-

gested as a potential treatment (Lencz and Malhotra, 2015);

however, a large-scale trial of one such agent was unsuccessful

in treating psychotic symptoms (Downing et al., 2014). Based

on the present results, future studies may seek to examine a

role for such compounds in cognitive remediation. It is also

noteworthy that the present study identified genome-wide sig-

nificant evidence implicating three phosphodiesterase genes:

PDE1C, PDE2A, and PDE4D. In particular, there is growing in-

terest in PDE2A inhibitors as potential agents for cognitive

enhancement (Trabanco et al., 2016), and evidence suggests

that these agents may enhance synaptic plasticity via presyn-

aptic modulation of cAMP hydrolysis (Fernández-Fernández

et al., 2015). PDE4D inhibition is also under investigation as

a potential therapy for neurodegenerative disease (Ricciarelli

et al., 2017).

It is important to emphasize that uncovering genetic variation

underlying general cognitive ability in the healthy population

does not have deterministic implications. As has been previously

explicated in similar studies (Trampush et al., 2017), effect sizes

for each allele are extremely small (R2 < 0.1% for even the stron-

gest effects), and the combined effects genome-wide predict

only a small proportion of the total variance in hold-out samples

(Figure 3). Thus, results of the present study do not hold the po-

tential for individual prediction or classification. Nevertheless,

the results may still have substantial impact on our understand-

ing of molecular mechanisms underlying cognitive ability.
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EXPERIMENTAL PROCEDURES

Subject Details

The cohorts included in the current study were described in detail in two prior

reports on cognitive performance (Sniekers et al., 2017; Trampush et al., 2017)

and one prior report on educational attainment (Okbay et al., 2016). Sample

sizes for these three studies were n = 78,308, n = 35,298, and n = 328,917,

respectively. For the present study, two cohorts reported in Trampush et al.

(2017) were excluded, so that cohorts included will be independent from those

reported in Sniekers et al. (2017): (1) Minnesota Center for Twin and Family

Research (MCTFR) and (2) Lothian Birth Cohort 1936 Study. As a result, sam-

ple sizes decreased from the originally reported n = 35,298 to n = 28,899. All

phenotypes includedwere as reported originally in the respective publications.

All subjects provided written, informed consent to procedures that were

approved by local review boards for the institutions at which each cohort

was collected. Further details are available in the supplementary materials to

those three publications.

GWAS Quality Control

Markers reported in the prior COGENT study (Trampush et al., 2017) were up-

dated to build 37 coordinates but were originally imputed against the HRC

(Haplotype Reference Consortium) reference panel (McCarthy et al., 2016)

via the Sanger imputation server. To ensure that markers, allele frequencies,

and alleles were aligned to the 1000 Genomes phase 3 reference panel

(1000 Genomes Project Consortium et al., 2015), the COGENT summary sta-

tistics (Trampush et al., 2017) were checked using the EasyQC pipeline (Win-

kler et al., 2014), which allows summary statistics to be aligned and checked

against a reference panel of choice.We used the default 1000 Genomes phase

3 reference panel (1000 Genomes Project Consortium et al., 2015), provided

along with the EasyQC package. Markers were inspected for allele frequency

outliers, presence of duplicated markers, and allele mismatches with the 1000

Genomes reference panel. Quality control filters for INFO score < 0.6 and

n < 10,000 were additionally implemented. After EasyQC quality control,

8,040,131 SNPs were available for analysis. Only 87 SNPs were excluded

due to allele mismatches, 13,276 SNPs were excluded due to allele frequency

mismatches from the 1000 Genomes phase 3 reference panel, 283,163 were

found to be duplicates and excluded, 104 SNPs were found on the HRC refer-

ence panel, but not on the 1000 Genomes phase 3 reference panel, and

2,723,493 SNPs had sample sizes <10,000 individuals. None of the SNPs

failed the INFO score < 0.6 cutoff. The same set of SNPs was utilized for sub-

sequent reduced sample meta-analysis without the overlapping LBC1936 and

MCTFR cohorts in Trampush et al. (2017). As the other prior studies of cogni-

tive performance (Sniekers et al., 2017) and education (Okbay et al., 2016)

were imputed to the 1000 Genomes phase 3 reference panel, summary statis-

tics were used as provided (https://ctg.cncr.nl/software/summary_statistics;

https://www.thessgac.org/data).

GWAS Meta-Analysis

Fixed-effect meta-analysis was conducted between Sniekers et al. (2017) and

independent cohorts reported in Trampush et al. (2017) using the METAL

package (Willer et al., 2010). To ensure that results of the meta-analysis

were contributed by both studies, markers present only in Sniekers et al.

(2017) or Trampush et al. (2017), but not in both, were excluded for further anal-

ysis. The number of available markers after QC filtering was 7,357,080.

Because the GWAS of Sniekers et al. (2017) utilized the sample-size-weighted

method to perform meta-analysis across its own cohorts and did not report

variance terms, our meta-analysis was conducted using the sample-size-

weighted method.

Multi-Trait Analysis for GWAS (MTAG)

To further enrich genetic signals, we employed a newly developed methodol-

ogy that integrates LD score regression and meta-analysis techniques across

related traits: MTAG (Turley et al., 2017). MTAG (v0.9.0) was applied to the

METAL results described immediately above and combined with summary

statistics from the recent, large-scale education GWAS (Okbay et al., 2016).

MTAG analysis allows the boosting of genetic signals across related traits

and has been found to be effective in resolving unknown sample overlaps,

https://ctg.cncr.nl/software/summary_statistics
https://www.thessgac.org/data


generating trait-specific effect estimates weighted by bivariate genetic

correlation. The MTAG QC pipeline aligned all alleles across both sets of

summary statistics and ensured that SNPs were present across all datasets.

SNPs that were not present in either dataset were removed. The final SNP

count for MTAGwas 7,333,576. TheMTAGmethodology proceeds by: (1) esti-

mating the variance-covariance matrix of the GWAS estimation error, by

using a series of LD score regressions, of which, under the known properties

of LD score regression, captures relevant sources of estimation error,

incorporating population stratification, unknown sample overlap, and cryptic

relatedness, (2) estimating the variance-covariance of SNP effects using

the maximum likelihood procedure reported in Turley et al. (2017), and

(3) computing the MTAG estimator for each SNP and each trait. Summary

statistics consisting of SNP, CHR, BP, per SNP sample size, BETA, and SE

for each trait were entered to the MTAG python command line. The resulting

effect estimates and p values are interpreted the same as single-trait GWAS,

which allows standard downstream follow-up analysis on the summary

statistics. The python code for MTAG is available at https://github.com/

omeed-maghzian/mtag.

Functional Mapping and Annotation for GWAS

GWAS summary statistics from the METAL meta-analysis and MTAG analysis

were separately entered into the FUMA pipeline (Watanabe et al., 2017). The

FUMA pipeline enables fast prioritization of genomic variants and genes and

permits interactive visualization of genomic results with respect to state-of-

the-art bioinformatics resources. Manhattan and QQ plots are produced,

and MAGMA gene-based analysis is performed, accounting for gene size

and LD structure. FUMA was also utilized to perform competitive gene-set

analyses for GO cell compartment and biological process categories using

the Molecular Signature Database (MsigDB 5.2). A separate competitive

gene-set analysis was also conducted for the drug-based pathways previously

described by Gaspar and Breen (2017). The pipeline also generates aggre-

gated statistics for independent loci, lead SNPs, tagged genes, and supple-

mentary plots—including SNP and locus annotations. Default clumping

parameters are: GWAS p value < 5E�08; r2 threshold to define LD structure

of independent SNPs > 0.1; maximum p value cutoff < 0.05; population for

clumping = EUR; minor allele frequency filter > 0.01; maximum distance be-

tween LD blocks to merge into a single locus= 250 kb. Follow-up queries

were then made for independent loci of the cognitive performance meta-anal-

ysis as well as the MTAG results and compared against summary statistics for

the prior cognitive and education GWAS. For purposes of comparison, loci in

which the lead SNPs were within 500kb of each other were considered

overlapping.

We compared the list of genes resulting from the MTAG analysis (including

all genes within GWS SNP loci, as well as GWS genes identified with MAGMA)

with a list of 621 genes known to cause autosomal dominant or autosomal

recessive Mendelian disorders featuring intellectual disability. This list is pri-

marily derived from a recent comprehensive review (Vissers et al., 2016), sup-

plemented by a subsequent large-scale study of consanguineous multiplex

families (Harripaul et al., 2017). A total of 193 autosomal dominant genes

were identified, and a total of 413 autosomal recessive genes were identified.

Fifteen genes were annotated as causing both autosomal dominant and auto-

somal recessive disorders with intellectual disability. Statistical significance

was determined by probabilities derived according to the hypergeometric dis-

tribution. For this purpose, the total pool of autosomal genes was set to 19,011

(per Gencode).

Polygenic Risk Prediction for Independent Datasets

To validate that the genetic architecture elucidated via the MTAG methodol-

ogy, we attempted to predict the phenotypic variance of general cognitive

function in two of the independent COGENT cohorts (ASPIS and GCAP).

MTAG analysis was conducted as above, but removing the COGENT cohorts.

Polygenic score prediction across multiple thresholds of PT was conducted

using PRSice (Euesden et al., 2015). To compare the effectiveness of

MTAG, we also conducted polygenic risk prediction using IQ-only and educa-

tion-only summary statistics. Finally, R2 across SNP thresholds is compared to

obtain the degree of improvement in terms of the ratio of MTAG PRS R2 values

versus those of IQ or education PRS R2.
Stratified LD Regression: Cell Type Expression and Epigenomics

Functional characterization of GWAS summary statistics was carried out via

stratified LD regression to investigate if heritability of cognitive performance

is enriched in specific tissue or cell types. Summary statistics were first sub-

jected to baseline partitioned heritability and thereafter passed through a

cell-type-specific functional characterization pipeline (Finucane et al., 2017).

Cell-type characterization includes the DEPICT tissue expression database,

GTEX tissue expression, IMMGEN immune cell types, CAHOY brain level

cell types, and the ROADMAP cell epigenomic marks.

Transcriptome-Wide Analysis and Brain Expression lookups

Transcriptome-wide analysis was carried out via MetaXcan (Barbeira et al.,

2016), which allows for GTEx brain expression data to be integrated with

GWAS summary statistics. MetaXcan computes downstream phenotypic as-

sociations of genetic regulation of molecular traits, using elastic, adjustment

for model uncertainty, and colocalization of GWAS and eQTL signals (Barbeira

et al., 2016). GTEx Version 6, brain tissue expression profiles and sample sizes

include the anterior cingulate cortex (n = 72); caudate-basal ganglia (n = 100);

cerebellar hemisphere (n = 89); cerebellum (n = 103); cortex (n = 96); frontal

cortex (n = 92); hippocampus (n = 81); hypothalamus (n = 81); nucleus accum-

bens (n = 93); and putamen (n = 82).

Bayesian Fine-Mapping Analysis and Functional Annotations

To identify potential causal variants in each of the independent loci, CAVIAR-

BF is implemented to a region±50KBof a leadSNP identified in theMTAGanal-

ysis. We followed similar procedures setting prior effect distribution sa to 0.1 in

the model, which was recommended for GWAS studies (Chen et al., 2015;

https://bitbucket.org/Wenan/caviarbf). The prior probability of being causal

for each SNP is set to 1/m, where m is the number of SNPs. Bayes factor

was calculated for three model sets for independent loci, which modeled for

1, 2, and up to 3 causal SNPs within each independent regions, after which a

model search algorithm searches and identifies the putative causal SNPs.

These SNPs were then annotated using the Ensembl Variant Effect Predictor

(McLaren et al., 2016). The analysis was repeated for extended regions taking

into account the length of the independent loci identified by earlier FUMA pro-

cedures modeling for either 1 or 2 causal SNPs. SNPs identified by the two

stage CAVIARBF analysis were then examined for potential gene expression

in the BrainEAC (Ramasamy et al., 2014) and CommonMind (Hauberg et al.,

2017) databases. BrainEAC top SNP lookups were for the following tissue

expression across n = 134 individuals: aveALL, all area combined; CRBL, cer-

ebellum; FCTX, frontal cortex; HIPP, hippocampus; MEDU, medulla; OCTX,

occipital cortex; PUTM, putamen; SNIG, substantia nigra; TCTX, temporal cor-

tex; THAL, thalamus; and WHMT, white matter. Finally, the prefrontal cortex

lookup was included as part of the CommonMind consortium brain expression

profile in n = 467 genetically inferred Caucasian samples.

Linkage Disequilibrium Score Regression

LD score regression allows genetic correlations to be computed across traits

(Bulik-Sullivan et al., 2015a, 2015b), which allows further insights to be drawn

from understanding the degree to which genetic architecture are shared

across traits. To further examine potential traits that overlap with the cognitive

architecture from the cognition meta-analysis results and MTAG results, LD

score regression was conducted via the LD-hub pipeline, a centralized trait

database (Zheng et al., 2017). LD score regression was carried out across

89 traits in 15 broad phenotypic categories: (1) aging, (2) anthropometric,

(3) autoimmune, (4) brain volume, (5) cardiometabolic, (6) education, (7) glyce-

mic, (8) lipids, (9) lung function, (10) neurological, (11) personality, (12) psychi-

atric, (13) reproductive behavior, (14) sleep, and (15) smoking behavior. Very

recent reported GWAS summary statistics for attention deficit hyperactivity

disorder (ADHD; Demontis et al., 2017) and intracranial volume (ICV; Adams

et al., 2016) were included as additional phenotypes. For comparison, we

also present LD score regression results for the educational attainment

GWAS of Okbay et al. (2016). It should be noted that only 14 phenotypes

were examined for genetic correlation in that publication. It should be noted

that the MHC (Major Histocompatibility Complex) region was redacted from

all datasets prior to LD score regression analysis, as per standard protocol

at LD-Hub.
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