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Abstract 

Transdermal gene delivery holds significant advantages as it is able to minimize the problems of 

systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target 

tissues. This technology has the potential to transform the treatment and prevention of a range of 

diseases. However, the skin poses a great barrier for gene delivery because of the “bricks-and-mortar” 

structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This 

review systematically summarizes the typical physical and chemical approaches to overcome these 

barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin 

cancers and skin diseases. Next, the advantages and disadvantages of different approaches are 

discussed and the insights for future development are provided. 

Keywords: Skin delivery; transdermal delivery; physical approaches; chemical approaches; gene 

therapy; skin vaccination 
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spectroscopy; GAPDH, glyceraldehyde-3-phosphate-dehydrogenase; GM3S, Ganglioside-

monosialic acid 3 synthase; HEM, hybrid electro-microneedle; HSV-2-gD2, herpes simplex virus 

type 2 surface glycoprotein D2; IFNγ, interferon gamma; IL-4, interleukin-4; IL-10, interleukin-10; 

IL-12, interleukin-12; IL-36α, Interleukin-36 alpha; JEV, Japanese encephalitis virus; LMWP, low 

molecular weight protamine; MW, molecular weight; NaChol, sodium cholate; NF-κB, nuclear 

factor-κB; ODN, oligonucleotide; PEG, polyethylene glycol; PEI, polyethylenimine; PLGA, 

Poly(lactide-co-glycolide); PSA, prostate specific antigen; PVP, poly(vinylpyrrolidone); SC, stratum 

corneum; siRNA, small interfering RNA; SiRelA, a siRNA oligonucleotides for mouse RelA; SPACE, 

skin penetrating and cell entering; STAT3, signal transducer and activator of transcription 3; SWCNT, 

single-walled carbon nanotubes; TAT, twin-arginine translocation; TEM, transmission electron 

microscopy; TNFα, Tumor necrosis factor-α. 
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1. Introduction 

Gene therapy holds great potential to treat or prevent many diseases that cannot be addressed 

with conventional approaches.  By April 2017, over 2400 gene therapy clinical trials have been 

carried out, but only 93 and 3 of these entered phase III (3.8%) and phase IV (0.1%), respectively 

(http://www.wiley.com/legacy/wileychi/genmed/clinical/). The successful translation of gene 

therapy is significantly inhibited by many problems such as lack of targeted delivery of genes to 

diseases sites and cells, degradation of gene during delivery, and fast clearance in circulation [1, 2]. 

To address these issues, one great alternative solution is to deliver genes via skin. Skin delivery 

of drugs and genes offers tremendous advantages such as being pain free, avoiding the hepatic first-

pass metabolism [3], digestion in the gastrointestinal tract, and enzymatic degradation and clearance 

from the blood circulation, preventing needle-stick injuries, as well as achieving high efficacy and 

low side effects. 

To realize these potentials, significant research has been conducted. Fig. 1 summarizes the 

applications, challenges and technologies of gene delivery via skin. Fig. 2 and Fig. 3 show 

representative chemical [4-6] and physical [7-10] approaches for drug and gene delivery. These 

methods are capable of enhancing permeation of different pharmaceutical and biological molecules 

through cell membranes or the skin as long as working parameters are properly optimized. In this 

review, I highlight the physical and chemical approaches that efficiently deliver genes including 

plasmid DNA and siRNA into the skin and demonstrate their great effectiveness in different 

applications spanning from vaccination and wound healing to skin diseases and cancers. After 

comprehensive review of the progress of gene delivery via skin, discussion of the advantages and 

disadvantages of different approaches and insights into future development of the field are presented. 

2. The skin anatomy 

Skin is the body’s natural barrier and protects us from water loss and microorganism invasion. 

The skin is mainly composed of three layers including the epidermis, dermis and subcutaneous layers 

http://www.wiley.com/legacy/wileychi/genmed/clinical/
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(Fig. 4a) [11, 12]. The epidermis contains the outmost layer of the skin called stratum corneum (SC) 

and the beneath layer – the viable epidermis. The barrier of the skin is largely due to the SC that has 

a “bricks-and-mortar” structure [13] and is consisting of corneocytes and the surrounded multiple 

layers of hydrophobic lipids [14]. With this structure, the permeation of materials through the skin 

must take place via the intercellular, transcellular, or appendageal routes [12, 15]. Intercellular route 

requires passive diffusion of materials through the tortuous lipid matrix in the SC and lipophilic drugs 

prefers this approach. Transcellular route involves substances passing through the cells. Therefore, 

the process requires the transport of materials through aqueous environment (inside the cells) and the 

hydrophobic sections (the cell membranes and the lipid matrix between cells). Under normal 

conditions, it is very difficult for substances to be delivered through this route. The third skin delivery 

pathway is appendageal route in which materials can be transported into the skin through hair follicles 

and glandular ducts. These routes provide a direct approach to transport substances to the dermal 

microcirculation. However, hair follicles and glandular ducts only account for approximately 0.1% 

and 0.01% of the total skin area [16, 17], respectively, so little amount of materials can be transported 

through this route. In general, the skin structure only allows permeation of drugs with molecular 

weight (MW) of below 500 Dalton [18] and lipid-soluble drugs into the skin. Besides the SC, the 

underlying viable epidermis serves another barrier due to the tight junctions between keratinocytes 

as illustrated in Fig. 4b [11, 19]. This leads to difficult transport of drug molecules in both vertical 

and horizontal direction in the epidermal layer. All of these characteristics pose a great challenge in 

delivering drugs and genes through the skin.  

The dermis is the middle layer of the skin and contains different types of cells, connective tissues, 

blood and lymphatic vessels, glands, hair follicles and nerve endings. The subcutaneous layer, also 

called hypodermis, lies below the dermis and is the innermost layer of the skin, mainly containing 

adipose tissue (fat). The dermis and hypodermis are composed of complex capillary network and 

connect to the systemic circulation. 
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3. Approaches to facilitate gene delivery via skin for a range of applications 

Owing to the great potential of gene delivery via skin, a broad range of approaches including 

biological, chemical, and physical approaches have been developed for different applications. In 

biological approaches, various viral vectors such as adenovirus serotype 5, and human 

immunodeficiency virus-1-based lentivirus were employed for gene therapy in skin [20-22]. 

Although very effective, these methods have the risk of inducing insertional oncogenesis and severe 

immunological responses [23, 24]. Therefore, a range of non-viral chemical and physical strategies 

have been developed for safe delivery of genes to the skin. This review will focus on the currently 

commonly used physical and chemical methods for transdermal delivery with applications in 

vaccination, would healing and treating skin diseases and cancers. 

3.1. Chemical approaches 

3.1.1. Peptides 

Cell penetrating peptides (CPPs) are small peptides and have been broadly used to facilitate 

intracellular delivery of drugs and genes. Cargo loading can be done via covalent link such as 

disulphide bonding between CPPs and genes or forming nanoparticles through the interaction of CPPs 

and genes [4, 25-29], as illustrated in Fig. 2a. Since 2006, many peptides started to be developed for 

skin delivery [28, 30]. The SC layer of the skin is consisting of corneocytes and the surrounded 

multiple layers of hydrophobic lipids. The underlying viable epidermis is another barrier layer due to 

the tight junctions between keratinocytes. Therefore, various chemicals systems can be designed to 

interact with the lipids, proteins, and the tight junctions within the skin to facilitate drug and gene 

delivery. Table 1 summarize the recent examples of peptide based systems for gene delivery via skin. 

In application, peptides and DNA complex can be topically applied on the surface of skin for 

subsequent delivery. Chen et al. first reported to use a short synthetic peptide TD-1 for insulin delivery 

through intact rat skin. The study showed that TD-1 was able to create transient opening on the skin 

barrier to facilitate drug permeation [30]. Lin et al. later used TD-1 to deliver anti- glyceraldehyde-
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3-phosphate-dehydrogenase (GAPDH) siRNA through non-follicle rat skin, which led to 

dramatically decreased level of GAPDH in 3 days [31]. Following the success of TD-1, Hsu and 

Mitragotri developed a peptide named skin penetrating and cell entering (SPACE) peptide and 

employed it to deliver interleukin-10 (IL-10) and GAPDH siRNA, enabling increased delivery to skin 

and knockdown of corresponding gene targets. SPACE peptide could deliver cargos to the epidermis 

and deep dermis of mouse skin and was also shown to permeate human skin [32]. When combine 

with cationic ethosomes such as 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), the system 

could deliver 18.5±3.3% (6.3±1.7 fold increase compared with aqueous solution of siRNA 

application) and 4.8±0.8% (~ 10 fold increase with reference to aqueous solution of siRNA 

application) of the applied total siRNA dose to whole porcine skin and the epidermis, respectively. It 

is noted that the majority of drug is within the SC layer of the skin after delivery [33]. Recently, Vij 

et al. created Mgpe9 for plasmid DNA delivery to uncompromised skin. Mgpe9 is an amphipathic 

peptide (CRRLRHLRHHYRRRWHRFRC, Fig. 5a) and forms an alpha-helical structure in 

hydrophobic environment. Fluorescence labelling the peptide demonstrated its ability of penetration 

to human skin (Fig. 5c) and efficient uptake by over 90% of cells (Fig. 5d). The peptide could form 

nanocomplexes with a 4.7 kb plasmid DNA (Fig. 5e). The nanoparticles were able to enter HaCaT 

cells (Fig. 5f) and reach the basal layer of the epidermis of integrated human skin at 24 hours after 

topical application (Fig. 5g). The peptide could effectively transfect the cells in human tissue and the 

efficiency was similar to that of commercial Lipofectamine 2000TM. Attractively, when tested in 

SKH-1 mice without hair follicles, the peptide were still able to deliver plasmid DNA to the skin and 

achieve efficient transfection. Although the efficacy is similar with that of Lipofectamine 2000TM, 

the safety profile of Mgpe9 is better with less disruption to skin integrity and lower cytotoxicity to 

cells [34]. Through Fourier-transform infrared spectroscopy (FTIR) and time dependent microscopy 

analysis, it was found that Mgpe9 entered the skin through transient alternation of lipid packaging 

and skin protein, and cause disruption to the tight junctions of skin. 
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Table 1 Schematic overview of recent peptide based systems for gene delivery via skin 

Year and 
reference 

Formulation Gene Test model Application 

2016, [34] Peptide Mgpe9 
Peptide Tat 

EGFP DNA SKH-1 hairless 
mice 
Human foreskin 

Gene expression 

2014, [33] SPACE peptide + lipid DOTAP 
+ cholesterol + SPACE-peptide-
POPE + SPACE-siRNA 

GAPDH-siRNA BALB/c mice Gene regulation 

2012, [35] PEI/DNA core + PGA/LMWP 
CCP (layer-by-layer coating) 

EGFP DNA SD rats Gene expression 

2011, [36] Peptide TD1-R8 MITF-siRNA BALB/c mice 
Human, clinical 
trial 

Melasma 

2011, [37, 
38] 

Peptide Tat + AT1002 Anti-RelA siRNA ICR mice Atopic dermatitis 

2011, [32] SPACE peptide GAPDH siRNA 
IL-10 siRNA 

BALB/c mice 
Human skin 

Gene regulation 
Atopic dermatitis 

 

In using this technology, it is advantageous to combine different peptides together to 

simultaneously enhance skin permeation and subsequent intracellular delivery for maximized 

therapeutic efficacy. For example, peptides AT1002 and Tat have been jointly employed for this 

purpose. AT1002 is a six-mer synthetic peptide and can reversibly open the tight junctions between 

cells. Tat is a cell penetrating peptide and can pass through the plasma membrane of cells. Therefore, 

these two peptides were combined for siRNA delivery and attempted to cure atopic dermatitis. This 

is a skin disease with disrupted SC (either broken or peeled off), but the epidermal layer still has tight 

junctions and these hinder the diffusion of siRNA. To simulate the disease condition, tape-stripping 

was used to partially remove the SC of mice ear skin. When siRelA (a siRNA oligonucleotides for 

mouse RelA) was conjugated with AT1002 and Tat, its intradermal permeation and RelA silencing 

function were demonstrated in NC/Nga atopic dermatitis model. The findings revealed that the 

combination of the peptides could open the tight junctions at the bottom of the epidermis (granular 

layer). As a result, compared with naked siRelA, the nanocomplex of siRelA with AT1002 and Tat 
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dramatically decreased local inflammatory tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) 

and serum IgE level, indicators of the symptoms in atopic dermatitis mice [37, 38]. 

Besides using peptides alone, they can also be employed to coat onto the surface of nanoparticles 

for increased permeation to skin. Yang et al. built a type of quaternary nanoparticles for DNA delivery 

(Fig. 5h). The core of the nanoparticles was formed through the complexation between DNA and 

polyethylenimine (PEI). Then a layer of poly(γ-glutamic acid) (PGA) and another layer of low 

molecular weight protamine (LMWP) CPP were sequentially adsorbed to the surface of the core 

through electrostatic attraction. The outmost layer of CPP was to facilitate skin permeation and 

cellular uptake. The results indicate that the cellular uptake and transfection of these nanoparticles 

increased by 4-fold in comparison with conventional PEI/DNA nanostructures. When tested on full-

thickness abdominal rat skin, 14% of the applied dose could fully permeate the skin, reflecting a 4-

fold increase in comparison with that in PEI/DNA nanoparticles group. When co-applying these CPP 

modified nanoparticles with a chemical permeation enhancer sodium lauryl sulfate, the skin 

permeation amount could further increase to 23.8% of the total dose [35]. It seems that such soft-

matter nanoparticles could penetrate deeper to the skin than rigid nanomaterials [39, 40].  

3.1.2. Liposomes 

Liposomes are spherical vesicles containing one or more lipid bilayers (Fig. 2b) [5]. The core of 

liposomes encloses an aqueous environment. Liposomes can load either hydrophilic or lipophilic 

drugs for delivery. Cationic liposomes can form complexes with DNA. The formation of liposome-

DNA complexes is able to protect DNA from degradation and significantly enhance cell gene 

transfection. The transfection efficiency can be influenced by factors including liposome to DNA 

ratio, the size of complexes, and chemical nature of cationic liposomes. Cationic liposomes had been 

tested for passive cutaneous delivery of genes in 1990s. Cheng et al. reported using cationic liposomes, 

3β -[N-(N, N-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol)/dioleoylphosphatidyl 

ethanolamine (DOPE) and DOTAP, for transdermal antigen DNA delivery. DOTAP and DC-Chol 
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are cationic lipids. DOPE is a neutral lipid and often used together with cationic lipids because it is 

able to aid endosome escape [41]. For maximal transfection efficiency, the weight ratio of liposomes 

to DNAs was set to be 5 as determined through BHK-21 cell transfection assays. The size, zeta 

potential, and transfection efficiency of both liposome/DNA complexes are provided in Table 2. 

When these liposome/DNA complexes were tested on the dorsal skin of hair-removed mice, gene 

expression was detected in epidermis and spleen for over 3 days. When tested in C3H/HeN mice via 

skin delivery of liposome-pCJ-3/ME (Japanese encephalitis virus (JEV) E-protein gene), the 

approach elicited strong antibodies and protective immune responses against 50×LD50 of JEV (Fig. 

6) [42]. 

Table 2 Optimal ratios of lipoplexes and their characteristics [42] 
 

 Transfection efficiency 
(%) 

Particle size (nm) Zeta potential (mV) 

DC-Chol/DOPE 

DOTAP 

23.1±0.8 

10.4±1.1 

211.3±12.6 

361.3±25.1 

19.9±4.2 

8.84±2.7 

 

Permeation enhancers like surfactants can be introduced to increase vesicle elasticity and 

deformability for enhanced penetration in the skin [23]. Jin and Kim used lipid nanoparticles (cLNs) 

composed of 4 components including DOTAP, DOPE, Tween 20, and tricaprin, with a weight ratio 

of 1:1:1:1.67 for DNA delivery to the skin [43]. In the formulation, DOTAP is a positively charged 

lipid so it can allow the formation of complexes with DNA. DOPE and Tween 20 can enhance the 

stability of cLNs, improve DNA transfection efficiency, and increase SC permeation [44, 45]. 

Tricaprin is a solid lipid and can soften the nanoparticles to facilitate skin delivery because of its 

melting point at 32 ºC [46]. Through these synergistic effects, the designed cLNs could transfer 

plasmid DNA to the skin after topic application and the expression of mRNA in the skin and blood 

were able to be measured [43]. 
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With the principle, elastic liposomes were developed with high flexibility and deformability for 

efficient penetration through much smaller pores than their own sizes (Fig. 7) [47, 48]. Geusens et al. 

designed nanosomes named “SECosomes” (surfactant-ethanolcholesterol-osomes) [49], composed of 

4 components including a cationic lipid DOTAP, a helper lipid/stabilizer (cholesterol), a single chain 

surfactant (sodium cholate) and penetration enhancer (30% ethanol). This liposome system could 

deliver fluorescence labelled siRNA to the epidermis of intact human skin. Later in another study, 

the same group used these nanosomes to deliver defensing beta 4 (DEFB4) siRNA and down-regulate 

the psoriasis marker human beta-defensin 2 [50]. However, the cargos were only delivered to the 

upper epidermis of the skin. Based on these two studies, Dorrani et al. added different amount of edge 

activators sodium cholate (NaChol) to DOTAP [51]. It was then found that the liposomes penetrated 

the skin deeper when the DOTAP:NaChol ratio was 8. When these liposomes were mixed with siRNA 

at a ratio of 16:1, most cargo was deposited to the upper dermis, while siRNA could be delivered to 

the lower dermis when the ratio was 12:1 or 8:1. This work shows that the correct balance between 

liposome size, charge, and edge activator content has significant influence on permeation depth. 

Besides these, many other types of liposomes and liposome like structures have also been developed 

for transdermal delivery [52, 53]. Rattanapak et al. investigated using liposomes, transfersomes, 

ethosomes, and cubosomes for skin delivery of a peptide antigen in the absence or presence of 

adjuvants Quil A. It was found that the delivery efficiency was below approximately 6% with the 

order in the following: cubosomes > ethosomes > transfersomes > liposomes. After addition of Quil 

A, the delivery efficiency of all approaches increased [53].  The recent examples of using liposomes 

and liposome like structures for gene delivery are listed in Table 3. 

Table 3 Schematic overview of recent liposome based systems for gene delivery via skin 

Year and 
reference 

Formulation Gene Test model Application 

2017, [54] Pyrrolidinium lipid (DOPyCl) 
+ 1,2-Distearoyl-sn-glycero-
3-phosphocholine (DSPC) + 
cetyl trimethylammonium 

IL36α siRNA Human skin 
CD®(SD) hrBi 
hairless rat skin 
C57BL/6 mice 

Psoriasis 
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bromide (CTAB) + 
cholesterol 

2017, [55] DOTAP + NaChol Keap1 siRNA 57BL/6J mice Wound healing 

2016, [50] DOTAP + DOPE + Chol + 
EtOH 

siRNA against defensing 
beta 4 

Human skin Psoriasis 

2016, [51] DOTAP + NaChol BRAF-siRNA Human cadaver 
skin 

Melanoma 

2014, [43] DOTAP + DOPE + Tween 20 
+ tricaprin 

GFP plasmid DNA Hairless mice 
BALB/c mice 

Gene expression 

2013, [56] Poly(lactide-co-glycolide) 
(PLGA) + polyethylene 
glycol (PEG) + 1,2-dioleoyl-
sn-glycero-3-phosphocholine 
(DOPC) + cyclic-head lipid 

Anti-TNFα siRNA C57BL/6 mice Skin 
inflammation 

2011, [57] DOPE + cholesterol-3-sulfate DNA oligonucleotide 
thymidine 
dinucleotide 

Nude mice P53 generation 
for skin cancers 

2009, [42] DOTAP liposome + DNA 
DC-Chol/DOPE liposome + 
DNA 

Japanese encephalitis virus 
DNA vaccine 

C3H/HeN mice Vaccination 

 

3.1.3. Nanomaterials 

Various nanomaterials have been widely employed for improved intracellular delivery of genes 

[58-62] and recently the use starts to be extended to facilitate skin delivery (Table 4). Siu et al. applied 

succinated polyethylenimine functionalized single-walled carbon nanotubes (SWCNT) for siRNA 

delivery [63]. In the experiments, topical application of siRNA and succinated polyethylenimine 

could not lead to skin delivery, but with additional aid of SWCNT, siRNA was effectively delivered 

to the skin.  In vivo delivery of Braf siRNA to a C57BL/6 mice melanoma model indicated that this 

method could transport siRNA to tumor and knockdown Braf which can lead to tumor growth, 

consequently resulting in significant tumor growth inhibition over the 25-day experimental period. 

Table 4 Schematic overview of recent nanoparticle based systems for gene delivery via skin 

Year and 
reference 

Nanoparticle type Gene Test model Application 

2017, [64] TAT Gold nanoparticles pDNA encoded with 
miRNA-221 inhibitor gene 

Nude Mice Cutaneous 
melanoma 

2015, [65] Gold nanoparticles Ganglioside-monosialic acid 
3 synthase (GM3S) siRNA 

C57BL/6 
mice 

Wound healing 
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2014, [63] Carbon nanotube Braf siRNA CD-1 mice Melanoma 

 

Zheng et al. coated thiolated siRNA-duplexes to citrate-capped gold nanoparticles (SNA-NCs) 

(Fig. 8a) and topically applied them to SKH1-E hairless mice for gene regulation [66]. The results 

showed that the siRNA nanoparticles could penetrate to the epidermis and dermis of the mice skin at 

3 h after a single treatment. In vivo topical application of 1.5 µM epidermal growth factor receptor 

(EGFR) siRNA for 3 weeks (3 times a week) to SKH1-E mice skin resulted in nearly complete 

knockdown of EGFR expression and almost 40% reduction of epidermal thickness. When 25 nM 

EGFR SNA-NCs was applied to human skin equivalents, the nanoparticles were detected in the basal 

layer of the epidermis (Fig. 8b) at only 2 h after treatment. The nanoparticle penetration to the skin 

and cellular uptake increased with time (Fig. 8c-d). This amount of nanoparticles knocked down 

EGFR mRNA expression by 52% (Fig. 8e) and EGFR protein expression by 75% (Fig. 8f) with 

reference to nonsense siRNA control group, although only 4.7% of the application dose was delivered 

to the epidermis. 

Niu et al. reported using gold nanoparticles coated with both HIV-1 twin-arginine translocation 

(TAT) peptide and PEI for transdermal delivery of plasmid DNA to treat cutaneous melanoma [64]. 

Gold nanoparticles have been demonstrated to be able to modulate membrane lipid phase transitions 

and therefore improve the lipid fluidity, contributing to skin penetration [67]. TAT is a skin permeable 

protein and can further enhance the skin permeation of gold nanoparticles. Also importantly, TAT is 

non-immunogenic and does not lead to toxic responses in cells and animals. For application, TAT 

and PEI coated gold nanoparticles were mixed with plasmid DNA encoded with miRNA-221 

inhibitor gene to form nanocomplex, followed by topical application to nude mice skin (Fig. 9). The 

transmission electron microscopy (TEM) image indicated that the nanoparticles were round in shape 

and the zeta potential was approximately 35 mV. The in vivo study demonstrated that these 

nanoparticles were able to penetrate deeply into melanoma tissues and induce a tumor inhibition trend. 
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3.2. Physical approaches 

3.2.1. Electroporation 

Electroporation uses a device containing an array of electrodes to apply high voltage pulses to 

create transient perturbation to the skin for enhanced permeation of materials (Fig. 3c) [68]. The size, 

shape, spacing and orientation of electrodes can be tuned. In use, electrodes can be applied on the 

surface of the skin or penetrated into a certain depth within the skin, following by application of 

voltage [69, 70].  Electroporation typically occurs when transmembrane voltage reaches between 0.3-

1.0 V (equivalent to 30-100 V across the SC) [71, 72]. Once electroporation takes place, water is 

forced into the lipid environment and forms transient aqueous pathways in lipid bilayer membranes, 

leading to many orders of magnitude increase of molecule permeation to the skin [73]. The technique 

was first reported in 1993 in which it was demonstrated that electroporation could increases the flux 

of polar molecules including calcein (623 Da, -4 charge), Lucifer yellow (457 Da, -2 charge), 

erythrosine derivative (1025 Da, -1 charge) to human skin by up to 4 orders of magnitude [74]. Since 

then, electroporation has been widely employed to facilitate the delivery of many types of biological 

molecules including genes. Table 5 summarizes the recent studies of electroporation based gene 

delivery. 

Table 5 Schematic overview of recent electroporation based gene delivery systems after 

intramuscular and intradermal injection 

Year and 
reference 

Electroporation conditions 
(Voltage, pulse duration) 

Gene Test model Application 

2017, [75] 25 V, 100 ms Influenza plasmid DNA vaccine Guinea pig Vaccination 

2017, [76] 700 V/cm, 100 µs +  

200 V/cm, 400 ms 

1600 V/cm, 100 µs +  

170 V/cm, 150 ms 

Plasmid DNA encoding 
ovalbumin, hCAP-18/LL-37 

Mouse Wound healing 

Vaccination 

2016, [77] 570 V, 100 µs 

60 V, 150 ms 

Plasmid DNA encoding 
interleukin-12 (IL-12), shRNA 
against endoglin, shRNA 
against melanoma cell adhesion 
molecule 

Mouse Wound healing 

Melanoma 
tumor  
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2015, [78] 1600 V/cm, 100 µs Plasmid DNA encoding IL-12 
with collagen promoter 

Mouse Vaccination 

2015, [79] 700 V/cm, 100 µs  

200 V/cm, 400 ms 

200 V/cm, 20 ms 

Plasmid DNA encoding 
luciferase, ovalbumin, gp160 
against HIV, P1A against P815 
mastocytoma 

Mouse Vaccination 

Mastocytoma 
tumor 

2015, [80] 1125 V/cm, 50 𝜇𝜇s +  

275 V/cm, 10 ms 

Plasmid DNA encoding EGFP, 
Her-2/neu 

Mouse Vaccination 

Her2/neu tumor 

2015, [81] 325 V, 100 ms Puumala DNA vaccine, 

H5HA DNA vaccine 

Hamster 

Guinea pig 

Vaccination 

2014, [82] 10-50 V, 20 ms Plasmid DNA encoding RFP 

Cy5-siRNA 

Mouse Vaccination 

2014, [83] 700 V/cm, 100 μs +  

200 V/cm 400 ms 

400 V/cm, 20 ms + 

1,800 V/cm, 100 μs 

Plasmid Encoding 

hCAP-18/LL-37 

Mouse Wound healing 

2014, [84] 50 V, 150 ms VEGF165 plasmid Rat Ischemic skin 
flaps 

2013, [85] 1125 V/cm, 50 μs +  

275 V/cm, 10 ms 

DNA vaccine coding for rhesus 
prostate spe-cific antigen (PSA) 

Human Vaccination 

Prostate cancer 

2012, [86] 1125 V/cm, 50 μs +  

275 V/cm, 10 ms 

Semliki Forest virus replicon 
RNA 

Mouse Vaccination 

2011, [69] 15 V, 100 ms 

100 V, 60 ms 

Influenza plasmid DNA vaccine Guinea pig Vaccination 

 

Electroporation is often used immediately after injection of genes to the skin or muscle for 

significantly improved efficacy [80]. In one study, a multi-electrode array containing 4 × 4 2-mm-

apart pins [87] was used to boost plasmid DNA delivery in guinea pig model. The applied voltage 

was 30 –70 V between the two pins and the pulse duration was 150 ms. In comparison with 

intradermal injection alone, the application of electric pulses could improve gene expression by 

approximately 2-4 logs and the expression could last 12-15 days. In another study, a multi-head 

intradermal electroporation device was employed to perform intradermal electroporation after 

injection of Puumala and H5HA DNA vaccines to hamsters and guinea pigs, respectively. It was 

found that the delivery dose and immune responses were dramatically enhanced [81]. When a gp160 
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plasmid DNA was injected to the muscle with subsequent electroporation, potent humoral response 

against gp160 was induced, with antibody titers of 1.6 and 16 fold greater than those elicited by 

intradermal injection of DNA to ear and abdominal skin, respectively, followed by electroporation 

[79]. These findings and also the results described in Table 5 indicate that electroporation is an 

effective method to deliver genes via skin for different uses including vaccination, wound healing, 

skin diseases and skin cancers [88]. 

Although intramuscular electroporation achieves better results, intradermal electroporation is 

probably more suitable in clinical applications due to increased safety and tolerability. To investigate 

this, a DNA vaccine coding for rhesus prostate specific antigen was tested on 15 patients with 

intradermal injection followed by skin electroporation [85]. This was the first clinical trial 

investigating the immune responses of intradermal injection of a DNA vaccine followed by 

electroporation. Although the immune response might not be as strong as those elicited through 

intramuscular injection in combination with electroporation, this method caused less patient 

discomfort, so the next goal is to increase its efficacy. 

The delivery efficiency of electroporation is dependent on many parameters such as the duration, 

amplitude, shape, and frequency of electric pulses, as well as the size, shape, spacing, and orientation 

of electrodes [89-93], so it is essential to perform research to optimize the design. For luciferase and 

GFP plasmid DNA delivery to skin by intradermal injection and electroporation, it was observed that 

needle electrodes worked significantly better than plate ones [92]. However, it is worth noting that 

the distribution of the electric field produced by a needle electrode may lead to irreversible 

electroporation in the cells close the tips of the needles, but less electroporation in the cells which are 

far away [94]. In the work, the plate electrodes were placed on the surface of the skin while the needle 

electrodes were penetrated into the skin with 7 mm in depth. In the case of IL-12 plasmid DNA 

delivery in mouse skin, the use of high voltage pulses improved transfection in shallow skin depth 

like epidermal and dermal skin layers, while low voltage pulses were good for deep layer transfection 

including muscle cells [77]. Roos et al. demonstrated that electroporation following intradermal 
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injection of a prostate cancer DNA vaccine led to 100-1000 times increased T cell response with 

reference to intradermal delivery alone [95], but their subsequent study suggested that a reduction of 

90% of the pulse delivery time could induce similar gene expression and immune responses. 

Apparently, the fast pulse operation will be more tolerable and suitable for clinical use [96]. Therefore, 

it is very important to optimize parameters in electroporation for transdermal delivery. Under non-

optimal conditions, electroporation may lead to cell mortality, muscle contractions, pain, skin 

sensation, and transient impairment of the skin’s barrier function [71, 72].   

3.2.2. Microneedle/nanoneedle arrays 

Microneedle technology for transdermal delivery usually involves using several to several 

thousand of needles with a size of micrometer range, packed on a substrate to pierce the SC for 

facilitated drug and gene delivery via skin [97-107]. Depending on the specific ways of drugs and 

genes being loaded and delivered, different types of microneedle arrays can be classified, including 

solid, coated, dissolving, and hollow microneedles as a few examples (Fig. 3d-e) [10]. Compared 

with other physical approaches, this technique is simple and cost-effective, without needing 

expensive devices [108-112]. This method also induces minimal pain and tissue damage and has the 

potential of self-administration. Therefore, this technology has attracted significant interest since its 

initial demonstration in 1990s and tremendous progress has been achieved in various applications. 

The application of using different types of microneedle arrays for gene delivery via skin is 

summarized in Table 6. From the table, it is apparent that the application has been predominantly 

focused on skin vaccination. 

Table 6 Schematic overview of recent microneedle based gene delivery systems 

Year and 
reference 

Microneedle type Gene Animal model Application 

2016, [113] Dissolving 
10x10 array 
680 µm high 
300 µ wide at base 

Rabies DNA vaccine 
Delivery efficiency 65-70% 

Dog Vaccination 

2016, [114] Coated Influenza nucleoprotein DNA 
vaccine 

Mouse Vaccination 
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4x4 mm (> 21,000 
projections/cm2) 
110 µm high 

Delivery efficiency 37.5% 

2015, [115] Coated 
A row of 5 
microneedles 
750 µm high 

Human papillomavirus 
pseudovirus-encapsidated plasmid 
DNA vaccine 

Mouse Vaccination 

2013, [116] Coated 
A row of 5 
microneedles 
>500 µm high 

Influenza hemagglutinin DNA 
vaccine 

Mouse Vaccination 

2013, [117] Coated 
9 rows of 8-9 
microneedles/row 
650 µm high 
250 µm wide at base 

Luciferase plasmid DNA vaccine 
Plasmid encoding HIV antigen 

Mouse Gene expression 

2012, [118] Coated 
A row of 5 
microneedles 
750 µm high 
200 µm wide at base 

Influenza hemagglutinin DNA 
vaccine 

Mouse Vaccination 

2012, [119] Coated 
A row of 5 
microneedles 
750 µm high 

EGFP plasmid DNA Human skin Gene expression 

2012, [120] Coated 
A row of 5 
microneedles 
700 µm high 
160 µm wide at base 

Avian H5 influenza 
hemagglutinin 
DNA vaccine 

Mouse Vaccination 

2010, [121] Coated 
A row of 5 
microneedles 
700 µm high 
160 µm wide at base 

Hepatitis C plasmid DNA vaccine 
Delivery efficiency > 90% 

Mouse Vaccination 

2010, [122, 
123] 

Coated 
4x4 mm (> 21,000 
projections/cm2) 
110 µm high 

herpes simplex virus type 2 
surface glycoprotein D2 (HSV-2- 
gD2) DNA vaccine 
Delivery efficiency 8±1% 

Mouse Vaccination 

2015, [124] Nanoneedles 
5 µm high 
50 nm apical width 
600 nm base diameter 

Human VEGF165 plasmid DNA, 
glyceraldehyde-3-phosphate-
dehydrogenase-siRNA 
 

Mouse Tissue 
regeneration, 
Gene regulation 

 

In 2010, coated microneedle arrays started to be used for functional DNA vaccination. Gill et al. 

applied metal microneedles to deliver plasmid DNA encoding hepatitis C virus NS3/4A protein [121]. 

With this technique, 8 µg of DNA could induce NS3/4A-specific cytotoxic T lymphocytes (CTLs) 

response which is similar to that obtained through intramuscular injection of 100 µg of DNA. Chen 
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and Kask and co-workers used a much more densely packed silicon microneedle array to deliver 

herpes simplex virus type 2 surface glycoprotein D2 (HSV-2-gD2) DNA vaccine [122, 123]. The 

prototype and scanning electron microscopy (SEM) images of the patch are presented in Fig. 10a-c. 

These densely packed microneedles were able to deliver coated DNA vaccine to the vicinity of a large 

number of immune cells (Fig. 10d). Systematic study of the immune responses including antibody 

titer, seroconversion, and survival rate upon lethal viral challenge were performed. It was found that 

this method could deliver HSV-2-gD2 DNA vaccine and achieve comparable immune responses with 

intramuscular injection, but with less than 1/10th of the delivery dose. Following this, microneedle 

arrays have been also tested to deliver avian H5 influenza hemagglutinin DNA [120], influenza 

hemagglutinin DNA [116], human papillomavirus pseudovirus-encapsidated plasmid DNA [115], 

influenza nucleoprotein DNA [114], and rabies DNA vaccine [113]. When rabies DNA vaccine was 

tested in dogs, it was also demonstrated that the dose sparing was approximately 10 times in 

comparison with intramuscular injection [113]. Similarly, microneedle array delivery of 1 µg of 

influenza nucleoprotein DNA vaccine elicited antibody titers which were comparable with those by 

10 µg of intramuscular injection. Apparently, microneedle array delivery of naked DNA is already 

able to greatly boost the immunogenicity of DNA vaccines. This is very important, because DNA 

vaccines have many advantages but the low immunogenicity remains a bottle neck for their clinical 

applications [125, 126]. When use microneedle arrays, gene delivery dose and location can be 

controlled by tuning microneedle design parameters and application conditions [127-129]. To achieve 

good control of patch application force and speed for reproducible and reliable operation, motorized 

microneedle patches were developed [130, 131]. 

In using microneedles for transdermal drug delivery, so far, over 60 clinical trials have been 

completed or are ongoing (https://clinicaltrials.gov). Although these clinical trials are not for gene 

delivery, the results have demonstrated the acceptability, safety and effectiveness of microneedle 

technology [110, 132-134]. These are very important for utilizing this technique for transdermal gene 

delivery in the future. As one example, dissolving microneedle arrays have recently been tested to 

https://clinicaltrials.gov/
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deliver influenza vaccine in a Phase 1 clinical trial [110]. In the study, microneedle patches were 

manually administered to the wrist by participants themselves without healthcare worker intervention. 

It was found that the participants strongly prefer these microneedle patches over conventional 

intramuscular injection. No safety issues were identified in the study and dissolving microneedle 

patches induced strong immune responses, comparable with those generated from intramuscular 

injection. Also attractively, these patches were stable at 40 °C for at least a year and generated little 

or even no medical waste. With these advantages, this technique has a great potential to be embraced 

by clinicians.  

Beyond microneedle patches, nanoneedle arrays are a promising alternative for gene delivery. 

Compared with microneedles, nanoneedles are much smaller, generally with a diameter of below 1 

micrometer (Fig. 11a). Due to the small diameter, nanoneedles can deliver genes into targeted cells 

without causing irreversible damage [135]. Chiappini et al. used biodegradable silicon nanoneedles 

for gene delivery [124]. The method could directly co-deliver GFP DNA and GAPDH siRNA to cells 

with a transfection efficiency of great than 90% and 80% silencing in GAPDH expression at 48 h, 

respectively. These nanoneedles could deliver fluorescent dyes to mouse ear skin with good 

uniformity. Additionally, these nanoneedles could deliver naked human VEGF165 plasmid DNA to 

the muscle of mouse (a small incision was made to expose the muscle before application). The 

muscles treated with nanoneedle injection displayed significantly more interconnected and structured 

vessels, ultimately resulted in much higher blood perfusion and number of nodes than those achieved 

by intramuscular injection (Fig. 11b-d). Besides silicon nanoneedles, Chen and co-workers developed 

diamond nanoneedle arrays for drug delivery [136-141]. Diamond is the hardest materials in nature 

with extremely high Young’s modulus [142]. The excellent mechanical properties at even nanometer 

scale make diamond nanoneedles a great choice for gene delivery via skin [143, 144]. The extremely 

small diameter of diamond nanoneedles enable direct gene delivery to target cells without affecting 

their viability. 
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3.2.3. Iontophoresis 

Iontophoresis is to apply a current to deliver charged drugs through the skin [145]. Different 

from electroporation which mainly acts on the skin structure, iontophoresis is primarily working on 

drugs themselves and drive their transport via an electric field (Fig. 12) [146]. When an electric 

potential difference is applied, drug ions are transported through the epidermis and dermis layers of 

the skin, ultimately diffusing into the blood stream. The drugs can permeate into the skin through 

sweat ducts, hair follicles, and imperfection sites. A small number of work was recently carried out 

using iontophoresis for gene delivery (Table 7). Kigasawa et al. demonstrated successful delivery of 

naked anti-IL-10 siRNA into the epidermis of an atopic dermatitis-like model rat, resulting in 73% 

reduction of the level of IL-10 mRNA [147]. In this work, the siRNA was accumulated within the 

epidermis of the skin, without passing through the basal layer into the dermis. Later on, the same 

group tested iontophoresis delivery of cytosine–phosphate–guanosine oligodeoxynucleotide (CpG-

ODN) in a hairless mice model [148]. It was found that CpG-ODN could be delivered to both 

epidermis and dermis layers of the skin. Although not penetrating into the subcutaneous tumors, the 

delivery of CpG-ODN elicited antitumor immune responses against B16F1 melanoma. 

Table 7 Schematic overview of recent iontophoresis based gene delivery systems 

Year and 
reference 

Iontophoresis 
conditions 

Gene Animal model Application 

2011, [148] 0.3 mA/cm2 CpG-ODN Hos:HR-1 hairless mice Melanoma 
2010, [147] 0.3 mA/cm2 siRNA against rat IL-10 

mRNA 
Brown Norway (BN) rats Atopic dermatitis 

2010, [149] 0.38 mA/cm2 nuclear factor-κB (NF-κB) 
decoy oligonucleotides 

C57BL/6 Atopic dermatitis 

 

4. Discussion 

Gene therapy is a type of treatment to use genes to cure diseases. It is becoming increasingly 

attractive for treatment of hard-to-cure diseases such as skin diseases and cancers [150, 151]. 

However, the translation of this technique to the clinical application experiences many challenges 

such as enzymatic degradation in blood circulation in systemic administration and direct delivery to 
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target tissues [1, 152]. To address these issues, gene delivery via skin offers a great opportunity 

because it causes minimal pain and discomfort, avoids first-pass effect and enzymatic degradation 

and clearance in the blood stream, and reduces systemic toxicity [1, 153]; and more importantly, the 

skin itself is the target tissue for many applications. For example, the skin is a highly immunogenic 

site, containing a large population of immune cells such as keratinocytes, lymphocytes and dendritic 

cells, and T cells [154], making it an ideal target for highly efficient vaccination. Additionally, the 

skin is the natural target for treating skin diseases and skin cancers. Although promising, successful 

translation of gene therapies via skin delivery still requires to conquer a series of challenges: (1) 

highly efficient and controllable gene delivery via skin; (2) highly effective and targeted intracellular 

delivery and nuclear gene expression; (3) high stability of genes during migration and transport 

through the extracellular matrix within skin layers, endocytosis pathways, and the cytoplasm 

environment after entering cells. 

To meet these challenges, many chemical and physical approaches have been designed and tested 

for a wide range of applications. Each method has its advantages and disadvantages. In general, 

chemical approaches have advantages in solving the latter 2 challenges. When nanoparticles, 

liposomes, peptides, polymers are used to deliver genes, it is very convenient to design numerous 

systems for highly efficient cellular uptake, cell targeting and improved stability. For example, PEI, 

gold nanoparticles, and liposomes have been broadly applied to enhance cellular uptake of DNA and 

siRNA and the subsequent transfection and gene expression [155-160]. During the journey, the 

systems have been continuously modified to improve the performance [161-163]. For instance, it was 

found, when PEI was modified with amino acids, the transfection efficiency and biocompatibility 

could be further improved. Glycolic acid-grafted PEI was able to achieve 23 times higher luciferase 

gene expression [164] than PEI alone. When PEI (MW 800 Dalton) was used to coat nanodiamond, 

the gene expression increased 70 times in comparison with PEI alone [165]. Peptide-capped gold 

nanoparticles were shown to have five-fold increase in cellular uptake comparing with nanoparticles 

alone [166]. The properties of nanomaterials also greatly affect gene expression and its outcome [167]. 
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For instance, it was found that cationic DNA nanoparticle formulation could essentially lead to no 

immunogenicity when delivered to the skin. The reason might be that the extracellular matrix 

components in the skin have a negative charge [168] and this can block the migration and diffusion 

of the positively charged nanoparticles. To solve the issue, the nanoparticles were PEGylated with 

close to neutral charge and this enabled dramatically enhanced immune responses in both murine and 

human skin [169].  

During intracellular transport, these gene delivery systems often enter cells through 

endosomal/lysosomal pathways that involve very low pH, so genes may be degraded. For this, 

chloroquine was created to raise endosomal pH and inhibit lysis [170]. Branched PEI could also 

promote endosome escape. Stabilizing DNA with PEG or PEG-PLL could effectively protect gene 

from degradation in cytosol [171, 172]. Another challenge of gene delivery is nuclear targeting. In a 

study, it was detected that cationic lipids could delivery only 0.3% of DNA to inside the nucleus at 

24 h time point [173]. To improve this, nuclear-targeting peptides were developed [174]. Clearly, 

chemical approaches have high flexibility in drug delivery system design. More attractively, different 

designs can be conveniently integrate into one system to simultaneously solve a number of challenges 

in gene delivery [175]. 

Despite of the fact that various chemical systems can be designed for enhanced skin permeation, 

the efficiency is generally much lower and less controllable than that of physical methods. Up to now, 

a range of physical approaches have also been developed. The main advantages include: (1) these 

methods could be very effective in terms of delivery efficiency; for example, the delivery efficiency 

of microneedle technology is up to over 90%; (2) the methods can be universal to facilitate a great 

range of genes, drugs and other materials to the skin; (3) it is possible to precisely control gene 

delivery to desirable skin layers; (4) these approaches can achieve relatively constant and 

reproducible outcomes with minimal influences from the skin properties. However, physical 

approaches usually only partially solve the challenges of gene delivery as outlined above. For SC 

breaching methods such as microneedles, after gene being delivered to the skin epidermal/dermal 
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layers, the lateral diffusion of genes is still blocked by the tight cell-cell junction and also importantly, 

the problems of cellular uptake, cell targeting, nuclear targeting, and stability of genes often remain. 

Nonetheless, despite this, microneedle array delivery of many naked DNA vaccines is still able to 

elicit potent and protective immune responses, and even with approximately 10-fold dose sparing in 

comparison with intramuscular injection [121, 122]. The mechanism of successful DNA transport to 

cells and nucleus with strong gene expression needs to be thoroughly investigated. 

Owing to the distinct advantages and disadvantages of different approaches, to effectively and 

collectively address the challenges of gene delivery via skin, it is natural that the most efficient way 

is to combine different methods. There is a clear trend that an increasing number of studies have been 

using combined skin delivery strategies. Table 8 summarizes an overview of the recent multiple 

approach gene delivery systems. Lee et al. used a drawing lithography to produce an integrated hybrid 

electro-microneedle (HEM) system as shown in Fig. 13. The device is composed of dissolving 

microneedle tip to pierce the SC for gene release within the skin, and electrode to generate electric 

field pulses for increased cellular uptake of the release genes [176]. When it was applied to deliver 

p2CMVmIL-12 for melanoma tumor, the gene transfection efficiency was significantly better than 

that induced by dissolving microneedle array delivery without electroporation. Correspondingly, the 

tumor control achieved by DNA delivery via the electro-microneedle device was also better than that 

via microneedle alone. Other types of microneedle-electroporation integrated delivery systems have 

also been designed for gene delivery [177]. Beside the combination with electroporation, microneedle 

technology has been used to combine with different chemical approaches for enhanced gene delivery. 

In 2010, Prow et al. reported using microneedle patches to deliver EGFP-PEI nanoparticles for gene 

expression [178]. In another work, a peptide RALA was used to form nanoparticles with DNA 

followed by incorporating into a poly(vinylpyrrolidone) (PVP) dissolving microneedle patch [179]. 

In the system, the nanoparticles were designed to protect DNA from degradation, increase cellular 

uptake, aid endosome escape and enter cell nucleus. The microneedles were employed to pierce the 

SC for highly efficient nanoparticle delivery to the skin. Beyond this, nanoparticles can also be further 
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designed with specific targeting capacity. Hu et al. reported a copolymer containing mannosylated 

grafted cell-penetrating peptide and PEI (MW 1800 Dalton) and the system is referred to as CPP-

PEI1800-Man. Subsequently, the copolymer was applied to form nanoparticles with DNA. Then 

microneedles were used to deliver these nanoparticles to the epidermal and dermal layers of mouse 

skin (Fig. 14). The nanoparticles could be specifically delivered to dendritic cells (DCs) because of 

their surface mannose receptors. The conjugated CPP and PEI were able to increase the nanoparticles’ 

intracellular delivery. The experimental results reveal that 42.2% and 49.6% of the DCs in lymph 

nodes and splenocytes respectively were both GFP and CD11c positive. In contrast, only 1.59% and 

5.9% of the DCs were double-positive if naked DNA was delivered under the same conditions. In 

mice model, protective immune responses were induced with this approach, demonstrated by 90% 

survival rate at 100 days after B16 melanoma cell challenge. Through this method, CD4+ and CD8+ T 

cells were probably recruited to the tumors and this significantly enhanced the mice’s immune 

responses via generation of interferon gamma (IFN-γ) and IL-12 [180].  

Other than microneedles, Labala et al. used iontophoresis to aid the delivery of chitosan coated 

gold nanoparticles with STAT3 siRNA to treat melanoma (Fig. 15) [181]. Signal transducer and 

activator of transcription 3 (STAT3) are found to be overexpressed in different cancers including 

melanoma. STAT3 protein can prevent apoptosis and boost proliferation of melanocytes. In the 

system, STAT3 siRNA was deposited on chitosan coated gold nanoparticles and subsequently 

another layer of chitosan was further coated on the surface in a layer-by-layer manner. The 

nanoparticle size was approximately 150±10 nm and the zeta potential was 35±6 mV. In the in vitro 

test, these nanoparticles could inhibit growth of B16F10 murine melanoma cells by 49.0±0.6% and 

66.0±0.2% when the concentrations of siRNA were 0.25 and 0.5 nM, respectively. For in vivo skin 

application, iontophoresis was able to aid the delivery of these nanoparticles to the viable epidermis 

with 70 µm depth in comparison with 30 µm depth in the passive application (without using 

iontophoresis).  
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Table 8 Schematic overview of recent multiple approach based gene delivery systems  

Year and 
reference 

Combined technologies Gene Animal model Application 

2017, [182] Microneedle + PLGA-
PLL/γPGA nanoparticles + 
DNA 

Ebola DNA vaccine Mouse Vaccination 

2017, [183] Microneedle + RALA 
peptide and DNA 
nanoparticles 

HPV-16 E6/E7 DNA Mouse Cervical cancer 

2017, [184] Microneedle + polyplex of 
tripolyphosphate, branched 
PEI and DNA 

Porcine circovirus Type 2 
DNA vaccine 

Mouse Vaccination 

2017, [185] Microneedle + PLGA/PEI 
nanoparticles 

H1N1 DNA vaccine Mouse Vaccination 

2016, [186] Microneedle + liposome 
encapsulated with DNA 

Hepatitis B DNA vaccine Mouse Vaccination 

2015, [187] Microneedle + CPP-PEI-
DNA nanoparticles 

Melanoma DNA vaccine Mouse Melanoma 

2014, [188] Microneedle + polyplex with 
mannosylate PEI 

Abeta DNA vaccine Mouse Alzheimer’s 
disease 

2012, [189] Microneedle + cationic 
PLGA and DOTAP 
nanoparticles 

pGPA plasmid DNA vaccine Mouse Anthrax 

2017, [190, 
191] 

Iontophoresis + liposome STAT3 siRNA Porcine skin Skin cancer 

2016, [181, 
192] 

Iontophoresis + gold 
nanoparticles 

STAT3 siRNA Porcine skin Melanoma 

2015, [193] Iontophoresis + dendrimer 
nanoparticles 

Antisense oligonucleotide Porcine skin 

CD1 mice 

Skin cancer 

2011, [176] Microneedle + 
electroporation 

p2CMVmIL-12 DNA Mouse Melanoma 

 

Besides combination of physical and chemical approaches for more effective gene delivery via 

skin, there is also a large scope for each method to be further optimized. So far, a lot of work has been 

focused on applying a technique such as microneedle arrays or gold nanoparticles to deliver drug and 

gene molecules via the skin, followed by systematic investigation of drug delivery and distribution 

profiles as well as therapeutic or immunological functions. While these researches are very important 

in assessing the applicability of different techniques and their application range, significantly less 
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work has been done to combine the design and improvement of transdermal delivery techniques and 

their application assessment in drug delivery. In other words, major effort has been placed on 

extending the application range of existing technologies, instead of improving technology design 

itself. To bring the technologies forward with a faster pace and ultimately use them in clinical 

applications, researchers and engineers from a range of disciplines should work together to advance 

the design of skin delivery techniques and their mass production and then rigorously test their 

applications and safety profiles in cell lines, animal models and clinical trials. For example, for 

physical approaches, mechanical and electrical engineers should be invited to optimize the design 

and manufacturing of various devices. For chemical approaches, materials scientists and chemists 

should be invited to have rigorous design and characterization of different liposome/nanoparticles-

gene systems. Equally importantly, researchers working on biology, pharmacology, vaccinology and 

immunology should focus on exploring the working mechanisms of each method so that these can be 

used as a guidance to engineers, materials scientists and chemists to improve the design. Last but not 

least, doctors, clinicians, and regulators are also important to contribute to the proper design and 

construction of gene delivery tools to steer the research toward clinical applications. With this 

concerted effort, the field of gene delivery via skin can achieve further success. 

5. Conclusions 

Gene delivery via skin offers great advantages over alternative routes. Although skin poses a 

significant barrier and there is a cascade of challenges including cellular uptake, cell/nucleus targeting, 

stability, tremendous progress has been achieved and many physical and chemical approaches such 

as peptides, liposomes, nanomaterials, microneedles, electroporation, and iontophoresis have been 

established for effective gene delivery. Translation of these techniques to clinical use will surely 

transform the treatment of a range of diseases and vaccination approaches to protect human being 

from infection diseases, and generate a huge impact. Despite the progress, future researches should 

focus on: (1) optimizing the design and manufacturing of physical devices and chemical systems for 

gene delivery; (2) exploring the mechanisms of gene delivery via skin and gene expression 
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enhancement of the technologies; and (3) investigating the long term safety profiles of different 

techniques. 
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Fig. 1. The applications, challenges and technologies of gene delivery via skin. 
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Fig. 2. Representative biochemical approaches for gene delivery [4]. a): CPP-mediated siRNA intracellular 
delivery. (1) CPP–siRNA conjugate; (2) CPP–siRNA nanocomplex; (3) siRNA anchored on an antibody-CPP 
conjugate; (4) hairpin-structured activatable CPP conjugated with siRNA. b): Two types of interactions 
between siRNA and liposomes [5]: cationic liposomes with electrostatically complex siRNA on their surface 
(1) and siRNA entrapped in liposomes made of ionizable lipids (2).  c): the preparation and delivery strategies 
of different siRNA-polymer conjugates [6]. d): Strategy to load siRNA on inorganic nanoparticles [6]: (1) 
Chemical conjugation and adsorption of siRNA on a single nanoparticle surface; (2) electrostatic interaction 
of siRNA and cationic shell on (2) a single nanoparticle and (3) cationic polymer-coated nanoparticle clusters; 
(4) layer-by-layer assembly of siRNA and cationic polymers on a single nanoparticle surface. Reprinted with 
permission from ref. 4. Copyright 2017, Elsevier. Reprinted with permission from ref. 5. Copyright 2015, 
Springer. Reprinted with permission of Creative Commons Attribution (CC BY-NC) license from ref. 6. 
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Fig. 3. Representative physical approaches for drug delivery via skin. It is worth noting that the subcutaneous 
layer is not included in the schematics of the skin anatomy. a): Liquid-jet injection delivers vaccine to muscular, 
subcutaneous or dermal regions, depending on the parameters of the injection [7]. b): Epidermal powder 
immunization delivers vaccine powders to the superficial layers of the skin (that is, the epidermis and the 
superficial layers of the dermis), where they are recognized by Langerhans cells [7]. c): Simplify model of the 
skin-electrode interface, the stratum Corneum and its ionic pathways. Pathways in the appendages are shown 
in hard lines, and pathways going between the stratification of the stratum corneum matrix are shown in dotted 
lines. The electroporation effect on the corneocyte matrix is shown at the right, while the current flow increase 
due to the pore filling is shown in the appendages [68]. d) and e): Methods of drug delivery to the skin using 
microneedles (MN) [10]. Microneedles are first applied to the skin (d) and then used for drug delivery (e). 
Solid microneedles are used as a pretreatment, after which drug can diffuse through residual holes in skin from 
a topical formulation (solid MN). After insertion of drug-coated microneedles into the skin, the drug coating 
dissolves off the microneedles in the aqueous environment of the skin (coated MN). Drug-loaded microneedles 
are made of water-soluble or biodegradable materials encapsulating drug that is released in the skin upon 
microneedle dissolution (dissolving MN). Hollow microneedles are used to inject liquid formulations into the 
skin (hollow MN). Reprinted with permission from ref. 7. Copyright 2005, Nature Publishing Group. 
Reprinted with permission of Creative Commons Attribution (CC BY-NC) license from ref. 68. Reprinted 
with permission from ref. 10. Copyright 2012, Elsevier. 
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Fig. 4. (a) Schematic of skin and routes of percutaneous absorption [15]; (b) Schematic of the detailed structure 
of the SC and epidermis [11]. Reprinted with permission of Creative Commons Attribution license from ref. 
11. Reprinted with permission from ref. 15. Copyright 2016, Elsevier. 
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Fig. 5. Entry ofMgpe9 peptide and nanocomplexes in the skin [34]. a): Sequence of Mgpe9 peptide is shown. 
The helical wheel diagram represents the top-down view of the peptide along the helical axis when it forms a 
secondary structure. b): Pentanol–water partitioning of Mgpe9 and control peptides (penetratin and TAT) was 
studied using the fluorescence estimation method. The percentage relative fluorescence (bars) in each phase 
(red bars indicate hydrophilic phase, blue bars indicate hydrophobic phase) was recorded after 24 h of peptide 
treatment. Hydrophobicity index calculation for all the peptides was carried out using HELIQUEST software. 
c): Human skin penetration ability of FITC labeled peptides (Mgpe9 and TAT) 4 h and 24 h after application 
was studied using the peptide skin penetration test in independent experiments. Direct visualization of FITC 
fluorescence was performed after single topical application of peptides using fluorescence microscopy at 
10×magnification. Scale bar: 20 μm. d): Cellular uptake of peptides (labeled with FITC) was investigated using 
flow cytometry in skin cell lines. The percentage of FITC positive cells (bars) and the mean fluorescence 
intensity (line) were recorded after 4 h. The data are shown as mean±SD. e): Atomic force microscopy was 
carried out to show the formation of nanocomplexes (<100 nm) between Mgpe9 and plasmid DNA at a charge 
ratio of 10. Scale bar: 0.5 μm. f): Cellular uptake of labeled Mgpe9 nanocomplexes (formed using FITC labeled 
plasmid DNA and unlabeled peptide) in HaCaT cells was studied using fluorescence microscopy. Cells were 
imaged at 100× magnification and uptake of nanocomplexes was visualized as green fluorescence inside the 
cells. DAPI (blue) has been used to stain the cellular nuclei. Scale bar: 20 μm. g): Transmission Electron 
Microscopy was carried out to demonstrate the entry of nanocomplexes across stratum corneum and into the 
viable epidermal cells of the skin. Imaging was performed at magnifications of 170×, 800× and 5000× 
respectively to locate the nanocomplexes in the skin. Scale bar: 5 μm, 1 μm, 0.2 μm respectively. SC denotes 
stratum corneum; E denotes epidermis; KC denotes keratinocytes; ECM denotes extracellular matrix, NC 
denotes Mgpe9 nanocomplexes. h): Schematic illustration of the self-assembling LMWP/PGA/PEI/DNA 
quaternary NPs [35]. Reprinted with permission from ref. 34. Copyright 2016, Elsevier. Reprinted with 
permission from ref. 35. Copyright 2012, Royal Society of Chemistry.   
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Fig. 6. Protectiveness of the developed JEV lipoplex-patches [42]. a): C3H/HeN mice were transcutaneously 
immunized three times with a given JEV lipoplex-patch in a 3-week time interval. The anti-JEV E antibodies 
were measured by ELISA in due course. Mice were immunized with pCJ-3 as a negative control. The asterisk 
(⁎) indicates significant difference (P < 0.05) at week 6 when the antibody level of a given test sample was 
compared with that of control. b): Survival rates were plotted for the immunized mice challenged with 
50×LD50 of Beijing-1 JEV at week 6 after the first immunization; they were recorded for 15 days. Reprinted 
with permission from ref. 42. Copyright 2009, Elsevier. 
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Fig. 7. Flexible liposomes and their mechanism of action [48]. The liposomes are believed to travel through 
lipidic regions (pores) in the stratum corneum until they reach the epidermis. Reprinted with permission of 
Creative Commons Attribution (CC BY-NC) license from ref. 48. 
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Fig. 8. a): Synthesis of siRNA-based SNA-NCs. Hybridized siRNA duplexes are added to solutions of citrate-
stabilized gold colloid and attached through thiolgold chemistry. Addition of salt screens repulsive charges, 
resulting in densely functionalized nanoconjugates. The number of siRNAs/nanoparticle can be tightly 
controlled; tested SNA-NCs have approximately 30 siRNAs densely arrayed around a 13 nM core. b-f): 
Penetration and gene knockdown in human skin equivalents. b): Skin equivalents (EpiDerm; MatTek) treated 
with a single application of 25 nM Cy5-labeled (red) SNA-NCs or PBS for up to 48 h. Blue, Hoechst 33343-
stained nuclei. Note the presence of SNA-NCs throughout the stratum corneum and nucleated epidermis. Scale 
bar, 50 μm. c): ICP-MS measurements of gold show time-dependent uptake of the SNA-NCs in the epidermis. 
d): The amount of gold in the cell culture medium, representing the number of particles passing through skin 
equivalents as measured by ICP-MS, increases with time. EGFR mRNA expression measured by RT-qPCR. 
e): and EGFR protein expression measured by immunoblotting. f): in skin equivalents treated with a single 
application of 25 nM EGFR SNA-NCs for 60 h demonstrate effective gene knockdown in human skin. Each 
study was performed at least three times in triplicate. Data are expressed as mean±SD. [66] Reprinted with 
permission from ref. 66. Copyright 2012, American Chemical Society. 
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Fig. 9. Schematic illustration of the transdermal delivery of pDNAs encoding microRNA-221 inhibitor gene 
(Mi221) by AuPT nanoparticles for skin cutaneous melanoma treatment [64]. The therapy consists of four 
major steps, including a): preparation of AuPT/Mi221 nanocomplexes; b): topical application of AuPT/Mi221 
and the skin penetration of AuPT/Mi221; c): skin penetration into melanoma, and d): gene transfection of 
AuPT/Mi221 in melanoma cells for tumor therapy. Reprinted with permission from ref. 64. Copyright 2017, 
American Chemical Society. 
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Fig. 10. a): Prototype of Nanopatch™, b): uncoated Nanopatch™ and c): HSV-2-gD2 vaccine coated 
Nanopatch™. The scale bar indicates 50 μm for (b) and (c). d): Delivery of fluorescent labeled HSV-2-gD2 
DNA in skin. Green and red indicate antigen presenting cells and delivered HSV-2-gD2 DNA, respectively. 
a-d) in [122] e): gD21-340 DNA vaccine delivered by NanopatchTM protects against lethal HSV-2 challenge 
[123]. Animals were challenged with 50×LD50 HSV-2 intravaginally and mortality was recorded twice daily 
for 21 days. Pooled data from 2 independent experiments are represented. Reprinted with permission from ref. 
122 and 123. Copyright 2010, Elsevier.  
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Fig. 11.  a): SEM micrographs showing the morphology of porous silicon nanoneedle arrays with pitches of 2 
µm, 10 µm and 20 µm, respectively. Scale bars, 2 µm. b)-d): Nanoneedles mediate neovascularization [124]. 
b): Intravital bright-field (top) and confocal (bottom) microscopy images of the vasculature of untreated (left) 
and hVEGF-165-treated muscles with either direct injection (centre) or nanoinjection (right). The fluorescence 
signal originates from systemically injected FITC–dextran. Scale bars, bright-field 100 µm; confocal 50 µm. 
c) and d): Quantification of the fraction of fluorescent signal (dextran) c): and the number of nodes in the 
vasculature per mm2 d): within each field of view acquired for untreated control, intramuscular injection (IM) 
and nanoinjection. *p = 0.05, **p < 0.01, ***p < 0.001. Error bars represent the s.d. of the averages of 5 areas 
taken from 3 animals. Reprinted with permission from ref. 124. Copyright 2015, Nature Publishing Group. 
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Fig. 12. Iontophoresis method [146]. The iontophoresis unit carries an anode drug reservoir that holds and 
releases the drug and a cathode that collects the opposite ions when a potential is applied across the two 
polarities. Reprinted with permission from ref. 146. Copyright 2014, Elsevier. 

  



49 
 

Fig. 13. Schematic representation of in-situ cutaneous gene transfer by the hybrid electro-microneedle 
(HEM) [176]. (A) Monolithic hybrid assembly of a dissolving microneedle and an electrode to produce a 
HEM. The dissolving microneedle of the HEM induces cutaneous permeation by bypassing the skin, and 
followed by cutaneous release from the encapsulated reservoir. The electrode of the HEM facilitates 
intracellular transfection by generating electric field pulses. (B) Stepwise-aligned cutaneous permeation, 
cutaneous release, and intracellular transfection using the HEM. Reprinted with permission from ref. 176. 
Copyright 2011, Elsevier. 
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Fig. 14. A schematic diagram showing the formation of Man-PEI1800-CPP/DNA complexes and the cell 
targeting of the complexes for microneedle-mediated transcutaneous delivery [180]. Reprinted with permission 
from ref. 180. Copyright 2014, Elsevier. 
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Fig. 15. Iontophoresis aid transcutaneous delivery of chitosan and siRNA coated gold nanoparticles 
for treating melanoma [181]. Reprinted with permission from ref. 181. Copyright 2016, Elsevier. 
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