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Abstract 13 

This paper assesses the value of multi-scale near-surface (0~5cm) soil moisture observations to 14 

improve state-only or state-parameter estimation based on the ensemble Kalman filter (EnKF). To 15 

the best of our knowledge, studies on assimilating multi-scale soil moisture data into a distributed 16 

hydrological model with a series of detailed vertical soil moisture profiles are rare. Our analysis 17 

factors include spatial measurement scales, soil spatial heterogeneity, multi-scale data with 18 

contrasting information and systematic measurement errors. Results show that coarse-scale soil 19 

moisture data are also very useful for identifying finer-scale parameters and states given biased 20 

initial parameter fields, but it becomes increasingly difficult to recover the finer-scale spatial 21 

heterogeneity of soil property as the observation grids become coarser. In state-only estimation, 22 

near-surface soil moisture data result in improvement for shallow soil moisture profiles and 23 

degradation for deeper soil moisture profiles, with stronger influences from finer-scale data. With 24 

the decrease of background spatial heterogeneity of soil property, the value of coarse-scale data 25 

increases notably. Soil moisture data at two scales with contrasting information are found to be both 26 

useful. By updating spatially correlated soil hydraulic parameters, deviated observations still contain 27 

considerably useful information for finer-scale state-parameter estimation. More importantly, by 28 

presenting a difference information assimilation method we successfully extract useful information 29 

from soil moisture data containing systematic measurement errors. The current study can be 30 

extended to consider more complex atmosphere input and topography, etc. 31 

Key words: data assimilation, multi-scale soil moisture data, distributed hydrologic model  32 
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1. Introduction 33 

Data assimilation (DA), as a tool to improve model parameters and state predictions using 34 

observational data, has been frequently applied to hydrological practices (Chen and Zhang, 2006; 35 

Clark et al., 2008; Houser et al., 1998; Liu et al., 2012; Moradkhani et al., 2005; Samuel et al., 2014; 36 

Shi et al., 2012; Weerts and El Serafy, 2006; Xu and Gómez-Hernández, 2016). Soil moisture is a 37 

key variable in the land surface system and also an important source of observable data in DA. There 38 

still exist several aspects that might increase the difficulty of using soil moisture data for the 39 

improvement of hydrological simulations. One is that different measurement techniques yield soil 40 

moisture data of different scales, resolutions and accuracies (Susha et al., 2014; Vereecken et al., 41 

2008); the second is that soil moisture itself exhibits high spatial and temporal variability at a variety 42 

of scales (Crow and Wood, 1999; Famiglietti et al., 1999; Gaur and Mohanty, 2013; Hu et al., 1998; 43 

Korres et al., 2015); another is that the scale mismatch between monitoring and modeling often 44 

occurs (Blöschl and Sivapalan, 1995; Western and Blöschl, 1999). Based on the aforementioned 45 

reasons, it remains a challenge to assimilate soil moisture data from multiple scales into modeling 46 

results to optimize estimation efficiently and effectively. 47 

In order to capture the spatiotemporal characteristics (correlation length, variability, mean 48 

value, etc.) of soil moisture, a variety of measurement techniques have been developed. Vereecken 49 

et al. (2008) classified soil moisture measurements into two main categories: contact-based and 50 

contact-free methods. The former requires direct contact with the soil (e.g. time domain 51 

reflectometry), and typically provides point-scale measurements with high temporal and spatial 52 

resolutions as well as field-scale spatiotemporal soil moisture dynamics. The latter mainly includes 53 

remote sensing methods and hydro-geophysical methods (e.g. ground penetrating radar), and is 54 
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more suitable for large and medium-scale monitoring (Romano, 2014; Vereecken et al., 2008). A 55 

critical evaluation of almost all the classical and modern soil moisture measurement means was 56 

presented by Susha et al. (2014), which reconfirmed that “both classical and modern techniques 57 

exhibit uncertainty related to the accuracy, precision, coverage and volume of measurements”. Many 58 

other remarkable reviews are also available for interested readers, among which Fang and Lakshmi 59 

(2014), Robinson et al. (2008) and Romano (2014) are highly recommended. The emergence of 60 

various soil moisture measurement techniques provides a good opportunity for hydrological data 61 

assimilation, but how to evaluate the value of soil moisture data from multiple scales is challenging 62 

work. 63 

As the term “scale” appears on different occasions, it is imperative to present the general 64 

meaning of it. In hydrology, the term “scale” may be defined from three perspectives, i.e. process 65 

scale (or characteristic scale of a process), observation scale and modeling scale (Blöschl and 66 

Sivapalan, 1995). The process scale is the scale that natural phenomena exhibit, and for a stochastic 67 

process, it refers to the scale of natural variability, which can be quantified by the correlation length 68 

of a natural process or variable (Western and Blöschl, 1999). The correlation length can be 69 

represented by the “range”, which is a key parameter of the variogram. The range is the maximum 70 

distance of correlation. First proposed by Blöschl and Sivapalan (1995) and later adopted and 71 

improved by Korres et al. (2015), Romano (2014) and Vereecken et al. (2008), the concept of 72 

observation and modeling scale consists of a triplet of “support”, “spacing”, and “extent”, and 73 

applies to both spatial and temporal dimensions. Support refers to the integration volume or area (or 74 

time) of a single sample or model element, spacing to the distance (or time interval) between 75 

samples, and extent to the overall measurement or simulation domain. In this study, the scale of soil 76 
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moisture observations is specified with the “support” component, which is related to the spatial 77 

resolution in the sensors’ terminology.  78 

The horizontal supports of frequently used techniques are on the order of centimeters for the 79 

handheld probes (e.g. ECH2O and FDR), meters for the geophysical methods (e.g. GPR), 80 

decameters or hectometers for the air-borne sensors (e.g. SAR, synthetic aperture radar and PBMR, 81 

L band push broom microwave radiometer), and hectometers or kilometers for the space-borne 82 

sensors (e.g. SMOS) (Fang and Lakshmi, 2014; Korres et al., 2015; Koyama et al., 2009; Koyama 83 

et al., 2010; Vereecken et al., 2008). Multi-scale soil moisture data may contain useful information 84 

of the surface-subsurface hydrological system at different spatio-temporal levels, and methods that 85 

can assimilate multi-scale data as well as accessing the value of them are needed. Durand and 86 

Margulis (2007) assimilate synthetic 25 km passive microwave (PM) observations and synthetic 1 87 

km near infrared (NIR) narrowband albedo observations into a land surface model with a resolution 88 

of 1 km based on the EnKF approach. Lievens et al. (2015) provide an algorithm that deals with the 89 

assimilation of 25 km SMOS soil moisture data into the Variable Infiltration Capacity (VIC) model 90 

with a resolution of 12.5 km. Montzka et al. (2012) give an overview of multivariate and multi-scale 91 

data assimilation in terrestrial systems and state that both the PF (Particle Filter) and the EnKF are 92 

useful algorithms that can infuse multi-scale data. They note that multi-scale data assimilation can 93 

be performed in two ways: to use the observation operator, or to rescale the observations to the 94 

model scale prior to assimilation.  95 

Although methods already exist for the assimilation of multi-scale data, their applications in 96 

terrestrial systems are limited (Montzka et al., 2012). One reason is that there might exist a mismatch 97 

between the scale at which data are measured and the scale at which simulations are conducted. 98 
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Synthetic or real-world studies concerning the “scale-mismatch” problem in multi-scale data 99 

assimilation are highly required. Another reason is that soil moisture data measured at different 100 

scales may conflict with each other, and insights on how to deal with conflicting data are lacking 101 

(Montzka et al., 2012).A third reason is that soil moisture at different scales exhibit spatial and 102 

temporal variability which is affected by several factors, such as soil, land use, meteorology, 103 

topography, and measurement scale (De Lannoy et al., 2006; Korres et al., 2013; Korres et al., 2015; 104 

Western et al., 1998). For the top-layer soil moisture data set of the OPE3 field in De Lannoy et al. 105 

(2006), the horizontal range of soil moisture increases in wetter periods, during which a vertical flux 106 

of precipitation exists. Korres et al. (2013) find the combined influences of soil property, 107 

precipitation, land use pattern, evapotranspiration and analysis scale on surface soil moisture 108 

patterns in the modeling study on an agricultural field. For the soil moisture data sets of 109 

Rs15mCatchCrop and Rs150mCatchCrop in Korres et al. (2015), the mean range value changes 110 

from 432m to 711m, indicating that the correlation length increases with the measurement support. 111 

The above factors that affect soil moisture variability will also affect data assimilation efficiency, 112 

and it is too complicated to comprehensively consider their influences.  113 

In addition, biased data (data with systematic measurement errors) at a certain scale may 114 

impede the successful utilization of data at other scales and lead to deterioration of data assimilation. 115 

Existing studies with respect to bias estimation and correction in DA can be seen in Dee (2005), 116 

Pauwels et al. (2013) and Ridler et al. (2014), etc. These studies, although based on different 117 

assumptions, present very insightful and effective approaches that can be applied in DA. As there is 118 

certain limitations for different methods, how to eliminate the data biases in DA is still worth study. 119 

This paper is an attempt to conduct state-only or dual state-parameter estimation in subsurface 120 
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hydrology using multi-scale soil moisture observations. Under the ensemble Kalman filter (EnKF) 121 

framework, synthetic soil moisture observations from three support scales 600 m, 3000 m and 9000 122 

m are assimilated into a fully coupled distributed unsaturated-saturated water flow model (Zhu et 123 

al., 2012) with a resolution of 600 m. We will investigate the influences of measurement scale 124 

(horizontal support), soil spatial heterogeneity (in terms of parameter correlation length), conflicting 125 

soil moisture data from two scales (caused by different precipitation/irrigation time series) and 126 

systematic measurement errors on retrieving soil moisture profiles and estimating saturated soil 127 

hydraulic conductivities.  128 

2. Methodology 129 

2.1. Fully coupled unsaturated-saturated water flow model 130 

A fully coupled unsaturated-saturated water flow model developed by Zhu et al. (2012) is 131 

selected to simulate the soil water and groundwater flow. The validity and efficiency of the model 132 

have been demonstrated by comparing its simulation results with those of Hydrus1D, the Variably-133 

Saturated Two-Dimensional Water Flow and Transport Model (SWMS2D), the 3D model 134 

HydroGeoSphere, and FEFLOW. Moreover, by applying to a practical irrigation district, the 135 

Yonglian Irrigation District, Inner Mongolia, China, the model reveals its applicability in simulating 136 

large-scale unsaturated-saturated water flow. 137 

According to the experimental findings which demonstrate that the vertical fluxes are often 138 

dominant over the lateral fluxes in the unsaturated zone at the hillslope scale (Sherlock et al., 2002), 139 

it is usually considered reasonable in large-scale simulations to care only about the vertical flow and 140 

neglect the horizontal flux in the vadose zone (Chen et al., 1994). Therefore, the heavy 141 
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computational burden of numerically modeling large-scale water flow can be reduced by 142 

simplifying the three-dimensional (3D) Richards’ equation in the unsaturated zone to the 1D 143 

equation. In the model, the whole unsaturated-saturated domain is horizontally divided into several 144 

sub-areas according to the spatially distributed inputs such as soil type, vegetation, meteorological 145 

condition and topography. For each sub-area, a 1D vertical soil column is used to represent the 146 

averaged unsaturated flow in that area. It is also assumed that only vertical fluxes exist between the 147 

unsaturated zone and the saturated zone. Then, the 1D Richards’ equation of each column is coupled 148 

with the 3D groundwater flow equation through the vertical flux from the unsaturated zone to the 149 

groundwater table.  150 

The Richards’ equation is used to describe the simplified vertical flow through the unsaturated 151 

zone (Vogel et al, 1996),  152 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾ℎ (

𝜕ℎ

𝜕𝑧
− 1)) − 𝑆    (1) 153 

where 𝜃 is the volumetric water content; h is the pressure head; 𝑡 is time; 𝐾ℎ is the unsaturated 154 

soil hydraulic conductivity, which varies with the pressure head; z is the vertical coordinate and S is 155 

the source/sink terms.  156 

For the saturated zone, the 3D groundwater flow equation is applied, 157 

𝜇1
𝜕𝐻

𝜕𝑡
=

𝜕

𝜕𝑥𝑗
(𝐾𝑠

𝜕𝐻

𝜕𝑥𝑖
) − 𝑆 (2) 158 

where 𝜇1 is the elastic storage coefficient; H is the total water head; t is time; xi and xj are the spatial 159 

coordinates (xi , xj = x, y, z); 𝐾𝑠 is the saturated hydraulic conductivity. This 3D groundwater flow 160 

equation is simplified using the concept of Vertical/Horizontal Splitting (Lardner and Cekirge, 1988), 161 

and then solved using water balance analysis method.  162 

 The vertical flux between the unsaturated zone and the groundwater table is expressed by the 163 
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head gradient between the adjacent nodes in the unsaturated and saturated zones. The head matrix 164 

of the unsaturated and saturated zones are put together to form the unified global matrix, some of 165 

whose elements should be revised according to the water-balance-based coupling between the two 166 

zones. After solving the global head matrix, soil moistures in the unsaturated zone are acquired 167 

using the famous van Genuchten model. Detailed descriptions of the model construction can be seen 168 

in Zhu et al. (2012). 169 

We select this model because on one hand, it is a distributed subsurface flow model which is 170 

suitable for investigating the impacts of horizontal observation scales in data assimilation practices, 171 

and on the other hand, it can simultaneously give detailed vertical soil moisture profiles for different 172 

sub-areas.  173 

2.2. Ensemble Kalman Filter (EnKF)  174 

 Data assimilation (DA) is the process that combines modelling results and observations to 175 

generate the optimal states. The traditional standard Kalman filter is a widely applied sequential 176 

data assimilation approach suitable for small and linear systems with Gaussian error statistics. When 177 

implementing DA for large and nonlinear problems, some variants of the standard Kalman filter are 178 

believed to be more capable. The ensemble Kalman filter (EnKF), first proposed by Evensen (1994), 179 

is a Monte Carlo variant of the standard Kalman filter, and has proved highly applicable in 180 

complicated nonlinear hydrological problems (Komma et al., 2008; Pathiraja et al., 2016; Reichle 181 

et al., 2002; Shi et al., 2015; Song et al., 2014; Xie and Zhang, 2010; Xu and Gómez-Hernández, 182 

2016). Different from the standard Kalman filter’s explicit computation of the prior covariance 183 

matrix, the EnKF uses an ensemble of model realizations to approximate the covariance of the state 184 

vector. 185 
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 In this study, the profile pressure head and soil moisture of the 1D soil columns are to be 186 

calibrated. The augmented state vector 𝑆𝑘 that will be updated at time step 𝑘 is, 187 

𝑆𝑘 = (𝑚𝑘
𝑇, ℎ𝑘

𝑇, 𝜃𝑘
𝑇)

𝑇
                                                          (3) 188 

where 𝑚𝑘 is the parameter vector, ℎ𝑘 and 𝜃𝑘 are the variable (pressure head and soil moisture) 189 

vectors. The dimension of the state vector is 𝑁𝑠 = 𝑁𝑚 + 𝑁ℎ + 𝑁𝜃, where 𝑁𝑚 is the number of 190 

unknown parameters of all the soil columns; 𝑁ℎ or 𝑁𝜃 is the total number of one dimensional 191 

nodes of the soil columns. In this study, we choose the simultaneous updating of ℎ𝑘 and 𝜃𝑘. The 192 

updated soil moisture 𝜃𝑘 is used for result analysis, and the updated pressure head ℎ𝑘 are inserted 193 

back in the flow model because the pressure head is selected as the main variable to be directly 194 

solved in the model. 195 

Whenever the observations are available, the state vector of each ensemble member 𝑖 should 196 

be updated via, 197 

𝑆𝑘,𝑖
𝑎 = 𝑆𝑘,𝑖

𝑏 + 𝐾𝑘(𝑑𝑜𝑏𝑠𝑘,𝑖 − 𝐻𝑘𝑆𝑘,𝑖
𝑏 )                                               (4) 198 

where 𝑆𝑘,𝑖
𝑏  and 𝑆𝑘,𝑖

𝑎  denote the state vectors before and after assimilation, respectively; 𝐻𝑘 is the 199 

observation operator mapping the model states to the observation space 𝐻𝑘𝑆𝑘,𝑖
𝑏 , which in other 200 

words, is the observation prediction. Let 𝑑𝑜𝑏𝑠𝑘 denote the observation with a dimension of 𝑁𝑑 at 201 

time step 𝑘, then for each realization i the observation vector is, 202 

𝑑𝑜𝑏𝑠𝑘,𝑖 = 𝑑𝑜𝑏𝑠𝑘 + 𝜀𝑘,𝑖                                                           (5) 203 

where 𝜀𝑘,𝑖  is the independent white noise of the observation, which varies among realizations 204 

(Burgers et al., 1998). Serving as a weighting factor between model predictions and observations, 205 

the Kalman gain 𝐾𝑘 is calculated by, 206 

𝐾𝑘 = 𝐶𝑘
𝑏𝐻𝑘

𝑇(𝐻𝑘𝐶𝑘
𝑏𝐻𝑘

𝑇 + 𝑅𝑘)
−1

                                                  (6) 207 
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where 𝑅𝑘 is the error covariance matrix of the observations at time step 𝑘; 𝑪𝑘
𝑏 is the prior error 208 

covariance matrix of the state vector and can be approximated by, 209 

𝐶𝑘
𝑏 ≈

1

𝑁𝑒−1
∑ [(𝑆𝑘,𝑖

𝑏 − 𝑆𝑘
𝑏̅̅ ̅)(𝑆𝑘,𝑖

𝑏 − 𝑆𝑘
𝑏̅̅ ̅)

𝑇
]

𝑁𝑒
𝑖=1                                            (7) 210 

𝑆𝑘
𝑏̅̅ ̅ ≈

1

𝑁𝑒
∑ 𝑆𝑘,𝑖

𝑏𝑁𝑒
𝑖=1                                                                (8) 211 

where 𝑁𝑒 is the ensemble size; 𝑆𝑘
𝑏̅̅ ̅ is the ensemble mean of the state vector before assimilation. 212 

2.3. Method of assimilating multi-scale soil moisture observations 213 

Recalling section 2.2, it can be found that the observation operator 𝐻𝑘 and the covariance 214 

matrix 𝐶𝑘 always appear together as the product 𝐶𝑘
𝑏𝐻𝑘

𝑇 or 𝐻𝑘𝐶𝑘
𝑏𝐻𝑘

𝑇 in the updating step. If the 215 

observational variables are just part of the state variables to be updated, 𝐻𝑘 will be a 𝑁𝑑 × 𝑁𝑠 216 

matrix with an element of 1 where there is an observation prediction and 0 where there isn’t. Under 217 

this condition, 𝐶𝑘
𝑏𝐻𝑘

𝑇 and 𝐻𝑘𝐶𝑘
𝑏𝐻𝑘

𝑇 can actually be obtained by directly selecting several lines 218 

from 𝐶𝑘 instead of calculating the whole of it, therefore the computational burden can be greatly 219 

reduced (Chen and Zhang, 2006). However, in our study the multi-scale soil moistures are not the 220 

direct state variables to be solved in the governing equations of the model, thus the whole state error 221 

covariance matrix 𝐶𝑘 is supposed to be calculated and additional handling of 𝐻𝑘, 𝐻𝑘𝐶𝑘
𝑏𝐻𝑘

𝑇, as 222 

well as 𝐶𝑘
𝑏𝐻𝑘

𝑇 is needed. We avoid this by augmenting the state vector 𝑆𝑘 with the multi-scale 223 

observation 𝑑𝑘, which can be constructed from the direct model state variables using a “sub-model”. 224 

A sub-model herein refers to the method and process used before data assimilation to transform the 225 

direct model variables to the predicted measurements when the direct model variables are not 226 

observable. The augmented state vector will then become, 227 

 𝑆𝑘 = (𝑚𝑘
𝑇, ℎ𝑘

𝑇, 𝜃𝑘
𝑇, 𝑑𝑘

𝑇)
𝑇
                                                       (9) 228 

where 𝑑𝑘  is the constructed model prediction of the multi-scale observation 𝑑𝑜𝑏𝑠𝑘 . Thus, the 229 
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elements of 𝐻 are still 1s and 0s, and the convenience as stated in Chen and Zhang (2006) is 230 

retained. Note that by using different sub-models, different indirect model predictions can be 231 

constructed according to their relationships with direct model predictions. Another advantage of the 232 

augmented form of  𝑆𝑘  is that data from two or more scales and of different types can be 233 

assimilated simultaneously.  234 

In our synthetic study, coarse-scale soil moisture data is constructed by aggregating several 235 

finer-scale soil moisture data. The Area-Weighted-Average method is adopted to generate the 236 

aggregated coarse-scale soil moisture with the following expression, 237 

𝐴𝑆𝑀 =
∑ 𝐴𝑖𝜃𝑖

𝑛
𝑖

∑ 𝐴𝑖
𝑛
𝑖

                                                              (10) 238 

where 𝑛 is the number of model grids within a same parent coarse observation grid; 𝐴𝑖 is the area 239 

of a finer grid, that is, the area of a horizontal sub-area of the modeling domain; 𝜃𝑖 is soil moisture 240 

of a finer grid; 𝐴𝑆𝑀 is the aggregated coarse-scale soil moisture. Note that the construction of 241 

area-averaged soil moisture by Eq. (10) is only for generating synthetic observations (in the 242 

reference modeling) and observation predictions (in the uncertain modeling) to drive the data 243 

assimilation of soil water flow in our synthetic study, in other cases the weights of finer grids in the 244 

aggregation of model results to coarse-scale grids do not necessarily depend on the area of finer 245 

girds. 246 

2.4. Method of treating biased data—difference information assimilation method 247 

In order to deal with the possible systematic measurement errors, we present a very simple and 248 

easy to use method based on EnKF, which is termed as “difference information assimilation”. The 249 

term difference information means the difference between observations, whether temporally or 250 

spatially. In our present study, only the spatial difference is involved. Assume that at a certain time 251 
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point, N observational grids are measured by the same sensor and that these N measurements 252 

correspond to the following truth vector: 253 

𝑑𝑡 = (𝑑𝑡
1，𝑑𝑡

2，…，𝑑𝑡
𝑁)𝑇                                                      (11) 254 

where the superscript 1, 2, and N denote different physical measurement locations. If the systematic 255 

measurement error δ is failed to be eliminated, the original observation vector can be expressed as: 256 

𝑑𝑜𝑏𝑠 = (𝑑𝑜𝑏𝑠
1 ，𝑑𝑜𝑏𝑠

2 ，…，𝑑𝑜𝑏𝑠
𝑁 )𝑇 = (𝑑𝑡

1 + δ + 𝜀1，𝑑𝑡
2 + δ + 𝜀2，…，𝑑𝑡

𝑁 + δ + 𝜀𝑁)𝑇    (12) 257 

where 𝜀𝑖 (i =1, 2, …, N) is random error. If this 𝑑𝑜𝑏𝑠 is directly assimilated, severe damage may 258 

be caused. Therefor the observation vector is transformed to such a form: 259 

𝑑𝑜𝑏𝑠̃ = (𝑑𝑜𝑏𝑠
1 − 𝑑𝑜𝑏𝑠

2 ，𝑑𝑜𝑏𝑠
2 − 𝑑𝑜𝑏𝑠

3 ，…，𝑑𝑜𝑏𝑠
𝑁−1 − 𝑑𝑜𝑏𝑠

𝑁 ，𝑑𝑜𝑏𝑠
𝑁 − 𝑑𝑜𝑏𝑠

1 )𝑇                 (13) 260 

𝑑𝑜𝑏𝑠̃ = (𝑑𝑡
1 − 𝑑𝑡

2 + 𝜀1 − 𝜀2, 𝑑𝑡
2 − 𝑑𝑡

3 + 𝜀2 − 𝜀3, … , 𝑑𝑡
𝑁 − 𝑡𝑜

1 + 𝜀𝑁 − 𝜀1)𝑇                 (14)                      261 

𝑑𝑜𝑏𝑠̃ = (𝑑𝑜𝑏𝑠
1̃ ，𝑑𝑜𝑏𝑠

2̃ ，…，𝑑𝑜𝑏𝑠
𝑁̃ )𝑇                                                (15) 262 

where 𝑑𝑜𝑏𝑠
𝑖̃  is the ith reconstructed observational data, representing the information difference 263 

between 𝑑𝑜𝑏𝑠
𝑖  and 𝑑𝑜𝑏𝑠

𝑖+1. Note that if the random error 𝜀𝑖 of the original observations obeys a 264 

normal distribution 𝑁(0, 𝜎2), and different observations are independent, then the random error of 265 

the constructed observational data 𝑑𝑜𝑏𝑠
𝑖̃  will also obey a normal distribution, but the variance will 266 

be 2𝜎2. 267 

The difference information is assimilated into the physical model using the form of augmented 268 

state vector described in Section 2.3, and can be jointly assimilated with other observational data 269 

with different scales or types. More exactly, the observation differences will be included in 𝑑𝑘 of 270 

formula (9), and the model states will be updated not based on the original observations but on the 271 

observation differences.  272 

 273 
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3. Numerical experiments 274 

Synthetic experiments are designed to explore the value of multi-scale near-surface (0~5 cm) 275 

soil moisture observations in state-parameter estimation. A reference modeling or “true run” is 276 

performed firstly, in which parameters and state variables are seen as “true” values. The EnKF runs 277 

are then conducted for the same time period using wrong soil hydraulic parameters. Initial and 278 

boundary conditions of the EnKF runs and the “true run” are set to be identical, as this study only 279 

focuses on parameter errors. The EnKF runs assimilate soil moisture observations draw from the 280 

reference modeling to compensate for errors arising from wrong parameters. In addition, the open-281 

loop run without assimilating any observational data and with just the same configurations as the 282 

EnKF runs is performed in ensemble mode for comparison. 283 

3.1 Flow domain description and boundary conditions 284 

A 9000 ×9000 ×3 m cuboid domain with a number of 225 600×600 m sub-areas is created. Soil 285 

materials in the vertical direction are set to be uniform for simplification, since only the horizontal 286 

scale is the target of our study. The 1D vertical soil columns are divided into 31 elements with 5 cm 287 

thickness for the top two elements near soil surface and 10 cm thickness for the rest. The soil type 288 

of all sub-areas in the reference modeling is selected as sandy loam from Carsel and Parrish (1988). 289 

Soil parameters are as follows: α = 7.5 m−1, n = 1.89, 𝜃𝑟 = 0.065, 𝜃𝑠 = 0.41 , except the 290 

saturated soil hydraulic conductivity 𝐾𝑠, which varies among sub-areas and will be specified in 291 

Section 3.3. Initial total heads of all the simulation domain are -210 cm. By setting a constant water 292 

table of 210 cm below soil surface, the number of unsaturated nodes will not change during the 293 

whole simulation period and no water flux exists between horizontal sub-areas. Fig. 1 shows the 294 
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daily-averaged time series of precipitation and potential evaporation, in which (a) and (c) are used 295 

as the upper boundary conditions for all the cases unless otherwise specified. The unsaturated-296 

saturated flow in this study is simulated with a time step of 0.01 days. 297 

[Fig. 1] 298 

3.2 Observations 299 

In this synthetic study, near-surface soil moisture observations from three horizontal scales 600 300 

m, 3000 m and 9000 m, denoted by 𝜃600, 𝜃3000 and 𝜃9000 are used. The 600 m soil moisture data 301 

can correspond to some sensing instrument with a footprint of intermediate scale, for example, the 302 

cosmic-ray soil moisture probe (Zreda et al., 2008; Zreda et al., 2012). The 9000 m soil moisture 303 

data can correspond to the SMAP mission (Das et al., 2011; Entekhabi et al., 2010). The 3000 m 304 

measurement scale may represent the future 3000 m soil moisture product from SMAP or other 305 

missions although not mature at present. The 600 m-scale near-surface soil moisture observations 306 

are drawn from the linear mean of the top two nodes of the vertical soil columns in the reference 307 

modeling, representing an observation depth of 5 cm. The 3000 m and 9000 m-scale near-surface 308 

soil moisture observations are generated by Equation (10). Soil moisture observations from the three 309 

scales are all assumed to be unbiased and only suffer a random measurement error of 0.04 m3/m3 310 

unless otherwise stated. The generation of these soil moisture data is under simplified conditions, 311 

since in reality the sensing depths of instruments will change with soil moisture content and coarse-312 

scale observations are not necessarily the area-average of finer-scale observations. This 313 

simplification will not affect the main purpose of our study. 314 

3.3 Experimental setup and data assimilation scenarios 315 



 

16 

 

The parameter Ks (m/day) is taken as the unknown factor. There are in total 225 parameters to 316 

be estimated for the whole study area. It is assumed that the logarithmic hydraulic conductivity field 317 

𝑌(𝑥) = 𝑙𝑛 𝐾𝑠(𝑥)  obeys a normal distribution and is second-order stationary with a two-318 

dimensional covariance function defined by a separable exponential form: 319 

𝐶𝑌(𝒉) = 𝜎𝑌
2 exp (−

|ℎ𝑥|

𝜆x
−

|ℎ𝑦|

𝜆y
) = 𝜎𝑌

2 exp (−
|𝑥1−𝑥2|

𝜆x
−

|𝑦1−𝑦2|

𝜆y
)                          (16) 320 

where (𝑥1, 𝑦1)  and (𝑥2, 𝑦2) are the 2D coordinates, 𝜎𝑌
2  is the variance, 𝜆x  and 𝜆y  are the 321 

correlation lengths in x and y directions. The prior mean and variance of the logarithmic hydraulic 322 

conductivity field are selected to be 0.5 and 1. The correlation lengths 𝜆x and 𝜆y are specified in 323 

Table 1, considering different soil spatial heterogeneities. Initial realizations of the logarithmic 324 

hydraulic conductivity field are generated using the above statistics. The reference field is given by 325 

randomly selecting a realization from realizations generated using a mean value of -0.5 and the same 326 

variance and correlation lengths as the initial field of the EnKF system. The model structural errors 327 

are ignored in this study since the same model is applied in the reference modeling and the EnKF 328 

runs. An ensemble size of 200 is selected. The total simulation time is 80 days, and the assimilation 329 

frequency is once a day.  330 

Concerning the measurement scale (horizontal support), soil spatial heterogeneity, conflicting 331 

soil moisture data from two scales and systematic measurement errors，four scenarios are considered. 332 

Scenario 1 333 

Under a given background condition (correlation length of the ln Ks filed is 9000 m), soil moisture 334 

observations from different scales are available, the data value of these soil moisture observations 335 

need to be accessed. Two sub-scenarios are analyzed, the first is updating state variables only, while 336 

the unknown parameters are not cared, the second is simultaneously updating unknown parameters 337 
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and state variables. 338 

Scenario 2 339 

For a given soil moisture product, data assimilation efficiency under different background 340 

conditions needs to be accessed. In this study, the background soil heterogeneity, in terms of the 341 

spatial correlation length of the ln Ks filed is considered.  342 

Scenario 3 343 

Under a given background condition, multi-scale soil moisture observations with contrasting 344 

information are available, the assimilation results need to be compared. Finer-scale data assimilation 345 

can be driven by different coarse-scale observations, which may provide contrasting soil moisture 346 

information with completely different temporal trends. Intuitively, detailed spatial soil moisture 347 

features can be better captured by finer-scale soil moisture data. However, due to the commonly 348 

existing spatial heterogeneity of soil properties, precipitation or evapotranspiration, etc., soil 349 

moisture on a particular area may not be represented by the observation of a given scale. It is not 350 

clear that which data scale is optimal if the scale of study areas does not match with the observation 351 

scales.  352 

Scenario 4 353 

Under a given background condition, soil moisture observations from two scales are available, 354 

but one data has systematic errors, and the other is unbiased with only random errors. 355 

In corresponding to the four scenarios, a series of experiments are conducted, the detailed 356 

specifications of which are listed in Table 1, and described in Section 4. It should be mentioned that 357 

the sources of uncertainty in a hydrological modeling are not limited to the soil hydraulic 358 

conductivity only, and other factors such as the meteorological input, land use type, topography and 359 
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the van Genuchten parameters, etc. can also result in great uncertainty of the model states. As the 360 

main purpose of this study is to explore the idea and method of assimilating multi-scale soil moisture 361 

observations, we reasonably select the soil hydraulic conductivity as the only unknown factor to 362 

simplify the research. Sensitivity of the value of multi-scale soil moisture observations to different 363 

factors mentioned above will be the topic of a future study, using the idea and method presented in 364 

the current study.  365 

 [Table 1] 366 

3.4 Performance assessment 367 

To evaluate the data assimilation effectiveness, root mean square error (RMSE) relative to the 368 

“true run” are computed based on the ensemble mean values of the unknown parameters and state 369 

variables: 370 

RMSE = √
1

𝑁
∑ [𝐸(𝑥𝑖) − 𝑥𝑖

𝑡𝑟𝑢𝑒)]2𝑁
𝑖=1                                                (17) 371 

where N is the number of nodes or the number of unknown parameters, 𝐸(𝑥𝑖) is the ensemble 372 

mean value of the ith state variable or parameter, 𝑥𝑖
𝑡𝑟𝑢𝑒 is the synthetic “true value” in the reference 373 

modeling. Because the saturated soil moisture content 𝜃𝑠  is treated as a known and correct 374 

parameter, the focus should be on the unsaturated vertical nodes. Unless otherwise stated, N is 22 ×375 

225 = 4950 when calculating the RMSE of profile soil moistures for the whole simulation domain, 376 

where 22 is the number of unsaturated vertical nodes in each sub-area and 225 is the number of sub-377 

areas. N is 225 when calculating the RMSE of unknown parameters. If only shallow layer, say 0~50 378 

cm soil moistures are cared, then N will be 7 × 225 = 1575. If the soil moisture RMSE of certain 379 

sub-areas is cared, then N will equal the total number of unsaturated or cared vertical nodes of these 380 

sub-areas.  381 
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4. Results and discussion 382 

4.1 Dual state-parameter estimation using soil moisture observations from different scales 383 

In Case 1~3, near-surface (0~5 cm) soil moisture observations from three footprints (600 m, 384 

3000 m and 9000 m) are assimilated into the same uncertain modeling, respectively. Both the 385 

saturated soil hydraulic conductivities and state variables are updated. The reference ln Ks field, the 386 

ensemble mean ln Ks field of the initial realizations and the estimated ensemble mean ln Ks fields 387 

(at the end of the simulation period) are shown in Fig. 2. The 225 estimated ensemble mean values 388 

of ln Ks versus their reference values at day 1, 10, 50 and 80 are plotted in Fig. 3.  389 

From Fig. 2 and 3 it can be seen that the initial ensemble mean ln Ks field does not show any 390 

spatial tendency, compared with the reference field. At the end of the simulation period, the ln Ks 391 

field confined by the 600 m-scale soil moisture data is almost the same as the reference field. Major 392 

features of the reference ln Ks field can also be captured by the 3000 m-scale data. When the 393 

observation scale rises to 9000 m, the capability to recover the 600 m-scale ln Ks field decreases 394 

dramatically (Fig. 2). Generally, the estimated ln Ks values using finer-scale soil moisture data 395 

approach the reference values more rapidly and accurately (Fig. 3). In Fig. 3, the ln Ks estimates 396 

from coarser-scale soil moisture data are more concentrated with respect to their reference 397 

counterparts, indicating that the estimated ln Ks spatial variance is underestimated by assimilating 398 

coarse-scale data, which can also be seen in Fig. 2. Note that the reference ln Ks filed in Case 1~3 399 

has a spatial mean and a spatial standard deviation of -0.225 and 0.737. While the 9000 m-scale soil 400 

moisture data can drive the spatial mean of the ln Ks field close to that of the reference ln Ks field 401 

(from the initial value 0.504 to the final -0.147), it cannot recover the spatial variance (from the 402 
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initial spatial standard deviation 0.004 to the final 0.078). In conclusion, it is difficult to use coarse-403 

scale soil moisture data to capture the finer-scale spatial heterogeneity of soil property.  404 

[Fig. 2] 405 

[Fig. 3] 406 

The temporal evolution of RMSEs of ln Ks and profile soil moisture for Case 1~3 and the 407 

open-loop run are plotted in Fig. 4. Note that at beginning profile soil moistures of all the cases are 408 

set to be the same as that of the reference modeling and during the early time period precipitation 409 

haven’t yet infiltrated into deeper soil. It’s easy to see that soil moisture observations from all the 410 

three scales have positive effects on reducing profile soil moisture RMSE, but with the increase of 411 

observation scale, the efficiency decreases obviously. Improvements for profile soil moisture are in 412 

accordance with improvements for parameters. Detailed soil moisture profiles of a representative 413 

sub-area (Sub-area 183) at the end of the simulation time are plotted in Fig. 5 (a), including the 414 

reference modeling, the open-loop run and the EnKF runs. 415 

[Fig. 4] 416 

[Fig. 5] 417 

4.2 Soil moisture profile retrieval without updating unknown parameters using soil moisture 418 

observations from different scales 419 

As stated by Moradkhani et al. (2005) and Xie and Zhang (2010), in many data assimilation 420 

practices only dynamic state variables are updated while parameters are not. In Case 4~6 of this 421 

study, the saturated soil hydraulic conductivity is not updated, and other settings are the same as 422 

those of Case 1~3. The 0~200 cm and 0~50 cm profile soil moisture RMSEs for Case 4~6 and the 423 

open-loop run are shown in Fig. 6 (a) and (b), respectively. As the initial profile soil moistures are 424 
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set to be correct, with the infiltration of precipitation under wrong soil hydraulic conductivity fields, 425 

soil moisture RMSEs all gradually increase with time at the early stage. From Fig. 6 (a), at the early 426 

period (about 0~10 days) when precipitation has not yet infiltrate into deeper soil, near-surface soil 427 

moisture data from all the three scales are found to improve profile soil moisture estimation 428 

compared with the open-loop run, and finer-scale data is more efficient. However, the RMSE using 429 

𝜃600 grows larger than that using 𝜃3000 after about 10 days, and then larger than that using 𝜃9000 430 

at day 16, and later it grows distinctly beyond the soil moisture RMSE of the open-loop run. The 431 

RMSE using 𝜃3000 also grows larger than that of the open-loop run. In contrast, for Case 6 using 432 

𝜃9000, there is always a slight drop of the RMSE from that of the open-loop run during the whole 433 

simulation period. The above results tell that wrong hydraulic conductivity can lead to spurious soil 434 

moisture correlations between surface and deep nodes of the soil profile, and therefore assimilating 435 

near-surface soil moisture data can actually worsen soil moisture estimation.  436 

[Fig. 6] 437 

From Fig. 6 (b), it can be seen that at most assimilation steps, near-surface soil moisture data 438 

can improve the 0~50 cm profile soil moisture, and generally improvement from finer-scale 439 

observations is larger, except during day 12~40, when soil moisture RMSE using 𝜃600 exhibits a 440 

greater fluctuation. In the long run, for shallow-layer soil moisture estimation finer-scale data is 441 

more efficient. Detailed soil moisture profiles (at the end of the simulation period) of a 442 

representative soil column without updating the soil hydraulic conductivity fields is plotted in Fig. 443 

5 (b), for comparison with Fig. 5 (a). Related studies can be found as for using surface soil moisture 444 

data to modify deeper soil moisture profiles (Chen et al., 2011; Lievens et al., 2015; Walker et al., 445 

2001), among which Chen et al. (2011) reveal similar results with this Section. 446 
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Combining the results of Section 4.1 and 4.2, it can be concluded that finer-scale soil moisture 447 

data have greater influence on data assimilation, under the premise that the observation grid is not 448 

smaller than the modeling grid. It should be noted that the “greater influence” can be positive (Fig. 449 

4), but it can also be negative (Fig. 6 (a)).  450 

4.3 Data assimilation under different degrees of soil spatial heterogeneity in terms of soil hydraulic 451 

conductivity 452 

In Case 7, Case 3 and Case 8, soil moisture data from the 9000 m-scale covering a number of 453 

225 model grids is used. The difference of the three cases lies in the background parameter 454 

correlation length (see Table 1). We artificially select these three parameter correlation lengths to 455 

make the comparison more distinct. The RMSE evolutions for ln Ks fields and profile soil moisture 456 

are exhibited in Fig. 7. It can be seen that soil moisture data have no effect, slight positive effect, 457 

and obvious positive effect on parameter estimation under a parameter correlation length of 1800 458 

m, 9000 m and 60000 m, respectively. The RMSE evolution of profile soil moistures is in 459 

accordance with that of ln Ks fields. The above results indicate that it’s hard to use the 9000-scale 460 

data to improve the 600 m-scale state and parameter estimation with a strong spatial heterogeneity 461 

of soil property. But when the spatial heterogeneity of soil property becomes weaker, the 9000-scale 462 

data can provide rather valuable information for even the much finer 600 m-scale model grids.  463 

The information gain from the 3000 m-scale soil moisture observation in respect of the spatial 464 

heterogeneity of the parameter field is also tested (Cases 2, 9 and 10 ). Similar phenomenon is 465 

observed (results not shown), except that the 3000 m-scale data is also useful when the spatial 466 

correlation length of the ln Ks field is 1800 m. In conclusion, the value of coarse-scale soil moisture 467 

observations for finer-scale state-parameter estimation greatly depends on the degree of background 468 
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soil spatial heterogeneity. 469 

[Fig. 7] 470 

4.4 Data assimilation using multi-scale soil moisture observations with contrasting temporal trends 471 

In Cases 11~13, we mimic Scenario 3 in which the upper boundary of the simulation filed is 472 

controlled by two different precipitation/irrigation strategies, which is demonstrated in Fig. 8. Most 473 

of the sub-areas in Fig. 8 (shallow grey areas) still receive the precipitation series in Fig. 1 (a), while 474 

20 sub-areas (dark grey areas) in the top left corner of the study domain receive a different 475 

precipitation series in Fig. 1 (b). A 3000 m-scale soil moisture observation covering the top left 25 476 

model grids and a 9000 m-scale observation covering all the domain are given. The correlation 477 

length of the ln Ks field is 9000 m. Fig. 9 gives the temporal evolution of the 3000 m-scale and the 478 

9000 m-scale soil moisture observations, as well as the near-surface soil moisture changes of Sub-479 

areas 61~65 in the reference modeling. It is obvious that the trend of 9000 m-scale soil moisture 480 

observation is much more similar to those of Sub-areas 61~65, while the 3000 m-scale observation 481 

exhibits a totally different temporal trend. For Sub-areas 61~65, it is natural to question which one 482 

of the 9000 m-scale (Case 12) and the 3000 m-scale (Case 11) observations can provide better 483 

estimation results, and whether simultaneously assimilation of these two data set can yield further 484 

improvement (Case 13). 485 

[Fig. 8] 486 

[Fig. 9] 487 

[Fig. 10] 488 

The RMSE of ln Ks versus time as well as that of profile soil moisture for Sub-areas 61~65 are 489 

demonstrated in Fig. 10. Results show that during the early period (about 0~9 days) the RMSE of 490 
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ln Ks conditioned on the 9000 m-scale soil moisture data drops faster than that conditioned on the 491 

3000 m-scale data, probably due to the similar temporal trend of the 9000 m-scale data with those 492 

of Sub-areas 61~65. But in the long run, the temporally deviated 3000 m-scale data gives better 493 

estimation, which might be attributed to the smaller scale-mismatch compared with the 9000 m-494 

scale data, and the horizontal correlation of the ln Ks field. Considering both a short and a relatively 495 

long assimilation period, the simultaneously assimilation of 3000 m- and the 9000 m- scale 496 

observations is advantageous, because the corresponding RMSE curve always keeps close to the 497 

better one of the other two curves by the separate assimilation. The result of profile soil moisture 498 

follow that of parameter estimation. In conclusion, the influences of both the scale-mismatch and 499 

the contrast of observable information should be considered when assimilating multi-scale soil 500 

moisture data.  501 

In practice, the usefulness of soil moisture data from a certain scale depends on several factors, 502 

including the spatial heterogeneity of soil properties, the spatial variation of precipitation or 503 

evapotranspiration, the degree of scale-mismatch between observations and simulations, etc. To 504 

judge the data value of multi-scale soil moisture data with contrasting information, it is not enough 505 

to consider only one factor. Our results demonstrate that by updating spatially correlated soil 506 

hydraulic parameters, deviated observations still contain considerably useful information to identify 507 

finer-scale states and parameters. The limitation of this section is that the influencing factors 508 

mentioned previously are not thoroughly considered. Taking a more systematic analysis of the data 509 

value of multi-scale data with contrasting information in DA can be the subject of a separate study. 510 

4.5 Data assimilation using soil moisture data with systematic measurement errors 511 

In real-world problems, soil moisture observations are subjected to both random errors and 512 
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systematic errors. Systematic errors of observations should be removed before data are used. 513 

However, sometimes elimination of systematic observation errors cannot be guaranteed because of 514 

the complex error components.  515 

In a virtual experiment we assume that the 600 m-scale soil moisture observation suffer a 516 

systematic bias of 0.03 m3/m3 from the true value. The random error is still 0.04 m3/m3. This data is 517 

assimilated with model results to test the impact of systematic observation errors on dual state-518 

parameter estimation through Case 14. In Case 15, the result of EnKF by simultaneously utilizing 519 

the unbiased 3000 m-scale soil moisture data and the 600 m-scale data with a bias of 0.03 m3/m3, is 520 

tested. Note that by applying the augmented form of the state vector stated in Section 2.3 (formula 521 

(9)), data from different sources and of different types can be assimilated simultaneously. In Case 522 

16, the 600 m-scale biased soil moisture data are assimilated using the difference information 523 

method described is Section 2.4. Other settings of Case 14~16 are identical with those of Case 1~3.  524 

[Fig. 11] 525 

The RMSEs of ln Ks fields and profile soil moisture for Case 14~16 and Case 2 are plotted in 526 

Fig. 11. It can be seen that the direct assimilation of biased 600 m-scale soil moisture observation 527 

severely damages the estimate of ln Ks fields and profile soil moisture. Even when the unbiased 528 

3000 m-scale data is integrated together, the assimilation result does not get better obviously, 529 

indicating the decisive effect of the biased 600 m-scale observation over the unbiased 3000 m-scale 530 

observation. The above results illustrate that directly assimilating soil moisture data with systematic 531 

measurement errors can not only lead to deterioration of data assimilation but also impede the 532 

successful utilization of data at other scales. By applying the difference information assimilation 533 

method (Case 16), the 600 m-scale biased-data results in great improvement of parameter and soil 534 
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moisture estimation. The limitation of the method used here is that the systematic observational 535 

errors are assumed to be constant at different spatial locations. Another limitation is that for unbiased 536 

observational data with only random errors, part of the information content can be reduced by 537 

assimilating the observation difference instead of the original data. The difference information 538 

assimilation method can be classified as the bias-blind systems stated in Dee (2005), with the 539 

observational data reprocessed before assimilation. Bias-aware assimilation methods, on the other 540 

hand, is advantageous in that they can explicitly give online bias estimation (Pauwels et al., 2013; 541 

Ridler et al., 2014)and can also take into consideration the forecast biases, but they are also based 542 

on specific assumptions, for example, assumptions about the source and nature of the biases in the 543 

system (Dee, 2005). The forecast bias in this study caused by wrong initial model parameters are 544 

implicitly reduced by jointly update the unknown parameters with state variables. The observation 545 

bias is implicitly eliminated by assimilating the difference information instead of the original 546 

information. To explicitly estimate the forecast and observation biases falls outside the scope of this 547 

study. 548 

5. Conclusions 549 

In this paper we present a multi-scale data assimilation scheme based on the EnKF method and 550 

a distributed subsurface water flow model, focusing on unsaturated zone state-only or state-551 

parameter estimation with near-surface (0~5 cm) soil moisture observations. The value of near-552 

surface soil moisture data from three measurement scales, namely 600 m, 3000 m and 9000 m, on 553 

reducing the 600 m-scale model errors are accessed (Scenario 1). Using the 9000 m and the 3000 554 

m-scale soil moisture observations, the influence of soil spatial heterogeneity in terms of saturated 555 
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soil hydraulic conductivity on data assimilation efficiency is considered (Scenario 2). The results of 556 

assimilating 3000 m-scale and 9000 m-scale soil moisture data which exhibit obviously different 557 

temporal trends, are compared (Scenario 3). In addition, the severe damage of directly assimilating 558 

soil moisture data with systematic measurement errors is demonstrated and a difference information 559 

method based on the multi-scale EnKF scheme (Scenario 4) is proposed.  560 

Results and conclusions are summarized as follows:  561 

Coarse-scale soil moisture data also contain very useful information for finer-scale state and 562 

parameter estimation with biased initial ln Ks fields, but with the increasing of measurement scales, 563 

the data assimilation efficiency decreases a lot (RMSE of soil moisture increases from 0.002 using 564 

600 m data to 0.012 using 9000 m data). From Case 1~3 (Section 4.1), it can be seen that the a soil 565 

moisture observation scale of 3000 m still brings great improvements to the 600 m-scale state-566 

parameter estimation (RMSEs of ln Ks and soil moisture reduced to 0.373 and 0.007 from 1.035 567 

and 0.014 of the open-loop run). The 9000 m-scale soil moisture data can drive the spatial mean of 568 

the ln Ks field to the reference field, but it cannot recover the spatial variability. Soil heterogeneity 569 

have great effects on the efficiency of data assimilation. When the correlation length of the ln Ks 570 

field increases from 1800 m to 9000 m and to 60000 m, notable improvement can be seen using the 571 

9000 m-scale soil moisture data to estimate the 600 m-scale states and parameters.  572 

In dual state-parameter estimation, the profile soil moisture estimation is in accordance with 573 

the estimation of the ln Ks field. Without updating the ln Ks field, assimilation of near-surface soil 574 

moisture data can lead to improvement for shallow soil moisture profiles and damage for deeper 575 

(>50cm in this study) soil moisture profiles, and the smaller the measurement scale is, the larger the 576 

influence will be, given that the measurement scale is not smaller than the model scale.  577 
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When data from different scales are available but with contrasting temporal trends, their 578 

influences on data assimilation are subtle, and factors should be considered simultaneously. In 579 

Section 4.4, compared with the 9000 m-scale soil moisture data, the 3000m-scale data exhibits a 580 

more different temporal trend with the soil moisture temporal evolution of study areas, but the letter 581 

still brings much greater improvements (RMSEs of ln Ks and soil moisture further reduced to 0.446 582 

and 0.010 from 1.048 and 0.166) except during the early period (0~9days). Joint assimilation of 583 

multi-scale soil moisture data with contrasting information is found to be advantageous but need to 584 

be further investigated. 585 

Given that the measurement scale is not smaller than the model scale, finer-scale data is more 586 

efficiency on driving data assimilation, but should be used with caution. The direct assimilation of 587 

the 600 m-scale soil moisture data with systematic measurement errors results in the deterioration 588 

of data assimilation and also causes the failure of assimilating unbiased 3000 m-scale soil moisture 589 

data. By applying a spatial difference information assimilation method, we successfully eliminate 590 

the disadvantageous effect of the biased 600 m-scale observational data and prove that the multi-591 

scale EnKF data assimilation scheme is able to take full advantage of data, even with systematic 592 

measurement errors.  593 

Based on the results of this study, the general conclusion is that the EnKF approach is proved 594 

to provide a promising framework to use multi-scale soil moisture data. The current study only 595 

covers a few aspects in DA with multi-scale data, and should extended to consider unbiased initial 596 

parameter ensemble, or/and other factors such as meteorological input, land use type, topography, 597 

etc. 598 

 599 
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Figure and Table Captions 737 

 738 

 739 

 740 

Fig. 1. Time series of daily precipitation and potential evaporation, (a) and (c) are used in all the 741 

cases; (b) is only used in Case 11~13 for Scenario 3. 742 

Fig. 2. Illustration of the ln Ks fields in Scenario 1 (Case 1~3): (a) reference filed; (b) ensemble 743 

mean of the initial ensemble members; (c) ~ (e) estimated ensemble mean ln Ks fields at the end of 744 

the simulation period by 600 m-, 3000 m- and 9000 m-scale soil moisture data, respectively. 745 

Fig. 3. Estimated ensemble mean values of ln Ks by soil moisture data from 600 m-, 3000 m- and 746 

9000 m- scales in Case 1~3 of Scenario 1. (a) ~ (d) Represent the results of day 1, 10, 50 and 80, 747 

respectively. Results corresponding to different observation scales are denoted by different data tags. 748 

Fig. 4. Temporal evolution of RMSEs for the ln Ks fields and profile soil moistures in Scenarios 1 749 

(Case 1~3 and the open-loop run). Different lines represent results by soil moisture data from 600 750 

m, 3000 m, and 9000 m scales, respectively. 751 

Fig. 5. Soil moisture profiles of the representative sub-area for the reference modeling, the open-752 

loop run and the EnKF runs in Scenario 1 (Case 1~6 and the open-loop run): (a) parameters are 753 

updated; (b) parameters are not updated. 754 

Fig. 6. Temporal evolution of RMSEs for profile soil moistures in Case 4~6: (a) the whole 755 

unsaturated zone; (b) 0~50 cm soil depth.  756 

Fig. 7. Temporal evolution of RMSEs for the ln Ks fields and profile soil moisture in Scenario 2 757 

(Case 3, 7 and 8), given different parameter correlation lengths λ. 758 
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Fig. 8. Illustration of the upper boundary conditions used in Case 11~13 of Scenario 3. Most of the 759 

sub-areas (shallow grey areas) still receive the precipitation series in Fig. 1 (a), while 20 sub-areas 760 

(dark grey areas) in the top left corner of the study domain receive a different precipitation series in 761 

Fig. 1 (b). The locations of Sub-area 61~65 are labeled with the red Arabic numerals.  762 

Fig. 9. Temporal trends of the 3000 m-scale (Case 11) and the 9000 m-scale (Case 12) soil moisture 763 

data in comparison with the average soil moisture changes of Sub-areas 61~65 in Scenario 3. 764 

Fig. 10. Temporal evolution of RMSEs for the ln Ks fields and profile soil moistures of Sub-areas 765 

61~65 in Scenarios 3 (Case 11~13 and the open-loop run). Different lines represent results by soil 766 

moisture data from a 3000 m- grid, a 9000 m- grid and the combined 3000 m- and 9000 m- grids, 767 

respectively. 768 

Fig .11. Temporal evolutions of RMSEs for the ln Ks fields and profile soil moistures of Case 2, 14, 769 

15 and 16, as well as the open loop run in Scenario 4. 770 

Table 1 Specifications of all the cases 771 
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Fig. 1. 773 

(a) 774 

(b) 775 

(c) 776 

Fig. 1. Time series of daily precipitation and potential evaporation, (a) and (c) are used in all the 777 

cases; (b) is only used in Case 11~13 for Scenario 3. 778 
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Fig. 2.  779 

(a)                         (b)  780 

(c)                         (d)                         (e) 781 

Fig. 2. Illustration of the ln Ks fields in Scenario 1 (Case 1~3): (a) reference filed; (b) ensemble 782 

mean of the initial ensemble members; (c) ~ (e) estimated ensemble mean ln Ks fields at the end of 783 

the simulation period by 600 m-, 3000 m- and 9000 m-scale soil moisture data, respectively. 784 
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Fig. 3.  786 

(a)                                       (b)  787 

(c)                                      (d)  788 

Fig. 3. Estimated ensemble mean values of ln Ks by soil moisture data from 600 m-, 3000 m- and 789 

9000 m- scales in Case 1~3 of Scenario 1. (a) ~ (d) Represent the results of day 1, 10, 50 and 80, 790 

respectively. Results corresponding to different observation scales are denoted by different data tags. 791 
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Fig. 4. 793 

(a) 794 

(b) 795 

Fig. 4. Temporal evolution of RMSEs for the ln Ks fields and profile soil moistures in Scenarios 1 796 

(Case 1~3 and the open-loop run). Different lines represent results by soil moisture data from 600 797 

m, 3000 m, and 9000 m scales, respectively. 798 
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Fig. 5. 800 

(a)                                  (b)  801 

Fig. 5. Soil moisture profiles of the representative sub-area for the reference modeling, the open-802 

loop run and the EnKF runs in Scenario 1 (Case 1~6 and the open-loop run): (a) parameters are 803 

updated; (b) parameters are not updated. 804 
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Fig. 6.  810 

(a) 811 

(b) 812 

Fig. 6. Temporal evolution of RMSEs for profile soil moistures in Case 4~6: (a) the whole 813 

unsaturated zone; (b) 0~50 cm soil depth.  814 
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Fig. 7.  817 

Fig. 7. Temporal evolution of RMSEs for the ln Ks fields and profile soil moisture in Scenario 2 818 

(Case 3, 7 and 8), given different parameter correlation lengths λ. 819 
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Fig. 8  824 

Fig. 8. Illustration of the upper boundary conditions used in Case11~13 of Scenario 3. Most of the 825 

sub-areas (shallow grey areas) still receive the precipitation series in Fig. 1 (a), while 20 sub-areas 826 

(dark grey areas) in the top left corner of the study domain receive a different precipitation series in 827 

Fig. 1 (b). The locations of Sub-area 61~65 are labeled with the red Arabic numerals.  828 
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Fig. 9. 835 
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 836 

Fig. 9. Temporal trends of the 3000 m-scale (Case 11) and the 9000 m-scale (Case 12) soil moisture 837 

data in comparison with the average soil moisture changes of Sub-areas 61~65 in Scenario 3. 838 
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 847 

 848 

 849 

 850 

Fig. 10. Temporal evolution of RMSEs for the ln Ks fields and profile soil moistures of Sub-areas 851 

61~65 in Scenarios 3 (Case 11~13 and the open-loop run). Different lines represent results by soil 852 

moisture data from a 3000 m- grid, a 9000 m- grid and the combined 3000 m- and 9000 m- grids, 853 

respectively. 854 
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Fig. 11. 856 

Fig .11. Temporal evolutions of RMSEs for the ln Ks fields and profile soil moistures of Case 2, 14, 857 

15 and 16, as well as the open loop run in Scenario 4. 858 
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Table 1 863 

Specifications of all the cases 864 

Scen

ario 

Ca

se 

Observation 

scale (m) 

Correlation 

length  

of lnKs 

field (m) 

Observation 

coverage 

Parameter 

update 

Systematic 

measurement error  

1 

1 600 9000 whole domain Y 0 

2 3000 9000 whole domain Y 0 

3 9000 9000 whole domain Y 0 

4 600 9000 whole domain N 0 

5 3000 9000 whole domain N 0 

6 9000 9000 whole domain N 0 

2 

3 9000 9000 whole domain Y 0 

7 9000 1800 whole domain Y 0 

8 9000 60000 whole domain Y 0 

2 3000 9000 whole domain Y 0 

9 3000 1800 whole domain Y 0 

10 3000 60000 whole domain Y 0 

3 

11 3000 9000 25 sub-areas Y 0 

12 9000 9000 whole domain Y 0 

13 3000、9000 9000 whole domain Y 0 

4 

2 3000 9000 whole domain Y 0 

14 600 9000 whole domain Y 0.03 

15 600、3000 9000 whole domain Y 0.03、0 

16 600 9000 whole domain Y 0.03 (new method) 

 865 

 866 


