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ABSTRACT 77 

Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, 78 

yet its impacts are likely to increase in a warmer Arctic.  The magnitude of these changes is however hard to 79 

predict as we know little about the drivers of current levels of invertebrate herbivory in tundra.  We assessed the 80 

intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), 81 

and investigated its relationship to latitude and climate across the tundra biome.  Leaf damage by defoliating, 82 

mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations.  Our 83 

results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low 84 

intensity.  On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area.  The 85 

damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% 86 

leaf area lost).  Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a 87 

lesser extent, precipitation in the year of data collection, irrespective of latitude.  Our models predict that, on 88 

average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 89 

°C increase in summer temperatures.  Our results show that invertebrate herbivory on dwarf birch is small in 90 

magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory 91 

should be included in predictions of climate change impacts on tundra ecosystems. 92 

mailto:icbarrio@gmail.com
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INTRODUCTION 95 

The role of invertebrate herbivores in tundra ecosystems has been understudied (Haukioja 1981).  Admittedly, the 96 

proportion of herbivore taxa among invertebrates is lower in Arctic regions than at lower latitudes (Danks 1986), 97 

and invertebrate herbivores generally occur at relatively low abundances in tundra (Haukioja 1981).  However, 98 

outbreaks of invertebrate herbivores have been well documented in the forest-tundra ecotone (Jepsen et al. 2008; 99 

Kaukonen et al. 2013) and occasionally in tundra (Post and Pedersen 2008).  These massive defoliation events have 100 

large impacts on subarctic birch forests, enhancing resource turnover through deposition of frass and carcasses to 101 

the soil (Kaukonen et al. 2013) and causing vegetation shifts from forested to open conditions with consequences 102 

for ecosystem functioning and trophic interactions (Jepsen et al. 2013; Olofsson et al. 2013; Parker et al. 2016).  In 103 

contrast, chronic leaf consumption by invertebrate herbivores when they occur at low densities, termed 104 

background herbivory (Kozlov and Zvereva 2017), has long been assumed to be unimportant, especially in the 105 

Arctic (Batzli et al. 1980; Haukioja 1981).  However, recent studies in boreal forest indicate that chronic 106 

invertebrate herbivory can have stronger impacts on plant growth in the long term than infrequent bouts of severe 107 

damage (Zvereva et al. 2012), and can play a major role in ecosystem-level nutrient cycling (Metcalfe et al. 2016).  108 

Yet, the extent, drivers and consequences of background herbivory across the tundra biome remain unquantified 109 

(Kozlov et al. 2015b). 110 

The Latitudinal Herbivory Hypothesis (LHH) suggests that the intensity of herbivory should decrease with 111 

increasing latitude (Coley and Aide 1991; Johnson and Rasmann 2011).  In its original formulation, it was argued 112 

that a wider diversity of specialist herbivores in tropical areas, together with warmer temperatures and a longer 113 

growing season, could lead to increased herbivory rates at lower latitudes.  Empirical evidence has found support 114 

for LHH at the global scale, demonstrating that invertebrate herbivory of woody plants is generally lower in the 115 

polar regions than in temperate and tropical zones (Kozlov et al. 2015a).  However, the generality of the LHH 116 

across plant functional types, invertebrate species and spatial scales is still debated (Moles et al. 2011; Anstett et 117 

al. 2016; Zhang et al. 2016).  Latitudinal patterns with increased levels of herbivory at lower latitudes have been 118 

described for some species of plants and groups of insect herbivores (Kozlov 2008; Pennings et al. 2009; Moreira et 119 

al. 2015; Kozlov et al. 2016), but lack of latitudinal trends (Andrew and Hughes 2005; Kozlov 2008; Pennings et al. 120 

2009), higher levels of herbivory at higher latitudes (Moreira et al. 2015; Kozlov et al. 2016), or even dome-shaped 121 

patterns (Kozlov et al. 2015a) have been described for others.  Moreover, such studies have typically been 122 

conducted in temperate regions; whether latitudinal patterns can be found within the tundra biome remains 123 

unknown.  Similarly, the mechanisms behind these macroecological patterns in background herbivory are poorly 124 

understood.  Biotic and abiotic factors vary with latitude and this variability may promote variation in herbivory.  125 

For example, it has been suggested that, along with direct effects of climate, latitudinal gradients in herbivory may 126 

be shaped by changes in plant defensive chemistry (Moles et al. 2011), in predator pressure (Björkman et al. 2011) 127 

or by variations in leaf toughness (Onoda et al. 2011). 128 
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Climatic variables are usually considered one of the main drivers of latitudinal patterns in the intensity of biotic 129 

interactions.  Temperature directly affects the performance and abundance of invertebrate herbivores (Bale et al. 130 

2002), since their physiology, population growth and dynamics are generally controlled by temperature 131 

(Hodkinson and Bird 1998).  Temperature could also affect invertebrate herbivores indirectly, through changes in 132 

the palatability or availability of their host plants (Bale et al. 2002).  Warmer temperatures have been associated 133 

with increased levels of herbivory in the fossil record (Wilf and Labandeira 1999; Wilf et al. 2001) and in 134 

experimental field studies (Richardson et al. 2002; Roy et al. 2004).  Temperature was also found to explain 135 

latitudinal patterns in background herbivory in northern boreal forests (Kozlov 2008), as well as annual variations 136 

in this pattern (Kozlov et al. 2013), with higher temperatures associated with increased levels of herbivory.  The 137 

effects of precipitation on the levels and types of invertebrate herbivory have been studied less systematically 138 

(Bale et al. 2002).  Temperature was found to be a better predictor of herbivory than precipitation at a global scale 139 

(Kozlov et al. 2015a; Zhang et al. 2016), yet precipitation has a stronger influence on the global patterns of leaf 140 

traits related to resistance to damage, with more resistant leaves in sites with lower annual precipitation (Onoda 141 

et al. 2011).  Broad gradients of temperature and precipitation exist across the tundra biome; we therefore 142 

hypothesize that patterns of invertebrate herbivory will also be influenced by climatic gradients in this region. 143 

Patterns of herbivory and their underlying mechanisms may also differ between feeding guilds of herbivores with 144 

contrasting life history traits (Hiura and Nakamura 2013; Anstett et al. 2014).  Some studies have found that 145 

geographical patterns in the abundance of different herbivores or the intensity of herbivory were driven by 146 

different climatic variables, suggesting that variation in the sensitivity of feeding guilds to climate could lead to 147 

disparate predictions under climate change (Leckey et al. 2014; Moreira et al. 2015).  For example, externally 148 

feeding defoliators are more exposed to abiotic variables and may respond to them directly, whereas internally 149 

feeding herbivores like leaf miners and gallers may be affected by abiotic variables indirectly through their effects 150 

on leaf traits (e.g. Andrew and Hughes 2005, Sinclair and Hughes 2008).  For instance, precipitation affects the 151 

intensity of herbivory by leaf miners and gall-makers (Leckey et al. 2014), possibly through its effects on leaf 152 

toughness (Onoda et al. 2011).  Tougher leaves are well defended against external herbivores but may favour 153 

internally feeding herbivores as they provide safer shelter against pathogens and reduce levels of desiccation 154 

(Carneiro et al. 2005).  We propose that the same distinction between external and internal feeders will drive 155 

differences in the patterns of invertebrate herbivory in tundra. 156 

Temperatures and precipitation are predicted to continue increasing in the Arctic (Cook et al. 2014), and warming 157 

in tundra is expected to occur at a higher rate than the global average (IPCC 2013). The rapid pace of 158 

environmental changes in the Arctic underscores the urgency of studying the responses of fundamental ecological 159 

processes, such as herbivory, to varying climatic conditions.  Insects living at higher latitudes are highly responsive 160 

to climate changes (Hodkinson and Bird 1998), and warming-induced increases in insect herbivory are expected to 161 

be stronger at higher latitudes (Wolf et al. 2008; Kozlov et al. 2015a).  Experimental studies in tundra have shown 162 
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that the intensity of invertebrate herbivory increases with warming (Barrio et al. 2016; Birkemoe et al. 2016), but 163 

the lack of knowledge on current levels of background herbivory across the tundra biome constrains any 164 

meaningful predictions.    165 

The objective of this study is to assess the intensity of background invertebrate herbivory and characterise its 166 

relationships with latitude and climatic variables in tundra.  To achieve this goal, we measured leaf damage by 167 

tissue-feeding invertebrate herbivores on a common tundra plant with a circumpolar distribution, the dwarf birch 168 

(Betula glandulosa-nana complex), across a large number of sites spanning nearly 24° of latitude.  Dwarf birch is a 169 

main food plant of many tundra herbivores (Koponen 1984; Bryant et al. 2014) and it is an important component in 170 

shrub tundra plant communities.  The wide distribution of dwarf birch facilitates comparisons within a single host 171 

plant across a latitudinal gradient (Anstett et al. 2016); further, the range and abundance of dwarf birch are 172 

predicted to expand in response to warming (Euskirchen et al. 2009; Myers-Smith et al. 2011).  We test the 173 

following hypotheses: (i) background invertebrate herbivory within the tundra biome is greatest at lower latitudes, 174 

consistent with the LHH, or where summer temperature and precipitation are highest; and (ii) the patterns of 175 

invertebrate herbivory by different feeding guilds will correspond with different climatic variables, given their 176 

sensitivity to different environmental cues.  Specifically, we expect leaf damage by externally-feeding defoliators to 177 

be more strongly associated with summer temperature than damage by internally feeding herbivores (leaf miners 178 

and gallers), and conversely that the latter will be more affected by climatic variables that determine leaf 179 

toughness, such as precipitation.  180 

 181 

METHODS 182 

Focal plant species and leaf sampling 183 

Dwarf birch is a taxonomic complex with several closely related and hybridizing species.  The main taxonomic units 184 

that we identified are Betula glandulosa Michx., B. nana subsp. nana L. and B. nana subsp. exilis (Sukaczev) Hultén.  185 

Species identification was conducted by collectors in the field and verified based on distribution maps (Figure 1; 186 

Bryant et al. 2014).  Betula glandulosa is distributed throughout the northern regions of North America, from 187 

Alaska to Newfoundland, as well as the southern part of Greenland (Feilberg 1984).  Betula nana is distributed 188 

throughout the Arctic regions of Eurasia and North America, with B. nana subsp. nana occurring from Greenland 189 

through northern Europe to Western Siberia, and B. nana subsp. exilis occurring from Eastern Siberia to Alaska and 190 

into northern Canada (Bryant et al. 2014).  These three taxonomic units differ in leaf chemistry: B. nana subsp. 191 

exilis and B. glandulosa have higher concentrations of phenolic glycosides, condensed tannins, and triterpenes, 192 

have lower leaf nitrogen, and are less palatable to vertebrate herbivores than B. nana subsp. nana (Bryant et al. 193 

http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=233500255
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2014; DeAngelis et al. 2015). However, the importance of these chemical differences for invertebrate herbivory is 194 

not known.  195 

Plant material was collected in the summers of 2008-2013 (summarized by Kozlov et al. 2015b), 2014 and 2015 196 

between June 12 and September 17.  Although different protocols were followed in different years (Table 1), 197 

samples were collected in a way that allowed for spatial comparisons to evaluate background herbivory and its 198 

relationship to abiotic conditions.  The protocol used in 2008-2013 (see Appendix S2 to Kozlov et al. 2015b) aimed 199 

at sampling plant foliage for measurements of insect herbivory at the global scale.  The 2014 protocol was 200 

designed to assess defensive chemistry of dwarf birches across the Arctic (Online Resource S1); for the purpose of 201 

this study we only used one of the two top shoot samples collected in 2014 (both long and short shoots).  We 202 

disregarded the samples specifically collected from short shoots (primary growth), as they may not be 203 

representative of herbivory on the whole plant.  The 2015 protocol was aimed at measuring background 204 

invertebrate herbivory in tundra at the plant community level 205 

(http://herbivory.biology.ualberta.ca/files/2016/11/background_herbivory_tundra.pdf); here we report only the 206 

results for dwarf birch.  207 

Briefly, all sampling protocols requested collection of birch leaves from several individuals per site (2-5 individuals 208 

were sampled in 2008-2013, 10 individuals in 2014, and 3 individuals in 2015).  The samples included 71-500 leaves 209 

per site, where sites were defined as circular areas of approximately 10 m radius, at least 100 m apart.  The 210 

number of sites within a location (i.e. spatially distinct ‘study areas’, at least 10 km apart) varied between 1 and 16 211 

(for the 2008-2013 and 2014 protocols, a minimum of 1 site per location was requested, while for the 2015 212 

protocol, the minimum number of sites per location was 5).  Samples were collected from 192 sites in 56 locations 213 

(Table 1), spanning 23.7° of latitude across the tundra biome (including non-Arctic locations in alpine areas), from 214 

55.2° N to 78.9° N (Figure 1; Online Resource S2).  The geographical distribution of locations was not designed in 215 

advance: the requests for sampling were distributed across the research community, and all samples received 216 

were included in our study. 217 

Leaf damage assessment 218 

Each leaf was inspected on both sides for leaf damage with a light source against the leaf to detect damage on the 219 

surface, and then with the light through the leaf, to detect damage inside the leaf.  We distinguished damage 220 

caused by three different feeding guilds of invertebrate herbivores: external leaf feeders (chewing or 221 

skeletonization) and internally feeding miners and gall makers (Online Resource S3).  External feeding damage on 222 

dwarf birch is caused primarily by sawflies (Hymenoptera: Tenthredinidae) and by moth larvae (Lepidoptera) 223 

(Koponen 1984).  Leaf miners can include larvae of Lepidoptera and Coleoptera (Viramo 1962), whereas galls are 224 

formed by insects and eriophyid mites.  Other herbivores, such as phloem-feeders, also occur on dwarf birch 225 

(Koponen 1984), but damage imposed by these insects could not be measured from leaf samples. 226 

http://herbivory.biology.ualberta.ca/files/2016/11/background_herbivory_tundra.pdf
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Following a widely used methodology (Kozlov and Zvereva 2017, and references therein), each leaf was assigned to 227 

a damage class according to the each type of damage (multiple damage types on the same leaf occurred in less 228 

than 1% of leaves analysed) and to the visually estimated percentage of the leaf area damaged by invertebrates: 229 

intact leaves, 0.01-1, 1-5, 5-25, 25-50, 50-75 and 75-100% (Kozlov 2008).  Samples from the three protocols were 230 

evaluated by three scorers (2008-2013 protocol by MVK, 2014 by EL, 2015 by ICB); assessments made by the three 231 

scorers on 6-10 training samples (100 leaves each) indicated no statistically significant effect of the scorer on the 232 

estimates of foliar damage (pairwise t-test: all p>0.1; intra-class correlation coefficients ranged between 0.56 and 233 

0.88). 234 

Data analysis 235 

The intensity of invertebrate herbivory at each site was calculated using three complementary measures: 1) 236 

percentage of leaves damaged: the percentage of leaves that showed signs of invertebrate herbivory at a site; 2) 237 

percentage of leaf area damaged: the percentage of leaf area consumed or otherwise damaged by invertebrate 238 

herbivores over the total number of leaves inspected in a sample; and 3) average damage per damaged leaf: the 239 

average leaf area consumed or otherwise damaged by invertebrate herbivores per damaged leaf.  The percentage 240 

of leaves damaged indicates the distribution of damage within a site; the percentage of leaf area damaged gives an 241 

approximation of foliar loss per site as a measure of herbivory; and the average damage per damaged leaf reflects 242 

how much of the leaf area is affected, once a leaf is damaged (Kozlov 2008; Kozlov et al. 2015b).  To calculate the 243 

latter two variables, the number of leaves in each damage class was multiplied by the corresponding median value 244 

of damage (i.e. 0 for intact leaves, 0.5% for the 0.01-1% class, 3% for the 1-5% class, 15% for the 5-25% class, 245 

37.5% for the 25-50% class, 62.5% for the 50-75% class, and 87.5% for the 75-100% class) and summed for all 246 

damage classes.  These values were divided by the total number of leaves to obtain an estimate of the percentage 247 

of total leaf area damaged, and by the number of damaged leaves to obtain the average damage per damaged leaf 248 

(Kozlov et al. 2015a; Kozlov et al. 2015b).  All variables were calculated for all invertebrate herbivores and for the 249 

three different feeding guilds separately (Online Resource S2); given the low occurrence of mines and galls, only 250 

the percentage of leaves damaged was included in the models for these groups. 251 

To investigate the effects of latitude and climatic variables on invertebrate herbivory in tundra we built Linear 252 

Mixed Effects Models for total herbivory and for each feeding group separately.  In all models, sampling protocol 253 

(2008-2013, 2014 or 2015) was included as a random effect to account for potential confounding effects of year of 254 

sampling, person scoring leaf damage and/or protocol design.  Nearly half of the sampling locations (25 out of 62) 255 

sampled one site only, so location could not be included in the models as a random factor; therefore, 256 

measurements of invertebrate herbivory for locations with more than one site were averaged across sites, and the 257 

number of sites sampled at each location was included as weights in the models to account for differences in 258 

sampling effort. 259 
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We extracted the following indices as potential predictors of background herbivory: mean July temperature in the 260 

year of sampling, annual temperature, temperature seasonality (standard deviation of annual temperature), 261 

maximum temperature of the warmest month, minimum temperature of the coldest month, mean temp of 262 

warmest quarter (Jun-Aug), total July precipitation in the year of sampling, annual precipitation and precipitation 263 

seasonality (coefficient of variation). Initial correlation analyses indicated that mean July temperature and total 264 

July precipitation in the year of sampling had the highest correlations with measures of herbivory (Online Resource 265 

S4), so these two climate variables and latitude were included as predictors in the models. These two climate 266 

variables were extracted from the Global Historical Climatology Network-Monthly (GHCN-M v3.2.1, Lawrimore et 267 

al. 2011).  This dataset provides monthly mean temperatures and precipitation as a spatial raster (0.5 degree 268 

resolution) based on weather station data.  We extracted July temperature and precipitation for the year of 269 

sample collection, because current-season weather is more relevant to invertebrate herbivory than multi-year 270 

averages (Kozlov et al. 2013).  Climate variables and latitude were included as predictors in the models.  271 

Correlations between continuous predictor variables were low (r<0.4; Online Resource S4) and Variance Inflation 272 

Factors indicated no strong multicollinearity (VIF<1.2), so all three variables were included simultaneously in the 273 

models.  Dwarf birch exhibits patterns of regional and taxonomic variation in defense against browsing by 274 

vertebrates (Bryant et al. 2014) that may also affect the observed patterns of invertebrate herbivory, so we 275 

included dwarf birch taxon (B. glandulosa, B. nana subsp. exilis and B.nana subsp. nana) as a fixed effect variable 276 

in our analyses.  We also included collection date, measured as day-of-year, as a fixed covariate in the models 277 

because foliar damage accumulates over the growing season, but damaged leaves tend to abscise prematurely 278 

(Torp et al. 2010; Kozlov et al. 2016).  For the two locations where no invertebrate leaf damage was detected 279 

(Svalbard and Beringa Island), we assigned the lowest possible value for herbivory (0.1% for the percentage of 280 

leaves damaged by all herbivores and defoliators, 0.01% in the case of leaf miners and gallers, and 0.01% for leaf 281 

area damaged).  The percentage of damaged leaves and the percentage leaf area affected by herbivory were then 282 

log-transformed to comply with model assumptions of normality and homogeneity of variances, which were 283 

checked by visually inspecting model residuals (Zuur et al. 2009).  All analyses were run in R 3.2.3 (R Development 284 

Core Team 2015) using the lme4 package to build Linear Mixed Effects Models (Bates et al. 2015).   285 

 286 

RESULTS 287 

Feeding marks of invertebrate herbivores were found on 3,949 of the 30,817 leaves examined (12.8%).  Damage by 288 

invertebrate herbivores affected between 0 and 46.0% of leaves at each location (mean ± SE: 11.2 ± 1.3%; median= 289 

8.8%, n=62; Online Resource S5).  On average, 1.4 ± 0.2% of leaf area was damaged at each location (median = 290 

1.1%), and most damaged leaves were only slightly affected (12.0 ± 0.9% of leaf area damaged; median = 11.8%).  291 

The vast majority of damage (98.6%) was caused by defoliators.  Damage by internally feeding herbivores (leaf 292 
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miners and gallers) was found on relatively few leaves: 31 were mined by larvae of several moth species and only 293 

24 bore galls (see Online Resource S6 for identification of mines and galls). 294 

Total herbivory 295 

Both the percentage of leaves with signs of invertebrate damage and the percentage of total leaf area damaged 296 

were positively associated with July temperature and precipitation (Table 2a), but there was no relationship with 297 

latitude.  The models estimated linear increases of the log-transformed values of herbivory with increasing July 298 

temperature and precipitation (Table 2a), which implies smaller absolute increases in herbivory at locations with 299 

lower values of July temperature and precipitation, relative to locations with warmer and wetter summers (Figure 300 

2).  For instance, the model estimates indicated a 0.4% absolute increase in the percentage of leaves damaged for 301 

every degree C increase in mean July temperature for the coldest mean July temperatures measured in our study 302 

(4.7° C; Figure 2a).  In contrast, the model estimates indicated a 1.7% absolute increase per degree C in the 303 

percentage of leaves damaged by invertebrate herbivores at locations with the highest mean July temperatures 304 

(16.7° C; Figure 2a).  Relative to current levels of herbivory (11.2% leaves damaged), these estimated values of 305 

absolute increase at locations with July temperature values within the centre of the observed temperature range 306 

(absolute increase 0.93%), represent relative increases in the percentage of leaves damaged of 8.3%.  Similarly, the 307 

percentage of total leaf area damaged was estimated to increase 0.04% per degree C in locations with colder 308 

summers and 0.17% per degree C in locations with warmer summers (Figure 2b).  Relative to observed current 309 

levels of leaf area damaged (1.4%), these figures imply predicted increases of 6.7% in leaf area damaged by 310 

invertebrate herbivores per degree C increase in mean July temperature, at locations with July temperature values 311 

within the centre of the observed temperature range (mean July temperature observed across sites = 11.4° C).    312 

The potential effects of increased precipitation followed similar trends, albeit a much weaker modelled effect than 313 

temperature.  With a 10 mm increase in July precipitation, the percentage of leaves damaged by invertebrate 314 

herbivores increased by 0.3% in locations with the lowest observed precipitation (10.8 mm).  In contrast, at 315 

locations with the highest observed mean July precipitation measured in our study (136.3 mm), the model 316 

estimated a 0.6% absolute increase in the percentage of leaves damaged (Figure 2c); the increase in the 317 

percentage of leaf area damaged ranged between 0.05% and 0.12% in locations with drier and wetter summers 318 

(Figure 2d).  Relative to current levels of invertebrate herbivory, at sites with intermediate observed levels of July 319 

precipitation (mean total July precipitation observed across sites = 53.2 mm), the models predicted a 3.6% relative 320 

increase in the percentage of leaves damaged and 4.5% increase in percentage of leaf area damaged per 10 mm of 321 

increased precipitation.   322 

None of the covariates (birch taxa or collection date) included in the models for total herbivory were associated 323 

with the percentage of leaves damaged at each location or with the percentage leaf area damaged (Table 2a).  The 324 
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average damage per damaged leaf was not associated with latitude, temperature, precipitation, collection date or 325 

birch taxa (Table 2a). 326 

Externally feeding defoliators 327 

The distribution of damage by free-living defoliators within a site, as measured with the percentage of leaves 328 

damaged was associated with higher July temperature and precipitation (Table 2b), but no latitudinal pattern was 329 

apparent.  When looking at foliar loss, the percentage of leaf area affected by defoliators was positively, albeit 330 

weakly, related to July precipitation and temperature (Table 2b).  None of the covariates explained variation in on 331 

the percentage of leaves damaged by defoliators at each location or the percentage of leaf area damaged (Table 332 

2b).  On average, defoliators consumed 11.09 ± 1.26% of leaf area on damaged leaves (median = 8.56%), and this 333 

value was not associated with latitude, temperature, precipitation, collection date or birch taxa (Table 2b).   334 

Internally feeding herbivores (leaf miners and gallers) 335 

The mean percentage of leaves damaged by leaf miners at each location was 0.06 ± 0.02% and, when present, leaf 336 

miners affected on average 11.77 ± 3.05% of leaf area.  Galls were found on 0.08 ± 0.05% leaves per location, and 337 

affected 35.78 ± 8.29% of the leaf area of damaged leaves (excluding 2 galled leaves with petiole galls).  The 338 

percentage of leaves damaged by leaf miners increased with July precipitation and collection date (Table 3a) and 339 

the percentage of leaves damaged by gallers was associated with birch taxa, with B. glandulosa having a greater 340 

percentage of leaves damaged compared to B. nana subsp. nana (Table 3b). 341 

 342 

DISCUSSION 343 

Our study is the first to provide a quantitative analysis of background invertebrate herbivory across the tundra 344 

biome.  Our analysis of leaf damage on a common tundra shrub in 56 locations across the circumpolar North 345 

showed that background invertebrate herbivory is nearly ubiquitous in tundra but occurs at low intensity.  On 346 

average, invertebrate herbivores consumed 1.4% of leaf area of dwarf birch and affected 11.2% of leaves.  The 347 

variation in background invertebrate herbivory in tundra showed no latitudinal pattern, but both foliar losses to 348 

external feeders and the percentage of leaves damaged by internal leaf-feeders were greater at sites with higher 349 

summer temperature and precipitation.  Contrary to our expectations, all feeding guilds responded to the different 350 

climatic variables in a similar way. 351 

General patterns of herbivory in our study were dominated by external feeding herbivores, which caused over 98% 352 

of the damage. Similar to previous studies in northern areas (Kozlov 2008; Kozlov et al. 2015b) and also in the fossil 353 

record (Wilf et al. 2001), the incidence of gallers and leaf miners relative to that of defoliators was very small. 354 
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Although previous studies suggested that different groups of herbivores may respond differently to climate 355 

variables (Leckey et al. 2014; Moreira et al. 2015), our results do not support this view for the tundra; rather, our 356 

findings suggest a generalized increase in herbivory by all feeding guilds with increased temperature and 357 

precipitation.  Such positive associations with temperature have already been described for these three groups of 358 

herbivores in northern Europe (chewers, Kozlov et al. 2015a; leaf miners, Kozlov et al. 2013; gallers, Kozlov et al. 359 

2016).  Similarly, studies in other ecosystems have also found increased herbivory with increased precipitation for 360 

leaf chewers (Kozlov 2008; Moreira et al. 2015), leaf miners (Leckey et al. 2014) and the occurrence of galls (Leckey 361 

et al. 2014). 362 

Actual summer weather in the year of data collection was found to be a better predictor of herbivory than the 363 

latitude of the study site.  This is not surprising, because the relationships between climate and latitude in the 364 

Arctic are weak.  For example, the position of the 10°C July isotherm varies from 50°N near Aleutian Islands to 365 

70°N in Scandinavia (CAVM Team 2003); accordingly, July temperature in our locations showed no correlation with 366 

latitude.  Thus, although latitude appeared as a good predictor of invertebrate herbivory at the global scale 367 

according to the LHH (Pennings et al. 2009; Kozlov et al. 2015a), these trends do not hold within the tundra biome.  368 

Our study shows that biome-wide patterns of invertebrate herbivory are associated with proximal environmental 369 

cues (i.e. climatic variables) rather than with latitude, and warns against the use of latitudinal gradients as 370 

analogues for climate change in the Arctic (e.g. Hodkinson and Bird 1998), unless they do really represent a 371 

climatic gradient. 372 

The average damage per damaged leaf (12.1%) is comparable to previous studies (6.9%, Kozlov et al. 2015a).  373 

These relatively low levels suggest that herbivores shift their feeding sites after even low levels of damage, possibly 374 

as a result of decreases in leaf palatability in response to damage or as a strategy to avoid detection by natural 375 

enemies (Fisher et al. 1999; Greyson-Gaito et al. 2016).  Reductions in leaf palatability may be related to the 376 

production of secondary chemical compounds in response to herbivory (Nykänen and Koricheva 2004).  In 377 

northern dwarf birch the production of secondary compounds both as induced or constitutive anti-herbivore 378 

defence shows local and regional variation (Graglia et al. 2001; Torp et al. 2010).  For example, local topography 379 

can influence patterns of foliar concentrations of nitrogen and phenolic compounds in B. nana subsp. nana 380 

through its effects on snow accumulation and plant phenology (Torp et al. 2010).  This spatial variation in 381 

defensive chemistry of birch potentially accounts for the relatively constant values of damage on damaged leaves 382 

over a range of climatic conditions.  However, concentrations of plant secondary metabolites appear to be poor 383 

predictors of the extent of plant damage caused by insects under natural conditions (Carmona et al. 2011).  The 384 

use of broad metrics, such as total phenolics, to measure resistance against herbivores or comparisons across 385 

unrelated species may obscure the importance of secondary compounds (Agrawal and Weber 2015; Anstett et al. 386 

2015).  This topic deserves further investigation, especially considering that climate change will also affect the 387 

defensive chemistry of plants.  For example, phenolic compounds are expected to decrease with increased 388 
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temperature (Stark et al. 2015), but the response to warming might differ depending on what type and 389 

combination of secondary metabolites plants have (Graglia et al. 2001). 390 

Our models predicted that changes in invertebrate herbivory in response to temperature and precipitation will 391 

differ along the range of climates sampled.  It must be kept in mind that our approach represents a space-for-time 392 

substitution, where we infer changes in herbivory from locations with different climatic variables.  Despite its 393 

limitations, this approach provides the best solution given the virtual lack of long-term trend data in patterns of 394 

invertebrate herbivory in tundra over time.  Given that climate models project warming of 6-10 degree C over the 395 

next 100 years (IPCC 2013), the influence of temperatures on invertebrate background herbivory could be 396 

important. According to the logarithmic relationship indicated by our models, increases in invertebrate herbivory 397 

in locations with higher summer temperatures would be more pronounced than at locations with colder summers.  398 

The effect of precipitation followed similar trends but was not as pronounced and did not differ as much between 399 

the ends of the precipitation gradient.  Precipitation is predicted to increase in the Arctic as a result of climate 400 

change (Cook et al. 2014), so these modest increases could, however, also be important.  Differential climate 401 

sensitivities to temperatures and/or soil moisture have been also described for the phenology (Prevéy et al. 2017), 402 

community composition (Elmendorf et al. 2012) and growth (Myers-Smith et al. 2015) of tundra plants.  For 403 

example, the growth of tundra shrubs was found to be more responsive to climate in wetter than in drier regions 404 

(Myers-Smith et al. 2015).  Herbivory itself may also interact with climate to determine tundra plant performance.  405 

This has been observed for vertebrate herbivory in tundra (Speed et al. 2011; Speed et al. 2013) and suggested for 406 

invertebrate herbivores (Barrio et al. 2016).  In addition, climate warming has been linked to increased growth 407 

(Bret-Harte et al. 2001) and decreased investment in defense of B. nana subsp. nana (Stark et al. 2015), so while 408 

invertebrate herbivory may be expected to increase in prevalence in a warmer climate, the net outcome of 409 

climate-herbivore-plant interactions is less certain.  410 

The percentage of leaves damaged on dwarf birch by invertebrate herbivores in each location varied between 0 411 

and 49% (median value was 8.7%).  This has direct implications for the design of sampling protocols for detecting 412 

invertebrate damage.  At least 33 leaves have to be collected to find a damaged one with a 95% probability, and 76 413 

leaves to increase this probability to 99.9%.  Consequently, for damage detection on dwarf birch we would 414 

recommend that at least 100 leaves per sampling site are collected.  This was the sample size that we 415 

recommended in our collection protocols and we were able to detect invertebrate herbivory in 185 out of 187 416 

sites.  Larger sample sizes (~500 leaves) might be recommended to estimate leaf area losses to invertebrate 417 

herbivores with an adequate level of accuracy (Kozlov and Zvereva 2017) and to resolve the role of contrasting 418 

feeding guilds more robustly. 419 

Our study supports the idea that background invertebrate herbivory could increase with current climatic changes 420 

in the tundra biome.  Thus, there is an urgent need to understand how increases in the intensity of background 421 
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herbivory due to rising temperatures and precipitation will affect plant performance and ecosystem functioning in 422 

tundra.  Measures of leaf damage alone may not directly reflect the cost of herbivory to the plant (Lim et al. 2015), 423 

as the impact of a given amount of herbivory depends on many other factors, including the cost of production of 424 

new leaves, resource availability and plant tolerance to herbivory (Kotanen and Rosenthal 2000).  The extent to 425 

which increased background invertebrate herbivory may alter tundra communities will require a comprehensive 426 

analysis of foliar damage sustained by a wide variety of species and observations over longer periods, 427 

characterization of the invertebrate herbivore fauna, and manipulative field experiments (e.g. Barrio et al. 2016).  428 
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FIGURES 586 

Figure 1. Sampling locations across the tundra biome. Size of points indicates number of sites per location, and 587 
colour indicates sampling protocol used: 2008-2013 (black), 2014 (grey) or 2015 (white). Distribution of dwarf birch 588 
taxa is indicated after Bryant et al. (2014). 589 

    590 

  591 
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Figure 2.  Relationships between the intensity of total background invertebrate herbivory and July temperatures 592 
(a,b) and precipitation (c,d): predicted values (sizes of data points are proportional to the number of samples at 593 
each location), fitted lines and 95% confidence intervals.  The intensity of herbivory was measured as the 594 
percentage of leaves damaged by invertebrates (a,c) and the percentage of leaf area affected out of all leaves 595 
examined (b,d). Dashed vertical line indicate mean observed July temperature and precipitation values across 596 
sites, and the box around them represents the range over which the absolute increases in herbivory were 597 
calculated (1°C in a and b, 10 mm in c and d). 598 

599 
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Table 1.  Summary of sampling protocols, indicating the aim of the protocol and where it can be found, the dwarf 600 
birch taxa targeted and the number of sampling locations and sites where samples were collected across locations. 601 
Note that some of the 56 study areas were sampled in different years and/or targeted different dwarf birch taxa, 602 
and are kept as separate ‘sampling locations’, so the number of locations presented in the table exceeds the 603 
number of study areas. For more details on each location see Online Resource S2. 604 

Protocol Aim of protocol and accessibility Dwarf birch taxon 
Number of 
locations 

(sites) 

2008-2013 Measure insect herbivory at the global scale.  Available as Online Resource 
S2 to Kozlov et al. 2015b.  

Betula nana exilis 2(2) 

Betula nana nana 7(7) 

2014 Determine the level of anti-browsing defence in dwarf birch across the 
Arctic. This protocol was not aimed at measuring invertebrate herbivory. 
Only one of the samples collected in 2014, consisting of top shoots (both 
long and short shoots) of Betula, was used in the present study. The 
protocol is available in Online Resource S1 (this study).  

Betula glandulosa 8(18) 

Betula nana exilis 6(20) 

Betula nana nana 29(99) 

2015 Assess variability of background invertebrate herbivory in tundra at the 
plant community level. Only the results for dwarf birch were used in the 
present study. The protocol is available at: 
http://herbivory.biology.ualberta.ca/files/2016/11/background_herbivory
_tundra.pdf  

Betula nana exilis 1(5) 

Betula nana nana 9(41) 

Total   62(192) 

 605 

  606 

http://herbivory.biology.ualberta.ca/files/2016/11/background_herbivory_tundra.pdf
http://herbivory.biology.ualberta.ca/files/2016/11/background_herbivory_tundra.pdf
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Table 2.  Factors explaining variation in different measures of foliar damage in dwarf birch (Linear Mixed Effect 607 
Model results) by all herbivores (a) and only defoliators (b), based on 62 samples from 56 locations across the 608 
tundra biome (some locations were sampled in different years or targeted different Betula taxa (see Table 1) and 609 
these locations are kept separate in the analyses).  Baseline for species comparisons is Betula nana subsp. nana. 610 
The percentage of leaves affected and leaf area affected were log-transformed before analyses.  Estimates in bold 611 
indicate that 95% confidence interval does not include zero.  Sampling protocol was included as a random effect in 612 
the models, and sample sizes at each location were included as weights.  Random effects are presented as 613 
standard deviations; n indicates the number of sampling protocols, and % refer to the percentage of residual 614 
variance assigned to sampling protocol.  615 

a. All herbivores 

Explanatory variables Percentage of leaves 

damaged 
Percentage of leaf area damaged 

Area damaged per damaged 

leaf 

Fixed effects Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Intercept -2.993 -5.864, -0.122 -2.460 -5.989, 1.069 40.419 -5.593, 86.432 

Latitude 0.031 -0.002, 0.064 0.022 -0.018, 0.063 -0.246 -0.781, 0.288 

Temperature 0.051 0.016, 0.086 0.053 0.010, 0.096 -0.050 -0.601, 0.501 

Precipitation 0.005 0.002, 0.009 0.006 0.001, 0.011 0.022 -0.040, 0.085 

Species – B. glandulosa 0.289 -0.067, 0.646 0.179 -0.259, 0.618 -2.629 -8.322, 3.063 

Species – B. n. exilis -0.254 -0.562, 0.054 -0.258 -0.637, 0.120 0.570 -4.362, 5.502 

Collection date 0.004 -0.002, 0.010 0.000 -0.007, 0.007 -0.056 -0.148, 0.037 

Random effects SD  SD  SD  

Sampling protocol 0.239 (n=3, 13.1%) 0.279 (n=3, 12.0%) 2.409 (n=3, 5.6%) 

Residual 0.615  0.756  9.889  

b. Defoliators  

Explanatory variables Percentage of leaves 

damaged 
Percentage of leaf area damaged 

Area damaged per damaged 

leaf 

Fixed effects Estimate 95% CI Estimate 95% CI Estimate 95% CI 

Intercept -2.847 -5.724, 0.029 -2.468 -6.008, 1.071 37.042 -9.318, 83.042 

Latitude 0.030 -0.004, 0.063 0.023 -0.018, 0.064 -0.218 -0.756, 0.321 

Temperature 0.050 0.015, 0.085 0.051 0.008, 0.094 -0.093 -0.644, 0.458 

Precipitation 0.005 0.001, 0.009 0.006 0.001, 0.011 0.021 -0.041, 0.084 

Species – B. glandulosa 0.271 -0.087, 0.628 0.169 -0.271, 0.608 -2.425 -8.148, 3.297 

Species – B. n. exilis -0.264 -0.573, 0.044 -0.295 -0.675, 0.084 -0.278 -5.245, 4.690 

Collection date 0.004 -0.002, 0.010 0.000 -0.007, 0.007 -0.047 -0.140, 0.045 

Random effects SD  SD  SD  

Sampling protocol 0.233 (n=3, 12.5%) 0.266 (n=3, 10.9%) 2.124 (n=3, 4.3%) 

Residual 0.616  0.759  9.971  

  616 

  617 
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Table 3. Factors explaining variation in the percentage of leaves damaged by leaf miners (a) and gall makers (b) on 618 
dwarf birch (Linear Mixed Effect Model results), based on 62 samples from 56 locations across the tundra biome. 619 
Baseline for species comparisons is Betula nana subsp. nana. The percentage of leaves affected was log-620 
transformed before analyses.  Estimates in bold indicate that 95% confidence interval does not include zero.  621 
Sampling protocol was included as a random effect in the models, and sample sizes at each location were included 622 
as weights.  Random effects are presented as standard deviations; n indicates the number of sampling protocols, 623 
and % refer to the percentage of residual variance assigned to sampling protocol. 624 
 625 

Explanatory variables a. Leaf miners b. Gall makers 

Fixed effects Estimate 95% CI Estimate 95% CI 

Intercept -7.465 -12.596, -2.334 -1.587 -6.252, 3.078              

Latitude 0.035 -0.024, 0.094 0.008 -0.046, 0.062              

Temperature 0.034 -0.021, 0.089 0.013 -0.040, 0.066              

Precipitation 0.009 0.002, 0.016 0.005 -0.001, 0.012              

Species – B. glandulosa -0.167 -0.782, 0.448 0.702 0.134, 1.270              

Species – B. n. exilis -0.108 -0.656, 0.439 0.357 -0.142, 0.856               

Collection date  0.014 0.004, 0.023 -0.006 -0.015, 0.003 

Random effects SD  SD  

Sampling protocol 0.000 (n=3, 0%) 0.112 (n=3, 1.2%) 

Residual 1.107  1.005  

 626 


