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Novel templating method to create 3D bicontinuous structured hybrid electrolytes with improved 

mechanical properties for all-solid-state lithium batteries. 

 

 

Abstract  

 

Hybrid solid electrolytes, composed of 3D ordered bicontinuous conducting ceramic and 

insulating polymer microchannels are reported. The ceramic channels provide continuous, 

uninterrupted pathways, maintaining high ionic conductivity between the electrodes, while the 

polymer channels permit improvement of the mechanical properties from that of the ceramic 

alone, in particular mitigation of the ceramic brittleness. The conductivity of a ceramic 

electrolyte is usually limited by resistances at the grain boundaries, necessitating dense 

ceramics. The conductivity of the 3D ordered hybrid is reduced by only the volume fraction 

occupied by the ceramic, demonstrating that the ceramic channels can be sintered to high 

density similar to a dense ceramic disk. The hybrid electrolytes are demonstrated using the 

ceramic lithium ion conductor Li1.4Al0.4Ge1.6(PO4)3 (LAGP). Structured LAGP 3D scaffolds with 

empty channels were prepared by negative replication of a 3D printed polymer template. Filling 

the empty channels with non-conducting polypropylene (PP) or epoxy polymer (epoxy) creates 

the structured hybrid electrolytes with 3D bicontinuous ceramic and polymer microchannels. 
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Printed templating permits precise control of the ceramic to polymer ratio and the 

microarchitecture; as demonstrated by the formation of cubic, gyroidal, diamond and spinodal 

(bijel) structures. The electrical and mechanical properties depend on the microarchitecture, the 

gyroid filled with epoxy giving the best combination of conductivity and mechanical properties. 

An ionic conductivity of 1.6 x 10-4 S cm-1 at room temperature was obtained, reduced from the 

conductivity of a sintered LAGP pellet only by the volume fraction occupied by the ceramic. The 

mechanical properties of the gyroid LAGP-epoxy electrolyte demonstrate up to 28% higher 

compressive failure strain and up to five times the flexural failure strain of a LAGP pellet before 

rupture. Notably, this demonstrates that ordered ceramic and polymer hybrid electrolytes can 

have superior mechanical properties without significantly compromising ionic conductivity, 

which addresses one of the key challenges for all-solid-state batteries.  
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Introduction 

 

Despite the success of today’s lithium-ion batteries, advances in the technology are necessary to meet 

the needs of future markets.1,2 One of the major requirements is the replacement of the liquid electrolyte 

with a solid electrolyte; a statement that is easy to make but hard to realise in practice. The advantages 

of a solid electrolyte compared with an organic-based liquid are safety (since the latter is flammable), 

the possibility of increased energy density (if a solid electrolyte can enable the use of a lithium metal 

anode), and potentially improved cycling, calendar life and rate performance.3 However, the problems 

faced by all-solid-state cells are considerable and are well described in recent reviews.4,5,6,7 One of the 

greatest barriers to this technology is the problem of developing a solid electrolyte that combines high 

conductivity with suitable mechanical properties.8,9,10 

Two major classes of solid electrolyte are being considered, ceramic and polymer electrolytes. The 

latter exhibit the typical properties of polymers, i.e. softness and elasticity allowing it to accommodate 

volume changes/stresses on cycling without breaking and maintain contact with the electrodes, but 

despite efforts their conductivity has remained too low (at <10-4 S cm-1); the softness also permits Li 

dendrite propagation. Ceramic electrolytes have seen major advances in conductivity, with the 

sulphides, in particular, achieving conductivities comparable to liquids and perhaps greater than them 

below ambient.11 However, ceramics exhibit typical mechanical properties that make maintaining 

fracture free membranes that retain contact with the electrode a challenge. In short, the transition to 

solid electrolytes introduces the problem of mechanical properties and each class of solid electrolyte 

presents its own, largely complementary advantages and disadvantages.  

In recognition of this complementarity, efforts have been made to combine ceramic and polymer 

electrolytes to form composite electrolytes, in the expectation that they would deliver the best of both 

worlds. It is known that adding ceramic fillers to polymer electrolytes12,13,14,15 can enhance conductivity, 

due to space charges at the ceramic/polymer electrolyte interface.16 Recent work on ceramic/polymer 

composite electrolytes has included the synthesis of electrospun nanofibers of an ionically conducting 

ceramic (garnet) imbedded in a polyethylene oxide matrix. This approach provides continuous, 

conductive ceramic channels across the membrane without interruption by the conductive polymer 

matrix.17 Alignment of ceramic ionically conducting nanowires in polymer electrolytes normal to the 

electrodes has shown to increase the conductivity even further compared to random particles, mainly 

due to alignment of the space charge enhanced conduction along the ceramic/polymer interface.18 

Connected Li1-xAlxTi1-x(PO4)3 nanoparticles, vertically aligned by ice templating in a polymer electrolyte 

matrix also showed enhanced conductivity.19 One-particle thick flexible hybrid membranes composed 

of Li1.6Al0.5Ti0.95Ta0.5(PO4)3 (LATTP) particles embedded in a cyclo olefin polymer matrix have also been 

reported.20 

Here we investigate a different approach which gives full control of the ceramic-polymer ratio and 3D 

structure. We use 3D printing to form structured hybrid electrolytes comprising 3D ordered bicontinuous, 

interlocking channels: one filled with a ceramic electrolyte, ensuring continuous channels for ion 

transport across the electrolyte, the other filled with an electrically insulating polymer, to tune the 

mechanical properties. 3D conducting channels are more resilient to the effects of cracking than 1D 
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channels such as nanowires. A break in the latter renders that channel non-conductive, whereas 3D 

channel connectivity maximises the probability of alternative routes for the current around the break.  

As many materials cannot currently be processed directly into 3D bicontinuous microarchitectures by 

means of printing or lithographic processes, 3D printed polymer frameworks as structure-directing 

supports and sacrificial templates are utilised here.21,22,23 Until recently, choice of templates was limited, 

and synthetic opals were often used as templates to create structured scaffolds of solid electrolytes24 

and electrodes25,26. Now, the advent of 3D printing and stereolithography permits, in principle, the 

controlled design and formation of a diverse range of precise microarchitectures.27,28,29 Even though the 

presented approach is not scalable with current printing technology, its power lies in the ability to 

precisely control the geometry and size in order to identify the optimised structure, which may 

subsequently be synthesized by more scalable methods. Our approach promises to be applicable 

generally to other solid electrolytes, most of which cannot be handled in air. In comparison, LAGP is 

only moderately air sensitive, which facilitates the investigation of new design concepts such as the one 

presented here, and was, therefore, chosen for this study. 

In the following, we present the process by which we form 3D bicontinuous structured hybrid electrolytes 

with the ceramic solid electrolyte LAGP in one channel and an insulating polymer in the other. The 

properties of these structured hybrid electrolytes are investigated by electrochemical impedance 

spectroscopy, galvanostatic cycling and mechanical testing. Notably, their performance depends on the 

microarchitecture (cube, gyroid, diamond, bijel-derived) and the type of polymer (epoxy polymer, 

polypropylene). Our results reveal that the gyroid LAGP-epoxy electrolyte supports an ionic conductivity 

(1.6 x 10-4 S cm-1) on the same order of magnitude as an LAGP pellet, but has superior mechanical 

properties, e.g. achieves up to five times the flexural failure strain of an LAGP pellet before rupture. 

 

Results and Discussion 

 

Synthesis of structured hybrid electrolytes 

A schematic overview of the synthesis sequence used to create structured hybrid electrolytes with 3D 

bicontinuous microarchitectures is exemplified in Figure 1 by the cube design. The schematic is 

accompanied by a series of scanning electron microscopy (SEM) images depicting each synthesis 

stage for the cube LAGP-epoxy electrolyte. Computationally designed microarchitectures are used to 

fabricate the corresponding 3D printed polymer templates by stereolithography. Then, the empty 

channels of the templates are filled with LAGP powder. Calcination in air removes the template by 

combustion and sinters the LAGP phase, forming the structured LAGP scaffold. Finally, the empty 

channels created by combustion of the template are filled with an insulating polymer, thus creating the 

structured hybrid electrolytes with designed 3D bicontinuous ceramic and polymer microchannels.  
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Figure 1. Schematic of the templating procedure used for the synthesis of structured hybrid electrolytes 

with the example of the cube microarchitecture. Corresponding SEM images of each synthesis stage 

of cube LAGP-epoxy electrolytes are included below each schematic. 

 

Design and Stereolithography of 3D printed templates 

Four microarchitectures were investigated in this way: a cube, gyroid, diamond and bijel-derived 

microarchitecture. The cube microarchitecture is one of the geometrically simplest conceivable 3D 

bicontinuous structures. The orthogonality of conduction channels, however, leads to an inefficient use 

of part of the LAGP phase. Finite element modelling has shown that higher overall conductivity can be 

expected from gyroid and diamond microarchitectures due to a decrease in the tortuosity factor from 

1.6 in the cube microarchitecture to 1.2 in gyroid and diamond microarchitectures when assuming a 

solid electrolyte volume fraction of 70% (Sup1).  

To compare these ordered microarchitectures with a random channel arrangement, a bijel-derived 

microarchitecture was also included in this study. As detailed in Sup2, bijels are prepared by spinodal 

liquid-liquid demixing in the presence of neutrally wetting colloidal particles, which sequester at the 

liquid-liquid interface and halt further phase separation upon interfacial jamming.30 After monomer 

infusion and polymerization of one of the liquid channels, followed by draining off both liquids31, they 

can, in principle, be used directly as 3D templates. However, in order to remain consistent, all templates 

used in this study were created by stereolithography. The bijel-derived microarchitecture was based on 

an X-ray computed tomography (CT) scan of a polymerized bijel, whereas the three designs are 

generated solely computationally as detailed in Sup3.  

IP-S photoresist was used in stereolithography of the four template microarchitectures. Figure 2 shows 

SEM images of the 3D printed templates and renderings of micro-CT scans of their microarchitectures. 

The overall dimension of the printed templates is approximately 1.2 mm x 1.2 mm x 2.4 mm, which is 

about 5% smaller than the computational design, probably due to shrinkage occurring during template 

printing and development. The 3D printed templates are made from a repeated arrangement of cubic 

print blocks containing a specific number of structural units that are designed to have the desired 

structural parameters. The overall size of the samples may easily be changed, e.g. a template size of 
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3.0 mm x 3.0 mm x 1.1 mm is used for electrochemical tests and 14.8 mm x 3.0 mm x 0.6 mm is used 

for four-point bending tests. 

The properties of the structured hybrid electrolytes relate directly to their microarchitecture and the sizes 

of the 3D bicontinuous polymer and ceramic channels. Hence, the 3D printed templates are designed 

with about 15% solid volume fraction (i.e. 85% porosity) so that the final structured hybrids consist 

mostly of ion-conducting ceramic, retaining good ionic conductivity through the structured hybrid 

electrolytes. The average empty channel diameter of the four template microarchitectures is designed 

to be 67 µm. Together, these values define the average wall thickness (diameter of the printed polymer 

channel) of each microarchitecture: approximately 20 µm (Table 1). Ultimately, these feature sizes are 

too large, as one would hope to create solid electrolyte films of about 10 µm in thickness with a 

submicron feature size. Here, we demonstrate the concept and feasibility of the presented structured 

hybrid electrolytes. Further studies will explore ways of reducing channel size and film thickness. 



7 
 

 

Figure 2. SEM images of the 3D printed templates and 3D renderings of X-ray micro-CT scans of the 

inside of the templates (bottom row) with cube, gyroid, diamond and bijel-derived (left to right) 

microarchitectures prepared by stereolithography. 

 

Synthesis of structured LAGP scaffolds 

Creating the negative replicas of the 3D printed templates poses a significant synthesis challenge to 

correctly capture the open 3D bicontinuous microarchitecture, with channels tens of micrometres in 
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size, as well as the overall rectangular solid shape on the millimetre scale. For a successful negative 

replication in order to obtain good ionic conductivity, achieving a high degree of filling of the 3D printed 

template channels with the desired material is essential. The required level of filling cannot be achieved 

simply by using a precursor solution to form the ceramic by a sol or sol-gel route. The volume of the 

solid residue would be much less than its precursor solution, leading to a very low filling fraction of the 

channels. To increase the filling of the 3D printed template, we developed a methodology that involves 

filling the channels with calcined LAGP powder with a particle size <5 μm (Sup4), which is substantially 

smaller than the empty channels in the 3D printed templates, which are on average 67 μm in size. 

LAGP powder is prepared with the Pechini method, which is a sol-gel process involving a chelating 

polymer that is effective in distributing the ions on the atomic scale.32 The obtained LAGP powder is 

ball milled to reduce particle size, dispersed in methanol and then inserted into the template channels 

by repeated centrifugation and sonication. This procedure helps to avoid blocking of the channels with 

LAGP powder during filling and increases the speed of sedimentation and compaction of LAGP. SEM 

images demonstrate that the 3D printed templates are filled with LAGP powder (Sup5). Note that other 

dispersants such as ethanol or water were much less effective than methanol (Sup5). Heating in air 

combusts the template and sinters the LAGP powder to form a LAGP scaffold with 3D interconnected 

microarchitecture (Figure 3). Comparing the SEM images in Figure 2 and Figure 3 indicates that the 

LAGP scaffold is successfully formed for all four template designs. To confirm that our process results 

in an LAGP scaffold that is an accurate negative replica of the respective template, we also show X-ray 

micro-CT renderings of the inner parts of the templates and scaffolds in Figure 2 and Figure 3, 

respectively. 

To quantify the quality of the various synthesis steps, Table 1 compares structural parameters of the 

template designs, the 3D printed templates, the 3D printed templates filled with LAGP and the structured 

LAGP scaffolds. An extended list of structural parameters is given in Sup6. The overall sample volume 

decreases by 28-34% from template design to ceramic scaffold. This includes <6% shrinkage during 

3D printing, an initial volume increase by 13-24% during filling of the 3D printed template and a 

subsequent decrease by 35-44% during template combustion and ceramic sintering. The 3D printed 

templates are designed to have similar solid volume fraction and porosity. As the structured LAGP 

scaffold has an empty channel system created by the template, the porosity, LAGP thickness and empty 

channel size of the structured scaffold are determined by the solid volume fraction, empty channel size 

and wall thickness of the 3D printed template. The corresponding thickness and channel size 

distributions of the bijel-derived microarchitecture are broader than of the cube, gyroid and diamond 

microarchitectures (Sup7). This is to be expected as the bijel-derived microarchitecture was taken from 

a micro-CT scan of an actual bijel sample after polymerization. As bijels are formed by halting liquid-

liquid phase separation, some variance in geometric properties is to be expected. 30,31 
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Figure 3. SEM images of the structured LAGP scaffolds and 3D renderings of X-ray micro-CT scans of 

the inside of the LAGP scaffolds (bottom row) with cube, gyroid, diamond and bijel-derived (left to right) 

microarchitectures. 
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Table 1. Parameters that characterize the 3D printed templates and structured LAGP scaffolds.*  

  Cube Gyroid Diamond Bijel 

3D printed template Volume shrinkage during printing / % 0 2 6 2 

Template LAGP filled Volume expansion during filling / % 16 16 13 24 

Structured LAGP scaffold Volume shrinkage during sintering / % 44 40 35 40 

Structured LAGP scaffold Overall volume shrinkage / % 34 32 31 28 

      

Template design Solid volume fraction / % 15.6 15.6 15.4 15.6 

Structured LAGP scaffold Solid volume fraction / % 71.4 72.6 72.5 78.2 

      

Template design Average empty channel diameter / μm 66.1 66.4 67.8 69.0 

Structured LAGP scaffold Average LAGP thickness / μm 44.2 44.0 42.0 59.5 

      

Template design Average wall thickness / μm 15.1 20.4 19.9 22.5 

Structured LAGP scaffold Average empty channel diameter / μm 20.4 20.8 18.4 22.3 

      

Structured LAGP scaffold Weight / mg 5.54 6.60 5.90 5.94 

Structured LAGP scaffold Volume / mm3 2.27 2.78 2.59 2.50 

Structured LAGP scaffold Density / mg mm-3 2.44 2.37 2.28 2.38 

      

*An extended version of this table is shown in Sup6. 

 

Polymer filling of structured LAGP scaffolds 

Polymer filling of the channels of the structured LAGP scaffolds is achieved either by impregnating with 

a melt of polypropylene (PP) or by impregnating with liquid epoxy resin followed by polymerization within 

the channels. Immersion of the LAGP scaffold into the melt or resin under dynamic vacuum provides a 

complete impregnation of the empty channels. Cooling of the melt and polymerization of the resin, 

respectively, lead to solidification of polypropylene and epoxy polymer inside the channels of the 

ceramic scaffold.  

 

Characterisation of the 3D structured hybrid electrolytes 

The SEM images in Figure 4 show the structured LAGP-epoxy electrolytes after removal of excess 

polymer on the surface by polishing the samples. SEM images of polished structured LAGP-PP 

electrolytes are shown in Sup8. Energy dispersive X-ray spectroscopy (EDX) mapping of the polished 

surfaces proves the presence of two distinct and well separated LAGP and polymer phases, as 

exemplified for LAGP-PP in Figure 5. The polymer phase is rich in carbon, while the elements 

germanium, aluminium, oxygen and phosphorus are detected in the LAGP phase. 
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Figure 4. SEM images of the structured LAGP-epoxy electrolytes with cube, gyroid, diamond and bijel-

derived (left to right) microarchitectures. SEM images of the corresponding structured LAGP-PP 

electrolytes are shown in Sup8. 

 

The formation of LAGP at different stages of the synthesis process is confirmed by X-ray diffraction 

shown in Sup9 and matches with the known pattern of LAGP.33 The LAGP phase is successfully 

synthesised via the Pechini method after calcination of the precursor gel at 800 °C. Both composition 

and crystal structure of LAGP remain intact after wet ball milling and further sintering of the LAGP 

powder at 900 °C as a pellet and as a structured scaffold. The pellet of LAGP was formed by pressing 

the powder after ball milling and then sintering at 900 C for 5 hours. The density of the LAGP pellet 

was found to be 3.1 mg mm-3, i.e. approximately 90% of the theoretical density. The overall density of 

the structured LAGP scaffolds (including empty channels in the volume) was found to be about 2.3 mg 

mm-3, i.e. approximately 75% of the LAGP pellet. Hence, the LAGP phase density is similar in pellet 

and hybrid. The significance is that achieving densification within the volume of the ceramic is important, 
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as otherwise, the conductivity would be exceedingly reduced. In short, to achieve conductivity that is 

reduced only by the volume fraction of non-conducting material constitutes an important result. 

 

 

Figure 5. SEM images and EDX mapping of structured LAGP-PP electrolytes with cube, gyroid, 

diamond and bijel-derived microarchitectures (top to bottom). 

 

Electrochemical characterization 

Electrochemical impedance spectroscopy (EIS) was performed on both LAGP pellet and structured 

hybrid electrolytes using gold (Au) blocking electrodes. For clarity, the comparison of LAGP pellet and 

structured hybrid electrolytes is exemplified by the gyroid hybrid electrolyte in Figure 6. The cell setup 

is shown in Figure 6a. The Nyquist plots recorded at ambient temperature and corresponding equivalent 

circuit are shown in Figure 6b. At room temperature, both LAGP pellet and gyroid hybrid electrolytes 

display a partially visible semicircle in the high-frequency range followed by a spike at lower frequencies. 

Both pellet and structured hybrid electrolyte were best fitted with an equivalent circuit consisting of a 

series of a resistor (R1), as the partially visible semicircle does not extrapolate to the origin, a resistor 

in parallel with a constant-phase element (R2//CPE2), representing the partially visible semicircle, and 

a constant-phase element (CPE3), representing the spike. Constant-phase elements (CPE) were used 

in all fittings to account for the slightly suppressed semicircles and resulting non-ideal capacitance.34 

Details of the fitting can be found in Sup10. 

The impedance data for both systems was also recorded at a temperature of -30 °C in order to observe 

more of the high-frequency impedance. The Nyquist plots at -30 °C (Figure 6c) reveal two distinct 

semicircles for both pellet and structured hybrid electrolytes. They were fitted by a series of two parallel 

combinations of a resistor and a constant-phase element (R1//CPE1 and R2//CPE2), attributed to the 

overlapping semicircles in the Nyquist plots, and a constant-phase element (CPE3), attributed to the 

blocking interfaces between the Au electrodes and the electrolyte. Capacitance values for R1//CPE1 

and R2//CPE2 in the order of 10-11 F cm-1 and 10-10 F cm-1 were calculated, respectively. Details on the 

calculation of the effective capacitance values can be found in Sup10. Both values are within the 

previously reported range of intragrain (bulk) and intergrain (grain boundary) contributions for LAGP, 
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respectively.35,36,37 Hence, the two semicircles in Figure 6c are attributed to the intragrain and intergrain 

Li-ion transport in the LAGP phase of both LAGP pellet and structured LAGP-polymer electrolytes.  

A total ionic conductivity of 2.8 x 10-4 S cm-1 for the LAGP pellet and 1.3 x 10-4 S cm-1 and 1.6 x 10-4 S 

cm-1 for the gyroid LAGP-PP and gyroid LAGP-epoxy electrolytes, respectively, are obtained at ambient 

temperature. These conductivities were extracted by considering the Au electrode area in contact with 

the sample and the thickness of the sample. In fact, the volume fraction of non-conducting polymer 

phase in the structured LAGP-polymer electrolytes as well as the tortuosity of these structured hybrid 

electrolytes, influence the pathway of Li-ions across the LAGP phase. A geometry factor of 0.58 was 

calculated by finite element modelling which takes into account the geometry and LAGP volume fraction 

of 70% of the gyroid hybrid electrolytes. Further details on the modelling can be found in Sup1. 

Accordingly, the total ionic conductivities normalised to the volume of LAGP in the gyroid LAGP-PP and 

gyroid LAGP-epoxy electrolytes are 2.3 x 10-4 S cm-1 and 2.7 x 10-4 S cm-1, respectively. Both corrected 

values are in agreement with the total ionic conductivity achieved within a pellet and confirms that the 

LAGP filling of the structured hybrid electrolytes is sintered as well as the LAGP pellet. 

Figure 6d shows the Arrhenius plots of the conductivities of both pellet and structured hybrid electrolytes 

over a temperature range of -20 °C to 75 °C. A similar temperature dependency is observed for both 

pellet and structured hybrid electrolytes. Activation energies of 35.5 kJ mol-1, 36.3 kJ mol-1 and 36.7 kJ 

mol-1 were determined from the slope of the Arrhenius plots for LAGP pellet, gyroid LAGP-PP and gyroid 

LAGP-epoxy electrolytes, respectively, and are in agreement with previous reports on LAGP.33  
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Figure 6. Electrochemical impedance analyses of a LAGP pellet, a gyroid LAGP-PP and a gyroid LAGP-

epoxy electrolyte using symmetric gold electrodes: (a) Schematic of the cell setup, the corresponding 

Nyquist plots and equivalent circuit (b) at room temperature and (c) at -30 °C and (d) the Arrhenius plot 

in the range of -20 °C to 75 °C. A more detailed analysis is shown in Sup10. 

 

Figure 7. Electrochemical impedance analyses of a LAGP pellet, a gyroid LAGP-PP and a gyroid LAGP-

epoxy electrolyte using symmetric lithium electrodes: (a) Schematic of the cell setup and (b) the 

corresponding Nyquist plots and equivalent circuit at ambient temperature. A more detailed analysis is 

shown in Sup11. 

 

EIS was also performed on symmetric cells assembled with lithium metal electrodes of both pellet and 

structured hybrid electrolytes. The cell setup and the equivalent circuit used are illustrated in Figure 7. 

We anticipate parallel RC elements corresponding to the intragrain, intergrain, interphase layer (formed 

upon the reaction of LAGP with Li, as reported by Janek and co-workers38) and the electrode/electrolyte 

interface. The Nyquist plots were best fitted using four parallel combinations of a resistance and a 

constant-phase element in series (R1//CPE1, R2//CPE2, R3//CPE3 and R4//CPE4). From the derived 

capacitance values in the range of 10-10 F cm-1, the first two elements were attributed to the intragrain 

(R1//CPE1) and intergrain (R2//CPE2) properties of the LAGP phase for both pellet and structured hybrid 

electrolytes. The third contribution (R3//CPE3), which was not present when using Au electrodes, has a 

capacitance in the range of 10-8 F cm- 2. This is consistent with the formation of an interphase layer at 

the interface between the Li-metal electrode and the LAGP. The extent of the resistance of this initial 

interphase layer could be limited through a surface polishing step. Details of the procedure are given in 
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the Experimental section. The capacitance value of the last contribution (R4//CPE4) in the equivalent 

circuit, the well resolved semicircle at the lowest frequencies in Figure 7, of 10-3 F cm-2 for both pellet 

and structured hybrid electrolytes was attributed to the Li-LAGP interface, as it was also not present in 

the Au-electrode setup. The total ionic conductivities after Li-cell assembly for the LAGP pellet, gyroid 

LAGP-PP and gyroid LAGP-epoxy electrolytes are 2.9 x 10-4 S cm-1, 3.0 x 10-4 S cm-1 and 2.5 x 10-4 S 

cm-1, respectively, using the geometry factor of 0.58 from finite element modelling. These are in good 

agreement with the total ionic conductivities obtained above with symmetric Au electrode cells.  

Symmetric lithium cells of the LAGP pellet and structured hybrid electrolytes were tested by 

galvanostatic cycling for 10 cycles at a constant current density of 1 mA cm -2 and capacity of 0.5 mAh 

cm-2 for each charge or discharge. Post-cycling cross-sectional SEM analysis of the LAGP-Li interface 

in the LAGP pellet revealed the formation of a 20 μm thick interphase layer across the entire electrode-

electrolyte contact area. SEM images show that the layer has a different morphology to that of the 

original LAGP phase; distinct grains as seen in the LAGP phase are no longer observed (Sup12). Our 

observations are consistent with the work reported previously by Janek and co-workers, who analysed 

the degradation reaction between LAGP and lithium, identifying an interphase layer.38 Over 10 cycles, 

the structured LAGP-epoxy electrolytes show better performance than the structured LAGP-PP 

electrolytes for all four microarchitectures (Sup13). In addition, the gyroid hybrid electrolytes showed 

the lowest increase in cell voltage after 10 cycles for both the epoxy and PP filling. Hence, the results 

in the following section focus on the gyroid LAGP-epoxy electrolyte in comparison with the LAGP pellet. 

 

 

Figure 8. Galvanostatic cycling of LAGP pellet and gyroid LAGP-epoxy electrolytes with lithium 

electrodes. (a) LAGP pellet and (b) gyroid LAGP-epoxy electrolytes cycled at a current density of 0.7 

mA cm-2 (jtotal) for 0.5 h per charge and discharge step. (c) LAGP pellet and (d) gyroid LAGP-epoxy 

electrolyte cycled at a current density of 1 mA cm-2 (jtotal) for 0.5 h per charge and discharge step. The 

corresponding effective current density through the LAGP phase is indicated as jLAGP phase. Detailed 

cycling parameters are shown in Sup14. 

 

Galvanostatic cycling was performed on both gyroid LAGP-epoxy electrolytes and LAGP pellets at 0.7 

mA cm-2 and 1 mA cm-2 electrode areal current densities (jtotal). Cycling of the LAGP pellet and the 

gyroid LAGP-epoxy electrolyte between Li electrodes up to 30 cycles at a current density of 0.7 mA cm-
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2 up to a capacity of 0.35 mAh cm-2 are shown in Figure 8a,b. The voltage polarisation increases equally 

for both gyroid LAGP-epoxy electrolyte and LAGP pellet up to 20 cycles, after which the polarisation of 

the LAGP pellet increases rapidly until the limiting voltage of 12 V was reached on both charge and 

discharge after 30 cycles. In contrast, the gyroid LAGP-epoxy electrolyte retains a gradual increase in 

voltage polarisation, only reaching the potentiostat limiting voltage after 40 cycles. Hence, despite the 

gyroid LAGP-epoxy electrolyte comprising 30% of insulating phase, it performs better than the LAGP 

pellet at this current density and capacity.  

At higher current density (1 mA cm-2) and capacity (0.5 mAh cm-2), both the LAGP pellet and the gyroid 

LAGP-epoxy electrolyte between Li electrodes only withstand a maximum of 20 cycles before reaching 

the potentiostat limiting voltage (Figure 8c,d). In the case of the pellet, the voltage polarisation initially 

increases slowly before increasing rapidly and erratically by over 1 V per cycle. In contrast, the 

polarisation increases more steadily and consistently throughout the 20 cycles for the gyroid LAGP-

epoxy electrolyte. However, both reach the limiting voltage of the potentiostat after an equal number of 

cycles at 1 mA cm-2. 

In our discussion so far, we have not taken into account the fractional area of the insulating polymer 

phase in contact with the lithium metal electrodes, which means that only about 70% of the lithium area 

is in contact with LAGP for the gyroid LAGP-epoxy electrolyte, whereas it is 100% for the LAGP pellet. 

Hence, the LAGP phase of the gyroid LAGP-epoxy electrolytes in Figures 8b and 8d is subjected to a 

roughly 40% higher effective current density (jLAGP phase) than that of the LAGP pellets in Figures 8a and 

8c, respectively. Notably, at equal effective current density through the LAGP phase of 1 mA cm-2, the 

cycling of the gyroid LAGP-epoxy electrolyte (Figure 8b) is more stable than that of a pellet (Figure 8c). 

While the gyroid LAGP-epoxy does not exceed a polarization of 2 V after 20 cycles, the LAGP pellet 

reaches a polarization of over 6 V. The same trend is observed at higher effective current density (1.4 

mA cm-2), results of which are shown in Sup14.  

Figure 9 plots terminal voltage after each cycle versus cycle number of the symmetric lithium cells 

shown in Figure 8 in direct comparison. Corresponding plots of total resistance after each cycle versus 

cycle number confirm the results (Sup14). The cells at equal electrode areal current densities (jtotal) of 

0.7 mA cm-2 and 1 mA cm-2 are shown in Figure 9a and 9b, respectively. At lower current density and 

capacity, the gyroid LAGP-epoxy electrolyte shows an increase in cycling performance compared with 

the pellet (Figure 9a). The terminal voltage increases faster at higher current density for both pellet and 

gyroid LAGP-epoxy electrolytes (Figure 9b). The increase in current density seems to degrade the 

hybrid electrolyte performance more than that of the pellet. At equal effective current density through 

the LAGP phase (jLAGP phase) of 1 mA cm-2, the terminal voltage of the gyroid LAGP-epoxy electrolyte 

increases slower than that of the LAGP pellet, doubling the achievable cycle number (Figure 9c). The 

same trend occurs at an effective current density of 1.4 mA cm-2 (Sup14).  
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Figure 9. Terminal voltage after each completed cycle for LAGP pellet and gyroid LAGP-epoxy 

electrolytes assembled with symmetric lithium electrodes at current densities (j total) of (a) 0.7 mA cm-2 

and (b) 1 mA cm-2 and at an effective current density through the LAGP phase (jLAGP phase) of (c) 1 mA 

cm-2 until the limiting voltage of the instrument is reached. Detailed cycling parameters and 

corresponding plots of impedance versus cycle number are shown in Sup14.  

 

Figure 10 shows photographs and SEM images of all four cells discussed above in Figure 8 after 

cycling. The photographs demonstrate that the LAGP pellet cells split into several fragments during 

cycling (Figure 10a-I, c-I) whereas the structured LAGP-epoxy electrolytes remain in one piece (Figure 

10b-I, d-I). Cross-sectional SEM images (Figure 10a-III, b-III, c-III, d-III) show that an interphase layer 

of 20-40 μm has grown between Li and LAGP in all four cells. More significantly, there is a visible 

detachment of the interphase layer from the bulk LAGP phase for the LAGP pellets at both current 

densities (Figure 10a-III, c-III), whereas only minor and partial cracks along the interface between the 

bulk electrolyte and interphase layer are noticeable for the structured LAGP-epoxy electrolytes (Figure 

10b-III, d-III). 
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Figure 10. (I) Post-cycling photographs and (II-III) cross-sectional SEM images of the (a) LAGP pellet 

and (b) gyroid LAGP-epoxy electrolyte cycled at a total areal current density of 0.7 mA cm -2 (jtotal) for 

0.5 h per charge and discharge for a total of 30 and 40 cycles respectively, and of (c) the LAGP pellet 

and (d) gyroid LAGP-epoxy electrolyte cycled at total areal current density of 1 mA cm-2 (jtotal) for 0.5 h 

per charge and discharge for a total of 20 cycles. 

 

To fully understand these observations, EIS analysis of the individual resistance contributions was 

performed. For this, the total resistances after each cycle were further separated into the four 

resistances (R1, R2, R3 and R4) identified previously in the Nyquist plots. This analysis was performed 

on the LAGP pellet and the gyroid LAGP-epoxy electrolyte cells discussed in Figure 8. Figure 11 

illustrates the change in resistance of the four contributions as a function of cycle number. In all four 

cases, the intragrain resistance is apparently not involved in the increase in total resistance, as it does 

not increase substantially with cycle number. In contrast, the intergrain and the interphase resistances 

of the LAGP pellet and gyroid LAGP-epoxy electrolyte at both current densities do increase from a 

certain cycle number onwards. The Li-LAGP interface resistance increases only in the LAGP pellets 

but not as drastically in the gyroid LAGP-epoxy electrolytes at both current densities of 0.7 mA cm-2 

(Figure 11a-b) and 1 mA cm-2 (Figure 11c-d). Nevertheless, the start of a slight increase in interface 

resistance is observable for the structured hybrid at the higher current density (Figure 11d) from the 

tenth cycle onwards. Hence, the increase in voltage polarisation observed during cycling at low and 
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high current density can be associated with the increase in all but the intragrain resistance, with the 

intergrain and interphase layer resistances increasing first followed by the interface resistance.  

 

Figure 11. Resistance as a function of cycle number for LAGP pellet and gyroid LAGP-epoxy 

electrolytes assembled between lithium electrodes at a total areal current density of (a-b) 0.7 mA cm-2 

(jLAGP phase) for 0.5 h per charge and per discharge for a total of 30 and 40 cycles, respectively and (c-d) 

1 mA cm-2 (jLAGP phase) for 0.5 h per charge and per discharge for a total of 20 cycles. 

  

As seen from the SEM images in Figure 10 (Figure 10a-III, b-III, c-III, d-III), an interphase layer of 20-

40 μm grows between Li and LAGP in all four cells, consistent with the increase in the interphase 

resistance seen for the majority of the cells in Figure 11. It is likely that the detachment of the interphase 

layer from the bulk LAGP phase, as seen for the LAGP pellets at both current densities in Figure 10a 

and 10c, manifests itself as an additional “grain boundary” resistance adding to the LAGP intergrain 

resistance and explaining its increase (Figure 11). The more severe detachment in the case of the 

LAGP pellets is consistent with their Li-LAGP interface resistance increasing more significantly. The 

poor mechanical integrity of the LAGP pellets compared to the structured hybrid electrolytes after 

cycling probably originates from the development of internal stress associated with the growth of the 

interphase layer, initiating its detachment from the bulk electrolyte. This eventually also induces cracks 

perpendicular to the electrolyte/electrode interface (Figure 10a-II, c-II), until complete fracture of the 

LAGP pellets (Figure 10a-I, c-I).  

Both gyroid LAGP-epoxy electrolytes retain better overall contact at the interface, which is consistent 

with the much lower increase in interface resistance observed for the structured hybrid at both current 

densities. Nevertheless, CT analysis of the cells with LAGP pellet and structured LAGP-epoxy 

electrolytes at a total areal current density of 1 mA cm-2 before and after cycling confirms that cracks 

form through both the LAGP pellet as well as the gyroid LAGP-epoxy electrolyte during cycling (Sup15). 

Nonetheless, we can conclude that the nature of the structured hybrid electrolyte, with its carefully 

selected microarchitecture and choice of polymer helps hold the fracturing LAGP phase together, as 

demonstrated here by EIS and cross-sectional SEM analysis. 

 

Mechanical testing 
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To investigate the mechanical properties of the different structured hybrid electrolytes and the pellet in 

more detail, samples of about 1 mm x 1 mm x 2 mm were subjected to strain rate controlled compression 

tests. For comparison, a LAGP cut-out of appropriate size was prepared from a LAGP pellet (Sup16) 

using a diamond cutting blade. We qualitatively observe that the cube and diamond microarchitectures 

show preferential fracture along the ordered microarchitectures, as can be seen from in-situ 

compression SEM images after sample fracture (Sup17). In contrast, fracture of the gyroid and bijel-

derived structured hybrids as well as of the LAGP cut-out does not follow a preferred major fracture 

pathway, and cracks split into several parts in multiple directions through the sample. The compliance 

of the in-situ SEM compression stage was too large to accurately determine the displacement of the 

samples, and so, the following tests were carried out using a stand-alone Shimadzu instrument. 

The stress-strain curves for LAGP and structured hybrid electrolytes are shown in Figure 12. The 

opposing faces of the cuboid samples that are in contact with the compression plates were polished to 

be parallel to within 10 µm, as shown by optical depth profiling in Sup18. Compliance of the Shimadzu 

instrument was corrected for when determining strain. The elastic modulus of LAGP, as determined 

from the linear sections of the stress-strain curves between loads of 50-150 N was 63 GPa. This is only 

about half of the value obtained in an independent measurement from nanoindentation of a LAGP pellet 

(125 GPa) and is below the literature range for the structurally equivalent Li1.3Al0.3Ti1.7(PO4)3 (LATP), 

for which values of 81-115 GPa are reported.39. The observed difference between the determined 

elastic moduli is to be expected, given that nanoindentation measures the microscopic mechanical 

properties of the material, whereas compression measures the macroscopic overall mechanical 

properties of the sample, which contains imperfections like internal porosity and deviations from the 

perfectly cuboid sample geometry.  

 

Figure 12. Stress-strain curves obtained from strain rate controlled compression of LAGP and structured 

hybrid electrolytes with (a) epoxy polymer and (b) polypropylene in the cube, gyroid, diamond and bijel-

derived microarchitectures, approximately 1 mm x 1 mm x 2 mm in size, starting from a preload of 50 

N.  
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A comparison of bulk LAGP with the LAGP-polymer hybrids, for which an elastic modulus of 41-51 GPa 

is determined from compression between a load of 50-150 N (Sup19), shows that the elastic modulus 

of the structured hybrid electrolytes is reduced by 20-35% with a corresponding reduction in 

compressive fracture stress (evaluated as peak stress in Figure 12). In comparison, the epoxy 

containing structured hybrid electrolytes reach higher stress and strain before fracture than those 

containing PP, possibly because the interfacial interaction between the epoxy polymer and LAGP is 

stronger than between PP and LAGP. The gyroid LAGP-epoxy electrolyte reaches the highest fracture 

strain, being about 28% higher than LAGP. Among the designed microarchitectures, finite element 

modelling confirms the gyroid microarchitecture to show the most uniform spatial distribution of stress 

(Sup1). This is in agreement with the better performance of the gyroid LAGP-epoxy electrolyte in 

electrochemical testing observed above. 

Consequently, the mechanical properties of polished gyroid LAGP-epoxy electrolyte, LAGP and epoxy 

polymer were investigated using a four point bending setup as illustrated in Sup21. All samples were 

made to be about 12 mm x 3 mm x 0.5 mm to fit the dimension of the four point bending setup. The 

gyroid LAGP-epoxy beams were synthesised as described above, simply by using a larger version of 

the 3D printed template. This flexibility in overall sample dimensions is another advantage of our 3D 

printing approach. The LAGP and epoxy polymer beams were cut out from a pressed LAGP pellet (20 

mm diameter) and a pre-made hardened plate of epoxy, respectively. Figure 13 illustrates the stress-

strain curves obtained for all three sample types in strain rate controlled measurements, starting when 

the support pins make contact with the sample. The bending of the sample is observed as a linear 

stress-strain dependency.  

 

Figure 13. Stress-strain curves obtained from four point bending of LAGP (3 samples, blue), epoxy 

polymer (2 samples, red) and gyroid LAGP-epoxy electrolyte (three samples, green).  

 

The LAGP beams demonstrate characteristics of a typical brittle polycrystalline ceramic. First, a linear 

elastic behaviour is observed until a maximum stress is reached when the LAGP beams fracture. This 

is shown by a drop in the flexure stress with nearly no change in flexure strain, i.e. no plastic deformation 

is observed. In contrast to LAGP, the epoxy polymer beams are considerably more elastic (Sup20).  

The combination of LAGP and epoxy in the gyroid LAGP-epoxy electrolyte demonstrates an 

intermediate stress-strain relationship to the brittle LAGP ceramic and elastic epoxy polymer. Similar to 
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LAGP, a linear elastic behaviour with a comparable modulus of bending is observed for the structured 

hybrid beams. In this initial slope, the hybrid properties are dominated by the contribution of the LAGP 

phase. However, instead of catastrophic failure, a stress plateau is observed. Probably this region 

corresponds to crack initiation and propagation, the plateau indicating that the epoxy polymer helps to 

retain the overall sample integrity.40 Finally, a second increase in stress is observed before fracture of 

the sample occurs at a strain up to five times higher than the flexural failure strain obtained for LAGP, 

which suggests that the epoxy polymer strengthens the structured hybrid electrolyte. 

The four point bending experiments indicate that the epoxy phase in the gyroid LAGP-epoxy electrolyte 

can maintain the overall sample integrity even after crack initiation. Hence, the gyroid LAGP-epoxy 

beams mechanically outperform the LAGP beams. This demonstrates that the bicontinuous gyroid 

LAGP-epoxy electrolyte has significantly improved mechanical properties over the LAGP pellet due to 

the presence of the polymer phase while maintaining high ionic conductivity through the LAGP phase. 

 

 

Conclusion 

 

We present hybrid electrolytes composed of 3D bicontinuous ordered microchannels of ceramic 

electrolyte, Li1.4Al0.4Ge1.6(PO4)3, and non-conducting polymer (epoxy polymer, polypropylene). The 

synthesis was achieved using 3D printing of templates enabling ordered cubic, gyroidal and diamond-

shaped microarchitectures as well as a bijel-derived microarchitecture of the hybrid electrolytes. The 

microarchitecture influences the electrical and mechanical properties. The best performance was 

achieved for the gyroidal architecture with epoxy polymer. It had a total ionic conductivity of 1.6 x 10-4 

S cm-1 at room temperature, reduced from the conductivity of a dense ceramic pellet, 2.8 x 10-4 S cm-1, 

by only the volume fraction of the ceramic in the hybrid. Mechanical measurements showed that the 

gyroidal hybrid electrolyte is less susceptible to fracture than the ceramic pellet. This resulted in up to 

28% higher compressive failure strain and up to five times the flexural failure strain of a LAGP pellet 

before rupture. Consequently, the cycling results indicate that the gyroid LAGP-epoxy electrolyte 

improves the performance of a symmetric lithium cell compared with the ceramic pellet, especially at 

lower current density. At all tested current densities, the gyroidal hybrid electrolyte shows improved 

galvanostatic cycling performance for the same effective current density through the ceramic phase. 

Achieving a perfect balance between the mechanical and electrical properties in the manufacturing 

process of all-solid-state batteries is one of the major challenges yet to be resolved. Our work only 

focuses on the properties of the solid electrolyte in combination with a Li metal anode. However, 

comparable issues will have to be addressed on the positive composite electrode where mechanical 

difficulties are even more significant and where a different approach might be needed. Nevertheless, 

we believe that our concept provides an avenue towards meeting the requirements of the solid 

electrolyte itself. Our hybrid electrolytes with designed 3D ordered bicontinuous ceramic and polymer 

microchannels, afford control over the microarchitecture and ceramic/polymer ratio of the solid 

electrolyte, delivering improved mechanical properties while maintaining good ionic conductivity, 



23 
 

thereby opening up a pathway for the development of mechanically robust solid electrolytes for all-solid-

state batteries.  

 

 

Experimental 

 

3D photolithography. The 3D templates were printed using a commercial stereolithography instrument 

(Nanoscribe Photonic Professional GT) with UV-sensitive photoresist IP-S (Nanoscribe) on an indium 

tin oxide coated glass slide substrate. The fabrication process involves the layer-by-layer stacking of 1 

µm thick planes. A 25x objective with numerical aperture of 0.8 was used to direct the focal point of the 

laser (wavelength 780 nm) across an approximately 240 μm x 240 µm sized field of view. The time to 

print one template is dependent on the geometry, scales with the size and is about 8 to 12 hours per 

template of approximately 1.2 mm x 1.2 mm x 2.4 mm edge length. Templates were extracted from 

residual photoresist by subsequent washing with propylene glycol monomethyl ether acetate (>99.5%) 

and isopropanol (99.5%). The developed templates were dried in ambient conditions for 30 minutes. 

Details on the microarchitecture design are given in Sup3. 

 

LAGP synthesis. A mixture of ethylene glycol (6.56 g, 99.8%) and citric acid monohydrate (22.20 g, 

99%) was slowly stirred for more than 12 hours at ambient temperature before germanium ethoxide 

(25.00 g, 99.95%) was added. Separately, a solution of lithium nitrate (5.97 g, 99.99%)), aluminium 

nitrate nonahydrate (9.28 g, 99.997%) and ammonium dihydrogen phosphate (21.33 g, 99.999%) in 

distilled water (47.40 g) was freshly prepared. Both were cooled in a NaCl-ice-water bath before the 

cold aqueous solution was added to the mixture while stirring rapidly, forming a uniform solution. The 

resulting solution was removed from the cold bath and left to gel at ambient temperature before drying 

at 75 °C. The dry gel was calcined on a gold crucible by heating to 800 °C at a rate of 2 degrees per 

minute and retaining at 800 °C for 5h before cooling to room temperature. The resulting white material 

was crushed with an agate mortar and ball milled (Retsch EMAX high energy ball mill: 600rpm, 10 

minutes with 21.5 g of Zirconia 5mm balls, 0.5 g of LAGP powder and 0.5 mL of ethanol per Zirconia-

lined milling vessel). The ball-milled LAGP was recovered and dried. 

 

Synthesis of structured LAGP scaffolds. The 3D printed template was placed in a glass vial (0.75 mL in 

volume) onto which a suspension of 100 mg LAGP powder in 0.7 mL methanol (99.99%) was added. 

The vial containing the immersed template was sonicated for 5 minutes followed by centrifugation at 

2000 rpm for 2 minutes, all of which was repeated twice, resulting in sedimentation of the powder. The 

supernatant methanol was removed and a second suspension of 100 mg LAGP powder in 0.7 mL 

methanol was added to the template-LAGP powder sediment. The vial was then centrifuged at 2000 

rpm for 2 minutes, sonicated for 5 minutes and, again, centrifuged at 2000 rpm for 2 minutes. The 

supernatant methanol was removed. In some cases additional suspension had to be added and 

centrifuged to completely cover the template. The filled 3D template was removed from the vial and 

excess LAGP powder scraped off carefully by means of a scalpel before drying of the sample. Heating 
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of the filled template to 900 C at a rate of 2 degrees per minute and retaining at 900 C for 5 hours in 

air removes the 3D printed template by calcination and sinters the LAGP powder to yield the negative 

replica of the 3D printed template in LAGP, referred to in the text as the “structured LAGP scaffold”. 

 

Polypropylene filling. Impregnation of structured LAGP scaffolds with polypropylene was achieved by 

immersing the structured LAGP scaffold into molten polypropylene (isotactic, average Mw ~12000 Da) 

at 190 ˚C. The polymer was allowed to percolate the LAGP scaffold under dynamic vacuum for at least 

2 h. The sample was removed from the liquid polymer and left to cool to ambient temperature. To 

remove excess polymer, the polypropylene-filled sample was gently placed on a 1 mm thick glass slide 

on a hot plate heated to 160 C. The sample was carefully slid across the hot glass slide on all sides 

using metal tweezers, locally softening excess polymer, which adheres to the glass slide. Alternatively, 

aluminium foil at 100 C can also be used. The process was carried out until most of the excess polymer 

was removed. The resulting samples are referred to in the text as “structured hybrid electrolyte” or 

“structured LAGP-PP electrolyte”; when specifically referring to the gyroid microarchitecture “gyroid 

hybrid electrolyte” or “gyroid LAGP-PP electrolyte” is used. 

 

Epoxy polymer filling. Impregnation of structured LAGP scaffolds with epoxy resin was achieved by 

immersing the structured LAGP scaffold in a mixture of Struers EpoFix Resin and EpoFix Hardener 

(15:2 by volume) under dynamic vacuum for at least 2 hours at ambient temperature. The sample was 

removed from the liquid resin and excess resin was removed manually. The sample was left to harden 

at ambient temperature for 24 h. The resulting samples are referred to in the text as “structured hybrid 

electrolyte” or “structured LAGP-epoxy electrolyte”; when specifically referring to the gyroid 

microarchitecture “gyroid hybrid electrolyte” or “gyroid LAGP-epoxy electrolyte” is used. 

 

Polishing of compression samples. Samples were polished manually on a diamond lapping film of 

subsequently 9, 6, 3 and 1 μm abrasive size. In order to obtain parallel surfaces, the diamond lapping 

film was attached to one of the plates of a rheometer (Anton Paar) and the structured hybrid samples 

to be polished were placed in between the plates at a force of 2 N. Rotation of the plate to which the 

lapping film was attached against the sample polished the surface to better than 10 μm out of parallel 

over a length of 1 mm as determined by optical depth profiling (Alicona). 

 

SEM and EDX. Secondary electron images were recorded on a Zeiss Merlin microscope at 3 kV 

acceleration voltage. Samples were fixed with copper adhesive tape. In addition, a thin layer of gold 

was sputtered on the 3D printed templates to avoid charging. For cross-sectional images, samples were 

cut using an ultrasonic cutter (Sonotec) with a tungsten carbide blade. Energy dispersive X-ray 

spectroscopy was carried out at 20 kV with a built-in Oxford Instruments X-Max 150 Silicon drift detector 

and analysed using the Aztec software package.  

 

X-ray micro-CT of 3D printed templates and structured LAGP scaffolds. Shadow-projection images of 

structured LAGP scaffolds were recorded using a Skyscan 1172 system (Bruker microCT, Kontich, 
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Belgium), rotating the sample over a full 360 in steps of 0.36. A source voltage of 70 kV (Hamamatsu 

100/250), an Al+Cu filter, and an image pixel size of 2.50 µm (Hamamatsu 10 Mp camera) was used. 

The NRecon software package was used to reconstruct the data into stacks of axial slices, using a 20% 

beam hardening correction and frame averaging of 8, but no random movement. 3D views were 

constructed in ImageJ (version Fiji).41 Data stacks were cropped to extract the inner 500×500×500 µm3. 

Interactive stack rotation was used to align the cropped data with Cartesian axes by eye. After 

smoothing (3×), the cropped-stack histogram was inspected, the data was thresholded and 3D surface 

renderings were generated using the ImageJ “3D Viewer” plugin. A similar procedure was followed for 

the 3D printed templates, though some of the imaging and reconstruction parameters were adapted to 

account for the difference in contrast (i.e. electron density) between the 3D printed template material 

and LAGP. 

 

X-ray diffraction. Powder X-ray diffraction patterns of the synthesised LAGP and structured LAGP 

scaffolds were collected using a Rigaku SmartLab X-ray diffractometer equipped with a 3 kW rotating 

anode X-ray generator with Cu Kα1 radiation. Powder XRD diffraction patterns were acquired at room 

temperature, in the theta/2-theta range from 10 to 80 ˚ with a step size of 0.01.  

 

Electrochemical Impedance Spectroscopy (EIS). EIS measurements were performed using ModuLab 

XM®, Solartron Analytical. Samples were first polished using a silicon carbide waterproof abrasive disc 

(Kemet, Grade 1200), sonicated in cyclohexane for 10 minutes and dried in air at 70 °C for 20 minutes. 

Polished samples were then sputtered with a 30 nm thick layer of gold on both sides using a sputter 

coater (Manual Sputter Coater, Agar Scientific) and placed between two stainless steel electrodes. 

Impedance measurements were carried out in a temperature range of -20°C to 75°C, controlled by a 

refrigerated/heating circulator (Model F32-MA, Julabo). For reaching a temperature of -30 °C, liquid 

nitrogen was used to cool the samples. The measurements were recorded between 1 MHz and 0.1 Hz 

at a voltage amplitude of 10 mV. The EIS data was analysed using ZView software. 

 

Galvanostatic cycling of symmetric lithium cells. Symmetric cells of LAGP pellets and structured LAGP-

PP and LAGP-epoxy electrolytes with lithium metal were assembled inside an Ar-filled glovebox, in 

which O2 and H2O levels are lower than 0.1 ppm. Both LAGP pellet and structured LAGP-polymer 

electrolyte surfaces, to be in contact with lithium metal, were polished with water using a silicon carbide 

waterproof abrasive disc (Kemet, Grade 1200), dried in air at 70 °C for 20 minutes, sonicated in 

cyclohexane for 10 minutes and dried in air at 70 °C again for 20 minutes. Lithium metal foil was 

scratched to remove oxidised surface layers and cut into disk-shaped pieces. These were then pressed 

at a pressure of 10 tons using a manual hydraulic press (Specac) to a thickness of about 70 µm in order 

to limit any further expansion of the lithium disk after cell assembly. A lithium metal disk with a diameter 

of 2.2 mm and a thickness of ca. 40 µm was pressed onto each side of either a structured LAGP-

polymer electrolyte or a sintered disk-shaped LAGP pellet. The structured hybrid has a square shape 

with approximate dimensions of 2.6 mm x 2.6 mm x 0.7 mm. The LAGP pellets have an approximate 

diameter of 4.4 mm and thickness of 0.9 mm. The assembled stack was placed and sealed in a pouch 
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cell with both lithium electrodes contacting a Cu foil current collector: Cu/Li/LAGP/Li/Cu. The symmetric 

lithium cells were tested using Gamry Interface-1000 devices at ambient temperature with an external 

pressure of about 8 MPa at a constant current density of 0.7 mA cm-2, 1 mA cm-2 or 1.4 mA cm-2 for 0.5 

hours with a rest period of 5 min after each current direction. Impedance measurements after each 

charge and discharge step were also performed. 

 

X-ray micro-CT of symmetric lithium cells. Pouched symmetric lithium cells were prepared as described 

above. Shadow-projection images of pouched symmetric lithium cells were recorded on a Zeiss Xradia 

system, rotating the sample over a full 360 in steps of 0.1. A source voltage of 120 kV and an image 

pixel size of 3.53 µm were used. The Zeiss reconstruction software package was used for image 

reconstruction into stacks of axial slices. 

In situ compression SEM. Mechanical compression was carried out using a Deben Microtest Stage 

and 660 N load cell mounted on a Zeiss EVO microscope. Samples were preloaded to below 5 N 

before compression was carried out in steps until fracture of the sample. Secondary electron images 

of the fractured samples were recorded at 15 kV acceleration voltage. 

Compression testing. Rectangular cuboid samples of approximately 1 mm x 1 mm x 2 mm in size, 

polished as described above, were compressed on a strain rate controlled universal testing machine 

(Shimadzu AGS-X, 50 kN load cell) with the square sample faces in contact with the parallel plates of 

the compression rig. Samples were preloaded to 50 N before the measurement was started. 

Compliance of the instrument was accounted for. Samples were compressed at a rate of 1 μm min-1 

until failure.  

 

Four point bending experiments. Rectangular-shaped beams of approximately 12 mm x 3 mm x 0.5 mm 

were prepared, polished and mounted on an Instron 3360 Series Dual Column table top testing system 

with a custom-made four point bending jig (Sup21). A preload of 0.05 N was applied and the bending 

test carried out at a loading rate of 5 μm min-1 until a 100% drop in the peak flexure load was attained.  
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