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ABSTRACT
Reflective writing has been widely recognized as one of the most ef-
fective activities for fostering students’ reflective and critical think-
ing. The analysis of students’ reflective writings has been the focus
of many research studies. However, to date this has been typically a
very labor-intensive manual process involving content analysis of
student writings. With recent advancements in the field of learning
analytics, there have been several attempts to use text analytics to
examine student reflective writings. This paper presents the results
of a study examining the use of theoretically-sound linguistic in-
dicators of different psychological processes for the development
of an analytics system for assessment of reflective writing. More
precisely, we developed a random-forest classification system using
linguistic indicators provided by the LIWC and Coh-Metrix tools.
We also examined what particular indicators are representative of
the different types of student reflective writings.

CCS CONCEPTS
• Information systems→Clustering and classification; •Ap-
plied computing→ E-learning; Distance learning;

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LAK’18, March 5–9 2018, Sydney, NSW, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4190-5/16/04. . . $15.00
https://doi.org/10.1145/2883851.2883950

KEYWORDS
learning analytics, text mining, self-reflections, online learning

ACM Reference format:
Author one, Author two, Author three, Author four, Author five, Author
six, and Author seven. 2018. Understand students’ self-reflections through
learning analytics. In Proceedings of 8th International Learning Analytics
and Knowledge (LAK) Conference, Sydney, NSW, Australia, March 5–9 2018
(LAK’18), 10 pages.
https://doi.org/10.1145/2883851.2883950

1 INTRODUCTION
An important characteristic of modern education is the focus on
developing student higher cognitive skills and critical thinking.
In this regard, some of the most fundamental learning activities
relate to the use of (self-)reflection. The act of reflection is widely
considered to be the essence of thinking process [22]. Reflection also
represents an integral part of student self-regulation, and is essential
for metacognitive adaptation of study approaches and goals [69].
The benefits of reflection are well recognized in contemporary
educational practice [62, 63].

Over the years, there have been many approaches developed for
fostering student reflection [cf. 62]. Among the different strategies
used, reflective writing represents one of the most popular meth-
ods. An approach that is widely used for triggering the process of
self-reflection that is necessary for metacognitive regulation. Not
surprisingly, the assessment of student reflective writings has been
the focus of many studies. These studies have largely employed
moremanual and labour intensive content-analysis methods to eval-
uate student reflective writings [41]. With the recent advancements
in the field of learning analytics, there have been some attempts

https://doi.org/10.1145/2883851.2883950
https://doi.org/10.1145/2883851.2883950
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to use more automated methods. With learning analytics increas-
ingly being used as an approach to promote student awareness
and regulation of their learning activities [28], developing auto-
mated processes to assess and understand the content of student
self-reflections is an important undertaking. For example, the work
of Ullmann [62] provides early evidence how analytics methods
can be used to understand reflection as expressed in student essays.

This present study examined the use of automated text analyt-
ics methods for assessing the content of students’ reflections on
their learning activities. More precisely, we developed a learning
analytics system for assessing reflection as expressed in student
video annotations of their musical performances and examined
what characteristics of their written language is most predictive of
the different types of reflection.

2 BACKGROUNDWORK
2.1 Reflection and Self-Regulated Learning
Across a range of disciplines, self-reflection is a key skill and strat-
egy for students to cultivate as they enhance their higher order
thinking skills and prepare for professional practice [19]. Reflection,
or reflective practice, provides students with the opportunity to de-
velop autonomy and confidence in their learning as they establish
learning goals and take ownership of their learning strategies [14].
The higher education environment provides an opportune time for
students to learn how to think independently, comment critically,
and reflect on their learning [21] as they build the self-monitoring
and self-regulating skills needed to be life-long learners [34]. Partic-
ularly, in clinical [36] or performance based disciplines [43] where
students can watch a video recording of themselves demonstrating
a particular skill, self-reflection exercises and assessment tasks can
promote student self-assessment of their performance and identify
areas of improvement. Reflective journals [14] and video annota-
tion tools [3, 35] have shown to be effective tools for supporting
students’ self reflection and establishment of learning goals.

Despite the promotion of self-reflection skills through scaffolded
activities and assessment, the depth of students’ reflection and the
progression from potentially superficial levels of reflection (e.g. de-
scriptive) to more higher-order and goal-oriented [8, 35] requires
an analysis of the specificity or type of statements made. An exam-
ination of the type of reflection in varying pedagogical or instruc-
tional conditions, can help identify students who are struggling to
grasp higher levels of reflective thought (e.g. establishing goals)
and those who may be largely focused on describing their skill
or performance rather than critiquing it further. Reflection that
involves goal-setting is much more challenging [58] and strategies
are required to support students mastery of it. For example, × × ×

[4], examined the effect of students’ experience with reflective
tasks and the instructional conditions (graded vs ungraded activ-
ity) on the level or specificity of students’ reflective statements.
Their study concluded that prior experience with reflection along
with continual grades and formative feedback on their reflective
tasks encourages a greater amount of higher order critical reflec-
tion (e.g. goal-orientated or analysis of their motive or effect of
their performance). Hence, scaffolding and an early introduction of
reflective practice in the curriculum is needed for raising the depth
and complexity of student reflection [19].

2.2 Automated analysis of self-reflections
While analysis of student self-reflections provides important in-
sights into the development of students’ higher order thinking, it is
for the most part, very time-consuming manual process [61, 64, 65].
In most cases, it involves the quantitative content analysis [41] of
student writings using a pre-defined coding scheme that focuses on
identifying word indicators of the different facets of reflections [61].
Broadly speaking, different content analysis approaches exploit the
underlying differences in the distributions of different linguistic
categories between reflective and non-reflective statements and
texts [63]. The majority of prior work has focused on the analysis of
student essays and journal writings, with an emphasis on the depth
of student reflection expressed (e.g., no reflection, simple reflection,
and critical reflection) [66] . Not surprisingly, (self-)reflection in
student writings was found to be substantially less frequent than
desired [66], primarily on the descriptive [33] and shallow [56]
levels.

Given the potential of computational methods for understanding
student self-reflections, there have been several attempts to develop
automated systems for assessment of student writings, including
self-reflective texts. According to Ullmann [64], the existing auto-
mated content analysis systems can be divided into three broad and
overlapping groups based on the adopted methodology:

1) Dictionary-based approaches [e.g., 15, 18, 46, 47, 61, 62],
2) Rule-based approaches [e.g., 30, 61, 65], and
3) Machine learning approaches [e.g., 1, 2, 5, 17, 46, 47, 62].
These three general approaches are also often combined. For

example, Ullmann [61] proposed a system for identification of re-
flection in student essays using the combination of predefined dic-
tionaries, regular expressions and rule-based analytics. Ullmann
[61] also used synonym expansions to extend the list of words as-
sociated with reflective writings and provide more generalizable
and stable performance. Similarly, Ullmann et al. [65] developed a
rule-based system for reflection analysis in students’ blog postings
using WordNet [25], Linguistic Inquiry and Word Count (LIWC)
tool [59], Stanford NLP parser [45], and synonym database. Using
a custom-built vocabulary of the important keywords and focus-
ing on the type of pronouns used (e.g., first person singular, third
person plural) Ullmann et al. [65] devised a set of rules for identi-
fication of the different elements of reflective writings. A similar
approach based on LIWC [59] and Coh-Metrix [31, 49] has been uti-
lized by × × × [2] for the identification of students’ level of critical
thinking as expressed in discussion forum postings.

A further common approach to analyzing student writings is
based on the use of natural language processing (NLP) methods.
This is often applied in combination with different machine learning
algorithms. The simplest NLP methods use frequencies of N-grams
(i.e., word sequences of length N ) as classification features [e.g., 1,
62]. For example, Ullmann [62] used N-grams as features for binary
classification of 5,081 student reflection sentences and elements of
reflective writings (i.e., experience, feelings, personal, critical stance,
perspective, outcome), reporting classification accuracy as Cohen’s
κ range of .49–.83, depending on the particular coding category.
Similarly, Gibson et al. [30] used part-of-speech (POS) tagging to
match students’ writings to the common POS phrases indicative of
student’s metacognitive activities, while Latent Semantic Analysis
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(LSA) has been used by Cheng [17] to understand reflection in
English language learners. Likewise, the Gibson and Kitto [29] NLP-
based approach utilized the TF-IDF scoring [40], Latent Dirichlet
Allocation (LDA) [10], and different keyword-based metrics for
identification of the level of subjectivity and affectivity in students’
reflective writings. Finally, × × × [1] used POS-tagging, Name-
entity tagging, and syntactic dependency parsing (via Stanford NLP
toolkit [45]) to build a classification system for examining students’
levels of critical thinking.

3 RESEARCH QUESTIONS
While there has been a substantial amount of research on automated
assessment of student reflective writings, the primary domain of
analysis were long, complex texts, such as essays, blogs, or jour-
nals, in which students were expected to exercise reflective and
critical thinking. As reflection is typically represented in just a
small part of the written text, a large part of the existing research
focused on the identification of different parts of written text that
represent different types and facets of reflection. This was typi-
cally achieved through a combination of custom-built keyword and
phrase matching mechanism, or by a data-driven NLP indicators,
such as N-grams, that were chosen depending on the specifics of a
particular study context. Hence, there are concerns regarding the
external validity in the literature published up to date, with regards
to what are the highly predictive – and psychologically sound –
indicators of (self-)reflection in student writings and how they can
be used to develop analytics systems for reflection assessment. As
such, the research questions addressed in this study are

ResearchQuestion 1:
What are the linguistic indicators of self-reflection, as
captured in students’ writings?

ResearchQuestion 2:
Can the identified indicators of self-reflection be used to
develop an automated system for assessment of students’
self-reflection?

To address these questions, we used psychologically-sound and
well-established linguistic measures of different psychological pro-
cesses (e.g., affective, cognitive, social, biological) provided by the
widely used LIWC [59] and Coh-Metrix [31, 49] tools in addition to
the widely used N-grams, in order to develop an automated classifi-
cation system for reflection assessment. To make the identification
of the relevant reflection indicators more precise, we focused on an-
alyzing short self-reflective writings rather than longer (e.g., essays
or blogs) texts which typically contain much lower proportion of re-
flective writing. In particular, we examined students’ self-reflection
in their short annotations of the video recordings of their own
musical performances.

4 METHOD
4.1 Study data

4.1.1 Study setting. The dataset in the present study is the same
dataset that was used in the study described in [3]. The data comes
from the four undergraduate courses in performing arts discipline
offered in the 2012/2013 academic year at a large research-intensive
public university in Canada. Course 1 and Course 2 were offered in

Table 1: Description of included courses and coded units of
analysis

Course Recording
type

CLAS
required

Enrolled
students

Coded analysis
units

Course 1 Group No 31 145 (3.27%)
Course 2 Individual Yes 40 1393 (31.44%)
Course 3 Individual Yes 28 2457 (55.46%)
Course 4 Individual No 20 435 (9.82%)

Total: 119 (771) 4,430 (100%)
1 Unique number of students.

the Fall 2012 semester while Course 3 and Course 4 were offered in
the Winter 2013 semester. In all four courses, students were provid-
ing self-reflections on the video recordings of their own musical
performances. In Course 1, the recordings were of students’ group
performances while in the other three courses, video recordings
were of students’ individual performances (Table 1). In addition, in
Course 1 and Course 4, the creation of self-reflections was optional
activity, while it was a course requirement in Course 3 and Course
4 and part of student assessment. In total, there were 77 different
students across the four courses, with some students taking more
than one course.

To create their self-reflections, students used Collaborative Lec-
ture Annotation System (CLAS) [50, 55], which is a software tool
that enables students to annotate video materials, which are in this
case videos of their art performances. In terms of the functionality,
CLAS enables students to create time-stamped annotations, which
are associated with a particular part of a video, and general annota-
tions which are not associated with any part of the video and used
to create general comment or summary of the video. Both time-
stamped and general annotations can be either private or public,
with the latter providing the opportunity for student collaboration
and peer feedback.

4.1.2 Content analysis. After students’ self-reflections were col-
lected, the quantitative content analysis [41] was undertaken to
categorize each student reflection using the coding scheme adapted

Table 2: Description of coding categories

Category Definition Example

Observation Student indicates what
they observed about their
own behavior, but does
not indicate why the
behavior occurred.

“I still continue to have
problems making eye
contact...”

Motive Student indicates what
they observed and why it
occurred.

“...being up there made
me insecure and nervous,
which led to my eyes
dropping frequently...”

Goal Student indicates what
they will do next time or
what they need to work
on.

“What I really want to
avoid is ending up just
mirroring everything.”
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Table 3: Distribution of coding categories in test and train
data sets

Dataset

Category Train (75%) Test (25%) All

Observation 1,135 (34.17%) 382 (34.48%) 1,517 (34.24%)
Goal 1,848 (55.63%) 625 (56.41%) 2,473 (55.82%)
Motive 174 (5.24%) 56 (5.05%) 230 (5.19%)
Other 165 (4.97%) 45 (4.06%) 210 (4.74%)

Total: 3,322 (100%) 1,108 (100%) 4,430 (100%)

from Hulsman et al. [35]. Originally, Hulsman et al. [35] define four
types of reflections based on the specificity of goals observed in
them: (1) observations of own behavior (Observation), (2) motive
or effect of own behavior (Motive), (3) asking for feedback for im-
provement (Feedback), and (4) indicating a goal of own behavior
(Goal). Given that in our case reflective task was an individual
learning activity, we omitted the asking for feedback category, re-
sulting in the three different coding categories. The description and
representative examples of each of the categories is given in Table 2.

As each annotation can potentially contain several reflections,
the unit of analysis was a sentence segment, which was in most
cases a complete subordinate or dependent clause. In total, 971
annotations which consisted of 3,324 individual sentences were
coded by two coders, resulting in 4,430 coded units of analysis.
Both coders went through the same training process and coded
smaller sub-samples of data until Cohen’s κ above 0.75 was reached.
The distribution of different codes is shown in Table 3. We see
that the majority of units were coded as either goal indications
(55.92%) or observations (34.24%), while motivation was far less
frequent, occurring in only 5.19% of the analysis units. Finally, we
also included the category Other to code units that did not contain
expression of any of the three reflection types, and it was used to
code 4.74% of the analysis units.

4.2 Training and test data preparation
As the first step in our analysis process, we first split the data into
training and test datasets (75% and 25% of the whole corpus, respec-
tively), as commonly done in the machine learning [32, 54]. The
model development and parameter tuning are done using the train-
ing set, while the final evaluation of model’s performance is done
on test set. By doing this, we prevent for overestimating the model
performance which will occur if we estimated the model accuracy
on the same data on which we learned the model parameters [32].
In total, training and test datasets contained 3,322 and 1,108 in-
stances, respectively (Table 3). It should be noted that training and
test datasets are created in a stratified manner, which means that
the original proportions of coding categories (i.e., Observation,
Goal, Motive, and Other) is preserved in both subsets (Table 3).

4.3 Feature extraction
In order to develop a classification system for student reflections,
we extracted several different types of features. The extracted fea-
tures were heavily based on the existing work in educational text
and discourse analysis [e.g., 1, 2, 5, 6, 20, 23, 24, 31, 37, 49, 57, 60, 67],

including the features which are strongly theory-driven and empir-
ically validated. In total, we extracted 503 different features which
we describe in the reminder of this section.

4.3.1 N-grams. As commonly done in text classification sys-
tems, we extracted basic N-grams features (i.e., unigrams, bigrams,
and trigrams) from the training data (i.e., 75% of the whole corpus).
Prior to N-gram extraction, we first removed stopwords, which are
the highly frequent words in English (e.g., a, the, be, can, have) that
do carry useful information for classification purposes [54]. Given
that the use of N-grams results in inflation of the feature space and
overfitting of the training data, we extracted only top 100 unigrams,
bigrams, and trigrams to keep the size of the feature space limited
and less prone to overfitting. The top ten most frequent unigrams,
bigrams, and trigrams (Table 4) are about the quality of student
performances and students’ needs, goals, and feelings which could
be used to gauge the type of student reflection. As expected, we
also see a sharp decline in N-gram frequencies as N increases.

After we extracted a set of 300 N-gram features from the training
set, we extracted the same set of N-grams features from the test set
(i.e., the remaining 25% of the whole corpus that were not included
in the training set). Therefore, the definition of the feature space
only depends on the training data, while the test data is completely
put aside and used only for the final validation of the classifier
performance.

4.3.2 LIWC features. In addition to N-gram features, following
the work of × × × [2], we used the Linguistic Inquiry and Word
Count (LIWC) tool [59] to extract a large set of linguistic measures
which are indicative of a large set of biological and psychological
processes (e.g., perceptual, cognitive, affective, social), as well as
different topics (e.g., work, achievement, personal, leisure, time)
and linguistic categories (e.g., nouns, verbs, adjectives). The pre-
vious work [2] indicated that LIWC measures can be successfully
used within learning analytics systems to uncover important psy-
chological processes behind student behavior observed in trace
data logs. In the current study, we used the 2015 version of the
LIWC tool which provides the total of 93 empirically validated
linguistic measures [cf. 59], including four high-level measures:
(1) analytical thinking, (2) social status, leadership, and confidence,
(3) authenticity, and (4) emotional tone.

Table 4: Top 10 unigrams, bigrams, and trigrams from the
training data

Unigram Freq. Bigram Freq. Trigram Freq.

need 383 left hand 112 practice front mirror 17
conducting 279 eye contact 71 use left hand 14
think 248 need work 55 third goal would 11
music 239 make sure 54 make eye contact 10
really 200 front mirror 36 second goal would 10
hand 182 goal would 32 first goal would 10
practice 181 feel like 30 three critical goals 8
ensemble 171 beat pattern 30 critical goals improvement 8
work 170 right hand 29 really need work 8
beat 161 also need 26 influence sound moment 7
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4.3.3 Coh-Metrix features. In addition to LIWC, similarly to ××

× [2], we also used the Coh-Metrix tool [31, 49], which is a text ana-
lytics tool designed to measure different aspects of writing cohesion.
Coh-Metrix provides 109 different measures of text cohesion (i.e.,
referential, causal, co-reference, temporal, spatial, and structural
cohesion), several measures of text complexity and readability, and
measures of linguistic category use.

Coh-Metrix has been extensively used in masny studies in the
domain of collaborative learning to assess student outcomes [23],
online discourse [24, 68], development of social ties [37–39], quality
of student essays [7, 48], and learning resources [31]. Coh-Metrix
has also been successfully used in learning analytics systems for
assessing student-produced writings, such as student discussion
messages [2, 67]. Given the goal of understanding the processes
driving student self-reflections, Coh-Metrix provides a valuable set
of empirical measures that can be used to understand the charac-
teristics of each of the types of student reflections.

4.3.4 Context features. Given that several units of analysis can
be present in a single sentence, we also included a single binary
feature first_in_sentence which captures whether a particular
unit of analysis is the first (or the only) unit in a given sentence.
We hypothesized that students’ observations would more often be
first in a sequence of annotations given their sensemaking nature.

4.4 Data preprocessing
After feature extraction, we addressed the problem of class im-
balance, as visible in Table 2. Following the approach suggested
by × × × [2], we used the Synthetic Minority Oversampling Tech-
nique (SMOTE) [13, 16], which is a popular method for addressing
the class imbalance problem. The SMOTE algorithm works by con-
structing additional synthetic data points as a linear combination
of the existing data points. To process an existing data point X
in an n-dimensional feature space X = (x1,x2,x3, ...xn ) using the
SMOTE algorithm:

• Find K nearest neighbors of X (in our case, K=5) belonging
to the same minority class.

• Select at random one of those K nearest neighbors (called
Y ),

• Generate a new synthetic data point as a random linear
combination of X and Y :

Z = X + c ∗ Y

where c is a random number between 0 and 1.
To increase the size of the minority class by N times, each minority-
class data point would be processed N times. In contrast, to increase
the size of the minority class by less than 100%, first a subset of
the original data points was selected and then each of those data
points would be processed exactly once. Figure 1 illustrates the
application of SMOTE algorithm in our training set. The size of
Other category was increased 11-fold (from 165 to 1815), and the
size of Motive category was increased 10-fold (from 174 to 1740). In
contrast, the size of the Observation category was increased only
for 60% (from 1135 to 1816) by first selecting 60% of the original
data points which were then processed by the SMOTE algorithm.
At the end, the class imbalance problem was significantly reduced,
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Figure 1: SMOTE preprocessing for class balancing.

which should increase the overall performance of the classification
system.

Finally, we removed three extracted features that had the same
value for all training instances, which effectively made them useless
for our classification problem. Those three features were all LIWC
metrics: (1) family: capturing family-related topics, (2) filler:
representing the use of filler words (e.g., um, uh, ah, like, okay), and
(3) Quote: concerning the use of quotation marks.

4.5 Model Selection and Evaluation
To develop a classification system for self-reflections, we used ran-
dom forests [12], which are widely-used ensemble classification
technique. Random forests combine a large number of decision-
trees and bootstrap sampling to provide low-bias low-variance
classification method [12]. A large study by Fernández-Delgado
et al. [26] compared performance of 179 different classification tech-
niques on 121 different datasets identified random forests along
with Gaussian kernel Support Vector Machines (SVMs) as the state-
of-the-art classification techniques.

A random forests classifier is an ensemble of a large number of
decision trees (controlled by the ntree parameter) and the final
classification decision is obtained by a simple majority voting mech-
anism across the whole ensemble [12]. An important characteristic
of random forests is that each decision tree is constructed on a
different bootstrap sample (i.e., a sub-sample with repetitions of
the same size as original) of the training data, and evaluated on
the data points that were not included in the bootstrap sample.
Moreover, each tree is constructed using only a random subset of
the available features (the size of feature subset is controlled by the
mtry parameter) without tree pruning [12].

Random forest classification enables the assessment of the impor-
tance of the different classification features, by looking how often
and how early each feature occurs in the decision tree ensemble.
While there are many concrete measures of feature importance [44],
one of the most widely used measures of feature importance is the
Mean Decrease Gini (MDG) index which measures the reduction of
the Gini impurity in the resulting decision sub-trees. In this manner,
the MDG index assesses how useful a given feature is for separating
data instances among different classes. For a classification feature
Fi , MDG is calculated as the average decrease in the Gini impurity
across all decision tree nodes where feature Fi was used.

As previously stated, random forest classifiers require specifica-
tion of the two configuration parameters: (1) ntree: the number
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of trees in ensemble, and (2) mtry: the number of random features
used by each tree). The number of trees in the ensemble should
be sufficiently large so that the performance of the classifier is
stabilized [51] while the number of features used by each tree
should be carefully optimized to balance bias-variance tradeoff [32].
According to Oshiro et al. [51], ensembles of 64–128 trees are rec-
ommended to balance between the processing time, memory usage,
and classification accuracy. This recommendation is aligned with
our previous implementations of random forests [2] where the clas-
sification performance stabilized from around 100–150 trees. Still,
given the relatively small size of our training set (7219 instances),
the processing time and memory constraints were less critical so
we decided to use 500 trees in the ensemble (i.e., ntree = 500).
Finally, to optimize mtry parameter, we used ten repetitions of
10-fold cross-validation to examined 19 candidate values: 2, 3, 4,
6, 8, 11, 15, 20, 27, 36, 48, 65, 87, 156, 209, 279, 373, and 500. The
actual parameter values were generated by the caret package and
its default grid search strategy.

4.6 Implementations
The implementation of the classifier was done in the Python and R
programming languages and by using several software packages
and libraries:

(1) The extraction of N-grams was done using NLTK library [9]
for Python programming language,

(2) The extraction of psychological indicators was done with
LIWC 2015 tool [53, 59],

(3) The extraction of text coherence measures was performed
with Coh-Metrix toolkit [31, 49],

(4) Stratified sub-sampling of test and train datawas done through
scikit-learn [52] machine learning library for Python pro-
gramming language,

(5) The development of a random forest classifier was done
using randomForest R package [44], and finally,

(6) The model training, selection, and validation was performed
with caret R package [27].

4.7 Limitations and future work
The major limitation of the adopted approach is that the collected
data are from the same domain (i.e. performing arts) and thus, might
not be representative of a broader range of student self-reflections
across different disciplines. As such, one direction for our future
work will be to examine the performance of the developed classifi-
cation scheme on datasets from different study domains. Moreover,
there are several potentially useful classification features which
have not been included in the design of our system. For example,
it is likely that the inclusion of the codes from student’s previ-
ous reflections as classification features would provide important
additional information that would substantially increase the classi-
fication accuracy. For example, if a student wrote an observation
reflection, then it is more likely that his following reflection would
be goal or motive reflection. However, at the moment, each annota-
tion is categorized in isolation from all other reflections made by a
student, which likely reduces the classifier’s performance. In this
regard, the use of structured classification approach, such as one
employed by [67] is an important direction for the future work.

Table 5: Random forest parameter tuning results

mtry Accuracy
(SD)

Cohen’s κ
(SD)

mtry Accuracy
(SD)

Cohen’s κ
(SD)

2 .81 (.01) .75 (.02) 48 .88 (.01) .85 (.01)
3 .84 (.01) .79 (.02) 65 .88 (.01) .84 (.01)
4 .86 (.01) .81 (.02) 87 .88 (.01) .84 (.02)
6 .87 (.01) .83 (.01) 116 .89 (.01) .85 (.02)
8 .88 (.01) .84 (.01) 156 .88 (.01) .84 (.02)
11 .88 (.01) .84 (.01) 209 .88 (.01) .84 (.02)
15 .88 (.01) .84 (.01) 279 .88 (.01) .84 (.02)
20 .88 (.01) .84 (.01) 373 .87 (.01) .83 (.02)
27 .88 (.01) .84 (.01) 500 .86 (.01) .82 (.02)
36 .88 (.01) .85 (.01)

Min: .81 .75 Range: .07 .10
Max: .89 .85 Mean: .87 .83

5 RESULTS
5.1 Model training and evaluation
Figure 2 and Table 5 show the results of random forest model
optimization via cross-validation. The best performance of .89 clas-
sification accuracy (SD = .01) and Cohen’s κ of .85 (SD = .02)
was achieved with 116 features per decision tree on the training
dataset. The difference between the worst- and best-performing
model was 0.07 in classification accuracy and .10 κ which confirms
the importance of parameter optimization and tuning on the final
model performance (Table 5). The performance of the random forest
model on the complete training set using the optimal mtry value is
shown on Figure 3. We can see that the performance of the classifier
stabilized with around 100 decision trees, indicating that 500 trees
selected was more than enough to ensure good classifier perfor-
mance. The average out-of-bag (OOB) error rate was .12, suggesting
only 12% of the data points being misclassified in the training set.
As expected, the error rates for the two most resampled classes (i.e.,
Other and Motive) were the lowest, while the highest error rate
was observed for Observation category which was not resampled.

After developing the random classifier on the training data, we
validated its performance on the holdout test data (25% of the whole
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Figure 2: Random forest parameter tuning results.
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Figure 3: Best random forest configuration performance.

dataset). Our random forest classifier achieved .75 classification ac-
curacy (95%CI[0.72, 0.77]) and Cohen’sκ of 0.51which is considered
“Moderate” accuracy above the pure chance level [42]. The confu-
sion matrix for the test data is shown in Table 7. We see that error
rate for the Goal category is the lowest, followed by the moder-
ate error rate for the Observation category. In contrast, we see
that the Other and Motive categories were mostly misclassified as
belonging to two former large categories.

Finally, to examine the value of the SMOTE preprocessing, we
examined the confusion matrix of the random forest model de-
veloped using the original training and test datasets. The optimal
mtry value was 500 by which the classifier obtained .73 (SD = .02)
classification accuracy and Cohen’s κ of .48 (SD = .04). Further
validation of the classifier performance on the holdout test data
showed .74 classification accuracy (95% CI[.72, .77]) and Cohen’s
κ of 0.50 which was slightly lower than the classifier performance
obtained after the SMOTE pre-processing.

5.2 Feature importance analysis
In addition to assessing the classification accuracy, we also exam-
ined the contribution of different features to random forest per-
formance. Table 8 provides the summary of feature MDG scores,
while Figure 4 shows MDG scores for all 500 classification features.

Table 6: Train data confusion matrix for the final model

Predicted

Actual Other Observation Goal Motive Error rate

Other 1686 80 49 0 .07
Observation 5 1655 177 11 .10
Goal 6 373 1422 15 .22
Motive 1 59 68 1612 .07

Table 7: Test data confusion matrix for the final model

Predicted

Actual Other Observation Goal Motive Error rate

Other 9 9 27 0 .80
Observation 1 250 131 0 .34
Goal 1 59 564 1 .10
Motive 0 30 25 1 .98

We see a wide spread in MDG scores; 50% of features obtained an
MDG score below 1.06 and 75% of features obtained an MDG score
below 15.34. In contrast, certain features obtained much higher
MDG scores, with the maximum MDG score of 219.94.

The detailed analysis of top twenty most important classifica-
tion features is given in Table 9. While 146 classification features
had above average MDG scores, given the space limitations, we
focused our analysis on top twenty. We see that the most im-
portant classification feature was the LIWC category of percep-
tual words (liwc.see). In addition the use of past-oriented words
(liwc.focuspast), punctuation, causal words, passive voice, and
connectives were among the most important classification features.

Among the Coh-Metrix features, the most important were the ra-
tio of causal particles to causal verbs (cm.SMCAUSr), use of agentless
passive voice (cm.DRPVAL), use of nouns (cm.WRDNOUN) and noun
phrases (cm.DRNP), use of connectives (cm.CNCCaus), causal verbs
(cm.SMCAUSv), intentional cohesion of the the text (cm.SMINTEr),
and number of words before main vebs in sentences (cm.SYNLE).
The Motive reflections had the highest number of causal particles
to causal verbs and words before the main verbs, indicating the
complex language structure used to describe student motivation.
Similarly, the use of agentless passive voice and connectives was
strongly associated with the Motive category that also exhibited
the highest intentional cohesion. In contrast, highest numbers of
nouns and noun phrases were associated with the Other category,
whereas causal verbs were most strongly associated with Goal
category.

The most important LIWC features were related to students use
of perceptual words (liwc.see) which were most strongly associ-
ated with the Observation and Goal categories and the least with
the Other category. The Observation and Motive reflections also
had a strong focus on the past events (liwc.focuspast), whereas
Goal reflections did not. Somewhat unexpectedly, words related to

Table 8: Summary of classification feature importance

Min. Q1 Median Mean Q3 Max.

0.00 0.12 1.06 10.82 15.34 219.94
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Figure 4: Feature importance by Mean Decrease Gini (MDG)
measure. Dotted blue line shows median MDG score (1.06),
while solid blue line shows average MDG score (10.81).
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Table 9: Twenty most important features and their mean scores for messages in different phases of cognitive presence

Coding category

Feature Description MDG1 Other Observation Goal Motive

liwc.see Perceptual processes: seeing (e.g., view, saw, seen) 219.94 1.01 (3.35) 1.64 (4.43) 1.62 (4.57) 1.55 (3.29)
cm.SMCAUSr Situation model: ratio of casual particles to causal verbs 201.33 0.12 (0.32) 0.13 (0.34) 0.11 (0.30) 0.37 (0.47)
cm.DRPVAL Syntactic pattern density: agentless passive voice density,

incidence
183.90 2.46 (12.11) 3.02 (17.57) 2.03 (13.36) 4.66 (20.52)

liwc.focuspast Time orientation: focus towards past (e.g., ago, did, talked) 151.83 1.46 (3.38) 4.57 (6.34) 0.80 (2.81) 4.80 (6.66)
cm.WRDNOUN Word information: noun incidence 120.80 252.12 (212.42) 186.47 (99.92) 208.13 (127.82) 194.34 (95.04)
liwc.ingest Biological processes: ingestion (e.g., dish, eat, pizza) 112.50 0.58 (4.03) 0.30 (1.68) 0.33 (2.21) 0.39 (1.66)
cm.CNCCaus Connectives: causal connectives, incidence 105.42 28.27 (58.70) 20.86 (42.82) 28.57 (47.68) 42.91 (50.47)
trust.ensemble Frequency of “trust ensemble” bigram 95.18 0.00 (0.07) 0.00 (0.04) 0.00 (0.05) 0.00 (0.00)
cm.SMINTEr Intentional cohesion: ratio of intentional particles to

intentional actions/events
88.05 0.30 (0.66) 0.23 (0.49) 0.36 (0.59) 0.47 (0.68)

liwc.Period Punctuation: use of full stop 75.44 9.17 (13.13) 6.38 (6.93) 7.14 (8.60) 5.45 (6.08)
cm.DRNP Syntactic pattern density: incidence score of noun phrases 72.26 390.98 (208.55) 319.76 (115.17) 306.22 (133.34) 314.47 (105.34)
chamber.music Frequency of “chamber music” bigram 70.59 0.00 (0.07) 0.00 (0.08) 0.00 (0.03) 0.01 (0.09)
liwc.AllPunc Punctuation: all (e.g., periods, commas, question marks) 69.26 19.22 (19.05) 13.02 (9.85) 14.06 (12.39) 11.66 (8.12)
liwc.cause Cognitive processes: causality (e.g., because, effect) 62.82 2.02 (4.45) 1.85 (4.32) 2.03 (4.66) 3.98 (5.33)
cm.SMCAUSv Situational model: incidence score of causal verbs 61.34 33.60 (47.91) 46.08 (59.57) 65.65 (76.14) 44.28 (49.62)
liwc.insight Cognitive processes: insight (e.g., think, know) 59.62 2.98 (5.02) 3.64 (5.34) 2.36 (5.34) 3.50 (4.56)
cm.SYNLE Syntactic complexity: mean number of words before the main

verb in the main clause
57.85 2.36 (3.68) 2.65 (3.08) 1.78 (2.60) 3.53 (4.16)

liwc.home Personal concerns: home (e.g., kitchen, landlord) 55.83 0.10 (1.19) 0.08 (0.85) 0.05 (0.59) 0.04 (0.49)
liwc.Analytic Summary measures: the measure of formal, logical, and

hierarchical thinking processes
52.24 60.02 (37.26) 54.60 (35.94) 70.94 (33.05) 57.36 (34.69)

liwc.percept Perceptual processes: all (e.g., look, heard, feeling) 51.97 4.20 (7.29) 4.85 (6.80) 4.69 (7.31) 5.04 (5.67)
1 Mean decrease Gini impurity index.

biological ingestion processes (liwc.ingest) were strongly predic-
tive of reflections in the Other category. The same category was
also most strongly associated with personal concerns (liwc.home),
the use of full stops (liwc.Period), and punctuation in general
(liwc.AllPunc), and least associated with words describing percep-
tual processes (liwc.see and liwc.percept). On the other hand,
the Goal reflections were themost analytic (liwc.Analytic), while
the Motive reflections contained most perceptual (liwc.perceipt)
and causal (liwc.cause) words

With regards to the contextual feature first_in_sentence, it
did not show in the list of the top twenty features (Table 9). Upon a
more detailed inspection, we found that first_in_sentence was
the 28th most valuable classification feature, with an MDG score of
43.72, which is also substantially above the average MDG score of
10.81 or medianMDG score of 1.06. The closer examination revealed
that segments in Other category were most likely to be at the start
of the sentence (or a complete sentence) (Mean = 1.94, SD = 0.23),
followed by Observation (Mean = 1.79, SD = 0.41), Goal (Mean =
1.72, SD = 0.45), and finally Motive (Mean = 1.67, SD = 0.47) 1.

6 DISCUSSION
The classification results on the testing dataset showed that the use
of N-grams and LIWC and Coh-Metrix features provides a good
basis for the development of an automated self-reflection classi-
fication system. Cohen’s κ of 0.51 represents a moderate level of
agreement above the change level [42]. These results are promising

1first_in_sentence was coded as: Yes=2, No=1

and showing the potential of our approach. The results also indicate
the significant benefits of classifier parameter tuning, given the
substantial variation in the classifier’s performance on the training
dataset (Table 5). Table 5 indicates that 7% of the classification accu-
racy and .10 Cohen’s κ can be solely attributed to the optimization
of the mtry parameter (i.e., the number of attributes used in each
tree of the forest). The most directly comparable results are by Ull-
mann [62] who reported slightly higher Cohen’s κ values (.49–.83),
albeit on a different, binary classification problem with different
coding categories.

A further contribution from the study is the examination of the
important classification features. While SVMs provided the best
performance in most experiments by Ullmann [62], we opted for
more interpretable classification methods which can be used to
improve conceptual understanding of students’ self-reflection. Our
results showed that a small subset of highly predictive indicators
can be used to distinguish between the different types of reflective
statements (Table 9). In particular, several of the indicators that
capture different linguistic structures (e.g., agentless passive voice
density, syntactic pattern density, connectives) were identified as
some of the best predictors of student self-reflection. Hence, in
our future work, we will also examine the inclusion of syntactic
dependency features, such as the ones used by × × × [1].

The important classification indicators (Table 9) indicate they
are for the well aligned with the previous research on student (self-
)reflection. Both Observation and Motive showed the strong use
of past-oriented words, which is not surprising given that both cat-
egories relate to the descriptions of previous events (i.e., their past
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performance currently watched) and already identified by Ullmann
[64] and Ullmann [63]. However, it is likely that the use of video
recordings as a media to facilitate reflection had an impact on the
use of perceptual words. If students were reflecting based on their
memories of the past events, it is likely that they will use less per-
ceptual words. As such, it seems important to provide students with
not only instructional scaffolds, but also resources and materials
for reflection in a format that will best promote (self-)reflection and
critical thinking development.

We also see a strong use of words describing cognitive pro-
cess of insight in the Observation and Motive categories. This
is not surprising, given that reflection is one of the most effec-
tive approaches to fostering students’ higher order thinking skills
which is conditioned upon inquiry and insightful thinking [11].
The Motive category was also associated with higher intentional
cohesion and causality, which is well aligned with the properties of
the Motive-Effect type of reflective statements that capture student
intentions and outcomes of particular actions. Our results also pro-
vide more detailed insights into the particular syntactic structures
used to express motives and effects of student actions. We see that
Motive category is associated with more agentless passive state-
ments, higher use of connectives, higher ratio of causal particles
to causal verbs, and higher complexity of verb phrases. In contrast,
the Goal category was characterized by a higher use of causal verbs
and a more formal, logical, and hierarchical thinking processes.
This implies that Goal statements were generally expressed using
causal, yet simpler linguistic structures (active language, simple
causal statements), whereas the Motive category was characterized
by a more complex language (i.e., more complex verb phrases, more
passive expressions, more causal particles). Finally, we also see a
unique profile of non-reflective statements (the Other category),
which were characterized by a higher focus on personal topics and
less driven by the perceptual processes. We also see a more frequent
use of punctuation, which is likely caused by the use of emoticons
in the non-reflective messages. Interestingly, on a linguistic level,
we found a higher use of nouns, which requires a further study that
we will conduct in our future work.

7 CONCLUSIONS
The contributions of this paper are twofold. First, we developed a
classification system for categorization of students’ reflections in
accordance with the coding scheme by Hulsman et al. [35] which
provides a moderate accuracy (accuracy of 89% and Cohen’s κ of
.51) over the chance level. The use of LIWC and Coh-Metrix fea-
tures shows a great potential for understanding students’ reflective
writings, which are based on well-established linguistic metrics
of different psychological processes. Second, our study provides a
detailed evaluation of the linguistic indicators of the different types
of student reflection. Interestingly, the most significant predictor
was the use of perceptual words (e.g., seen, view, saw) and the com-
plexity of causal expressions (i.e., the ratio of causal particles to the
causal verbs). We also found that basic N-gram features provided
less value than highly theorized linguistic metrics from LIWC and
Coh-Metrics analysis tools. Finally, our results also showed some
benefits of utilizing the reflection context, which was in our case
captured by a single variable that indicated the relative position

of the statement in a sentence. As such, in our future work, we
will focus on providing more a detailed operationalization of the
annotation context. We will also examine the use of the system for
provision of the real-time feedback to students, which is one of the
most promising uses of learning analytics [28].
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