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Abstract— We present the Hierarchical Dynamic Roadmap
(HDRM), a novel resolution complete motion planning algorithm
for solving complex planning problems. A unique hierarchical
structure is proposed for efficiently encoding the configuration-
to-workspace occupation information that allows the robot to
check the collision state of tens of millions of samples on-the-fly—
the number of which was previously strictly limited by available
memory. The hierarchical structure also significantly reduces the
time for path searching, hence the robot is able to find feasible
motion plans in real-time in extremely constrained environments.
The HDRM is theoretically proven to be resolution complete, with
a rigorous benchmarking showing that HDRM is robust and
computationally fast, compared to classical dynamic roadmap
methods and other state-of-the-art planning algorithms. Exper-
iments on the 7 degree-of-freedom KUKA LWR robotic arm
integrated with real-time perception of the environment further
validate the effectiveness of HDRM in complex environments.

I. INTRODUCTION

Motion planning is one of the fundamental problems in
robotics, involving automatically finding a sequence of config-
urations that take the robot from a start to a goal pose. Gener-
ally, motion planning can be categorized into optimization-
based and sampling-based algorithms. Optimization-based
methods [1], [2] generate optimal trajectories with respect to
cost functions, but may get stuck in local minima and fail to
produce a valid solution when the problem is non-convex or
ill-defined. On the other hand, sampling-based approaches [3],
[4], [5], [6] promise to solve complex problems by sampling
globally in the configuration space.

In sampling-based algorithms, collision checking is usually
the most expensive operation and reportedly consumes up to
90-95% of the planning time [7]. Lazy collision checking is
used to delay the collision checking until it is needed [8]. One
can also define possible collision regions and limit collision
checking to these regions [9]. However, these techniques only
reduce the collision checking time indirectly by reducing
the number of calls, but not the actual computation time of
the collision checking function. Parallel implementations have
been proposed to speed up collision checking and motion
planning [10], but these approaches focus on parallelization
and system implementation based on existing algorithms.

In contrast, the Dynamic Roadmap (DRM) algorithm [11],
an extension to the probabilistic roadmap (PRM) [4], algo-
rithmically reduces the collision checking time by encoding
configuration-to-workspace occupation information. Given dif-
ferent environments, the DRM can efficiently remove invalid
edges and form a valid subset of the full roadmap. Subse-
quently, search algorithms can proceed without considering
collision checking since the remaining vertices and edges are

Fig. 1: The 7-DoF KUKA LWR robot with SCHUNK Dexterous
Hand operating inside a cage. Left: grasping the target from upright
posture; right: dropping the object to the side.

all collision-free. However, encoding the occupation informa-
tion requires to store a significant amount of data, which
needs to be loaded into memory during run-time. In the
early work [11], [12], the low amount of available memory
allowed storing only small roadmaps with limited number
of vertices and edges. Without enough vertices and edges to
densely cover the configuration space, the DRM achieves a
very low planning success rate [12], [13]. The success rate
is closely tied with the term Completeness. An algorithm
is considered complete if for any input it correctly reports
whether there is a solution or not. If a solution exists, it must
return one in finite time [14]. Optimization-based methods
are incomplete due to local minima. Unfortunately, sampling-
based algorithms, such as PRM and Rapidly-exploring Ran-
dom Tree (RRT), are also incomplete. A weaker notion of
completeness called probabilistic completeness is used to
describe random sampling-based algorithms. This means that
with enough samples (possibly infinite number of samples),
the probability of finding a solution asymptotically converges
to one. Another term, resolution completeness, is used if an
algorithm guarantees to find a solution in finite time; however,
if a solution does not exist, the algorithm may run forever
by incrementally increasing the sampling resolution; or, the
algorithm may terminate in finite time by reporting no solution
at a certain resolution, although a solution may exist at a
finer resolution. In [15], a DRM consisting of up to a million
vertices can be stored and updated efficiently for achieving
good performance when more memory and powerful GPUs are
available. However, even one million vertices are not enough
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Fig. 2: Preliminaries of DRM. Left: probabilistic roadmap in config-
uration space; right: workspace swept volume of an edge.

for dense coverage of 6-7 dimensional configuration space.
Instead of claiming completeness, a small size DRM was built
on customized hardware for solving very specific tasks [16].
Considering only vertices but not edges makes the DRM a
Dynamic Reachability Map that finds valid reaching poses for
high-dimensional floating-base robots [17], [18]. No matter
whether we store a small roadmap with limited vertices and
edges, or only the vertices, these methods eventually need to
sacrifice completeness for a manageable storage size.

In order for robust motion planning in complex environ-
ments to be practical, a tremendous number of vertices and
edges are required; yet storing such a roadmap is infeasible on
commodity computers with current technology. However, we
observe that the memory consumption for storing a DRM can
be greatly reduced by exploiting the topology of robot arms.
On this basis, a new resolution complete planning algorithm,
the Hierarchical Dynamic Roadmap (HDRM), is proposed
with the following contributions:
• Theoretical proof of resolution completeness of HDRM

as a deterministic roadmap with a discretized workspace;
• A novel formulation for encoding the occupancy informa-

tion of roadmap vertices and eliminating the necessity of
computing/storing edges, which enables efficient storing
of roadmaps with tens of millions of vertices;

• A novel technique that efficiently identifies/removes col-
liding samples, which in turn enables real-time planning
for single-chain robot manipulators in complex environ-
ments by exploiting the proposed hierarchical roadmap.

Extensive benchmarking shows that the HDRM is able to
find valid solutions in extremely constrained conditions within
a few milliseconds or less, which could not be achieved previ-
ously by classical DRM and other state-of-the-art algorithms.
Experiments on a KUKA LWR arm further demonstrate
HDRM’s capability to solve real-world problems.

II. DYNAMIC ROADMAP

A. Preliminaries

Let C ∈ RN be the configuration space of a N -DoF robot
and q ∈ C be a state in configuration space. Let Cobs represent
the obstacles and Cfree = C\Cobs the collision-free region. A
classical PRM contains a connected graph G = (V, E), where
V ∈ Cfree are the vertices and E are the edges that connect
two neighboring vertices, as highlighted in Fig. 2 (left).
These vertices and edges are generated during off-line pre-
processing. During the on-line planning phase, given start
and goal states qstart ,qgoal , we first find these two vertices

Vstart and Vgoal which are closest to the start and goal states
respectively. Then a graph search algorithm, such as A* [19],
is deployed to find a path in the roadmap connecting Vstart and
Vgoal . However, the pre-generated vertices and edges may not
be valid in unknown and non-static environments. The validity
of the stored vertices and edges must be checked, and in many
cases we need to sample new collision-free configurations
during the on-line phase which is very time consuming.

The dynamic roadmap (DRM) is a variation of the PRM
proposed by Leven and Hutchinson [11]. The DRM is dynamic
in the sense that the graph G can be dynamically updated
in different environments. The invalid vertices and edges can
be efficiently identified and removed, with the remaining
ones forming a new graph of only valid vertices and edges.
This reduced graph is ready for path searching algorithms
without considering collision checking. The key feature of
DRM is a configuration-to-workspace mapping, as highlighted
in Fig. 2 (right). One can find the list of discretized workspace
voxels which an edge occupies, referred to as the swept
volume. If one or more of the voxels in the swept volume are
in collision, then the corresponding edge becomes invalid. In
practice, it is inefficient to check the swept volume of all edges
exhaustively. Instead, the occupation information is stored per
each workspace voxel, i.e. each voxel stores a list of edges
that sweep through this voxel. In a new environment, we first
find all the voxels that are occupied by the obstacles in the
environment. Then, by iterating through the occupation lists
of these invalid voxels, all the invalid edges can be found and
then removed accordingly.

The main observed limitation of the existing DRM method
is its low success rate [12], [13]. Although the success rate
can be improved for particular tasks by carefully selecting
the samples [16], those approaches can not solve generic
problems, therefore they are not (resolution) complete.

B. Resolution Completeness of a Deterministic Roadmap with
a Discretized Workspace

In this section, we provide theoretical proof of the condi-
tions and boundaries of resolution completeness for determin-
istic DRM methods with a discretized workspace.

The work in [20] has proven that a deterministic roadmap is
resolution complete. Here, deterministic refers to the property
of the sampling distribution. The authors proved that uniform
sampling (e.g. a Sukharev grid) results in a resolution complete
planning algorithm. To show this, let Ψ be the subset of the
power set of C corresponding to all open subsets that can be
constructed with algebraic constraints as defined in [21], and
Ψ(x) for x ∈ (0,∞) be the set of all Cfree with the width of
Cfree , w(Cfree) ≥ x (see [20]). The width x can be viewed
as the minimum width of a passable corridor in the collision
free portion of the configuration space. Fig. 3a illustrates the
corridor (with solid color background). All queries lie within
this corridor, therefore, if all the queries of the deterministic
roadmap also lie within the same corridor, the roadmap is
hence resolution complete. The minimal with of the corridor
x required for completeness is defined in [20]. We extend their
proof to roadmaps with discretized work space.
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Fig. 3: Illustration of additional volume an obstacle in a discretized
workspace occupies in the configuration space. An algorithm is
resolution complete if it accounts for the additional increase corridor
width f(s) due to discretization.

Lemma 1: After M iterations, a deterministic DRM is
resolution complete for all Cfree ∈ Ψ(4b(N)M−

1
N + f(s)),

where M is the number of samples, N is the dimension of the
configuration space, s is the resolution of the workspace, b(N)
is a factor that depends on the sampling method (b(N) = 1
for HDRM) and f(s) is a robot-dependent function.

Proof : It has been proven in [20] that, after M iterations,
a deterministic roadmap planner is resolution complete for all
Cfree ∈ Ψ(4b(N)M−

1
N ), without workspace discretization.

However, as shown in Fig. 3, with a discretized workspace
with voxel size s > 0, the corresponding Ccorridor and Cobs
are both inflated due to the workspace discretization, where
Ccorridor is the narrowest corridor in the configuration space.
Let C′corridor and C′obs denote the inflated Ccorridor and Cobs ,
respectively, and they must not intersect. After discretizing the
workspace, the algorithm is able to solve problems for C′free
where w(C′free) ≥ w(Cfree) + f(s). Thus, the algorithm is
resolution complete for all Cfree ∈ Ψ(4b(N)M−

1
N +f(s)). �

To calculate f(s), let V (e) denote the voxelized swept
volume of an edge e, and CV (e) be the C space region occupied
by V (e), then the width of C′free can be defined as

w(C′free) = 4b(N)M−
1
N + f(s) = sup

e∈E
{w(CV (e))}, (1)

which yields

f(s) = sup
e∈E
{w(CV (e))} − 4b(N)M−

1
N . (2)

It is practically difficult to pre-determine f(s) before sampling
as it depends not only on the number of samples M and
resolution s, but also on the robot’s geometric shape.

C. Limitations: Curse-of-Dimensionality

According to Lemma 1, although certain level of resolution
completeness can be guaranteed for any given workspace and
configuration space resolution, the algorithm would not be
practically useful if w(C′free) is too wide. To achieve a smaller
w(C′free), one could either increase the number of samples or
the workspace resolution. However, both options are restricted
by the available memory size.

Consider a 6-DoF robotic manipulator where for example
K = 15 different discretization values are chosen for each
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Fig. 4: A 2-DoF example of HDRM with K1 = K2 = 3, the number
of roadmap vertices stored in the structure is K1 ×K2 = 9.

joint. In this case we would generate 156 ≈ 11.4 million
vertices to build a DRM. If each vertex occupies around 400
workspace voxels, that means the occupation lists may contain
billions of indices (unsigned int1), which is too expensive
to store on commodity hardware. Note that this is only a 6-DoF
case and the problem scales exponentially with the dimension
of the configuration space (curse-of-dimensionality).

III. HIERARCHICAL DYNAMIC ROADMAP

In this section, we introduce the Hierarchical Dynamic
Roadmap which reduces w(C′free) by exploiting the inherit
hierarchical structure of the robot, which in turn enables us to
store a higher resolution deterministic roadmap, e.g. s ≤ 5cm,
given a limited amount of available memory.

A. Hierarchical Configuration Structure
Let [bn,l, bn,u] be the lower and upper bounds of joint n ∈

N of a N -DoF robot. An even discretization of the n-th joint
to Kn ∈ N values results in configurations

qn(kn) = bn,l + (kn − 1)× bn,u − bn,l
Kn − 1

(3)

where kn ∈ {1, . . . ,Kn}. Let

k(n) = [k1, . . . , kn] (4)

be a n-dimensional vector containing the joint value indices
for the first n joints, and

q(k(n)) = [q1(k1), . . . , qn(kn)] (5)

be a n-dimensional vector contains the actual joint values
corresponding to k(n). The full N -dimensional robot configu-
ration can be retrieved given k(N). For example, as shown in
Fig. 4, consider a 2-DoF robot, where the range of motion
of each joint is [−π, π]. Given K1 = K2 = 3, we have
q1(1) = q2(1) = −π, q1(2) = q2(2) = 0, and q1(3) =
q2(3) = π. Then, k(2) = [1, 1] gives the robot configuration
q = [−π,−π], k(2) = [2, 3] gives another robot configuration
q = [0, π], and k(1) = [2] gives the first joint value q1 = 0.

The data structure stores the equivalent of M =
∏N

1 Kn

vertices. The robot configurations can be accessed with k(n),
however, the vertices in the roadmap are indexed with one
integer index i ∈ M . Let H : (n, i) 7→ k(n) be the map
from pair (n, i) to k(n), and H−1 : k(n) 7→ (n, i) be the
corresponding inverse map. Given an index i and level n, the
first n indices k(n) = H(n, i) can be efficiently calculated
using Algorithm 1. Similarly, given hierarchical indices k(n),
the corresponding (n, i) can also be found by Algorithm 2.

1The size of one unsigned int is 4 Byte on 64-bit operating systems.
Hence storing indices for the occupation lists for these vertices in this example
requires 4×400×11.4×106 Byte ≈ 17 GB of memory. 400 is the number
of voxels occupied by one sample of the LWR robot at s = 5cm resolution.



Algorithm 1 Obtain hierarchical indices from integer index

Require: Dimension level n, vertex index i
Ensure: Hierarchical indices k(n)

1: Quotient= i
2: while n > 1 do
3: Quotient, Remainder=Division(Quotient,

∏n
1 Kn)

4: kn =Remainder
5: k1 =Quotient

return k(n) = [k1, . . . , kn]

Algorithm 2 Obtain integer index from hierarchical indices

Require: Hierarchical indices k(n) = [k1, . . . , kn]
Ensure: Dimension level n, vertex index i

1: i = 0
2: for l ∈ {1, . . . , n− 1} do
3: Counter = 1
4: for j ∈ {l + 1, . . . , n− 1} do
5: Counter = Counter×Kj

6: i = i+ Counter× kl
7: i = i+ kn

return n, i

The hierarchical structure is a multi-resolution Sukharev
grid [20] with b(N) ≡ 1, thus the hierarchical roadmap
is resolution complete for Cfree ∈ Ψ(4M−

1
N + f(s)). As

we will show in Section III-C, such structure enables a
hierarchical way for storing the configuration-to-workspace
occupation information that dramatically reduces the memory
consumption.

B. Removal of Swept Volumes

There are two types of occupation information: the occu-
pation voxels of a vertex and the swept volume of an edge
(dark and light grey voxels in Fig. 5 respectively). In the
classical DRM algorithm, the edge is invalidated if one or
more voxels in the swept volume are in collision. However,
there will be many sub-edges still valid in the cases where
only very few of the voxels are in collision. For example,
in Fig. 5a, if only the red voxel is in collision, the long edge
E(q1,q4) is invalid while the sub-edge E(q3,q4) is still valid.
Yet, the whole edge is considered invalid as these sub-edges
are not stored in the roadmap. This is the underlying reason
for planning failures and the low success rate of the classical
DRM method, i.e. the f(s) in (2) is too large to make it
practically useful. In fact, we argue that storing swept volumes
does not utilize available resources well as this information
is used only for collision checking and not the actual path
planning. Therefore, we instead propose to use the memory
for storing more vertices and edges instead.

In our method, we store only the occupation voxels of the
vertices excluding the swept volumes of the edges, while still
being able to check the collision status of both vertices and
edges. Let Oa be the occupation voxels of a vertex a, and
Oa,b be the swept volume of edge E(a, b). If two vertices a, b
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𝒒2
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Fig. 5: Comparison of classical and hierarchical DRM. (a) A long
edge E(q1,q4) in classical DRM sweeps through a large number of
workspace voxels. (b) Dense vertices and short edges in HDRM.

are very close and the edge is so short that

Oa,b = Oa ∪Ob, (6)

then we do not need to store the swept volume of the edge
since it can be represented by the occupation voxels of these
two end-point vertices, as illustrated in Fig. 5b. The edge
E(a, b) is collision-free if vertices a, b are collision-free, and
vice versa. This ensures that a colliding workspace voxel only
affects those corresponding short edges without invalidating
others. A lower bound of Kn needs to be met in order to
achieve such roadmap density.

Let θn = bn,u − bn,l be the range of motion of joint n, ln
and rn be the approximate length and radius of n-th robot link,
as illustrated in Fig. 6. For joint n, set all the subsequent/child
joints such that the rest of the robot kinematic chain is fully
extended. We assume that only one joint moves at a time,
in which case, the distance between the n-th link of two
neighboring configurations must not be greater than s+

√
2rn,

so that two end-effector links occupy the same or neighboring
workspace voxels in order to satisfy (6). Hence, the inequality
constraint shall be

sup
n≤k≤N

{
s+
√

2rk
2πLn,k

}
≥ ∆n

2π
, (7)

where Lk
n =

∑j=k
j=n lj is the fully extended length from link

n to link k, k ≥ n. Rearranging terms yields

∆n ≤ sup
n≤k≤N

{
s+
√

2rk
Lk
n

}
. (8)

So joint n should have evenly distributed values of

Kn = d θn
∆n

+1e = dθn

(
sup

n≤k≤N

{
s+
√

2rk
Lk
n

})−1
+1e (9)

within its range of motion. We choose the minimum valid
value for each Kn which already guarantees resolution com-
pleteness for a certain workspace voxel resolution s. Greater
Kn only introduce more vertices and edges that increase
memory consumption and slow down the search process.

The swept volumes can be removed if (9) is true for
all joints. Furthermore, the information of the hundreds of
millions of edges itself can be removed as well, because all
the edges can be calculated analytically from the hierarchical
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structure. Additionally, we add an assumption that one joint
moves at a time. A N -dimensional configuration k(N) has
2×N neighbors (apart from the ones at the boundary of the
range of motion), each of which forms an edge with k(N).
As the edges have no direction, a N -dimensional HDRM with
M vertices contains roughly N ×M edges. It is also possible
to allow full connectivity to all neighbors and thus the ability
to move multiple joints at a time, but it will require a higher
sampling density to achieve the same Ψ(x).

C. Hierarchical Occupation Lists

Section III-A describes how to create a hierarchical structure
to efficiently store tens of millions of configurations, and
Section III-B explains why and how to remove the swept
volumes and edges. The final step involves processing and
storing the occupation lists of all vertices. However, when
the roadmap contains tens or potentially hundreds of millions
of vertices, their occupation lists are too expensive to store
using classical methods. Next, we discuss how to exploit the
hierarchical structure to resolve this problem.

Let Bn be the collision body between joint n and n + 1.
Consider KN configurations with identical values for the first
N − 1 joints but only differing at the last joint, as illustrated
in Fig. 7. These KN configurations are invalid if BN−1 is
in collision at the red voxel. In the classical DRM method,
the red voxel’s occupation list needs to store KN indices to
encode this information where each index corresponds to a
particular configuration—which is very inefficient.

Instead of storing integer indices i ∈ M for each config-
uration, we store a list of pairs (n, i), where i ∈

∏n
1 Kn

and n ∈ N . A pair (n, i) is added to a workspace voxel v’s
occupation list if Bn at configuration k(n) = H(n, i) occupies
this voxel. In Fig. 7, when the red voxel is in collision with the
environment, based on the pair (N − 1, i), we can invalidate
the i-th vertex of level N − 1 of the hierarchical structure. It
is clear that all these KN configurations are invalid since the
first N − 1 joints have already caused body BN−1 to be in
collision. Hence, we can encode the occupation information
of KN configurations using only two rather than KN indices.
Consider another case with K2 × · · · × KN vertices, which
could be millions, that have same value k1 for the first joint but
differ at all other joints. If k1 puts B1 to a colliding position
with the environment, then the millions of vertices with same
k1 index are all invalid. In such case, we can more efficiently
use only a pair (1, k1) instead of millions of indices to encode
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Fig. 7: Illustration of hierarchical occupation lists.

the occupation information of all these vertices. As we will
show later in Section IV-B, using the hierarchical structure and
this novel indexing technique, we can significantly reduce the
memory required for storing the occupation information.

Algorithm 3 shows the details of generating the full occupa-
tion lists for all workspace voxels. First, given the size of the
workspace and grid resolution s, a set of workspace voxels
V can be generated. Each voxel v ∈ V is associated with
an empty occupation list Ov . Lines 3-12 generate the initial
hierarchical occupation lists, but we can compress these to
further reduce memory storage (lines 13-23). The compression
is based on the fact that some robots, or part of the robots,
are axially symmetric, which means that rotating a joint will
not change the occupation list of the subsequent links. More
generally, if the collision body Bn of Kn vertices (xKn +1 to
xKn+Kn, x ∈ N) from the same sub-tree of level n occupies
a voxel v, then the occupation list of v needs to store only one
pair of (n − 1, ·) rather than Kn pairs of (n, ·), because the
first n− 1 joints already make Bn unavoidably occupy voxel
v. We “promote” the occupation list from level n to n− 1 if
such axial symmetry occurs.

D. Motion Planning using HDRM

With the HDRM created and loaded, our goal is to ef-
ficiently solve motion planning queries online in different
environments. The three main steps are as follows.

1) Collision update: First, we create a voxelized environ-
ment to represent the discretized workspace, and then apply
conventional collision checking on this voxelized environment
against the real collision environment to find the list of voxels
that are occupied by the obstacles. For each occupied voxel,
we iterate though its occupation lists and invalidate vertices
in the hierarchical structure accordingly.

2) Connecting start/goal to roadmap: The start and goal
vertices Vstart ,Vgoal are required for the graph search algo-
rithm, which are the closest valid vertices to the start and
goal configurations qstart ,qgoal . Traditionally, this involves
comparing the distance between a given configuration q and
all vertices in the roadmap and finding the one with the
shortest distance. As we will show later, such process could
be very slow for a roadmap with a large number of vertices. In
our approach, instead of searching though all vertices, we can
analytically compute the closest one. Given a configuration
q, we can easily get the closest hierarchical configuration
kclosest(N). Then, the index of closest vertex Vclosest can
be found using Algorithm 2.



Algorithm 3 Generate hierarchical occupation lists

Require: Robot model R, voxelized workspace V
Ensure: Hierarchical occupation lists Ov, v ∈ V

1: for v ∈ V do
2: Occupation list Ov = ∅
3: for n ∈ {1, . . . , N} do
4: for i ∈ {1, . . . ,

∏n
1 Kn} do

5: k(n) = H(n, i)
6: Set first n joints of R to q(k(n))
7: if {B1, . . . ,Bn} are NOT in self-collision then
8: V = findBodyOccupiedVoxels(V,R,Bn)
9: for v ∈ V do

10: Ov = Ov ∪ {(n, i)}
11: else
12: Set vertex (n, i) as default invalid
13: for v ∈ V do
14: for n = N to 1 do
15: O = extractListOfDimension(Ov, n)
16: Remove duplicated indices and sort O
17: for Oi ∈ O do
18: if Oi mod Kn = 0 & Oi+Kn = Oi +Kn then
19: Ov = Ov\{(n, p)|p ∈ [Oi, . . . , Oi+Kn

]}
20: if n > 1 then
21: k(n) = [k1, . . . , kn] = H(n,Oi)
22: Ov = Ov ∪ {(n− 1,

∏p=n−1
p=1 kp)}

23: i = i+Kn − 1

3) Shortest path searching: The last step is to find a valid
path on the roadmap connecting Vstart and Vgoal . The A*
shortest path searching algorithm is used. We implemented
the sequential version of A* using a single CPU-thread.
Parallelization is not the main focus of this paper, however,
we believe that parallel version of Dijkstra or A* algorithms
would be more efficient [15].

IV. EXPERIMENTS

The proposed HDRM method is benchmarked against the
classical DRM approach and standard sampling-based plan-
ners (SBP) in various scenarios using two different fixed-base
manipulators: a 6-DoF Universal Robot UR5 and a 7-DoF
KUKA LWR. The evaluation was performed using an Intel
Core i7-6700K 4.0 GHz CPU with 32 GB 2133 MHz RAM,
and the KUKA LWR for hardware experiments.

A. Experimental Setup

Given the robot model, first Kn is calculated using equa-
tions 7–9, as shown in Table I. Two different workspace voxel
resolutions are used, s = 0.1m and s = 0.05m. Smaller
s leads to greater Kn and more samples are required to
densely cover the space. We have also implemented classical
DRM methods for comparison. To achieve resolution com-
pleteness, we generate the vertices by uniformly sampling in
the configuration space and apply no roadmap compression
technique. Three classical DRM datasets are created with
different number of vertices: 1, 000 (DRMa), 10, 000 (DRMb)
and 200, 000 (DRMc). A K-nearest neighbor search based on

TABLE I: Robot kinematic analysis for creating HDRM.

Robot Range of motion θ (rad),
extend length R (m)

s (m) Kn

UR5

θn = {6.28, 6.28,
6.28, 6.28, 6.28, 6.28}
Rn = {0.98.0.97,

0.57, 0.23, 0.17, 0.0}

0.1 {37, 36, 21, 9, 7, 1}

0.05 {52, 51, 30, 12, 9, 1}

LWR

θn = {5.86, 4.12, 5.86,
4.12, 5.86, 4.12, 5.86}
Rn = {0.99, 0.79, 0.59,

0.39, 0.19, 0.05, 0}

0.1 {35, 20, 21, 10, 7, 2, 1}

0.05 {49, 27, 29, 14, 10, 2, 1}

TABLE II: Comparison between classical DRM and HDRM.

Robot &
Method

No. Vertices No. Edges s (m) Memory
size (MB)

UR5
DRM

1, 000 6, 336
0.1 2.8

0.05 13.6

10, 000 61, 274
0.1 22.3

0.05 104

200, 000 1, 200, 956
0.1 356

0.05 1593

UR5
HDRM

1,762,236 10,573,416 0.1 8.5

8,592,480 51,554,880 0.05 145

LWR
DRM

1, 000 6, 369
0.1 7.9

0.05 33.4

10, 000 62, 031
0.1 70

0.05 280

200, 000 1, 216, 755
0.1 1239

0.05 4793

LWR
HDRM

2,058,000 14,406,000 0.1 16.7

10,742,760 75,199,320 0.05 266

the Euclidean distance with K = 10 is then applied to find
the edges in the roadmap.

B. Memory Requirements

As highlighted in Table II, the HDRM scales exponentially
with roadmap size while the memory requirement is much
lower compared to classical DRM. In the case of the UR5
robot with 0.1m voxel size, HDRM can store over 1.7 million
vertices and 10 million edges using only 8.5 MB of memory,
which is even less than the memory required for classical
DRM to store only 10, 000 vertices. In the LWR scenario with
0.05m voxel size, the HDRM stores over 10 million vertices
and up to 75 million edges using only 266 MB of memory
whereas the memory size for classical DRM to store 200, 000
vertices is over 4.7 GB.

C. Motion Planning Evaluation

We benchmarked the performance of eight candidate meth-
ods: three classical DRM methods DRMa, DRMb, DRMc;
four standard sampling-based planners (SBP), i.e. RRT, PRM,
Single-Query Bi-directional Planning with Lazy Collision
Checking (SBL) [9], and RRTConnect; and finally the pro-
posed HDRM. For DRM/HDRM, the datasets of the LWR
robot with 0.1m voxel resolution are used. For SBP methods,
we use the standard implementations from the OMPL li-
brary [22] and the FCL library [23] for explicit online collision



(a) Obstacle density 0.1% (b) Obstacle density 0.5%

(c) Obstacle density 1% (d) Obstacle density 5%

Fig. 8: Random problems in environments with different workspace
obstacle densities. The highlighted trajectories are valid solutions
found by HDRM.

checking with all parameters set to library defaults.
Five different categories of environments with random ob-

stacles were created. From simple to complex, these envi-
ronments have 0%, 0.1%, 0.5%, 1% and 5% of the whole
workspace occupied by obstacles, where the latter four are
illustrated in Fig. 8. The environments with 1% and 5%
obstacle densities are extremely complicated for any kind of
motion planning algorithm. We have created 1000 random
valid problems for each category. Each problem has a valid
start and goal states, and at least one trajectory connecting
these two. To guarantee this, a random self-collision-free tra-
jectory is generated in an empty space, which is then populated
with obstacles that are not colliding with the trajectory. All
algorithms are given 10 seconds to solve each problem. Since
all problems are solvable, reporting no solution or exceeding
the time limit is considered a failure. Solutions that differ from
the one used to create the problem are also valid.

Evaluation results are detailed in Table III. As a baseline,
all algorithms achieve 100% success rate in free space. The
success rate of the classical DRMs falls below 100% when
the environment is populated with only a few obstacles (0.1%
obstacle density). The SBP methods are generally slower due
to explicit collision-checking for every sample which is very
time consuming. In more complicated environments (0.05%
and 1% obstacle densities), the success rate of classical DRM
methods decreases significantly. SBP methods still achieve
reasonable success rates, however, the planning time increases
considerably. HDRM performs better compared to all other
methods in complicated scenarios in terms of both success
rate and planning time. In the extreme cases with 5% obstacle
density, we do not show the average planning time for the
classical DRM methods as the success rate is too low. All SBP
methods also report lower success rates and much longer plan-
ning times. On the contrary, HDRM constantly achieves 100%
success rate in these extremely constrained environments.

It is interesting that DRMc has a much smaller roadmap
than HDRM, but takes longer time to find a solution even
in free space. We break down the DRM/HDRM planning
time into separate components, as in Table IV, and the
time is given in microseconds. The collision update takes
141.6 µs in free space, which is basically the overhead of

TABLE IV: Breakdown of computational time (in microseconds).

Method
Roadmap update Planning

TotalFind coll.
voxels

Remove
invalids

Connect to
roadmap

A*
search

Obstacle density 0%
DRMa

141.6 0

14.17 0.581 156.4
DRMb 170.1 0.626 312.3
DRMc 3273 0.698 3415
HDRM 0.229 134.1 275.9

Obstacle density 0.1%
DRMa

694.8

1.665 13.774 0.557 710.8
DRMb 18.71 163.8 0.601 877.9
DRMc 435.0 3212 0.711 4343
HDRM 17.48 0.267 144.9 857.4

Obstacle density 1%
DRMa

1212

13.92 13.32 0.607 1240
DRMb 145.5 163.5 0.745 1522
DRMc 4728 3290 1.021 9231
HDRM 177.9 0.233 2325 3715

(a) Reaching into confined shelf. (b) Fetching object in distance.

Fig. 9: Experiments on a 7-DoF KUKA LWR robotic arm fitted with
SCHUNK Dexterous Hand.

communication and function calls. We use FCL for explicit
collision checking where the time increases as expected in
more complicated environments. Classical DRMs with more
vertices and edges require much longer time to remove invalid
roadmap parts, whereas the HDRM is able to do so relatively
faster, considering the enormous number of vertices and edges.
Another expensive step of classical DRMs is connecting the
roadmap, which increases exponentially with the number of
vertices. After connecting the roadmap, running A* search is
actually very fast since the roadmap size is relatively small.
On the other hand, the time for connecting the roadmap is
negligible for HDRM since the closest vertices can be ana-
lytically computed as elaborated in Section III-D.2. However,
the searching takes longer due to the enormous roadmap size.

D. Experimental Validation on Robot Hardware

We further validate the HDRM method on a 7-DoF KUKA
LWR manipulator fitted with the SCHUNK Dexterous Hand
2.0. The HDRM dataset was generated with s = 0.05m
voxel resolution. Four Microsoft Kinect One RGB-D sensors
were fused to sense the environment and create an OctoTree
representation for collision checking. It shall be noted that
due to the limitation of the out-of-the-box sensing devices
and algorithms, the real experiment setup was limited to
simpler environments compared with the simulation bench-



TABLE III: Evaluation of 8 candidate motion planners, showing the success rate of solving 1000 problems in random valid environments,
followed by the average solving time over the successful cases (in milliseconds). All algorithms are given 10 seconds to solve each problem.

Obstacle density 0% Obstacle density 0.1% Obstacle density 0.5% Obstacle density 1% Obstacle density 5%

Method Success
rate

Time
(ms)

Success
rate

Time
(ms)

Success
rate

Time
(ms)

Success
rate

Time
(ms)

Success
rate

Time
(ms)

Standard
SBP

RRT 100% 13.392 99% 22.708 92% 325.21 82% 1036.1 36% 1893.6
PRM 100% 5.7416 100% 4.5041 100% 322.86 99% 656.09 34% 3386.4
SBL 100% 6.8909 100% 14.775 100% 82.473 100% 273.96 31% 4439.4

RRTConnect 100% 1.1930 100% 2.1220 100% 10.117 100% 48.926 74% 1723.7

Classical
DRM

DRMa 100% 0.1564 92.2% 0.7108 65.6% 0.7911 39.0% 1.2403 1.6% -
DRMb 100% 0.3123 93.9% 0.8779 69.5% 1.0203 48.9% 1.5221 3.6% -
DRMc 100% 3.4152 95.7% 4.3431 74.7% 6.5206 53.0% 9.2316 3.3% -

Hierarchical DRM 100% 0.2759 100% 0.8574 100% 1.5813 100% 3.7152 100% 15.506

mark. In our supplementary video (https://youtu.be/
4AzbmiTI1iE), we demonstrate challenging motions in
three different, highly constrained environments: reaching into
a confined shelf space and grasping a target object (Fig. 9a);
retrieving an object through a frame (Fig. 9b); and moving an
object from within a cage (Fig. 1).

V. CONCLUSION

This paper presents a novel method, the Hierarchical Dy-
namic Roadmap (HDRM), for real-time motion planning in
high dimensions. The HDRM, through our proposed novel
indexing scheme, is able to encode large numbers of vertices
and edges (up to tens of millions) in a memory efficient man-
ner that also allows the algorithm to be resolution complete.
An extensive benchmarking shows that HDRM can find valid
motion plans in extremely complicated environments in real-
time and empirically validates that the algorithm is resolution
complete. Experiments on the KUKA LWR robot further
demonstrate that our method is capable of incorporating live
sensing information and providing collision-free trajectories
suitable for tackling practical problems.

Both DRM and HDRM compute solutions in static envi-
ronments, which can be different between planning queries
but need to be static during execution—they inherently do not
adapt to runtime changes. Since HDRM guarantees resolution
completeness and is able to plan in real-time (few milliseconds
or less), the future work will focus on implementing a closed-
loop online adaptation/re-planning framework for applications
such as real-time interaction between human and robot in a
shared workspace similar to [24].
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