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Mesoscopic Modelling and Simulation of Soft Matter

Ulf D. Schiller a, Timm Krüger b and Oliver Henrich ∗c

The deformability of soft condensed matter often requires modelling of hydrodynamical aspects

to gain quantitative understanding. This, however, requires specialised methods that can resolve

the multiscale nature of soft matter systems. We review a number of the most popular simu-

lation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics,

multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and

the lattice-Boltzmann method. We conclude this review with a short glance at current compute

architectures for high-performance computing and community codes for soft matter simulation.

1 Introduction

Soft condensed matter1,2 has an ubiquitous presence in our world

and we encounter it in our everyday lives. Many complex fluids

like polymer solutions and colloidal suspensions, liquid crystals,

foams, gels, granular materials and biological materials belong

to this category. A feature that distinguishes soft matter from

more conventional condensed matter is that it shows a remark-

able propensity to self-organise and form more complex, multi-

scale structures which exist on intermediate mesoscopic time and

length scales much larger than the atomistic length scale, but also

much smaller than the macroscopic lab scale. This characteris-

tic nature of soft matter entails a typical separation of time and

length scales and becomes important for solvent-mediated inter-

actions e.g. between suspended nanoparticles or in systems with

internal degrees of freedom like fluctuating membranes, polymer

chains or vesicles. Thus, it can be quite challenging to find a con-

sistent physical description that covers all relevant aspects of the

problem.

Nonlinear coupling mechanisms between different components

of the physical model, such as the order-flow coupling in liquid

crystals, occur frequently in soft matter. Sometimes they pre-

vent accurate analytical solutions and make simulations more

favourable, or even outright indispensable. For a quantitative un-

derstanding of the response and dynamical behaviour it is cru-

cial to find a suitable coarse-grained descriptions that manages to

express a large number of degrees of freedom through a much

smaller number of effective degrees of freedom whilst retain-

ing the correct overall physical behaviour, therefore allowing to

bridge time and length scales. An example is flowing soft matter.
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Quite generally speaking, flow is of particular importance due to

the deformability of soft matter. Usually it can be assumed the

flow is incompressible and characterised by low Reynolds num-

bers. Hydrodynamic interactions, however, lead to long-ranged,

collective interactions that are notoriously difficult to treat with

analytical models.

These examples highlight only a few complications on the way

to model soft matter. They have led to the formulation of spe-

cialised simulation methods which are the focus of this tutorial

review. Due to space limitations we can cover here unfortunately

only the most common and versatile methods. In the following

article, we will present a short overview of these relatively re-

cent developments and glance also at some typical applications of

these simulation methods and make suggestions for further read-

ing.

1.1 Mesoscopic Modelling: Particle-based vs. Lattice Models

The mesoscopic methods discussed in this review are essentially

alternative ways to model the dynamic correlations between so-

lute particles that are mediated by momentum transport in a sol-

vent medium. The momentum transport in the solvent is in prin-

ciple described by the Navier-Stokes equation, however, the dy-

namics can also be affected by thermal fluctuations and specific

molecular-level interactions. Mesoscopic methods are based on

“coarse-graining” the microscopic details, i.e., including only the

essential details of the interactions thus greatly reducing the de-

grees of freedom of the system. For instance, the hydrodynamic

interactions between solute particles are amenable to a Langevin

description

ṙi = ∑
j

Di j

kBT
F j +∆ri, (1)

where F j is the effective conservative force acting on particle j,

Di j is the diffusion tensor, and ∆ri are stochastic displacements

that represent thermal fluctuations and satisfy the fluctuation dis-
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sipation relation

〈∆ri〉= 0, (2)

〈

∆ri(t)∆r j(t
′)
〉

= 2Di jδ (t − t ′). (3)

In soft matter, diffusion of the solutes is much slower than diffu-

sion of momentum leading to Schmidt numbers Sc = ν/D on the

order of 106 for micron size particles. Any mesoscopic method

should therefore guarantee Sc ≫ 1. The diffusion tensor depends

on the position of all particles in the system, and a simplified,

pair-wise additive form is given by the Rotne-Prager tensor3

Di j = D0

{

(

1− 9ri j

32a

)

I+
3

32

ri j ⊗ ri j

ari j

}

, ri j < 2a

Di j = D0
3a

4ri j

{

I+
ri j ⊗ ri j

r2
i j

+
2a2

3r2
i j

(

I−3
ri j ⊗ ri j

r2
i j

)}

, ri j ≥ 2a

Dii = D0 I (4)

where a is the radius of the suspended particles and ri j = ri − r j.

The equation of motion Eq. (1) can in principle be integrated

numerically, and the most straightforward approach is known as

Brownian dynamics4. The time evolution of the system can ac-

cordingly be written

ri(t +h) = ri(t)+
Di j

kBT
hF j +

√
2hBi j ·W j, (5)

where W j are random vectors representing a discretised Wiener

process such that 〈Wi〉 = 0 and
〈

Wi ⊗W j

〉

= Iδi j. The tensor Bi j

is related to the diffusion tensor through Di j = Bik ·BT
jk and can

be represented by a Cholesky decomposition into an upper trian-

gular matrix Ci j such that Di j = Cik ·CT
jk. The use of the Cholesky

factorisation for BD was proposed by Ermak and McCammon5,

however, the algorithm scales as O(N3) with the particle number

N and is infeasible already for a few hundred particles. Fixman6

introduced a more efficient procedure using a Chebyshev polyno-

mial approximation

Bi j =
L

∑
l=0

alCl (E)−
a0

2
C0 (E) , (6)

where E= (Di j −h+)/h−, h+ = (λmax +λmin)/2 and h− = (λmax −
λmin)/2, and λmax and λmin are the largest and smallest eigen-

value of the diffusion tensor, respectively. The Chebyshev polyno-

mials Cl(E) are given by the recursion relation

C0(E) = I (7)

C1(E) = E (8)

Cl+1(E) = 2E ·Cl(E)−Cl−1(E). (9)

The coefficients al are obtained from the Chebyshev series expan-

sion of the square root function f (e) =
√

h++h−e

al =
2

L+1

L

∑
k=0

cos

(

πl(k+ 1
2 )

L+1

)

f

[

cos

(

π(k+ 1
2 )

L+1

)]
1
2

. (10)

Instead of solving for Bi j directly, Fixman’s algorithm uses the

polynomial expansion is used to calculate the stochastic displace-

ment

Bi jW j =
L

∑
l=0

alxl −
a0

2
x0, (11)

where xl = Cl((Di j − h+)/h−) · W j. The Chebyshev polynomial

approximation of Bi j ·W j for a given accuracy scales roughly as

O(N2.25) which can be reduced to O(N2) by truncated Chebyshev

expansions. For further details and a comparison of different im-

plementations we refer the reader to Ref. 7. The Chebyshev ex-

pansion may be sufficient to treat on the order of 103 particles,

however, in practice the runtime behaviour depends strongly on

the desired accuracy and the details of the underlying physics. For

polymer chains, Schmidt et al.7 have found that the performance

of Chebyshev-based procedures is significantly affected by over-

lap of the chains. An advantage of BD methods is that they do

not rely on an underlying simulation box and thus do not exhibit

finite box size effects. Hence, for single chains, BD methods may

be superior to explicit solvent methods due to the L3 scaling of the

fluid degrees of freedom. However, for semi-dilute polymer solu-

tions, Pham et al.8 have estimated that the scaling ratio between

BD and explicit solvent (e.g. LB) methods will tip in favour of

the latter. Larger BD systems thus require even faster algorithms

such as Ewald-like methods using fast Fourier transformations9.

These methods scale as O(N1+x logN) where x is typically sub-

stantially smaller than unity. However, these methods require the

study of confined systems and cannot easily be generalised to ar-

bitrary boundary conditions. Moreover, the underlying Langevin

description of BD neglects the retardation effect associated with

the finite speed of momentum propagation in the solvent.

In this review, we therefore focus on mesoscopic methods that

maintain a coarse-grained description of the solvent with explicit

momentum transport. One can distinguish two broad classes

of mesoscopic methods, namely particle-based and lattice mod-

els. Particle based-methods, such as dissipative particle dynamics

(DPD) and multi-particle collision dynamics (MPC), represent the

solvent by a system of interacting particles. The “coarse-graining”

of the molecular details is achieved by implementing the interac-

tions through collective collisions that satisfy the local conserva-

tion laws. Particle-based methods maintain a continuous phase

space and thermal fluctuations are inherently present. DPD is

essentially a momentum-conserving version of the Langevin ther-

mostat and its algorithm is closely related to molecular dynamics

based on Newton’s equations of motion. In contrast, MPC is not

developed as a time-discrete scheme for integrating a continuous

equation of motion, but is based on discrete streaming and colli-

sion steps similar to Bird’s direct simulation Monte Carlo (DSMC)

method10. Both DPD and MPC can be shown to satisfy an H-

theorem11–13. In addition, MPC can easily be switched from a
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micro-canonical ensemble to a canonical ensemble by augment-

ing the collision rule with a thermostat14,15.

Lattice models, such as finite-element models or the lattice

Boltzmann method (LBM) represent the solvent by hydrodynamic

fields on a discrete lattice. Thermal fluctuations can be reintro-

duced by means of stochastic collisions, if needed. In lattice mod-

els, the solvent viscosity (and other transport coefficients) are di-

rectly linked to simulation parameters and thus can be set with-

out the need for calibration. Moreover, the LBM can be rigorously

derived from kinetic theory which provides a systematic route ex-

tensions of its applicability to, e.g., multiphase fluids or Knudsen

flows16,17.

Both particle-based and lattice mesoscopic methods define a

discrete dynamics that can be shown to reproduce Navier-Stokes

hydrodynamics asymptotically. In this sense, the parameters of

the coarse-grained model represent constitutive relations on the

macroscopic level that can be tuned to reproduce the transport

properties of the real physical system, cf. section 1.2. Moreover,

the methods allow implementation of boundary conditions and

provide systematic means of coupling solute particles to the sol-

vent medium. For these reasons, mesoscopic methods are per-

fectly suited to study complex phenomena in soft matter systems,

both in and out of equilibrium.

1.2 Parameter Choice in Mesoscopic Simulations

A crucial step in any mesoscopic simulation is the mapping of sim-

ulation parameters to physical quantities. Whereas many authors

resort to what is commonly called “simulation units”, there is of-

ten confusion as to how these are set and sometimes the details

provided are insufficient to reproduce the results. Mesoscopic

methods provide some flexibility in choosing a parameter map-

ping in such a way that the physical properties of interest are

correctly captured by means of dimensionless numbers. The hy-

drodynamic transport properties of fluids are characterised by di-

mensionless numbers including the Schmidt number Sc, the Mach

number Ma, the Reynolds number Re, the Knudsen number Kn,

and the Péclet number Pe:

Sc =
ν

D f
, (12)

Ma =
u

cs
, (13)

Re =
uL

ν
=

csL

ν
Ma, (14)

Kn =
λ

L
∝

Ma

Re
, (15)

Pe =
uL

Ds
=

ν

Ds
Re =

csL

Ds
Ma. (16)

Here, λ is the mean free path, D f is the self-diffusion coef-

ficient of the solvent, and Ds is the diffusion coefficient of the

solute particles. The value of Ds typically depends on the details

of the coupling to the fluid for the respective method. In particle-

based methods, a large Schmidt number can only be obtained if

the mean free path is small, which usually requires a small time

step h. This is a common characteristic of coarse-grained particle-

based simulations that use a reduced number of particles which

leads to a larger mean free path. In practice it is typically suf-

ficient to ensure that the momentum transport is fast enough to

generate liquid-like behaviour, and simulations can still be carried

out with Schmidt numbers on the order of O(1) to O(10). Sim-

ilarly, it is feasible to simulate at a higher Mach number than in

the real system, as long as density fluctuations remain sufficiently

small (incompressible limit).

Arguably the most important dimensionless number character-

ising hydrodynamic flow is the Reynolds number that quantifies

the ratio of inertial and viscous momentum transport. In sim-

ulations of soft matter and microflows, the Reynolds number is

typically small such that nonlinear inertial effects do not play an

important role. The flow velocity is usually a result of external

fields, and hence the Reynolds number can be used to tune the

parameters that determine the magnitude of the driving forces of

the simulation in relation to the viscosity of the fluid.

In terms of standard dimensionless groups, the ratio of the

Mach number and the Reynolds number is proportional to the

Knudsen number that quantifies the importance of rarefaction ef-

fects that can occur in microflows and lead to deviations from

continuum Navier-Stokes behaviour. Knudsen numbers beyond

Kn & 0.1 indicate that the flow is in the transition regime where

non-continuum effects can become significant. The Péclet num-

ber quantifies the relative importance of convective and diffusive

transport of solutes which is related to the importance of thermal

fluctuations, i.e., for small Péclet numbers Brownian motion dom-

inates hydrodynamic advection. In microflows, the ratio Pe/Re

is typically very large and it may not be feasible to use a suffi-

ciently large number of particles to reproduce the Péclet number.

In such systems one can seek a compromise and simulate at a

higher Reynolds number and/or lower Péclet number, as long as

one stays in the correct hydrodynamic regime which should be

carefully validated.

In order to determine the simulation parameters, it is also in-

structive to consider the time scales of interest18. The main hy-

drodynamic time scales are the acoustic time scale τcs
= L/cs, the

viscous (kinematic) time scale τν = L2/ν , the diffusive time scale

τD = L2/Ds, and the Stokes time scale τS = L/u. These time scales

can be related to each other using dimensionless numbers

τS =
τDs

Pe
=

τν

Re
=

τcs

Ma
. (17)

This equation makes it evident how the separation between the

time scales depends on the dimensionless numbers. It may thus

not always be possible (and desirable) to resolve all time scales

in the same simulation. In particular, the separation between the

viscous and the acoustic time scale is typically large, which can

be exploited to simulate the system with a speed of sound that is

smaller than the real physical one.

2 Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is a stochastic simulation

method that was specifically designed for soft matter and complex

fluids. It was first formulated by Hoogerbrugge and Koelman19,20

1–16 | 3



and later refined by Español21 and Groot and Warren22.

2.1 Basic Algorithm

The underlying idea is akin to coarse-grained molecular dynamics

with atoms agglomerated into larger entities or “beads” that inter-

act via soft forces. These beads are subject to conservative forces

as well as pairwise drag or friction forces and random forces. The

force balance for bead i is slightly different than in Eq. 1 as it runs

over particle pairs (i, j):

mir̈i = FC
i +∑

j 6=i

FD
i j +∑

j 6=i

FR
i j. (18)

The functional forms of the forces are also slightly different. For

instance, the conservative force

FC
i ({r}) =−∂V ({r})

∂ri
(19)

always contains a soft-core repulsion in addition to other interac-

tions or external forces.

The drag force depends on the relative separation ri j = ri − r j

and velocity vi j = vi −v j of the beads,

FD
i j(ri j,vi j) =−γ ω(|ri j|)

(ri j ·vi j)ri j

|ri j|
, (20)

whereas the random forces are given by

FR
i j(ri j) =

√

2kBT γ ω(|ri j|)
ri j

|ri j|
ξi j. (21)

The quantity ξi j is a Gaussian random number with zero mean

and unit variance which is symmetric with respect to the par-

ticle indices, i.e., ξi j = ξ ji. This is a requirement for total mo-

mentum conservation and in contrast to Brownian and Langevin

dynamics where the stochastic noise on each particle is inde-

pendent of all other particles. γ is a friction coefficient and

ω(|ri j|) a decaying weighing function with a model-specific cut-

off distance23,24. In order to fulfil a fluctuation-dissipation theo-

rem in DPD, distance-dependent friction forces require distance-

dependent random forces for each pair of particles. This require-

ment has been demonstrated at Gibbsian equilibrium by Español

and Warren25.

Various schemes have been proposed to perform the time in-

tegration of Eq. 1826. The simplest integrator that can be con-

sidered a bare minimum requirement is based on a modified

velocity-Verlet algorithm:

vi(t +h/2) = vi(t)+

√
h

2mi
∑
j 6=i

FR
i j(ri j(t))

+
h

2mi

(

FC
i ({r(t)})+∑

j 6=i

FD
i j(ri j(t),vi j(t))

)

,(22)

ri(t +h) = ri(t)+hvi(t +h/2), (23)

v⋆i (t +h) = vi(t +h/2)+

√
h

2mi
∑
j 6=i

FR
i j(ri j(t +h))

+
h

2mi
FC

i ({r(t +h)}), (24)

vi(t +h) = v⋆i (t +h)

+
h

2mi
∑
j 6=i

FD
i j(ri j(t +h),vi j(t +h/2)). (25)

Note the square root of the time step h which appears in Eq. 22

and Eq. 24 when the stochastic Wiener process is discretised. In

DPD the velocities vi at the end of the time step depend on the

drag forces FD
i j which in turn depend on the relative velocities.

Hence, rather than just taking the drag forces based on the inter-

mediate velocities at the half time step, a number of flavours of

the DPD algorithm solve Eq. 25 in a self-consistent manner. In its

simplest form the drag forces are recalculated once using the ve-

locities vi(t +h) as obtained in Eq. 25 and are then used in a final

update of the velocities at t + h. This improves the performance

significantly.

The local and pairwise interactions in DPD fulfil Newton’s third

law, conserve momentum and angular momentum, guarantee

Galilean invariance and yield hydrodynamic conservation laws on

larger length scales owing to the particle-based nature of the al-

gorithm. A version of DPD with energy conservation can also be

formulated27. Together with a modified predictor-corrector al-

gorithm for the integration22 or a self-consistent velocity-Verlet

algorithm28, DPD permits using larger time steps than atomistic

MD modelling.

2.2 Model Extensions

A focus of interest has been around the thermodynamic consis-

tency of DPD and free energy functionals28. If different species

are modelled, the correct compressibility and solubility of the

components, specified by the repulsion parameters between the

different species, has to be provided22. Otherwise there is con-

siderable freedom in modelling the interactions. DPD can also

be derived from a coarse-grained version of molecular dynam-

ics29,30. It is even possible to establish a link between DPD and

a formulation of smoothed particle hydrodynamics (SPH)31. The

resulting “smoothed” formulation of DPD is thermodynamically

consistent and allows arbitrary equations of state.

Because pairwise interactions have to be calculated, DPD is

computationally relatively expensive and “slower” than other

methods, such as multi-particle collision dynamics or the lattice-

Boltzmann method. Another disadvantage of DPD is that mo-

mentum transport is tightly coupled to particle transport and the

Schmidt number is typically very low. However, schemes for arbi-
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trarily large Schmidt numbers have been presented32.

Further details on DPD can be found in the reviews by

Nielsen33, Moeendarbary23,24 and Liu34.

2.3 Applications

The DPD method has been used to model different dynamic

regimes in polymer melts35. Here, the challenge lies in finding

a coherent description for the crossover from Rouse dynamics

of freely moving chains undergoing hydrodynamic interaction at

short chain lengths to reptational dynamics at long chain lengths,

where the individual chains are entangled and feel the topologi-

cal constraints formed by other chains in their vicinity. Because

of the softness of the beads, standard DPD models are unable

to prevent unphysical bond crossings and disentanglement of the

polymer chains. It is therefore necessary to apply the right degree

of coarse graining by choosing the correct bead size and adapt

the bond stretching interactions between the beads in such a way

that disentanglement does not occur.

Another application area are electrohydrodynamic effects such

as electro-osmosis and electrophoresis36. The method was re-

cently used to model slip boundary conditions close to hydropho-

bic surfaces. Interestingly, it was shown that both confinement

and mobility of the surface charges have a dramatic effect on

the hydrodynamic properties of the electric double layer and the

electro-osmotic flow37.

Fig. 1 Visualisation of aggregation of red blood cells. Simulated re-

versible rouleaux are formed by a low-dimensional model (upper) and

multiscale model (lower). The left column corresponds to low shear rates,

centre column to moderate share rates, and right column to high shear

rates 38. Copyright (2011) National Academy of Sciences.

DPD has been employed to simulate the dynamics and rhe-

ology of red blood cells (RBCs) suspended in blood plasma,

cf. Fig. 138,39. These cells are essentially biconcave viscoelastic

shells (membranes) made of a lipid bilayer and a cytoskeleton,

filled with a Newtonian haemoglobin solution. Numerically, all

fluid and solid components are discretised as DPD particles: the

external blood plasma with a viscosity of about ηex ≈ 1.2 mPa s,

the internal haemoglobin solution (ηin ≈ 6 mPa s), and the RBC

membrane as a collection of DPD particles subject to additional

viscoelastic forces. The membrane particles at locations {ri} form

a triangular mesh and have the potential

V ({ri}) =Vplane +Vbend +Vsurf +Vvol (26)

where Vplane is the in-plane shear contribution due to the RBC

cytoskeleton, Vbend captures the bending resistance of the lipid

bilayer, and Vsurf and Vvol provide near conservation of the RBC

surface area and volume which result from the incompressibility

and impermeability of the RBC membrane. Additionally, in-plane

viscous forces are taken into account that capture the viscosity of

the lipid bilayer. Both external and internal liquid DPD particles

are bounced back at either side of the membrane surface to en-

sure impermeability of the RBC membrane. The dissipative forces

between membrane and liquid particles are specifically chosen to

enforce the no-slip boundary condition.

3 Multi-Particle Collision Dynamics

Multi-particle collision dynamics (MPC), originally introduced by

Malevanets and Kapral11 as stochastic rotation dynamics (SRD)

is a particle-based mesoscopic method that has become popular

in the soft matter domain thanks to the flexibility in handling spa-

tiotemporally varying forces. MPC is well suited to study complex

phenomena in soft matter both in and out of equilibrium. In the

following, we summarise the essential elements of MPC. A com-

prehensive review of MPC was published by Gompper et al.40

3.1 Algorithm

Streaming

Collisions

Fig. 2 The basic algorithm of multi-particle collision dynamics consists

of successive streaming and collision steps. The cell grid is shifted ran-

domly every time step to restore Galilean invariance 12,41.

In MPC, the fluid consists of idealised point-like particles, and

the Navier-Stokes equation emerges from local mass and momen-

tum conservation in the particle ensemble. The update of par-

ticle positions and momenta mimics the underlying kinetics and

is defined in terms of successive streaming and collision steps,

cf. Fig. 2. During the streaming step, the particles move ballisti-

cally

ri(t +h) = ri(t)+hvi(t) (27)

where h is the time interval between collisions. In the collision

step, the particles are sorted into cubic collision cells of size a,

and interactions occur only between particles within the same

cell. The particles in each cell exchange momentum while the
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momentum of the collision cell is conserved

vi(t +h) = uC(t)+∆∆∆i(t) (28)

where rC and uC are the position and velocity of the centre of

mass of the cell, respectively, and ∆∆∆i is a collisional term that does

not change uC. The centre of mass velocity in MPC plays a similar

role as the equilibrium distribution in LBM.

The introduction of the collision cell introduces an artificial ref-

erence frame and breaks Galilean invariance. If the mean free

path λ = h
√

kBT/m is smaller than the cell size a, repeated col-

lisions between the same particles lead to correlations and the

transport coefficients become dependent on imposed flow fields.

In order to restore Galilean invariance, a random shift of the cell

grid is performed before each collision step12,41. In practice, the

shift can be performed by moving all particles by a random vec-

tor s with components uniformly distributed in [−a/2,a/2[ before

the collision step and back after the collisions. The grid shift pro-

motes momentum transfer between the cells and thus can lead to

additional correlations in the transport coefficients12,41. Huang

et al.42 have carefully analysed the velocity correlations and the

characteristic scales over which the correct hydrodynamic corre-

lations and the long-time tail emerge.

The original multi-particle collision algorithm is referred to as

stochastic rotation dynamics (SRD). It consists of a random ro-

tation of the relative velocities vi,C = vi −uC of the particles in a

cell11

∆∆∆SR
i (t) = v

‖
i,C(t)+v⊥i,C(t)cos(α)+

(

v⊥i,C(t)× â
)

sin(α) (29)

where â is a randomly chosen axis, α the rotation angle, and v
‖
i,C

and v⊥i,C denote the parallel and perpendicular components of vi,C

with respect to the random axis â. This collision rule is denoted

as MPC-SR−a43. Instead of rotating the relative particle veloci-

ties, it is also possible to dampen the velocities with a Langevin

thermostat (MPC-LD) or simply generate new relative velocities

randomly. The latter is implemented by the algorithm

∆∆∆AT
i (t) = vran

i − ∑
j∈C

vran
j

nC
(30)

where vran
i is a random velocity drawn from a Maxwell-Boltzmann

distribution, and nC is the number of particles in the collision cell.

This collision rule is denoted as MPC-AT−a.43 The random veloc-

ity serves as an Anderson-like thermostat to control the tempera-

ture, such that the simulation is effectively performed in a (local)

canonical ensemble. For choices of alternative thermostats and

their performance in equilibrium and non-equilibrium flows, we

refer the reader to Refs. 14 and 15.

A drawback of both MPC-SR−a and MPC-AT−a algorithms is

that they generate a non-symmetric stress tensor and hence do

not conserve angular momentum. This can be mitigated by im-

posing angular momentum conservation as a constraint, which

leads to an additional term in the collision rule

∆∆∆+a
i (t) =−ri,C(t)×mI

−1 ∑
j∈C

[

r j,C(t)×
(

v j,C(t)−∆∆∆−a
j (t)

)]

(31)

where m is the particle mass, nC the number of particles in the

collision cell, I the moment of inertia tensor, and ri,C = ri −rC the

relative particle position. MPC-LD, MPC-AT, and MPC-SR with the

∆∆∆+a term do not conserve kinetic energy. For MPC-SR, a velocity

rescaling can be applied to conserve energy, however, this breaks

time-reversal symmetry and leads to deviations in the radial dis-

tribution function43. A collision rule that conserves both energy

and angular momentum can be derived in two dimensions44. Var-

ious other collision rules have been proposed in the literature,

and we refer the interested reader to the overview by Gompper et

al.40

3.2 Transport Coefficients

Local hydrodynamic fields are defined for each MPC cell as

ρ(xC) =
m

a3 ∑
i∈C

1, j(xC) =
m

a3 ∑
i∈C

vi, e(xC) =
m

a3 ∑
i∈C

v2
i

2
. (32)

These coarse-grained fields are the slow variables of the discrete-

time dynamics that exhibit hydrodynamic behaviour on macro-

scopic time and length scales. The corresponding transport coef-

ficients emerge from the micro-scale transport during streaming

and collisions and hence contain both kinetic and collisional con-

tributions. There are two possible routes to derive transport coef-

ficients of the MPC fluid. The first uses a projection-operator for-

malism and relates the transport coefficients to equilibrium fluc-

tuations of the hydrodynamic fields45–47. In the second approach,

transport coefficients are determined through analysis of non-

equilibrium steady-state situations. By virtue of the fluctuation-

dissipation theorem, the linear response of the system to imposed

gradients allows to calculate transport coefficients that are iden-

tical to the ones obtained from equilibrium fluctuations43,48,49.

The latter approach leads to generic expressions for the diffu-

sion coefficient,

D =
kBT h

m

(

1

s
− 1

2

)

, (33)

and the kinetic and collisional contributions to the shear viscosity,

νkin =
kBT h

m

(

1

c
− 1

2

)

, (34)

νcol =
g

12

a2

h
, (35)

where the correlation factors s, c and g depend on the specific col-

lision rule and are given in Table 1. Other transport coefficients

can be derived along similar lines. In addition to mass and mo-

mentum transfer, the energy conserving versions of MPC are able

to reproduce the heat transfer in the fluid. The thermal diffusivity

and the thermal conductivity are given by47,49

Dkin
T =

kBT h

m

(

1

θ
− 1

2

)

, (36)

Dcol
T =

a2

3(d +2)h

1− cosα

N
. (37)

A summary of the results is reported in Table 1. The similarity
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Table 1 Correlation factors for MPC collision algorithms. Note that the MPC+a expressions for s, c and g are approximations for large N. For small N,

additional correction terms have to be taken into account 43. The factor f = N−1+exp(−N)
N

is obtained by averaging over a Poisson distribution for the cell

occupation number nC with 〈nC〉 = N. For angular momentum conserving collision rules, additional correlations are present which result in the more

complicated expressions. It should be noted that in the expression for θ terms of O(1/M2) have been neglected 45.

correlation factor MPC-SR MPC-LD MPC-AT−a MPC-AT+a

s 2
d (1− cosα) f

γh/m

1+γh/2m
f 1− d+1

2N

c d = 2 (1− cos2α) f 2γh/m

(1+γh/2m)2 f d
2N +1

(

1− 3d+2
4N

)

d = 3 2
5 (2− cosα − cos2α) f

g 2
d (1− cosα) f

γh/m

1+γh/2m
f 1

2

(

1− 7
5N

)

θ 2
d (1− cosα)

− 4
dN (1− cosα)2

(

7−d
5 − 1

4 csc2 α
2

)

of the kinetic viscosity with the corresponding expression for the

lattice Boltzmann method (LBM) should be noted. The latter can

indeed be derived with the approach used in this section, which

shows that the kinetic viscosity of both MPC and LBM is that of an

ideal gas. The LBM does not have an analogue of the collisional

viscosity, however, because the LBM collision process is entirely

local and does not transfer momentum. This is an essential differ-

ence between particle-based and fully kinetic methods, and here

MPC can be seen as a bridge between these two approaches.

3.3 Boundary Conditions and Suspended Objects

If the fluid is bounded by external walls or contains solid obsta-

cles, no-slip boundary conditions at the solid surface are com-

monly imposed. A standard mesoscale procedure is to apply the

bounce-back rule where the velocity v of an impinging particle

is reversed to −v. This procedure can be used if the boundaries

coincide with the boundaries of the collision cells. However, due

to the grid shift this is not always the case, and the boundaries

generally intersect collision cells which can lead to an artificial

slip velocity. This consequence of partially filled cells can be mit-

igated by filling the intersected cells with virtual particles such

that the total number of particles matches the average of M par-

ticles per cell. The MPC collision step is performed using the

mean velocity of all particles in the cell, where the velocities of

the virtual particles are drawn from a Maxwell-Boltzmann distri-

bution with zero mean velocity50. The virtual particles ensure

that a no-slip boundary condition is obtained which has been ver-

ified numerically for Poiseuille flows and flows around circular

and square cylinders50. For cases where the boundary location

does not coincide with the average center of mass of the particles,

artificial slip can be reduced by allowing fluctuations in the num-

ber particles number such that the number of particles is Poisson

distributed14,15,51.

A similar approach can be used to impose boundary conditions

on suspended objects such as colloidal particles. A fluid particle

that collides with the colloid acquires a new velocity where the

normal and tangential components are drawn from Maxwellian-

like distributions52. In dense suspensions, there may be multi-

ple collisions with more than one colloid (or a wall) during a

time step, and repeated scattering is necessary to avoid an artifi-

cial depletion interaction between the colloids. The thermal wall

approach is effective for suspended objects that are much larger

than the mean free path λ .

For suspended objects with internal degrees of freedom, such as

polymers or cells, a different coupling approach can be used. The

particles are typically updated by a molecular dynamics scheme

that takes into account intra- and inter-molecular forces. For the

coupling to the fluid, the particles or monomers are considered

point-like and interact with the fluid particles by means of the

MPC collisions. The momentum exchange ∆p between the fluid

particles and the monomers can be included as force in the molec-

ular dynamics update. In order to accurately capture the hydro-

dynamic interactions, the average number of monomers per col-

lision cells should be smaller than 1, and the monomers should

be neutrally buoyant, i.e, the monomer mass mm on the order of

solvent mass per cell ncm. Typically, the size a of the MPC cells

has to be on the order of the bond length of the polymer. The

MPC point-particle coupling has been used extensively to simu-

late polymeric and colloidal suspensions40.

3.4 Non-Ideal Fluids, Binary Mixtures, Viscoelastic Fluids

In order to model dense gases and non-ideal liquids, excluded

volume effects have to be incorporated. Generally, any non-ideal

effect makes it necessary to consider non-local interactions. This

can be achieved by dividing a collision cell into sub-cells with side

length a/2 which exchange momentum during the collision pro-

cess53,54. The equation of state of the non-ideal MPC fluid can be

found from the mechanical definition of pressure. The non-ideal

algorithm does not conserve phase-space volume because the col-

lision probability depends on the difference of sub-cell velocities

which can be realised by different states. However, careful con-

sistency checks have not revealed a violation of detailed balance

or other inconsistencies54.

Repulsive interactions between different species of a binary

mixture can be achieved in a similar manner as for excluded vol-

ume interaction between sub-cells. However, instead of exchang-

ing momentum between the entire sub-cells, only collisions be-

tween particles of type A and B are taken into account. Additional

MPC collisions at the cell level are incorporated for momentum

exchange between particles of the same type A or B which al-

lows to tune the overall viscosity53–55. The mixture model can

be extended to amphiphilic and ternary fluids and allows to study
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the phase behaviour of complex fluids on large time scales. An

alternative approach to binary mixtures is the introduction of a

colour charge, similar to colour models in the LBM. The collision

process takes into account the concentration of the species by ex-

changing momentum such that the colour-weighted momentum

in each collision cell points in the direction of colour gradient.

While it can be used in two and three dimensions, the colour

model does not include thermal fluctuations of the order parame-

ter. Nonetheless, it has been shown that his model leads to phase

separation, satisfies the Laplace equation and can be extended to

simulate ternary mixtures56–59.

Viscoelastic behaviour can be modelled within MPC by using

dumbbell springs instead of point particles. The MPC algorithm

can still be performed in the usual manner, where in the stream-

ing step the centre of mass of the dumbbells moves ballistically

while the relative coordinates are updated according to the bond

interaction. The collision step is applied to the end-points of the

dumbbells and proceeds in the usual way for the various collision

rules. An MPC fluid consisting of harmonic dumbbells can capture

the orientation and elongation in shear flow and thus reproduces

the viscoelastic behaviour of a Maxwell fluid60. However, due

to the possible infinite bond extension, harmonic dumbbells do

not reproduce non-equilibrium properties such as shear-thinning.

If FENE dumbbells are employed instead, the proper behaviour

corresponding to a dilute polymer solution is found61. Another

alternative is to introduce a constraint of constant mean square

bond length where the equilibrium value corresponds to Gaus-

sian chains62. The dumbbell fluid exhibits shear thinning, where

at large shear rates ηb ∼ Wi−2/3 with the Weissenberg number

Wi = γ̇kBT/(2DK0). Moreover, due to hydrodynamic interactions,

the fluid exhibits a non-vanishing second normal stress with the

same shear rate dependence62.

3.5 Applications

Like in other mesoscopic methods, MPC has been applied to a

wide range of colloidal and polymeric systems40,63,64. The capa-

bilities of MPC for simulating complex fluids are exemplary high-

lighted for the hydrodynamics of star polymers in shear flow65–67.

Star polymers are modelled as linear polymer chains that are

linked to a common monomer at the centre. A shear flow is in-

duced in the MPC solvent by employing Lees-Edwards boundary

conditions. The imposed flow field is strongly screened inside

the star polymer, which was confirmed by comparing simulations

with and without hydrodynamic interactions, respectively66. The

results from MPC simulations were found to agree well with ex-

perimental measurements67.

MPC can also be applied to non-equilibrium flows where ana-

lytical theories are still limited due to the lack of applicable vari-

ational principles. One particular example of a driven dissipa-

tive system are microfluidic droplets in a Hele-Shaw geometry.

A train of microfluidic droplets can be modelled within 2D-MPC

using a frictional coupling on disc-like droplets69,70. The results

confirm quantitatively that a far-field approximation of the dipo-

lar hydrodynamic interactions remains valid even at high densi-

ties69. Moreover, a confinement-induced coupling of longitudinal

Fig. 3 Synchronisation and bundling of helical flagella are governed by

hydrodynamic interactions and can be modelled using an MPC fluid. Re-

produced from Ref. 68 with permission from the Royal Society of Chem-

istry.

and transverse oscillations was discovered where the longitudinal

motion of the droplets is induced by the boundary conditions of

the flow field69,70. In the presence of thermal fluctuations, the

droplet oscillations exhibit instabilities that were also observed in

simulations70. MPC thus paves the way to systematic investiga-

tion of the governing principles of non-equilibrium systems using

well controlled model systems that are at the same time promis-

ing to develop novel methods in statistical physics.

Another area of high interest where timely contributions have

been made using MPC is the hydrodynamics of swimmers71,72.

Swimming behaviour can be produced by a number of mech-

anisms which differ in the characteristics of the flow field they

produce and, consequently, the governing hydrodynamic interac-

tions. For example, peritrichous bacteria use rotating helical flag-

ella for self-propulsion, cf. Fig. 3. The mechanism of synchronisa-

tion and bundling of flagella has been studied using MPC68,73,74.

The dependence of characteristic times for synchronisation and

bundling on the number of flagella, separation, and motor torque

was found to be governed by hydrodynamic interactions. The

swimming properties of a flagellar model bacterium consisting of

a spherocylindrical body have also been simulated using MPC74.

These simulation models can be extended to study swimming

near surfaces where confinement effects and non-equilibrium ef-

fects are expected to play an important role, similar to the mi-

crofluidic droplet systems described above.

MPC is uniquely suited to study inhomogeneous systems with

temperature gradients. The investigation of thermodiffusion and

thermophoresis using MPC was pioneered by Ripoll and co-

workers75–81. The flow field induced by thermophoretic motion

of a colloidal particle in an MPC fluid was found to be Stokeslet-

like for a fixed particle and dipolar for a freely drifting particle,

cf. Fig. 475. The study of thermophoretic motion using MPC has

inspired a number of applications, for instance, the induced flow

field around a fixed colloidal particle gives rise to a net solvent

flow which can be exploited as a microfluidic pump75. Another

interesting application is the case where the temperature gradient

is generated locally by a solute particle, e.g., by inhomogeneous
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Fig. 4 Flow field around a freely drifting colloidal sphere in a tempera-

ture gradient. Reproduced from Ref. 75 with permission from the Royal

Society of Chemistry.

light absorption or inhomogeneous chemical reactions. This idea

was subsequently used to design a thermophoretic nanoswimmer

consisting of two linked monomers and self-phoretic Janus par-

ticles76,78. Rotational motion due to thermophoresis was first

demonstrated in MPC simulations of a micro-gear79, and subse-

quently for a micro-turbine with anisotropic blades80 and a cat-

alytic micro-rotor driven by diffusiophoresis in a concentration

gradient81.

4 Lattice Boltzmann Method

The lattice Boltzmann Method (LBM)82–86 is a lattice-based

model unlike the particle-based methods described in the previ-

ous sections. Historically, it has not evolved from an adaptation

of a flavour of molecular dynamics, but from lattice gas cellular

automata87. LBM was originally introduced by McNamara and

Zanetti88 to mitigate the statistical noise that plagued the lattice

gas automata. LBM is rooted in the kinetic theory of gases, and

solves a simplified and discretised Boltzmann equation.

Characteristic for LBM is the full discretisation of time, config-

uration and velocity space89. The configuration and velocity dis-

cretisation are matched in such a way that the resulting algorithm

becomes favourably simple and nearly local. These features lead

to high numerical efficiency and parallelisability which are today

extensively exploited throughout the soft matter community.

4.1 Basic Algorithm

The central quantity for LBM is the probability density function

f (x,c, t) which measures the probability of finding a particle with

velocity c at position x at time t. Under the assumption of molec-

ular chaos, f is a one-particle distribution function, i.e., the veloc-

ities of all colliding particles are uncorrelated and independent of

their positions. Molecular chaos implies that the Boltzmann equa-

tion can be closed, i.e., the collision terms does not include the

two-particle distribution function. This assumption is well justi-

fied for gases and fluids which are not too dilute (low Knudsen

number). Then f characterises the dynamic state and obeys the

Boltzmann equation. The basic algorithm of its simplified and dis-

crete analogue, the lattice Boltzmann equation (LBE), is shown in

pre-collision

fi(x, t)
post-collision

f ⋆
i (x, t)

post-propagation

fi(x + cih, t + h)

collision propagation

Fig. 5 The lattice Boltzmann equation, Eq. (38), can be understood as

subsequent local collision and non-local propagation steps. Each arrow

indicates the magnitude and direction of one of the nine distributions fi

on a 2D lattice during each of the stages of the algorithm. Lattice nodes

are shown as grey circles.

Fig. 5 and can be summarised as

fi(x+ ci h, t +h) = f ⋆i (x, t) = fi(x, t)+Ωi(x, t)+Si(x, t) (38)

with Ωi and Si explained below. The velocities ci are a set of

discrete lattice vectors that connect each lattice site to its nearest

neighbours. Due to the discrete nature of the lattice vectors, the

isotropy is generally broken. However, through an appropriate

choice of the ci, isotropy can be restored to the required extent,

and the resulting n-dimensional LBM schemes with m velocities

are often denoted DnQm in the popular classification according to

Qian90.

The term Ωi in Eq. (38) is the collision operator that describes

the effective intermolecular interactions that modify the distribu-

tion function fi related to each lattice direction. It can be written

in the general form

Ωi =−∑
j

Λi j

(

f j − f
eq
j

)

=−wi ∑
k

b−1
k

ekiλk

(

mk −m
eq
k

)

(39)

where the eigenvalues λk are relaxation coefficients and the mo-

ments mk are obtained from the orthogonal transformation

mk = ∑
i

eki fi, fi = wi ∑
k

b−1
k

ekimk (40)

and eki are orthogonal basis vectors with respect to the scalar

product ∑i wiekieli = bkδkl . The basis vectors eki, weights wi, and

norms bk depend on the specific lattice model in use91,92. This

model is called multiple relaxation times (MRT). The local equi-

librium values m
eq
k

= ∑i eki f
eq
i are chosen such that the macro-

scopic equations are correctly recovered and are often based on a

low-velocity expansion of the Maxwell-Boltzmann distribution:

f
eq
i (ρ,u) = wi ρ

(

1+
u · ci

c2
s

+
uu : (cici − c2

s I)

2c4
s

)

. (41)

The simplest choice of the eigenvalues is the single relaxation

time approximation λk = τ−1, known as the lattice-BGK collision

model named after Bhatnagar, Gross and Krook (BGK), or single

relaxation time (SRT). The relaxation time τ is related to the kine-

matic viscosity ν via ν = (τ − h/2)c2
s with the speed of sound cs.

The MRT model offers a larger number of free parameters than

1–16 | 9



BGK; these parameters can be used to increase accuracy and sta-

bility of the algorithm. MRT also allows to have different shear

and bulk viscosities. Other collision operators are the so-called

two relaxation times (TRT)93 or entropic LBM94.

The source term Si in Eq. (38) is related to the local volumetric

force F through95

Si = ∑
j

(

δi j −
1

2
Λi j

)

w j

(

F · c j

c2
s

+
uF : (c jc j − c2

s I)

2c4
s

)

. (42)

The density ρ, momentum density ρu, and momentum flux ΠΠΠ

of the fluid are the zeroth, first, and second moments, respec-

tively86,92:

ρ = ∑
i

fi, ρu = ∑
i

ci fi +
F

2
, ΠΠΠ =

1

2
∑

i

( fi + f ⋆i )cici. (43)

The momentum flux ΠΠΠ = ΣΣΣ + σσσ contains the Euler stress ΣΣΣ =

ρuu + pI and the deviatoric stress tensor σσσ = ρν [∇∇∇u + (∇∇∇u)⊤].
The link between the LBE (Eq. 38) and the macroscopic Navier-

Stokes equation can be established through a Chapman-Enskog

expansion83,86,92.

A direct consequence of the discreteness of the underlying lat-

tice is that Galilean invariance is broken in the LBM, which mani-

fests itself as O(u2) errors in the viscosity. Hence the LBM is valid

in the incompressible limit which corresponds to low Mach num-

bers. It is also possible to devise mitigating schemes96,97. They

tend, however, to take away some of LBM’s simplicity.

In the standard LBM algorithm, hydrodynamic flow occurs

without thermal fluctuations. A scheme of fluctuating LBM can be

devised which satisfies a fluctuation-dissipation theorem98. The

thermalisation of the so-called ghost modes, the additional de-

grees of freedom that are not directly related to the ten hydrody-

namic observables, lead to equipartition of the fluctuating energy

on all length scales. This scheme has been recently extended from

single phase fluids to binary mixtures99.

4.2 Boundary Conditions

The LBM knows countless boundary conditions86. The reason

for this plethora is that there are no unique links between the

macroscopic Dirichlet and Neumann boundary conditions and the

boundary conditions for the kinetic quantities fi. Here, we will

briefly mention only the most common boundary conditions for

soft matter applications.

The bounce-back (BB) boundary condition100 takes direct ad-

vantage of the kinetic nature of LBM. As such, there is no coun-

terpart in conventional Navier-Stokes solvers, showing the advan-

tage of LBM for applications with complex geometries. A post-

collision population f ⋆i initially moving from a fluid site x to a

solid site x+ cih reverts its direction (denoted by cī = −ci) dur-

ing the BB procedure, only to reach its origin at the end of the

propagation step:

fī(x, t +h) = f ⋆i (x, t)−2wiρ
ci ·ub

c2
s

(44)

where the second term on the right-hand side is the momentum

exchange due to the boundary moving with velocity ub. Eq. (44)

replaces the LBE in Eq. (38) if the node at x+ cih is solid rather

than fluid.

BB leads to a no-slip boundary condition at a plane half-way

between the fluid and the solid nodes with second-order accu-

racy101. Despite its staircase-like discretisation that can lead to

numerical artefacts, the BB method is stable, simple to implement

and computationally efficient. It is often employed for colloidal

particles and porous media102,103. More sophisticated bound-

ary conditions exist that allow boundaries at other locations than

half-way between lattice nodes, for example interpolated BB104

or multireflection105. We refer to a comprehensive review92 for

further information on fluid-structure interactions for soft matter

applications.

In order to model immersed soft objects, such as polymers106

and biological cells107, the immersed boundary method (IBM)108

is commonly used. The basic idea of the IBM is to introduce a La-

grangian mesh that captures the shape of the immersed object

and can move relatively to the Eulerian lattice of the fluid. The

mesh and the lattice are coupled through velocity interpolation

(Eulerian to Lagrangian) and force spreading (Lagrangian to Eu-

lerian) steps. It is possible to equip the Lagrangian objects with

suitable elastic properties, such as dilation, shear and bending

resistance.

Several works have been published about the combination of

thermal fluctuations and immersed objects, such as colloids or

polymers. Ahlrichs and Dünweg106 added thermal fluctuations

to the particle phase and restored momentum conservation by

including opposite fluid forces. Contrarily, Ollila et al.109 claim

that the addition of Langevin noise to the particle phase can be

avoided, an idea that is closer to Einstein’s original notion of

Brownian noise. There does not seem to be a consensus under

which conditions both approaches are equivalent or unphysical.

4.3 Multi-Phase and Multi-Component Flows

Multi-phase or multi-component flows are ubiquitous in soft mat-

ter systems and occur generally in mixtures of different species,

heterogeneous systems like fluid-solid or fluid-gas mixtures or

when interfaces are present. LBM offers a convenient route to de-

scribe the forces arising between the individual phases and com-

ponents in a consistent way, and probably even more importantly,

on the mesoscopic level and in complex geometries.

Several methods have emerged to date. The Shan-Chen (SC)

model110, for instance, is a phenomenological approach which is

based on so-called pseudo-potentials that mimic the microscopic

interactions between the constituents. For a fluid mixture with an

arbitrary number of components, each component σ is subjected

to the short-range interaction force

Fσ (x) =−ψσ (x)∑
σ ′

gσσ ′ ∑
i

wiψ
σ ′
(x+ cih)cih (45)

where gσσ ′ = gσ ′σ is the interaction strength between compo-

nents σ and σ ′. Note that σ = σ ′ is permitted, which allows

for self-interaction and non-ideal fluids with phase change. The

pseudo-potential ψσ (x) is a (usually linear or exponential) func-

tion of the component density ρσ (x) and has been introduced to
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increase the numerical stability of the method. Surface tension

emerges from the component interaction; its value γ is a function

of the interaction strength and the chosen pseudo-potential.

An alternative approach is based on free energy (FE) mod-

els111,112. In contrast to the SC method with its emergent sur-

face tension properties, FE methods are based on a top-down ap-

proach, starting directly from the relevant target equation that

describes the dynamics of the complex fluid. Therefore, opposed

to the SC model, thermodynamic consistency is straightforwardly

realised in FE models. This is because the latter use the free en-

ergy functional as input, which means thermodynamic coupling

terms between order parameters can be directly specified. Hence,

FE models can be systematically extended to incorporate addi-

tional physical effects. They also provide better control of the

thermodynamic state, an important aspect close to interfaces and

boundaries. For example, the Landau free energy density for a

binary mixture of two immiscible liquids with identical density ρ

for both liquids can be written as113

ψ = c2
s ρ lnρ +

a

2
φ 2 +

b

4
φ 4 +

κ

2
(∇φ)2 (46)

where φ = ρA−ρB

ρA+ρB
is the local order parameter (i.e. φ =+1 for liq-

uid A and φ =−1 for liquid B) and a,b and κ are free parameters.

Phase separation can occur when a < 0, and the surface tension is

given by γ =
√

8κa3/9b2. The chemical potential is the functional

derivative of the free energy:

µ =
δψ

δφ
= aφ +bφ 3 −κ∇2φ . (47)

More recently, hybrid approaches have emerged114. In order to

understand their novelty, it is necessary to realise that any addi-

tional equation of motion beside the Navier-Stokes equation that

is involved in the dynamics of the complex fluid can be solved

as well with an LBM-style method by defining additional sets of

either scalar, vectorial or tensorial distribution functions. The cor-

responding observables are then obtained by taking moments of

these distribution function is just the same fashion. The equilib-

rium distributions are similar to Eq. 41, but have different coef-

ficients owing to the different target equation. A good example

of this full-LB approach has been given for the dynamics of liquid

crystals115, where a partial differential equation for the tensorial

order parameter, often referred to as Q-tensor, needs to be solved

on top of the Navier-Stokes equation. Full-LB approaches can

feature increased stability compared to alternative methods. But

on the down side they require more memory and floating point

operations per timestep.

Hybrid schemes do not define additional sets of distribution

functions and use LBM only for the Navier-Stokes part of the

problem. Any partial differential equation is solved with finite-

difference schemes. In the above example of liquid crystals and

based on a D3Q19 LB model, this reduces the memory require-

ments by almost 79%: Instead of 19 distributions for the Navier-

Stokes equation and 5×19 distributions for the 5 independent

components of the Q-tensor in a full-LB approach, a hybrid model

uses only 19 distributions for Navier-Stokes and holds the 5 inde-

pendent components of the Q-tensor directly rather than recon-

structing them from moments of the distribution. This, of course,

is an extreme example due to the tensorial nature of the order

parameter.

Like other models that involve phase boundaries or interfaces,

both SC and FE models suffer from spurious currents in regions

of large order parameter gradients. They can be reduced by

higher-order isotropic schemes116. We refer to the relevant liter-

ature85,86 for more details on multi-phase and multi-component

mixtures.

4.4 Applications

Among the first soft matter applications of LBM were flows in

porous media82, particulate flows117 and flows of polymer sol-

vent systems106. These systems are notoriously difficult to model

with standard CFD methods. On the contrary, LBM offers a com-

parably simple way of handling boundary conditions and fluid-

solid interactions and seems almost ideally suited. For instance,

the flow through a porous rock material, traditionally only de-

scribable through effective laws such as Darcy’s law, can be simu-

lated directly.

Fig. 6 3D visualisation of the a bicontinuous interfacially jammed emul-

sion gel (bijel). Shown are the particles and the two fluids, respectively.

The two pictures at the bottom depict the bicontinuouity of the fluids and

the attachment of the particles to the interface 118. Reprinted figure with

permission from Physical Review E. Copyright (2011) by the American

Physical Society.

With regard to multi-component systems like binary112 or am-

phiphilic mixtures119 of immiscible fluids, LBM has as well a

number of advantages. The modelling of droplet coalescence or

necking phenomena usually requires expensive interface track-

ing algorithms that can trigger numerical instabilities. In LBM,

these systems can be modelled with two sets of LB distribution

functions, or with one set of distributions and a level set in hy-

1–16 | 11



brid methods. The position of the interface is then simply defined

by a value of the level set or by the isosurface where the densi-

ties of both fluids have the same value. These models have also

been successfully applied to nanoparticle-stabilised suspensions

(so-called Pickering emulsions)118 and wetting phenomena120.

Free energy models and their ability to express thermodynamic

forces on solute and solvent through gradients of chemical poten-

tials come into their own when the composition and local struc-

ture of the complex fluid becomes increasingly intricate. This, for

example, is the case in liquid crystals115 where the anisotropic lo-

cal order structure is described through a tensorial order param-

eter and gives rise to spatially varying rheological properties. Hy-

brid approaches in favour of full-LB schemes have been used for

large-scale mesoscopic simulations of 3D liquid crystalline struc-

tures at very low shear rates121. Similar concepts have been

used to study active liquid crystals and gels114. They can be de-

scribed through the same methodology with modified free energy

functionals that account for the active components and additional

forces.

Other interesting applications comprise charged soft matter

systems and electrokinetic phenomena. An important step for-

ward was the development of the link-flux method122 by which

the leakage of charge between interfaces and surfaces could

be prevented. The scheme has been used in the mesoscopic

study of the electrophoresis of charged colloids123 and polyelec-

trolytes124. Recently, the scheme has been improved to reduce

spurious currents125.

5 High-Performance Computing

The physics of many soft condensed matter systems can be inves-

tigated without ever considering large-scale simulations. How-

ever, high-performance computing (HPC) can be of particular im-

portance, not only for simulation methodologies that can capture

the long-range nature of hydrodynamic interactions — one focus

of this tutorial review. Soft matter generally shows a tendency

to self-organise into characteristic mesoscopic structures that in

turn determine its macroscopic properties. Multiscale modelling

techniques, accompanied by the appropriate computing power,

are finding increasingly wide-spread use in this field of research.

The so-called rise of the machines has indeed transformed HPC

from an exotic niche technology into an indispensable tool for

science and engineering. In fact, since the beginning of this mil-

lennium, the computing power of the number one facility listed

in the bi-annually published TOP500 has increased by more than

a factor 40,000. With the advent of even more powerful graph-

ics cards and many-core processors, an end to this astonishing

development is not in sight.

At the same time, HPC architectures are rapidly diversifying

and become more complex. This makes it even more difficult

to program and harvest their computational power in the future.

This development began about a decade ago and is directly linked

to the breakdown of the so-called Dennard scaling. As the size

and capacitance of integrated circuits decreased (and continues

to decrease according to Moore’s law), Dennard scaling allowed

to operate them as well at lower voltages. Hence, the power

gains in terms of lower capacitance and operating voltage could

be “invested” in a higher clock frequency, making processors ever

faster whilst keeping the power consumption more or less con-

stant. This design principle became unviable as currents in the

devices have weakened and the operating voltage in the devices

cannot be further reduced. Therefore, the faster processors can

only be created through more compute cores that run calculations

in parallel.

In this paragraph, we will glance at the latest developments

in the area of accelerators and coprocessors and describe the re-

quirements that these increasingly heterogeneous computing ar-

chitectures pose to the programmer. Finally, we will name a few

examples of production codes used for soft matter research.

5.1 General Purpose Graphics Processing Units

General purpose graphics processing units (GPGPUs), also known

as graphics cards or GPUs, were originally designed to handle the

large amount of floating-point operations that occur in the graph-

ics calculations of computer games. They made their first ap-

pearance in the world of scientific computing around 2007. Back

then, Nvidia introduced its compute unified device architecture

(CUDA), an application programming interface (API) that vastly

simplified the programming of GPUs. This has so far led to a dom-

inance of the Nvidia framework in the area of scientific computing

with GPUs and prevented other vendor-independent standards

like the open computing language (OpenCL) from attaining the

same level of maturity. Alternative higher-level directive-based

standards like OpenACC exist and permit automatic handling of

data management and computational offloading at the expense

of slightly reduced performance due to reduced control over data

movements. This trade-off, however, makes more than up for the

simplicity and portability as OpenACC-enabled code can run as

well on many-core processors.

At the time of writing, the latest generation of Nvidia’s Pascal

architecture-based Tesla P100 GPUs delivers a peak performance

of around 5 TFLOPs (5×1012 double-precision floating point op-

erations per second) on 3584 CUDA cores at a power input of

around 300 W, or 3–4 laptops. To put this in perspective, the

fastest supercomputer in November 2000 was the ASCI White at

Lawrence Livermore National Laboratory which achieved about

the same performance with a power input of 3 MW (and another

3 MW for cooling, adding up to an electricity bill of roughly $6

million p.a.). The Tesla P100 also features 500+ GB/s memory

bandwidth and a unified memory space to which both GPU and

CPU can point. This alleviates the burden of having to copy data

back and forth between CPU (host) and GPU (device), a process

that uses the traditionally slowest part in a computer and came

always at significant costs.

However, in order to unleash the power of the GPU, algorithmic

parallelism has to be fully exposed and mapped to the architec-

tural parallelism of the hardware on which the code is deployed.

The so-called task or thread-level parallelism (TLP) that modern

accelerators offer through their hundreds or thousands of com-

pute cores working in parallel is only one way to expose paral-

lelism. Another concept, which dates back to the early days of

vector processors, is known as data parallelism. The basic idea
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behind it is that one single instruction processes a chunk of sim-

ilar data elements at the same time. Today, virtually all types of

processors, also multicore CPUs, use advanced vector extensions

(AVX) which are extensions to the x86 instruction set. These are

also known as SIMD (Single Instruction Multiple Data) instruc-

tions. Obtaining a good performance on any kind of accelerator,

co-processor or many-core chip depends increasingly on whether

data parallelism can be exploited. Quite often this necessitates

a complete redesign of the memory layout and memory access

pattern, which can be prohibitive in the case of big legacy codes.

5.2 Intel Xeon Phi

While GPGPUs used to have a commanding lead over alterna-

tive concepts of co- and many-core processors, the latest edition

of Intel’s many integrated core (MIC) architecture, the Xeon Phi

Knights Landing (KNL) has stirred up some competition. It con-

sists of a smaller number of compute cores, typically 72, which

can be run in a hyper-threading mode, giving in total up to 288

threads. The peak performance is around 3.5 TFLOPs at an en-

ergy input comparable to Nvidia’s Tesla P100. The memory band-

width of the KNL has been significantly increased compared to

older generations; it is at about 400+ GB/s.

The KNL gets its performance from SIMD instructions on very

large vector units. Hence, without exposing data parallelism,

the performance will be noticeably degraded. In fact, data par-

allelism is probably even more crucial for MICs than for GPUs.

That said, obtaining a consistently good performance with these

devices, GPUs or MICs coprocessors alike, when real-world prob-

lems rather than simplistic benchmarks are considered, remains

generally challenging. Performance measurements gained with

one and the same code can vary substantially depending on the

individual scientific problem.

Nevertheless, MICs offer an unparalleled advantage over GPUs

in terms of portability. In order to port a code to the GPU, it is of-

ten necessary to rewrite large parts. This frequently leads to more

complex functionality and much longer source code compared to

its CPU counterparts. Once the investment has been made, the

performance gain can be impressive. But the code can be only

deployed on GPUs, or when CUDA has been used even only on

Nvidia GPUs.

Code written in standard programming languages such as C,

C++ and Fortran using the most common abstractions for par-

allel programming, i.e., message passing interface (MPI) for dis-

tributed memory or OpenMP and even OpenACC for shared mem-

ory architectures, can be compiled for the Xeon Phi coprocessor.

Hence, the code can run on a variety of architectures, ranging

from multi-core CPUs in laptops over workstations, many-core

processors and computing clusters to supercomputers with on-

node co-processors. Although to obtain a good performance the

same fundamental principles apply as for the GPU (exposing suf-

ficient data parallelism and providing a cache-coherent memory

layout and access pattern), the entry barrier is much lower and

the portability significantly higher. Moreover, performance im-

provements made for the Xeon Phi will equally benefit when the

code is run on simple multicore CPUs and vice versa.

5.3 Community Codes

Developing efficient software for HPC applications has never been

a trivial task as it normally exceeds the resources of a typical re-

search group. Moreover, the pool of skilled programmers who

have also sufficient scientific experience in their area of research

is limited. This makes it difficult to conduct ambitious code

projects, even when the funding is in place! Hence, it is not sur-

prising that community codes have emerged which are sometimes

used by thousands of researchers across the world. Here, we will

only mention open source codes that are freely available for aca-

demic users. The list below can only be a cross section and does

not claim to be comprehensive.

A prime example of community code is the large-scale

atomic/molecular massively parallel simulator (LAMMPS)126,

developed by Sandia National Laboratories, USA. LAMMPS is

modular and relatively easy to extend, which makes it an attrac-

tive code to base individual research projects on. Its latest ver-

sion features a vast number of models, particle types, force fields,

ensembles and integrators. In fact, to our knowledge LAMMPS

is the only code that contains an implementation of virtually all

methods mentioned in this review. That said, each method comes

naturally in a multitude of different flavours and modifications.

The LAMMPS implementation contains only some of these fea-

tures. The MPCD model, for instance, uses the stochastic rotation

dynamics version, whereas the LB model is an implementation

of Ollila’s above mentioned algorithm. The existing implemen-

tations form an excellent starting point for further development

of LAMMPS, which is one of the reasons why new features are

constantly being added to every new release. LAMMPS has spe-

cific strengths for coarse-grained modelling, making it suitable

for soft matter research in general. The code shows very good

performance up to millions of simulated particles and thousands

of cores, and the number of multi-GPU- and many-core-enabled

force fields and features is continuously growing.

Another highly versatile software package for performing

many-particle molecular dynamics simulations, with special em-

phasis on coarse-grained models as they are used in soft mat-

ter research is ESPResSo (Extensible Simulation Package for RE-

Search on SOft matter)127,128. It is commonly used to simu-

late systems such as polymers, colloids, ferro-fluids and biolog-

ical systems, for example DNA or lipid membranes. ESPResSo

also contains a unique selection of efficient algorithms for treat-

ing Coulomb interactions. Recently, several grid based algorithms

such as lattice Boltzmann and an electrokinetics solver have been

added.

Another interesting code is HOOMD-blue129, a general pur-

pose multi-GPU enabled molecular dynamics simulation toolkit

from the University of Michigan, USA. Besides Brownian,

Langevin dynamics, DPD and a number of ensembles, the hard

particle capabilities and a variety of shape classes for Monte Carlo

simulations are particularly worth mentioning. Other impor-

tant community codes are GROMACS130 and NAMD131 which

are popular in the biomolecular community. They are both

highly optimised and perform exceptionally well in term of par-

allel efficiency, but lack the general extensibility that for instance
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LAMMPS offers.

Excellent parallel performance is perhaps not trivial, but much

easier to achieve for lattice Boltzmann codes. The algorithm

requires only communication between nearest neighbours on a

regular grid and is intrinsically parallel — unlike MD-type algo-

rithms, where only the introduction of cutoffs, neighbour lists and

sophisticated communication patterns renders the problem paral-

lelisable. Nevertheless, a true LBM community code has so far

not emerged. However, both OpenLB132, developed at the Karl-

sruhe Institute of Technology, Germany, and Palabos133, the open

source project developed in a collaboration between the Univer-

sity of Geneva and FlowKit Ltd. Lausanne, Switzerland, come

probably closest to this endeavour. waLBerla134, developed by

the University of Erlangen-Nürnberg, is another LBM code with

particular strengths in solving partial differential equations that

are coupled to the fluid flow. Another open source LBM code

specifically for soft matter is Ludwig135. It is being developed

in a collaboration between different European project partners in

the UK, France, Switzerland and Spain and features a wide range

of mesoscopic models for complex fluids and active matter.

6 Conclusions and Outlook

This tutorial review gives an introduction to mesoscopic mod-

elling and simulation of soft matter. We have focused on what

we think are the three most popular methods and have reviewed

the basic algorithm and features that are particularly relevant to

mesoscale modelling. We have highlighted the specific strengths

of each method with a few selected examples.

As noted in the introduction, the mesoscopic methods are based

on conservation of mass, momentum and energy. They differ in

the way the conservation laws are translated into a coarse-grained

representation, resulting in different degrees of freedom and dif-

ferent equations of motion for each method. This also results in

specific limitations and advantages in each case.

Dissipative Particle Dynamics (DPD), the method which is prob-

ably closest to traditional molecular dynamics, is an off-lattice

method which has the capability to resolve hydrodynamic space

and time scales significantly larger than those in traditional MD.

The particles in DPD represent whole atoms or regions of sol-

vent atoms and interact via effective forces which conserve mo-

mentum locally and deliver the correct hydrodynamic behaviour

even for relatively low particle numbers. DPD integration algo-

rithms slightly differ from conventional MD integrators and take

into account the specific symmetry requirements in order to fulfil

local momentum or global energy conservation. DPD is particu-

larly well suited for specific physicochemical interactions on the

particle-level, e.g., for systematic coarse-graining of solvation ef-

fects, heat conduction and convection in nano-materials, or the

simulation of biological membranes, macromolecules or multi-

phase systems subject to different flow conditions and geometries.

Multi-particle collision dynamics (MPC) implements discrete

streaming and collision steps to update the positions and veloci-

ties of an ensemble of fluid particles. The molecular interactions

are coarse-grained by sorting the particles into collision cells and

applying a simplified collision rule to exchange momentum. The

collision cells also function as averaging volumes to calculate lo-

cal hydrodynamic fields. This makes MPC amenable to a kinetic

description from which the hydrodynamic Navier-Stokes equa-

tions emerge. In this sense, MPC bridges between the particle

view and the kinetic view of the fluid. The possibility to tweak

the collision rule such that different thermodynamic ensembles

can be reproduced make MPC well suited to study transport phe-

nomena under different ambient conditions. Heat transport due

to temperature gradients and other non-equilibrium effects are

important examples for the use of MPC.

The lattice Boltzmann method (LBM) is a lattice-based scheme

that discretises time, space and velocity space. The commonly

chosen discretisation leads to a simple and nearly local algo-

rithm that naturally lends itself to parallel simulations. Due to

its kinetic nature, complex and moving boundary conditions in

the LBM are relatively straightforward to implement, when com-

pared to conventional Navier-Stokes solvers. Since LBM oper-

ates with averaged particle distributions, it is especially suited

for non-Brownian problems, e.g., non-colloidal particle suspen-

sions, although fluctuations can be re-introduced. LBM is a pop-

ular method for multi-phase or multi-component problems, e.g.,

droplet dynamics or water/oil flow in porous media. Further-

more, it is straightforward to couple additional physics with the

LBM algorithm, which enables applications such as liquid crystal

dynamics or electrophoresis.

Interestingly, direct comparisons between the three above men-

tioned methods are scarce – at least we are not aware of any. This

is perhaps a knowledge gap that the computational soft matter

community may want to address in the future. Nevertheless, it

is possible to draw a comparison between some more general as-

pects of each method.

A generic property of DPD is that both solute and solvent are mod-

elled through coarse-grained particles that resemble each other

closely. This characteristic feature makes the inclusion of spe-

cific solute-solvent interactions simple. These can also be mod-

elled via effective coarse-grained force-fields that describe the av-

eraged atomistic or molecular interactions on a larger length and

time scale. Both DPD and MPC are fully thermalised methods and

are natively connected to typical thermostatic or thermodynamic

algorithms like Nosé-Hoover thermostats or Langevin dynamics.

Whilst this is usually seen as an advantage, it allows only for fluc-

tuating solutions of hydrodynamic problems. While fluctuations

can be incorporated as well into LBM, arguably in a slightly more

complicated manner, LBM permits primarily quasi noise-free, bal-

listic solutions. In form of the Chapman-Enskog expansion, LBM

offers a tool which allows all specific modifications of the micro-

scopic dynamics to be directly related to a macroscopic target

equations, providing quasi- or near-analytical insight into phys-

ical problems.

Mesoscopic modelling continues to be an area of active re-

search, and multiphase fluids and non-equilibrium soft matter of-

fer a range of interesting research problems. Moreover, we antic-

ipate that mesoscale methods will play a central role in enabling

extreme-scale applications on future HPC systems. We hope that

this tutorial review will help the reader to choose the appropriate

methods to address the mesoscale physics that is relevant in their

research problem.
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