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A systematic approach to identifying key parameters
and processes in agroecosystem models

Vasileios Myrgiotisa,b, Robert M. Reesa, Cairistiona F. E. Toppa, Mathew
Williamsb

aSRUC, Edinburgh EH9 3JG, UK
bSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, UK

Abstract

Process-based agroecosystem biogeochemistry models are widely used to

quantify the flow of water and nutrients in agricultural ecosystems and they

have become important tools in the effort to address the twin challenges of

reducing greenhouse gas emissions and improving agricultural sustainability.

Model parameters require careful calibration, as they affect the simulated

processes and outputs. Sensitivity analysis (SA) is commonly used to quan-

tify the impacts of parameters on outputs, and guide the calibration process.

Here we demonstrate a systematic approach for SA, which assures that (1)

the role of time-dependency in the sensitivity indices is considered and (2)

the SA is not biased by the edapho-climatic conditions at individual sites.

Demonstrating this approach, we examine the parametric sensitivity of an

advanced agroecosystem model (Landscape-DNDC) using a framework that

is based on (1) the Sobol SA method, (2) model simulations at three UK

arable sites and (3) the grouping of the model’s parameters according to the

processes they affect. The findings of this research identify the parameters

and processes that should be carefully examined in order to minimise the

impact of parametric uncertainty on model outputs. We show that a limited
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number of parameters are responsible for a large part of the sensitivity of

model outputs. The description of soil microbial dynamics is identified as

a key source of output sensitivity. Also, we show that individual manage-

ment activities can significantly affect the time-dependency of the parametric

sensitivity indices for certain model outputs.

Keywords: soil biogeochemistry, ecosystem modelling, Landscape-DNDC,

sensitivity analysis
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Highlights

• The parametric sensitivity of the Landscape-DNDC agroecosystem biogeo-

chemistry model is quantified.

• 23% of the model’s biogeochemistry parameters are responsible for 87% of

output sensitivity

• The temporal scale of the analysis is shown to affect the relative importance

of the parameters.

• The parameterisation of the processes that describe soil microbial dynam-

ics is key to model predictions.

1. Introduction

Agroecosystem biogeochemistry (BGC) models are computational tools

that simulate the processes that drive the fluxes of nutrients through agricul-

tural ecosystems, their interactions and their environmental sensitivity. They

take measurable information on the drivers and initial state of the ecosystem

(e.g. climate, vegetation type, soil properties etc) and feed them to a set

of mathematically-described interacting processes that represent the system

and its evolution. Measured input data typically contain uncertainties while

the modelled processes can be highly customisable especially if they depend

on several parameters. As a consequence, model outputs encapsulate the ef-

fects of data and model-related uncertainties. These uncertainties are caused

by (1) the spatial and temporal variability of the measured input data (2) the

model’s structure/architecture and (3) the lack of "precise" quantification of
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the mathematical and/or statistical parameters that make up the model’s

formulation. These three uncertainty sources are also known as input, struc-

tural and parametric respectively, and they have a combined impact on the

model’s predictive quality (Campolongo et al., 2007; Norton, 2015; Baroni

and Tarantola, 2014).

Analyses of the sensitivities of model outputs to input, structural and

parametric uncertainties form an important part of model development and

application (Della Peruta et al., 2014; Qin et al., 2016; Fan et al., 2016).

SA can be used in model development as a way to simplify a model (i.e.

identify less significant parameters/processes) and refine the prior ranges of

its parameters (Heinen, 2006). Model users apply SA to identify which pa-

rameters to include in model calibration and to gain an understanding of the

model’s behaviour under the conditions that are specific to their work. Sen-

sitivity analysis of model outputs to model inputs is used to derive estimates

of the impacts that the spatiotemporal variability of measurable inputs (e.g.

data on climate, soil properties) can have on a model’s outputs (Van Oijen

et al., 2005; Rafique et al., 2015; van Oijen et al., 2011). The existence of

persistent bias in a model’s outputs can be controlled by identifying how

the architecture of a model’s mechanisms, and the mechanisms themselves,

affect the model’s outputs. The quantification of structural uncertainty can

be achieved by evaluating a model under different architectures and module

combinations (Sándor et al., 2016; Ruane et al., 2016). Nevertheless, such

an exercise requires models that can accomodate a set of conceptually dif-

ferent but interoperable modules and is, thus, more difficult to examine. On

the other hand, the quantification of the sensitivities of different outputs to
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a model’s parameters (i.e. parametric sensitivity) is mainly dependent on

whether the model’s format offers access to its parameters. In this study,

we focus exclusively on parametric sensitivity analysis, to which we hereafter

refer when using the term sensitivity analysis (SA).

Global parametric SA (GSA) methods are commonly used in studies with

agroecosystem models. In order to achieve their aim, the values of all the

examined parameters are perturbed concurrently and the impact of each

parameter (i.e. direct and indirect) on the output of interest is quantified

(Pianosi et al., 2016; Norton, 2015; Cariboni et al., 2007). Morris and Sobol

are two of the most widely used GSA methods with Sobol being more com-

putationally expensive and detailed than Morris (Confalonieri et al., 2010;

Sarrazin et al., 2016; Wainwright et al., 2014; Iooss and Lemaître, 2014; Cam-

polongo et al., 2004). The parametric sensitivity of a model output can be

quantified through SA by using (1) a single value (e.g. simulated soil CO2

at day d); (2) the mean value during a defined period (e.g. annual or weekly

mean) or (3) a cumulative amount during a defined period (e.g. cumula-

tive soil CO2 fluxes during one year). The use of a single simulated data

point (e.g. CO2 flux at day d) to quantify the parametric sensitivity of an

output (e.g. CO2) might not be appropriate for model outputs that behave

in a highly dynamic manner (e.g. greenhouse gases). On the other hand,

the use of cumulative values for a single time period (e.g. a year, week or

month) might not capture all the possible effects of parametric uncertainty

on a simulated variable if this variable is highly dependent on other actions.

For example, soil N2O fluxes might be strongly dependent on the timing of

fertiliser application just like NO3 loss through leaching might be dependent
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on the timing of heavy rainfall events (Gerber et al., 2016; Molina-Herrera

et al., 2016; Castellano et al., 2010; Ma et al., 2010). In spite of that, the

issue of time-dependency of the estimated sensitivity indices (SI) is rarely ex-

amined in SAs with ecosystem BGC models but has been considered in some

studies with hydrological models (Song et al., 2013; Pianosi and Wagener,

2015; Guse et al., 2016).

Another important aspect, which is also rarely considered in relevant

studies, is the heterogeneity of agroecosystems. Most studies on the para-

metric sensitivity of agroecosystem models use simulations at a single site

to quantify the sensitivity of the model’s outputs (Necpálová et al., 2015;

Della Peruta et al., 2014; Qin et al., 2016, 2013). However, this approach

does not account for the fact that the edapho-climatic conditions at the simu-

lated site could be strongly influencing the estimated SIs and the SA overall

(Li et al., 2004). In this respect, the performance of simulations at more

than one site is a way to ensure the robustness of the SA. This is important

particularly if the model’s intended spatial scale of application is large (e.g

sub-national level). In general, a lack of studies using process-based agroe-

cosystem BGC models and focusing on the parametric sensitivity of their

outputs can been observed in the relevant literature. Most SA studies with

agroecosystem BGC models focus on input uncertainty and only few studies

have focused on the parametric sensitivity of the models (Qin et al., 2013;

Wang and Chen, 2012; Del Grosso et al., 2010; Hastings et al., 2010; Zaehle

et al., 2005; Klatt et al., 2016). The role of parametric uncertainty is more

often considered in studies that deal with the calibration of model parame-

ters and in which the results of parametric SAs are not always presented or
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discussed (van Oijen et al., 2011; Lehuger et al., 2009; Rafique et al., 2015;

Li et al., 2015). Also, such studies tend to focus only on a single model

output (e.g. soil N2O emissions or soil C content) (Lehuger et al., 2009). In

this context, the consideration of more than one model outputs in SAs can

provide a more complete picture of how parameters affect model prediction.

In this study, we present a simple framework for the quantification of

model parametric sensitivity that is tailored to agroecosystem models. The

model that we use to demonstrate the framework is Landscape-DNDC, which

is a typical process-based agroecosystem BGC model (Haas et al., 2012).

Landscape-DNDC shares similarities with other agroecosystem models in

terms of concept, mathematical formulation and parameterisation and more

so with other DNDC-based models (Gilhespy et al., 2014; Abdalla et al.,

2010; Smith et al., 2010). Therefore, we believe that the results of this study

will be relevant to other agroecosystem models. The study focuses on the soil

biogeochemistry aspect of the model and our SA examines the importance of

the relevant parameters only (i.e. plant growth-related parameters not con-

sidered). We use the Sobol SA method (Campolongo et al. (2007)) and collect

model outputs for 10 key variables. Taking into account the aforementioned

limitations of other SA studies, here, we consider the role of edapho-climatic

conditions by performing simulations at three UK arable sites (representative

of UK’s soils and climate). In order to examine the time-dependency of the

estimated sensitivity indices, we collect model outputs at eight different tem-

poral resolutions (i.e. one annual value and seven weekly values). Also, we

are interested in understanding the role of processes for model outputs since

this can lead to observations that are of practical value in a broader sense.
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To examine this aspect, we sort the model’s parameters into three groups

according to the type and role of the processes that they affect, and examine

the contribution of each group to output sensitivity. In summary, the main

objectives of the study are to (1) quantify the parametric sensitivity of key

outputs of the Landscape-DNDC model; (2) examine how parameter groups

affect model outputs and (3) assess the impact of the temporal resolution of

the SA on the estimated parametric sensitivities.

2. Materials and methods

2.1. The Sobol method

The Sobol SA method is a global, variance-based and model independent

method that can be used to quantify the sensitivity of model outputs to

inputs and parameters (Baroni and Tarantola, 2014). The method estimates

the first order sensitivity index (Si), which presents the direct contribution

of a parameter (Xi) to an output (Y ), and the total sensitivity index (ST ),

which represents the direct and indirect contribution of parameter Xi to the

sensitivity of Y . (Si) and (ST ) are estimated using (1) and (2) respectively:

Si =
V [E (Y Xi)]

V (Y )
(1)

ST =
E [V (Y X−i)]

V (y)
(2)

where X−i denotes all inputs except Xi, V denotes the variance and E the

expectation. The Sobol method also allows for the estimation of sensivity

indices of higher order (i.e. second, third etc). For example, the second
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order Sobol sensitiviy index Sij quantifies the variance caused to Y by the

interaction between parameters Xi and Xj. The number of model simulations

(R) that is required for the estimation of Si and ST is equal to N(2D + 2)

where N is the sample size andD is the number of parameters (Nossent et al.,

2011). The value of N is case-specific with values in the relevant literature

ranging between a few hundred and tens of thousands (Nossent et al., 2011;

Wainwright et al., 2014; Pianosi and Wagener, 2015). The examination of the

convergence of the estimated SIs can be used to ensure that the chosen N was

sufficiently large (Sarrazin et al., 2016). In this study, the convergence of the

estimated SIs, as it was reflected in the respective confidence intervals, was

assessed visually and was achieved by setting N equal to 5000 (i.e. R=1.24

million).

2.2. Landscape-DNDC

Landscape-DNDC (hereafter referred to as the model) is a process-based

ecosystem model that describes the biogeochemistry of terrestrial ecosys-

tems. Most of the model’s description of biogeochemical processes comes

from the original DeNitrification-DeCompositon model (DNDC) (Li et al.,

1992). However, it is even more closely related, in terms of concept, struc-

ture and mathematical formulation, to the mobile-DNDC model(Chirinda

et al., 2010). The model can simulate energy fluxes, and water and nutrient

transport inside the soil-plant-atmosphere system at arable, grassland and

forest ecosystems. It has a modular structure that facilitates the integra-

tion of modules, which describe different part of the simulated system (i.e.

plant growth, water cycling, soil BGC and microclimatic conditions). It is a

transparent model, in the sense that the user has access to the parameters
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of the model’s modules, while the user can also reshape the model’s struc-

ture and use different module combinations. The model requires input data

on climatic (e.g. min/max precipitation, temperature, wind speed) and soil

(e.g ph, clay content, bulk density) conditions as well as information on field

management (e.g. crop rotation, date/depth of tillage) (Haas et al., 2012).

The model simulates the interconnected soil biogeochemical processes on

a daily basis. The properties of the simulated soil can change with depth ac-

cording to user-defined information (e.g. number of soil layers, layer thickness

etc) and all soil-related model calculations are performed on a layer-by-layer

basis. The total carbon (C) content of the ecosystem is stored in (1) the

growing plant’s parts and (2) the soil’s C pool (Fig. 1). The soil’s total C is

allocated into three pools, which differ in terms of activeness (i.e. fast/slow

C decomposition) and are interconnected. The soil’s living organisms (i.e.

microbes) are conceptually considered as a part of the soil’s total C. The

microbe-mediated decomposition of C in the pools (decomposers are named

humads in Landscape-DNDC) is the main driver of change in the soil’s C

budget and it is also a source of CO2. The nitrogen (N) content of the plant-

soil system, and of its different compartments, has a controlling role over the

movement of C between the different C pools.

The model’s N pools (N2, N2O, NO, NO2, clay-bound NH4, NO3, unbound

NH4 and urea) are mainly controlled by the input of organic (manure) and

mineral (ammonium nitrate) N (Fig. 1). The daily budget of N in the

pools changes as a result of the processes of N addition, N plant uptake, N

leaching, N mineralisation/immobilisation, nitrification/denitrification and

ammonia (NH3) volatilisation. Nitrogen-based gas production in the soil is
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Figure 1: Schematic description of the main processes controlling carbon and nitrogen
cycling in the soil as simulated in the Landscape-DNDC model.
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the result of nitrification and nitrification. These processes are affected by

the soil’s hydrological conditions as well as its temperature, ph and other

physical properties (e.g. bulk density). Any addition of N to the soil system

(via fertiliser application, plant parts etc) affects the web of interacting N-

related processes. After a certain amount of N is added to the soil, it will

flow through the web of processes and reach one (or more) of the possible

endpoints (e.g. become N gas, get leached to groundwater etc). The relative

size of each N pool along with the soil’s physical, biochemical, hydrologic and

microclimatic conditions at each simulated day, will collectively affect how

much N reaches each endpoint as well as how fast this will happen.

The model’s soil BGC module uses a total of 123 parameters to simulate

the soil’s biogeochemical processes in agricultural soils. For each parameter,

a default value and a range of possible values (i.e. minimum and maximum)

are provided. Due to the number of parameters involved in the mathematical

representation of the modelled processes and the complexity of their interac-

tions, the relationships between parameters and outputs are non-monotonic

and the model is non-linear (Rahn et al., 2012). The model does not allow

the use of values that are outside the predefined ranges and, therefore, we use

the recommended parameter ranges to define the upper and lower bounds in

the SA sampling process. In order to facilitate the presentation of the SA

results and make them easier to understand the model’s BGC parameters

have been classified into 3 groups of parameters based on their relative role

and position within the model’s mathematical structure:

1. The first group includes all the parameters that directly control the

population and dynamics of soil microbes. This group also contains
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the parameters that directly control the size and dynamics of the dif-

ferent soil C pools because (1) microbes themselves are conceptually

considered part of the soil’s C and (2) microbial growth/death processes

are tightly coupled to soil C dynamics. We use the acronym MPD (for

Microbial Population and Dynamics) when referring to this group of

parameters.

2. The second group of parameters contains all the parameters that di-

rectly control the production and subsequent diffusion of N and C-based

gases from the soil. We use the acronym GPD (for Gas Production and

Diffusion) when referring to this group of parameters.

3. The third group, contains all the parameters that link the soil’s physical

and chemical condition (e.g. pH, temperature, moisture) to microbial

activity, soil C dynamics and gas production and diffusion. We use

the acronym EC (for Edapho-Climatic) when referring to this group of

parameters.

Tables 1, 2 and 3 present the parameter groups and provide details on the

parameters contained in each group. Further details about the model, its

structure, processes and parameters can be found in Butterbach-Bahl et al.

(2015)
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Table 1: Landscape-DNDC parameters that belong to the MPD group of parameters

Name Lower Boundary Upper Boundary Description

AMAXX 0.9817 1.6362 Microbial death rate
DENIFRAC 0.525 0.875 Microbial denitrifier fraction

EFFAC 0.525 0.875 Fraction of decomposed carbon that goes to the dissolved organic carbon pool
FDL 0.375 0.625 Fraction of decomposed labile litter that is assimilated by microbes instantaniously
FDR 0.2625 0.4375 Fraction of decomposed recalcitrant litter that is assimilated by microbes instantaniously
FDVL 0.4875 0.8125 Fraction of decomposed very labile litter that is assimilated by microbes instantaniously
FNO3 U 0.5625 0.9 Factor steering NO3 availability for microbial assimilation
FRC 0.0375 0.0625 Factor accounting for litter availability dependency on microbial death

KCRB L 0.06937 0.11563 Decomposition constant for labile inactive microbes
KCRB R 0.00167 0.00278 Decomposition constant for recalcitrant inactive microbes
KHDC L 0.00055 0.00093 Decomposition constant for labile humads
KHDC R 0.000277 0.000463 Decomposition constant for recalcitrant humads
KICE 0.5625 0.9375 Ice dependency on effective diffusion coefficient

KLRAW 0.0375 0.0625 Decomposition constant for raw litter
KRCH 2.8e-06 4.6e-06 Decomposition rate for humus pool
KRCL 0.01387 0.02312 Decomposition rate for labile carbon pool
KRCR 0.0056 0.0093 Decomposition rate for recalcitrant carbon pool
KRCVL 0.0694 0.1156 Decomposition rate for very labile carbon pool

MICRRESP 0.06 0.1 Factor determining microbial respiration
MN2O 0.0592 0.0988 Microbial maintenance coefficient for denitrification of N2O
MNO2 0.0263 0.0438 Microbial maintenance coefficient for denitrification of NO2

MNO3 0.0675 0.1125 Microbial maintenance coefficient for denitrification of NO3

MNO 0.0592 0.0988 Microbial maintenance coefficient for denitrification of NO
MUEMAX 3.6547 6.0913 Microbial growth rate
MUE N2O 0.255 0.425 Microbial growth rate for denitrification on N2O
MUE NO2 0.5025 0.8375 Microbial growth rate for denitrification on NO2

MUE NO3 0.5025 0.8375 Microbial growth rate for denitrification on NO3

MUE NO 0.255 0.425 Microbial growth rate for denitrification on NO
PERTL 0.00038 0.00063 Downward transport of labile litter

PERTMAX 0.225 0.375 Limit depth for litter transport
PERTR 8e-05 0.00013 Downward transport of recalcitrant litter.
PERTVL 0.0075 0.0125 Downward transport of very labile litter
RBO 0.15 0.25 Fraction of inactive microbes in active organic material pool
RCEC 34.5 57.5 Factor determining CO2 production during decomposition
RCNB 6.0 10.0 C:N ratio of inactive microbes in active organic material pool
RCNH 9.0 15.0 C:N ratio of humads in active organic material pool
RCNM 7.35 12.25 C:N ratio of humus
RCNRR 180.0 300.0 C:N ratio of resistant residues
RCNRVL 18.0 30.0 C:N ratio of very labile residues

SHR 0.12 0.2 Fraction of labile humads
SRB 0.675 0.99 Fraction of labile inactive microbes
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Table 2: Landscape-DNDC parameters that belong to the GPD group of parameters

Name Lower Boundary Upper Boundary Description

DIFF C 0.1875 0.3125 Diffusion constant for carbon compounds between aerobic an anaerobic microsites
DIFF N 0.375 0.625 Diffusion constant for nitrogen compounds between aerobic an anaerobic microsites

DNDC KMM C DENIT 0.0128 0.0213 Michaelis-menten constant for carbon dependency of denitrification
DNDC KMM C MIC 0.0039 0.0066 Michaelis-menten constant for carbon dependency of microbial growth

DNDC KMM NH4 NIT 6.63e-05 0.0001105 Michaelis-menten constant for NH4 dependency of nitrification
DNDC KMM NO2 NIT 1.88e-06 3.13e-06 Michaelis-menten constant for NO2 dependency of nitrification

DNDC KMM NO3 TRANSNH4 8e-05 0.00013 Michaelis-menten constant for nitrogen dependency of dissimilatory nitrate reduction to ammonium
DNDC KMM N DENIT 0.0622 0.1038 Michaelis-menten constant for nitrogen dependency of denitrification.
DNDC KMM N MIC 0.0014 0.0024 Michaelis-menten constant for nitrogen dependency of microbial growth

DNDC KMM O2 DECOMP 0.225 0.375 Michaelis-menten constant for O2 dependency of decomposition.
D N2O 0.0465 0.0775 Reduction constant for N2O diffusion
D NO 0.0547 0.0912 Reduction constant for NO diffusion

EFF N2O 0.0562 0.0938 Microbial efficiency for N2O denitrification
EFF NO2 0.321 0.535 Microbial efficiency for NO2 denitrification
EFF NO3 0.3008 0.5012 Microbial efficiency for NO3 denitrification
EFF NO 0.1132 0.1888 Microbial efficiency for NO denitrification
FCO2 1 0.9075 1.5125 Factor for CO2 production during humads decomposition process
FCO2 2 1.68 2.8 Factor for CO2 production during humads decomposition process
FCO2 3 1.725 2.875 Factor for CO2 production during humads decomposition process
FCO2 4 0.0638 0.1063 Factor for CO2 production during humads decomposition process
FCO2 HU 0.6 1.0 Factor for CO2 production during humads decomposition process
FTRANS 0.0037 0.0063 Factor steering dissimilatory nitrate reduction to ammonium
KCHEM 6.0 10.0 Reaction rate for chemo-denitrification
KN2O 0.0037 0.0063 Reaction rate for N2O reductase
KNIT 0.75 1.25 Reaction rate for nitrification
KNO 0.0015 0.0025 Reaction rate for NO reductase

NH4 DENIMAX 0.6 1.0 Maximum nitrification fraction of NH4
RCEC 34.5 57.5 Factor determining CO2 production during decomposition



2.3. Model outputs

As part of the sensitivity analyses, at each model evaluation instance,

we collect model outputs for 10 variables, which are presented in Table 4.

In order to examine the sensitivity of each model output to the model’s

parameters at selected timeframes, at the end of each model evaluation, we

collect (1) the annual sum for each variable (e.g. amount of N2O emitted

during a whole year) and (2) seven weekly subsets (e.g. weekly cumulative

soil N2O flux). The seven weekly subsets of outputs are the sum of the daily

outputs during each of the seven weeks. For each site, the first and last day

of the seven weeks period has been chosen in such a way as to include all

days between a few days before the first date of fertiliser application and

a few days after the last date of fertiliser application. Agricultural soils

remain in relative biogeochemical stability when no crop is cultivated and

no fertiliser is added. Under crop growing conditions, the input of fertiliser

to the soil system is the most important trigger of biogeochemical activity.

Therefore, the parametric sensitivity of outputs, and especially those strongly

related to fertiliser use, can be temporally dynamic. Through the use of the

seven weekly sums for each site the impact of fertiliser addition to the soil is

integrated in the SA process. The annual outputs’ sums are used in the SA to

provide a picture of the parametric sensitivities of outputs on an annual basis

while the seven weekly outputs’ subsets to provide snapshots that capture

the temporal variability of the same parametric sensitivities.

2.4. Experimental site data

The model was used to simulate the variables shown in Table 4 at three

experimental arable sites which are located in the UK. The experiments have



Table 3: Landscape-DNDC parameters that belong to the EC group of parameters

Name Lower Boundary Upper Boundary Description

EVALIM 0.3 0.5 Maximum depth of soil layer evaporation
EXP1 NX 1.5 2.0 Factor accounting for soil porosity effect on nitrogen effective diffusion coefficient
EXP1 O2 1.5 2.0 Factor accounting for soil porosity effect on oxygen effective diffusion coefficient
EXP2 NX 1.5 1.875 Factor accounting for soil porosity effect on nitrogen effective diffusion coefficient
EXP2 O2 0.9375 1.5625 Factor accounting for soil porosity effect on oxygen effective diffusion coefficient
FCLAY1 0.105 0.175 Factor for clay dependency of humads decomposition process
FCLAY2 1.7269 2.8782 Factor for clay dependency of humads decomposition process
FPERCOL 0.675 0.9 Fraction of surface water that goes into runoff
FRUNOFF 0.1875 0.3125 Fraction of daily runoff from surface water
MCOEFF 0.0011 0.0019 Maximum snow melting rate
MELTMAX 1.875 3.125 Maximum melted ice fraction per day

M FACT DEC1 0.4462 0.7437 Factor determining dependency of decomposition on water filled pore space
M FACT DEC2 6.0 10.0 Factor determining dependency of decomposition on water filled pore space
M FACT P1 0.3375 0.5625 Factor determining dependency of nitrification on water filled pore space
M FACT P2 30.0 50.0 Factor determining dependency of nitrification on water filled pore space
M FACT P3 0.4125 0.6875 Factor determining dependency of N2O production during nitrification on water filled pore space.
M FACT P4 3.75 6.25 Factor determining dependency of N2O production during nitrification on water filled pore space
M FACT P5 0.1688 0.2813 Factor determining dependency of microbial activity on water filled pore space
M FACT P6 7.5 12.5 Factor determining dependency of microbial activity on water filled pore space
PHCRIT N2O 3.75 6.25 Factor for pH dependency of N2O denitrification
PHCRIT NO2 4.575 7.625 Factor for pH dependency of NO2 denitrification
PHCRIT NO3 4.725 7.875 Factor for pH dependency of NO3 denitrification
PHDELTA N2O 0.4612 0.7688 Factor for pH dependency of N2O denitrification
PHDELTA NO2 1.08 1.8 Factor for pH dependency of NO2 denitrification
PHDELTA NO3 1.14 1.9 Factor for pH dependency of NO3 denitrification

PHMAX 7.5 12.5 Maximum allowed pH value
PHMIN 1.875 3.125 Minimum allowed pH value

PHMIN CHEM 3.75 6.25 Factor for pH dependency of chemodenitrification
PHOPT CHEM 0.45 0.75 Factor for pH dependency of chemodenitrification
PH FACT P2 0.975 1.625 Factor for pH dependency of nitrification
PH FACT P3 0.06 0.1 Factor for pH dependency of nitrification
PH FACT P4 0.75 1.25 Factor for pH dependency of N2O production during nitrification
PH FACT P5 2.8125 4.6875 Factor for pH dependency of chemodenitrification

PSL SC 0.015 0.025 Empirical decrease of hydraulic conductivity of coarse discretized soil layers
PSL WC 0.015 0.025 Base layer depth for evaporation decrease with depth

PT ALPHA 0.825 1.375 Priestley-Taylor coefficient of advection
RCLAY 0.225 0.375 Factor determining clay dependency of soil water evaporation

SLOPE CLAYF 0.05 0.08 Factor determining clay dependency of soil water evaporation
SLOPE FF 0.75 1.25 Specific slope factor for water flux from litter layers
SLOPE MS 2.0 3.0 Specific slope factor for water flux from mineral soil

TEXP 1.293 2.155 Temperature dependency of diffusion between aerobic and anaerobic soil
TF CHEM1 0.075 0.125 Temperature dependency of chemodenitrification
TF CHEM2 0.0975 0.1625 Temperature dependency of chemodenitrification
TF DEC1 2.655 4.425 Temperature dependency of decomposition
TF DEC2 27.75 46.25 Temperature dependency of decomposition
TF DEN1 3.0 5.0 Temperature dependency of denitrification
TF DEN2 30.0 50.0 Temperature dependency of denitrification

TF NUP N2O1 0.04133 0.06888 Temperature dependency of N2O production during nitrification
TF NUP N2O2 7.0575 11.7625 Temperature dependency of N2O production during nitrification
TF NUP NO1 0.017813 0.029687 Temperature dependency of NO production during nitrification
TF NUP NO2 6.675 11.125 Temperature dependency of NO production during nitrification

TREF 33.75 56.25 Reference temperature for NH3 volatilization
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Table 4: Model outputs

Variable Description Unit

N2O Nitrous oxide gas kgN/ha
NO Nitric oxide gas kgN/ha
N2 Nitrogen gas kgN/ha
NO3 Nitrate leaching kgN/ha
NH3 Ammonia gas kgN/ha

N Uptake Nitrogen uptake gas kgN/ha
Soil C Soil carbon kgC/ha

Microbial population Soil microbial biomass kgC/ha
Nitrification Nitrification rate kgN/ha
Mineralisation Nitrogen mineralisation rate kgN/ha

taken place in 2011 at two of the sites and in 2010 at the third one. Table 5

presents information about the soil, management and climatic conditions at

the three experimental site.

3. Results

3.1. Results on annual basis

The estimated ST s for each site and variable showed that only few param-

eters had a noticeable effect on the examined model outputs (see Appendix

for detailed results). Based on these results, we can be confident that the

most important model parameters have been identified and that the edapho-

climatic conditions have not affected the ranking of the most important pa-

rameters relative to the examined outputs.

In order to present how the three groups of parameters (i.e. MPD, GPD

and EC) affect the examined model outputs we extracted, for each site and
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Table 5: Experimental sites information

Terrington Edinburgh Gleadthorpe

Latitude/Longitude 52.75/0.3 55.86/-3.2 53.21/-1.07
Year 2011 2011 2010
Crop Winter Wheat Spring Barley Spring Barley

N applied (kg/ha) 280 144 130
Julian day(s) of N application 75/94/108 100/144 81/110

N applied per application (kgN/ha) 60/110/110 40/104 40/90
Bulk Density 1.34 1.26 1.43

Texture Sandy Loam Clay Loam Sandy Loam
Clay (%) 11 34 11
Soil C (%) 1.8 4.9 1.6

pH 8.3 6.7 6.0
Annual precipitation (mm) 472 1312 888
Mean temperature (oC) 12 9 9

output variable, the 20 most important parameters (i.e. 20 highest Sis).

The fact that (i) the ranking of the parameters relative to each variable was

the same across all sites and that (ii) Si quantifies the parameter-induced

variance of an output allowed us to calculate the mean Si for each output-

site combination. This was done in order to merge the information produced

by the SA for each site into a single set of Sis per output. In this way, the

effects of the variation in edapho-climatic conditions across the three sites

were integrated into each estimated mean Si. In this context, by "sensitivity

of output Y " we, hereafter, refer to the mean Si of Y that was estimated

for the three experimental sites. Based on this, the 28 parameters with

the highest Si caused, on average, 87% of output sensitivity. While the

magnitudes of the estimated ST s vary between sites the relative importance
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of the parameters (i.e. their ranking) does not. Figure 2 presents 10 pie

charts (one for each model output) that show the contribution of each group

of parameters to the variation in the respective model output. These results

show that the GPD group of parameters has a noticeable contribution to the

sensitivity of simulated emissions of gases (N2O, NO, N2, NH3) in contrast

to a minor contribution to that of the rest of the outputs. Surprisingly, the

parameters related to gas production and diffusion (GPD group) also play

a noticeable role in the sensitivity of NO3 prediction. The EC and MPD

groups of parameters have significant contribution to all model ouputs. EC

parameters appear to be particularly important for NH3, NO3, soil C and N

uptake while MPD parameters appear to be most important for microbial

population, mineralisation and nitrification.

To supplement Figure 2 and look into the role individual parameters

we collected those parameters that were found to be important relevant to

each of the examined outputs (i.e. 28 highest ranked parameters). We then

quantified their relative contribution (%) to the sensitivity of each output.

In order to quantify the total parametric sensitivity of an output we used the

sum of all estimated Sis for that output (i.e. mean Si across the three sites).

Figure 3 presents the most important model parameters per parameter group

and their relative contribution to the sensitivity of the 10 examined model

outputs.

3.1.1. N-based gases

The N2O, NO, N2 and NH3 charts in Figure 2 show that most of the

variation that is caused to the simulated emissions of N-based gases is due

to the MPD and EC parameters. This is expectable not only because these
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Figure 2: Contribution of each parameter group to the sensitivity of the examined model
outputs
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two groups, when combined, make up the majority of the model’s parameters

but also because they affect the size and state of the N-based soil substrate.

In this context, it should be noted that fewer parameters are included in

the GPD group compared to the MPD and EC groups. Taking this fact

into account, the noticeable contribution of the GPD group of parameters to

the sensitivity of simulated N-gases (ie. on average 19%) is reflective of the

importance of those model parameters that directly control the processes of

gas production and diffusion. The parameters that make up the GPD group

vary between the different types of gases and no individual parameter stands

out as being of noticeable importance. The only exception is the dominant

role of the parameter that defines the gross rate of nitrification (i.e. KNIT)

in relation to the prediction of NH3 volatilisation; where it caused around

70% of the total GPD-induced sensitivity of the simulated NH3.

In terms of the MPD group of parameters, its contribution is mainly

due to the impact of 3 parameters: (1) the microbial death rate parameter

(AMAXX) which controls the amount of soil microbes; (2) the parameter

(EFFAC) that defines the fraction of decomposed C that goes to the dissolved

organic C pool which is in turn the life source for the soil’s microbes and

(3) the parameter (DENIFRAC) that defines how many nitrifying microbes

become denitrifiers under anaerobic conditions. The contribution of the EC

group of parameters is mainly due to a couple of parameters which relate the

soil’s temperature (TF DEC) and moisture (M FACT DEC) to decomposition

and its pH (PHCRIT) to denitrification. In the case of NH3 the parameter

that directly links the soil’s temperature to the volatilisation proneness of

NH3 (TREF) is also a very important role (represented 20% of the total
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contribution of the EC group to NH3).

3.1.2. NO3 leaching

The model’s prediction of NO3 leaching from the soil is to a significant

extent affected by the same EC parameters that affect the model’s prediction

of N-gases. In terms of the MPD group of parameters, EFFAC was found

to be the single most important MPD parameter (represented almost half of

this group’s overall contribution). The GPD group of parameters contributed

by 15% to the sensitivity of the simulated NO3. This share may seem large

considering that NO3 is not a gas but it is explained by the fact that GPD

parameters affect not only the diffusion of gases in the soil but also their

production. In this context, GPD parameters can indirectly determine the

amount of leachable NO3 by affecting how much is produced via nitrification

and lost to the atmosphere via denitrification.

3.1.3. N uptake

The uptake of N by plants is largely influenced (59%) by the values given

to the EC parameters. This is mainly due to the simplistic approach that

Landscape-DNDC uses to describe plant N update according to which plants

have a priority over the soil’s N and their ability to take up nutrients and

grow can be constrained by the soil’s water content (e.g drought conditions).

It is therefore easy to see why the parameters that make up the EC group

in relation to N uptake included a set of parameters that influence the soil’s

moisture level (i.e. SLOPE MS, PSL WC, M FACT and RCLAY). Similar to

what was seen for the MPD group for NO3 and the N-based gases, EFFAC

was found to be at the top of the list of the most important MPD parameters.
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A few parameters that control the turnover of the soil’s most active C pools

(including the microbial pool) were also among the most important of MPD

group. On the other hand, GPD parameters are not strongly related to N

uptake and thus had a minor contribution to its sensitivity.

3.1.4. Soil C

EC (52%) and MPD (40%) parameters are almost entirely responsible for

the sensitivity of the simulated soil C. The contribution of the EC group is

mainly made up by four parameters, of which two are used to link soil mois-

ture conditions to C decomposition (M FACT DEC1 and M FACT DEC2)

and two are used to link the soil’s temperature to C decomposition (TF

DEC1 and TF DEC2). On the other hand, the impact of the MPD group is

mainly due to the EFFAC parameter and a few parameters that are related

to the turnover of the soil’s microbial sub-pools (i.e. RCNH, RBO, KCRB

L)

3.1.5. Microbial Population, Nitrification and Mineralisation

The simulation of microbial population is closely associated to the that

of nitrification and mineralisation because microbes drive both of these pro-

cesses. This fact is clearly imprinted in the results of the SA which show very

similar patterns with MPD parameters contributing 50-60% of the sensitivity

of these outputs and EC contributing most of the remaining part. Similar

to what was found for soil C, the EC group is made up by those parameters

that relate the soil’s moisture and temperature to C decomposition (i.e. M

FACT DEC and TF DEC). In the same way, the MPD group is made up by

the EFFAC parameter and two parameters that are related to the turnover
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of the soil’s microbial sub-pools (RBO and RCNB). Finally, it was observed

that the GPD group of parameters plays a minor role in relation to the sim-

ulation of microbial population (8%), nitrification (6%) and mineralisation

(2%)
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Figure 3: Heatmap of the relative contribution (%) of the 28 most important model parameters to the sensitivity of each
output (i.e. the sum of the estimated Sis per output). By "all groups - all other parameters" we refer to the contribution of
the remaining 95 model parameters to the sensitivity of an output. All values were rounded before being added to the table.
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3.2. Results on weekly basis

Weekly model outputs were used in this study in order to examine the role

of the temporal resolution of model outputs to the SA results. This exami-

nation is performed by comparing (1) the list of important model parameters

(i.e. high ST ) as estimated by the SA when using the weekly-resolution model

outputs to (2) the list of important parameters as estimated when using the

annual-resolution model outputs. In order to quantify the similarity between

weekly and annual-based SA results we use a metric that we name similarity.

The similarity value is estimated following a 4-step process:

1. For each of the three examined sites and for each of the seven sets

of weekly-based SA results we collect the 10 and 50 most important

parameters (i.e. highest ST ).

2. For each of the three examined sites we collect the 10 and 50 most

important parameters in the annual SA results.

3. We quantify (and express as %) how many of the parameters that

appear in the top 10 and 50 annual-based SA results also appear in the

respective weekly-based SA results

4. We calculate the average top 10 and top 50 similarity (%) for each

variable across all sites

By comparing the similarity of the 50 most important parameters on an

annual basis with the 50 the most important parameters on a weekly basis

(expressed as the top 50 similarity %) we can identify how many parame-

ters appear as important on a weekly basis but their importance becomes
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Figure 4: Similarity (%) of the top 10 and the top 50 most important model parameters
between the weekly-based and the annual-based SA results
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"muted" at an annual basis. The lower the top 50 similarity % is the more

the parameters that appear as important only on the weekly-based SA re-

sults. In a similar way, by juxtaposing the top 10% similarity values with

the top 50 similarity % values we can assess how important is the role of

these "muted" parameters during the 7-week period. A large difference (i.e.

> 30%) between the top 10 and the top 50 similarity % combined with a low

top 50 similarity % suggests that a lot of the "muted" parameters have a

higher-than-average ranking; thus important parameters were not captured

by the annual-based SA.

The results (Figure 4) suggest that the 50 most important parameters that

were identified as such by using the model’s outputs at an annual resolution

make up around 4/5 of those identified as important when using outputs at

a weekly resolution. The picture looks more complex if we look at the top

10 parameters, where roughly 2/3 of the annually-important parameters are

found in the weekly-important parameters’ lists. On this basis, it can be

argued that the relative importance of a considerable number of the high-ST

parameters (of the annually-based SA results) exhibit a temporally dynamic

behaviour, which is revealed when examining output sensitivity at a higher

temporal resolution (i.e. weeks).

Additionally, the weekly-resolution SA results prove that losing sight of

parameters that are important relative to certain outputs when utilising the

annual-resolution outputs in the SA, is a possibility. For example, one would

have probably concluded that the top 50 (or 10) parameters that came out of

the SA analysis using annual-resolution model outputs for NO3 leaching are,

in fact, the 50 (or 10) most important parameters. However, a low similarity
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of both the top 10 and top 50 parameters for NO3 leaching suggests that there

are almost as many parameters (i.e. 10 and 50) that affect the simulated NO3

leaching but were not captured by the annual-based SA. This is explained

by the fact that NO3 leaching is strongly influenced by heavy precipitation

events. While NO3 leaching stands out we could also argue that N-based

outputs are somehow affected by parameters that become "muted" when

we look at the annual-based SA results (more acute for NO3, NH3 and N

uptake).

4. Discussion

4.1. Parameter groups

The results of this study showed that the parameterisation of the pro-

cesses that describe the growth and death of soil microbes play significant

role in how the model simulates the examined variables. The MPD group of

parameters is particularly important in the simulation of the soil’s microbial

population and of the associated processes of mineralisation and nitrifica-

tion. Moreover, MPD parameters were proven to be important in terms

of the model’s prediction of N2O, N2 and NO3 leaching. Soil N2O fluxes

and NO3 loss via leaching are the most crucial types of N loss in agricultural

ecosystems and for this reason any effort that reduces the uncertainty around

MPD parameters can lead to more robust model predictions (i.e. calibration

using measured data).

The MPD parameters that had the strongest impact on simulated N2O

and NO3 (i.e. AMAXX, EFFAC) represent difficult-to-measure aspects of

the soil’s biogeochemical processes. Deriving better estimates on the "true"
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value of these three parameters can come through (1) measuring the ratio of

CO2 to dissolved organic C (DOC) that is released during the decomposition

of organic matter (for the EFFAC parameter) and (2) a measurements-based

estimate of how resilient soil microbes are. Such measurements can be taken

in a laboratory environment but are not possible in field conditions, which

creates the need for identifying and measuring suitable proxies. In general,

the fact that our knowledge about the dynamics of the soil’s microbial pop-

ulation is rather limited, and mostly lab-based, has been widely recognised

(Wang and Chen, 2012; Butterbach-Bahl and Dannenmann, 2011; Sutton

et al., 2011). Our results, though specific to the Landscape-DNDC model,

show that this lack of knowledge can be consequential in terms of model-

based prediction of N2O emisisons and NO3 leaching.

It should be noted that the most important MPD parameter (i.e. EFFAC)

strongly affect all of the examined outputs. This means that by modifying the

values of this parameter the user can increase/decrease the size and reactiv-

ity of the soil’s microbes, which will almost directly lead to increase/decrease

in the N and C-based outflows (e.g. total annual CO2, N2O etc) from the

system. However, altering this and other influential MPD pameters (e.g.

AMAXX, microbial pool C:N ratio parameters) will not affect the temporal

patterns of the various N and C-based outputs strongly because these pat-

terns are mainly controlled by environmental conditions (e.g. precipitation

events) and human management (e.g. fertiliser application dates).

The temporal patterns of the N-based outputs are particularly affected

by the GPD group of parameters. This is mostly due to the fact that in

Landscape-DNDC the soil is split into a user-defined number of layers of
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varying thickness. This soil discretisation by depth also means that the

modelled processes (e.g. water, nutrient and gas movement) are calculated

on a layer-by-layer basis. As a result, the presence of any N-based gas in

a certain soil layer partly depends on how much gas was diffused into that

layer. The fact that no single parameter appears to dominate the GPD

group means that it is the combination of GPD parameters that defines the

amount N-based outflows (e.g. N2O, N2). While parameters that control gas

production processes were shown to be important (e.g. KNIT, EFF NO2), the

model’s few gas diffusion-related parameters are also playing a role (DNO,

DN2O) and so do parameters that relate the soil’s physical structure to gas

diffusion (i.e. EC parameters like EXP1 NX). In general, most of the GPD

parameters are related to rather well-studied aspects of soil biogeochemistry

(Butterbach-Bahl and Dannenmann, 2011).

The EC group includes parameters that describe the role of the soil’s

physical and chemical conditions on the various modelled processes. These

are parameters for which our experiment-based understanding is quite ex-

tensive and EC parameters are essentially the quantitative interpretation

of how we believe soil conditions relate to microbe-mediated nutrient trans-

formations (i.e. mineralisation, immobilisation, decomposition) (Kesik et al.,

2006). These parameters were found to be particulary important for the sim-

ulation of N uptake, soil C, NH3 volatilisation and NO3 leaching. The most

important of the EC group of parameters were found to be those that link

the soil’s pH, temperature and moisture content with the decomposability of

the soil’s C and N substrate.
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4.2. Edaphoclimatic conditions and time-dependency

The framework that was used to quantify the parametric sensitivity of

Landscape-DNDC guaranteed that the final results are not biased by the

edapho-climatic conditions of a single site. The SA was performed indepen-

dently on three UK arable sites and produced exactly the same parameter

ranking (i.e. ST and Si per output). This means that the edapho-climatic

conditions in the three sites had a similar effect on the model’s parametric

sensitivity. However, this should not be considered as a universal observa-

tion and we believe that the use of more than one site should be part of SA

studies (van Werkhoven et al., 2008). In particular, the use of field data from

multiple sites in model sensitivity analysis (and calibration) should be con-

sidered as a prerequisite for the application of agroecosystem models at large

spatial scales (e.g. sub-national). Following this approach is the only way

to guarantee that the soil and climate conditions in a single agroecosystem

have not lead to conclusions that are unrepresentative of the larger area.

In terms of the time-dependency of the estimated SIs our approach was

simple and intended to demonstrate a method to obtain a measure of how

temporally dynamic the influence of parameters is in relation to each exam-

ined output. The examination of the results of this analysis in more detail

was beyond the scope of this study. However, this simple approach allowed

us to notice that the sensitivity of certain outputs (e.g. NO3 leaching and N

uptake) should be examined on a weekly rather than an annual basis in order

to avoid the risk of overlooking important parameters. Considering the fact

that our output aggregation was based on the timing of fertiliser application

we identified outputs whose parametric sensitivity is influenced by fertiliser
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addition either more weakly (i.e. soil C, microb population, mineralisation,

nitrification) or more strongly (i.e. all other outputs but particularly NO3,

N2O, NO and N uptake). In this context, we could also argue that the para-

metric sensitivity of outputs of processes that are simulated by the model

first (e.g. allocation of C and N into modelled pools) shows a small time-

dependence compared to processes that are simulated at later stages (e.g.

gas production and diffusion through the soil).

4.3. Process-based agroecosystem BGC models

This study can serve as a guide to users of the Landscape-DNDC model

who want to calibrate the model and/or want to quantify the parameter-

induced uncertainty around its outputs (i.e. reduce parameters included

in uncertainly analysis). Because the calibration of any number of model

parameters will affect more outputs than simply the output of interest (typi-

cally a single output) it is important to have an understanding of which other

outputs are particularly sensitive to the parameters that will be calibrated.

In this context, this study provides a quantitative picture of the parametric

sensitivity of key ouputs of Landscape-DNDC. Considering the similarities

(i.e. conceptual, parameters and processes) between Landscape-DNDC and

other DNDC-based models, the results of this study can be a starting point

for future parametric SAs and calibration studies using other DNDC-based

models.

While DNDC-based models are widely used to predict yields, soil C and

greenhouse gas emissions there is a lack of studies on the parametric sen-

sitivity of their outputs. We were unable to identify studies that focus on

agroecosystems and examine the parametric sensitivity (full set of parame-
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ters) of a DNDC-based model. Rahn et al. (2012) presented the only study, to

our knowledge, that considered the role the parameters on the predictions of

Landscape-DNDC albeit focusing on forests and on model calibration against

CO2, NO and N2O data. Among the 25 key parameters that were used in

Rahn et al. (2012) we found most of the parameters that were identified as

being important in our study. Qin et al. (2013) performed input SA analy-

sis on the prediction of soil C, N2O and wheat yieds by DNDC model and

found that a small number non-weather input parameters affected the exam-

ined outputs significantly. In one of the few parametric sensitivity studies

using a process-based agroecosystem BGC model, Necpálová et al. (2015)

examined the sensitivity of soil C and N2O predicted by the DayCent model.

In agreement with some of our findings, Necpálová et al. (2015) found that

only a few parameters affected the examined outputs noticeably while the

impact of microbe-related parameters (i.e. parameters that would have been

in our MPD group) was stronger in relation to N2O prediction than it was

in relation to soil C prediction, for which edaphoclimatic parameters played

dominant role (i.e. parameters that would have been in our EC group).

5. Conclusions

This study showed that relatively few parameters control the parametric

sensitivity of the outputs of Landscape-DNDC. Among them, the parame-

ters that control the population and dynamics of soil microbes (MPD group)

and those that link soil conditions (e.g. pH, temperature) to biogeochemical

processes (EC group) are the prime causes of output sensitivity. The param-

eters that control the production and diffusion of gases in the soil (GPD),
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being the smallest in term of the number of parameters included, was proven

to be particularly important for the prediction of greenhouse gas emissions.

Because the different processes described in the model have been studied in

varying extends we argue that focusing on reducing the uncertainty around

the MPD parameters represents a well-grounded way to improve the quality

of the model’s outputs and its overall performance. Moreover, our compari-

son of the annual-based and the weekly-based SA results showed that there

are variables for which the list of important parameters can change consider-

ably when the temporal resolution of the outputs changes from being a whole

year to being one or more weeks. This fact highlights the role played by the

temporal resolution of the outputs used in SAs and should be considered as

a model-independent observation.

We believe that the systematic approach to SA presented in this study

offers two advantages compared to simpler approaches. Firstly, role-based

grouping of model parameters makes the results of sensitivity studies more

understandable and easy to communicate while it can be particularly useful

when deciding where to focus model calibration (i.e. which processes and

related parameters). Secondly, the comparison of the weekly-based against

the annually-based SA results, while not exhaustive, adds to the validity of

the conclusions of an SA study. In this context, we argue that SA stud-

ies of agroecosystem BGC models should take into account the fact that

time-dependency of the sensitivity indices for certain types of outputs (e.g.

greenhouse gas emissions) can be significant and therefore should be consid-

ered explicitly. Finally, we suggest that SA studies on agroecosystem models

would be more robust if, as was done here, the simulations are performed in
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more than one site in order to ensure that the role of ecosystem heterogeneity

is considered.
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Appendix



Figure 5: Sobol total (ST ) sensitivity indices (20 most important parameters) for N2O, NO and N2. Red: Edinburgh, Yellow:
Gleadthorpe Green: Terrington



Figure 6: Sobol total (ST ) sensitivity indices (20 most important parameters) for N uptake, NH3 and NO3 leaching. Red:
Edinburgh, Yellow: Gleadthorpe Green: Terrington



Figure 7: Sobol total (ST ) sensitivity indices (20 most important parameters) for soil C, mineralisation, nitrification and
microbial population. Red: Edinburgh, Yellow: Gleadthorpe Green: Terrington


	Introduction
	Materials and methods
	The Sobol method
	Landscape-DNDC
	Model outputs
	Experimental site data

	Results
	Results on annual basis
	N-based gases
	NO3 leaching
	N uptake
	Soil C
	Microbial Population, Nitrification and Mineralisation

	Results on weekly basis

	Discussion
	Parameter groups
	Edaphoclimatic conditions and time-dependency
	Process-based agroecosystem BGC models

	Conclusions
	Acknowledgements
	References

