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Tweetable Abstract. Shrubs advance into northern alpine tundra as climate warms: summer 16 

temperature influences growth; winter temperature influences recruitment 17 

 18 

Summary 19 

1.! Climate warming is predicted to alter ecological boundaries in high-latitude ecosystems 20 

including the elevational or latitudinal extent of tall shrubs in Arctic and alpine tundra. Over 21 

60 studies from 128 locations around the tundra biome have investigated shrub expansion in 22 

tundra ecosystems; however, only six studies test whether shrublines are actually advancing 23 

up hill-slopes or northward into tundra where tall shrubs are currently absent.  24 

 25 
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2.! We test the hypothesis that willow shrublines have expanded to higher elevations in relation 26 

to climate across a 50 x 50 km area in the Kluane Region of the southwest Yukon Territory, 27 

Canada by surveying of 379 shrubs at 14 sites and sampling of 297 of the surveyed shrubs at 28 

10 sites.  We compared growth and recruitment to climate variables to test the climate 29 

sensitivity of shrub increase using annual radial growth analysis, age distributions and repeat 30 

field surveys to estimate the current rate of shrubline advance.  31 

 32 

3.! We found consistent and increasing rates of recruitment of alpine willows, with estimates of 33 

faster advancing shrublines on shallower hill-slopes. Mortality was extremely low across the 34 

elevation gradient. Aspect, elevation and species identity did not explain variation in 35 

recruitment patterns, suggesting a regional factor, such as climate, as the driver of the 36 

observed shrubline advance.  37 

 38 

4.! Annual radial growth of willows was best explained by variation in summer temperatures, 39 

and recruitment pulses by winter temperatures. Measured recruitment rates are ~20 ± 5 40 

individuals per hectare per decade (mean ± SE) and measured rates of increased shrub cover 41 

of ~5 ± 1 % per decade (mean ± SE) measured at the Pika Camp site between field surveys 42 

in 2009 and 2013. Our results suggest that shrubline will continue to advance over the next 43 

50 years, if growing conditions remain suitable. However, if future conditions differ 44 

between summer and winter seasons, this could lead to contrasting trajectories for 45 

recruitment versus growth, and influence the vegetation change observed on the landscape.  46 

 47 

Synthesis. Our findings in the context of a review of the existing literature indicate that elevational 48 

and latitudinal shrublines, like treelines, are advancing in response to climate warming; however, 49 

the trajectories of change will depend on the climate drivers controlling recruitment versus growth. 50 
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Introduction 51 

Species distributions are expected to track climate at the global scale (Gaston 2009), and tundra 52 

ecosystems are an excellent place to test for climate-induced range expansion, as the tundra biome 53 

is climate constrained and experiencing the most rapid change of any terrestrial biome on the planet 54 

(Post et al. 2009). Climate warming has already altered ecological boundaries in high-latitude 55 

ecosystems, and is thought to have contributed to the expansion of at least half of treelines into 56 

Arctic and alpine tundra globally (Harsch et al. 2009). Beyond the treeline, tall-statured shrub 57 

species are projected to expand their ranges with climate warming into previously low-statured 58 

tundra communities (Post et al. 2009; Myers-Smith et al. 2011a), hereafter referred to as shrubline 59 

advance. Though we have ample evidence of treeline advance from sites around the world (Harsch 60 

et al. 2009), an advancing shrubline in northern alpine tundra has been reported in only a few 61 

studies (Dial et al. 2007, 2016; Hallinger, Manthey & Wilmking 2010; Upshall 2011; Rundqvist et 62 

al. 2011) Wipf, Rixen and Stoecki up. d., Fig. 1). In tundra ecosystems, advance of the shrubline 63 

ecotone will alter albedo, soil temperatures, nutrient turnover times, carbon cycling and 64 

biodiversity, which could create feedbacks to future shrub expansion and Arctic warming (Myers-65 

Smith et al. 2011a; Pearson et al. 2013; Williamson et al. 2016). Thus, it is necessary to understand 66 

the rates and drivers of shrubline advance, in addition to increased shrub growth and recruitment, to 67 

project future vegetation change in tundra ecosystems and resulting feedbacks to ecosystem 68 

functions with warming. 69 

 70 

Tundra ecosystems have been dominated by woody vegetation in the past (Higuera et al. 2008) and 71 

there is ample evidence that shrub expansion is currently underway at sites across the tundra biome 72 

(Fig. 1, Myers-Smith et al. 2011a). Paleoecological records indicate that shrub species were much 73 

more abundant in high-latitude ecosystems during the warmer and wetter period of the early 74 

Holocene (Higuera et al. 2008). Recent observations from sites around the Arctic indicate a 75 

transition towards more dense shrubland (Sturm, Racine & Tape 2001; Tape, Sturm & Racine 2006; 76 
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Forbes, Macias-Fauria & Zetterberg 2010; Myers-Smith et al. 2011a; Macias-Fauria et al. 2012; 77 

Ropars & Boudreau 2012; Tremblay, Lévesque & Boudreau 2012; Lantz, Marsh & Kokelj 2013; 78 

Frost & Epstein 2014; Naito & Cairns 2015). And, future climate warming in tundra ecosystems is 79 

projected to again lead to deciduous tree or shrub dominated tundra (Swann et al. 2010; Pearson et 80 

al. 2013). However, evidence is lacking for advances of shrubline ecotones up hill-slopes in 81 

mountain regions or northward into the Arctic, as most studies instead test for changes in the cover 82 

or abundance of tundra shrubs (Fig. 1). 83 

 84 

Climate is linked to the position of the shrubline ecotone (Lantz, Gergel & Kokelj 2010b) and is 85 

often invoked as the cause of tree or shrubline advance (Truong, Palmé & Felber 2007; Harsch et 86 

al. 2009; Hallinger et al. 2010). Experimental studies also indicate that warming will increase the 87 

dominance of shrub species in tundra ecosystems (Arft et al. 1999; Walker et al. 2006; Elmendorf 88 

et al. 2012a), and this is corroborated by observations of greater shrub increases at sites that have 89 

experienced greater warming (Elmendorf et al. 2012b). Shrub growth has been demonstrated to be 90 

climate sensitive (Forbes et al. 2010; Hallinger et al. 2010; Blok et al. 2011; Macias-Fauria et al. 91 

2012; Myers-Smith et al. 2015a); however, new recruitment (Lantz, Gergel & Henry 2010a; 92 

Boulanger-Lapointe et al. 2014; Büntgen et al. 2015), rather than growth alone, will drive shrubline 93 

advance. Thus, it is still uncertain if the same climate or biological drivers will control shrubline 94 

advance relative to shrub expansion in tundra ecosystems. 95 

 96 

Treeline advance has been studied in more detail than changes in the elevation limit of tall shrub 97 

species, and the reported drivers of treeline advance, though often linked to climate, are varied 98 

(Harsch & Bader 2011). A global meta-analysis of 166 treelines found that over half had advanced 99 

in elevation since 1900, while just under half remained unchanged over the same period (Harsch et 100 

al. 2009). Climate sensitivity of tree growth has been identified at treeline (Ettinger, Ford & 101 

HilleRisLambers 2011); however, the controls on tree recruitment at treeline are often related more 102 
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closely to winter (rather than summer) weather and microenvironmental conditions (Wilmking et al. 103 

2012; Hagedorn et al. 2014) or biotic interactions (HilleRisLambers et al. 2013). Shrubby treelines 104 

such as the often low-statured mountain birch (Betula pubescens subsp. tortuosa) treeline have been 105 

documented to be advancing in alpine ecosystems in Norway (Tømmervik et al. 2009; Hofgaard, 106 

Dalen & Hytteborn 2009) and Sweden (Kullman 2002; Sundqvist, Björk & Molau 2008). However, 107 

shrubline dynamics have been little studied relative to treeline advance, with only a few studies 108 

investigating shrubline advance (Dial et al. 2007, 2016; Hallinger et al. 2010; Upshall 2011; 109 

Rundqvist et al. 2011; Stöckli et al. 2011) and recruitment (Lantz et al. 2010a; Boulanger-Lapointe 110 

et al. 2014; Büntgen et al. 2015) in tundra ecosystems (Fig. 1). Because shrubline advance is so 111 

infrequently studied, we lack a complete understanding of the drivers of ecological boundaries 112 

beyond treelines. 113 

 114 

In this study, we tested the hypothesis that the willow shrubline has advanced over the past 50 years 115 

in our focal research site in the Kluane region of the southwest Yukon Territory, Canada. We 116 

compared largest stem initiation and growth rates to climate variables to test the climate sensitivity 117 

of shrub recruitment and growth. If shrubline advance is related to a large-scale regional driver such 118 

as climate, we predict consistent evidence of new recruitment across the study region. If shrubline 119 

advance is mediated by local-scale processes, such as microclimate, herbivory or disturbances, we 120 

predict variation in recruitment patterns across the region. We used dendroecology to investigate 121 

shrub largest stem initiation over the second half of the 20th century and repeat ecological 122 

monitoring over a four-year period (2009 - 2013) to calculate current, and estimate future, rates of 123 

cover change, recruitment, age distributions and shrub densities at the elevational shrubline in this 124 

high-latitude alpine tundra ecosystem. 125 

 126 
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Materials and Methods  127 

Literature Review 128 

We surveyed the literature for all studies presenting evidence of shrub dynamics including: 129 

patch/cover change, infilling or recruitment change in existing shrub tundra, and advance of the 130 

latitudinal or elevational shrubline (Fig. 1).  We began with existing reviews of shrub expansion 131 

(Myers-Smith et al. 2011a; Büntgen et al. 2015) and then supplemented these literature reviews 132 

using the search terms: “tundra” and “shrub” and conducting a comprehensive search for the years 133 

2011 to 2016 using both Web of Science and Google Scholar.  We recorded the shrub change 134 

observed, coordinates of the study sites, species under investigation, methods used, sample size and 135 

other relevant information for all studies identified (Table S1). 136 

 137 

Field surveys 138 

We investigated shrubline advance along 26 hill-slopes in 14 sites in the Kluane region of the 139 

southwest Yukon Territory (Table S2, Fig. 3a, Fig. S1 and S2) from 2007 to 2009. The Kluane 140 

Region is located along the continental divide where the Pacific flora transitions into the Arctic 141 

flora (Cody 2000). Glacial refugia are thought to have been located in this region (Brubaker et al. 142 

2005), which could be a factor influencing the present-day variation in species composition (Fig. 143 

S2). 144 

 145 

At each site, we established a survey transect parallel to the contours of the valley hill-slope at 146 

shrubline, the maximum elevation at which tall willow species grow (Fig. 2, Table S2). We 147 

searched for the highest elevation at which a plant from any of the tall willow species grew along 148 

the hill-slope. This individual became the first transect point and shrub to be surveyed along the 149 

shrubline transect. We identified each willow individual for each different species found within 3 m 150 

of a transect point located every 10 m along the hill-slope from the first shrub sampled, until we had 151 

sampled 8 individuals for age determination and growth ring width measurements. If no willows 152 
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were present at a given transect point, we walked further along or slightly down towards the 153 

shrubline transition until the next willow was reached. This survey method allowed for the distance 154 

among individuals and the density of shrubs at the shrubline ecotone to be calculated.  155 

 156 

After surveying at shrubline, we walked down the hill-slope until reaching a subjectively estimated 157 

zone of approximately 50% tall willow shrub cover. At two sites, Burwash and Bison, cover was 158 

closer to 20% as the topography of the valley did not permit surveying on the same aspect at a 159 

lower elevation (Table S2). At all sites except Printers Pass and Copper Joe Creek, we repeated this 160 

survey on the opposite aspect of the valley or in the case Five Lakes on the opposite side of the 161 

ridge, and for Aishihik Ridge and Cranberry Ridge, at a location further along the ridge (Table S2).  162 

 163 

The six most abundant tall willow species in the Kluane Region were Salix pulchra Cham. 164 

(diamond-leaf willow), Salix niphoclada Rydb. (barren-ground willow), Salix glauca L. Hook. 165 

(grey-leaf willow), Salix richardsonii Hook. (Richardson’s willow), Salix barrattiana Hook. 166 

(Barratt’s willow), and Salix alaxensis Andersson (felt-leaf willow, Table S3, Fig. S2). During the 167 

survey, we identified the species of each willow, and since these species are dioecious, we also 168 

identified the sex, if the individual had visible catkins (Myers-Smith & Hik 2012). When catkins 169 

were absent, we were not able to distinguish between the species S. niphoclada and S. glauca 170 

during field surveys. We have therefore combined these individuals into one taxonomic category; 171 

however, we believe that most individuals sampled in this group are S. niphoclada. Species 172 

identifications were confirmed by George Argus (Emeritus, National Herbarium of Canada). The 173 

location, elevation, hill-slope, and aspect were recorded, as well as the largest diameter of the shrub 174 

patch and the maximum height.  175 

 176 

Climate data 177 
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The Kluane Region has a continental climate that is also influenced by coastal weather patterns with 178 

cold winters with October – February mean temperatures from -7°C to -15°C and relatively warm 179 

summers with June – July mean temperatures from 7°C to 11°C at lower elevations around 800m 180 

(Fig. S3). We used lapse rate corrected monthly Climate Western North America (ClimateWNA) 181 

v5.30 gridded temperature and precipitation data (4 x 4 km resolution, Wang et al. 2011) and 182 

Climate Research Unit (CRU) TS3.21 gridded temperature and precipitation data (0.5˚ resolution, 183 

Harris, Ian 2013). These climate data correlate well with local meteorological station data (Myers-184 

Smith et al. 2015a). 185 

 186 

Sample collection 187 

We collected stem samples from 297 individuals across 20 of the 26 hill-slopes at 10 of the 14 sites. 188 

We collected a 3-5 cm sample of the largest stem of each individual for growth ring analysis just 189 

above the stem-root interface along two elevational transects on two hill-slopes for a total of eight 190 

individuals per transect and 32 individuals per valley (see above).  Occasionally, samples could not 191 

be collected due to low shrub prevalence (e.g. Copper Joe Creek) or could not be processed due to 192 

wood rot or growth deformities, thus reducing the final sample sizes slightly at some sites (Table 193 

S2). Sampling was not conducted at the sites Aishihik and Cranberry Ridge, was only conducted at 194 

one aspect in Bison Valley, and at one elevation for Printer’s Pass and Copper Joe Creek (Table 195 

S2). At two sites with longer continuous elevation gradients, Gladstones and Observation Plateau, 196 

we sampled again at a lower elevation where shrub cover was approximately 75% (Table S2). 197 

 198 

In these alpine ecosystems near the elevational shrubline where shrub plants have few stems (from 199 

one to tens) and a stunted growth form, information from the base of the largest stem likely 200 

represents similar information to that found in the root collar, which may not be the case in more 201 

continuous shrub cover at lower elevations (Ropars et al. 2017). We restricted our sampling to 202 

higher elevations where willow patches were smaller and were non-contiguous in their extent (the 203 



9 
 
average willow patch diameter was 100 cm and the average density of individuals was 17 per 100m, 204 

Table S2), so that we were likely sampling only distinct genetic individuals. Although willow 205 

species can spread laterally through clonal growth, individuals growing in these extreme 206 

environments with shallow active-layer soil depths have been shown to be genetically distinct even 207 

when growing in relatively close proximity (Douhovnikoff et al. 2010).  208 

 209 

Age estimates 210 

Age estimates were determined for all samples using dendrochronology following methods adapted 211 

for tundra shrub species (Myers-Smith et al. 2015b). Rings were counted from thin cross sections of 212 

the largest stems harvested just above the root collar. The age of shrub stems was estimated as the 213 

maximum number of rings measured between four radii for each sample. We sampled two serial 214 

sections ~5 cm apart along the largest stem of 25 individuals and age estimates differed by 2 ± 0.5 215 

years (mean ± SE). We compared age estimates between the first and second largest stems on 18 216 

different shrub individuals, and found that the stem age varied by an average of 6 ± 2 years (mean ± 217 

SE) between these stems. Therefore, we assume that stem age estimates and the estimated initiation 218 

dates of the largest stem could have an error of around ± 6 years. Stem ages are only minimum 219 

estimates because sometimes rings are missing, the pith of the stem is rotten, or the largest stem or 220 

basal stem section might not represent the oldest part of the willow shrub. However, the estimated 221 

years of initiation of stems gives a good indication of the overall history of growth of these high-222 

elevation shrubs. 223 

 224 

Growth measurements 225 

To process samples for annual radial growth measurements, we made thin sections of the shrub 226 

stems, mounted the sections on glass slides, and took digital images with a microscope mounted 227 

digital camera. Each shrub section was measured along four radii for annual increment with a 228 

resolution of 1µm (WinDendro, Québec, Canada or ImageJ, Research Services Branch, National 229 
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Institute of Mental Health, Maryland, USA). Each at 90° from the other unless the placement of 230 

radii had to be moved to avoid growth deformities or rotten wood, which occurred in approximately 231 

10% of samples. To account for measurement error, we repeated the count for the first radii after 232 

completing the other three radii. Missing rings were accounted for during the visual crossdating 233 

conducted on the raw ring width measurements using marker rings such as the 2004 high growth 234 

year and the 2001 low growth year. We identified missing rings in 19% of samples of these 235 

repeated measurements. Willow stem sections varied in the ease at which rings could be counted 236 

and the information that these rings contained. A statistic of the repeatability of the measurement 237 

was calculated by correlating the ring width measurements between the two repeated radii. The 238 

repeatability correlations (Pearson’s r) was greater than 0.8 for 96% of samples. The radii for each 239 

stem sample were averaged. A statistic of uniformity between the four radii was calculated for each 240 

sample by averaging the correlation for each radius with the mean of all four radii. Correlations 241 

(Pearson’s r) among all of the sample radii were greater than 0.8 for 88% of the samples.  242 

 243 

Growth data 244 

We removed the first five years of growth to account for irregular growth patterns during early life 245 

stages. Data were not detrended to account for age-related growth, as these trends were not present 246 

in most shrub individuals and we wanted to treat all individuals in the same manner (Myers-Smith 247 

et al. 2015b). Growth data at the level of the individual and climate data at the site level were mean 248 

centred and variance scaled using the standard score to convert all growth and climate data into the 249 

same units and to meet the assumption of normality.  250 

 251 

Shrubline Advance Estimates 252 

Shrub densities were calculated from the sampling protocol as the number of shrub individuals 253 

encountered along the length of the sampling transect with a final unit of shrubs per 100 m of 254 

transect (Table S2). To calculate shrubline advance, we estimated the rate of change of shrub 255 



11 
 
density over time based on largest stem recruitment rates estimated from the dendroecological age 256 

estimates among the two transect elevations. This was calculated as the slope of the linear 257 

relationship between the number of shrubs per 100 m as recruitment progresses and time in years 258 

(see Fig S5). Thus, our estimates of shrubline advance assumed that hill-slopes with higher rates of 259 

shrubline advance had 1) greater rates of increasing shrub densities over time, and 2) greater 260 

differences in age distributions among transects at shrubline versus at lower elevations (Fig. S5). 261 

 262 

Shrub cover change 263 

We surveyed shrub cover, density, growth and recruitment in six 50 x 50 m plots at the Pika Valley 264 

site in July 2009 and 2013 following the Tall Shrub Monitoring Protocol (Myers-Smith et al. 2009). 265 

Clonal species can have extremely long lifespans and might not experience any age-related 266 

senescence over time (de Witte and Stöcklin, 2010); therefore, tundra willow patches, once 267 

established and growing in conditions with limited herbivory and stem dieback, can continue to 268 

expand for decades. We used willow densities calculated from distances among individuals, percent 269 

cover and patch sizes collected in the field surveys to quantify current and future tall willow cover.  270 

 271 

Statistical analysis of age distributions 272 

Statistics were conducted with the software R (version 3.2.2, R Development Core Team, Vienna). 273 

We used linear models to test for differences of shrubline advance and elevations between sites. We 274 

compared the minimum age of shrub individuals among sites using Kruskal-Wallis tests or between 275 

elevations among sites using Friedman rank sum tests using the package agricolae, because age 276 

distributions at high elevations were right skewed and non-parametric tests were required. We used 277 

mixed models with site as a random effect to test for a difference in patch width and height to 278 

compare the patch size of shrubs between sites. We used MANOVA and ANOVA to test for 279 

variation in patch size among species. We used a Shapiro-Wilk normality test to evaluate the age 280 

distributions. The variables stem width, patch width, patch height, and age were log transformed to 281 
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meet criteria for normality and homogeneity of variance. We used time series analysis to test the 282 

correspondence between pulses of largest stem initiation and weather data using the stats, mFilter 283 

and TTR packages (Büntgen et al. 2015).  We used linear models to test the correspondence 284 

between detrended largest stem initiation (Hodrick-Prescott filter) and summer (June-July) and 285 

winter (October-February) temperature and precipitation data including one-year lags. 286 

 287 

Statistical analysis of growth data 288 

We used a linear mixed model analysis to quantify the climate sensitivity of growth (Myers-Smith 289 

et al. 2015b, a p.). Linear mixed models analysis can take into account hierarchical sampling 290 

structure, temporal autocorrelation and unbalanced sampling (Crawley 2007). Linear mixed models 291 

are growing in popularity in annual radial growth analysis because these models can account for 292 

variance in growth among years within individuals and variance among individuals within sites as 293 

well as heterogeneity in growth patterns over time of different individuals growing at the same site 294 

(Lapointe-Garant et al. 2010; Schmidt et al. 2010; Ettinger et al. 2011; Speed et al. 2011a; Subedi 295 

& Sharma 2013). We used the nlme package to conduct the mixed model analysis, using maximum 296 

likelihood estimation for model selection and restricted maximum likelihood estimation for slope 297 

estimates (Crawley 2007). We mean-centred and variance scaled all growth ring data at the 298 

individual level and climate data at the site-level prior to analysis, so that we can calculate the 299 

climate sensitivity among individuals at different sites. Our model structure included annual radial 300 

growth as the response variable, fixed effects included climate variables, and random intercepts for 301 

year and an autocorrelation structure (AR1, autoregressive process of order one). We calculated the 302 

conditional R2 value for each mixed model using the r.squaredGLMM function of the MuMIn 303 

package (Nakagawa & Schielzeth 2013). We did not include random slopes in addition to random 304 

intercepts as this level of complexity led to singular convergences.  305 

 306 
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Model selection can be used to identify a single best model from a set of competing models 307 

(Johnson & Omland 2004). We tested 33 climate models chosen to represent the climate variables 308 

that we hypothesized would best explain the variation in annual radial growth and a null model. The 309 

33 models included seasonal temperatures or precipitation variables and a selection of models with 310 

both temperature and precipitation variables. We used the same climate models as used by Myers-311 

Smith et al. (2015a; sup. info) in a tundra biome-wide synthesis of annual radial growth data. 312 

 313 

Estimates of shrub cover change 314 

We used our collected age distribution, shrub cover and field survey data to make a simple 315 

projection of future patch expansion of tundra shrubs overtime across the Kluane Region.  We used 316 

exponential relationships to project patch size increase with age, based on the change in patch size 317 

of currently existing shrub patches over a 50-year period, and compared these results to measured 318 

increases over a four-year period (2009 – 2013). The 95% quantile relationship was calculated 319 

using the quantreg package. 320 

 321 

Results 322 

Our literature review indicated few studies demonstrating shrubline advance and increased shrub 323 

recruitment at sites around the tundra biome (Fig. 1, Table S1). Only six other studies at five study 324 

sites investigated shrubline advance beyond current elevational limits of shrub species in addition to 325 

this study (Dial et al. 2007, 2016; Hallinger et al. 2010; Upshall 2011; Rundqvist et al. 2011; 326 

Stöckli et al. 2011), and none investigated shrubline advance beyond latitudinal limits of the 327 

species. Ten studies investigated recruitment of tundra shrubs. All of the above studies find some 328 

evidence for shrubline advance and increased recruitment at sites around the tundra biome (Table 329 

S1), with two of the studies indicating both increases and decreases or stable shrublines (Rundqvist 330 

et al. 2011) or recruitment rates (Boulanger-Lapointe et al. 2014). 331 

 332 
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Our field surveys of 379 individuals at 14 sites indicated that shrub density and the stature of tall 333 

willows decreased from treeline with greater elevation (Table S2). Our sampling of 297 of the 334 

surveyed individuals at 10 sites indicated skewed age distributions and younger willows at 335 

shrubline transects than in the zone of 50% shrub cover (Fig. 5 and Fig. S4; Friedman rank sum test 336 

= 14.22, F2,144 = 64, P!2 < 0.01, P < 0.01). Ages at shrubline did not vary significantly between sites 337 

(Kruskal-Wallis χ2 = 34.40, df = 36, P = 0.54). Shrub density differed between sites (Table S2); 338 

however, all sites showed similar patterns of largest stem initiation and increasing density over time 339 

(Fig. S5). Only one case of mortality was observed in the survey of 379 individuals, and 340 

observations of stem mortality were very infrequent. When travelling between sites, only three dead 341 

individuals were observed, with evidence of stem girdling present in each case, likely as a result of 342 

small mammal herbivory. The rates of shrubline advance (Fig. 3a) and elevation of shrubline (Fig. 343 

S1) varied across the Kluane Region. Shrubline advance was negatively correlated with the hill-344 

slope of the alpine valleys (Fig. 3a) and was not explained by aspect and elevation (linear model, P 345 

= ns). Willows were smaller at shrubline relative to those found at lower elevations (Table S2, 346 

linear mixed models, shrubline estimate ± SE = -0.44 ± 0.06 m, t-value = -7.39, P < 0.01). 347 

 348 

Tall willow diversity was variable across the Kluane Region with different willow species growing 349 

at the shrubline ecotone (Fig. S2). However, three species, S. niphoclada, S. pulchra, and S. 350 

richardsonii, were most abundant and made up ~ 80% of all the individuals sampled. Age among 351 

all willow species surveyed did not differ significantly (Kruskal-Wallis, χ2 = 60.74, df = 51, P = 352 

0.17). Patch sizes, measured as both width and height, varied between species (MANOVA, Pillai's 353 

trace = 0.25, F10,564 = 7.91, P < 0.01) and this was due to variation in the growth form of the more 354 

rarely sampled species. Salix alaxensis individuals grew taller, and S. barratiana individuals were 355 

generally shorter in stature than the other species. No differences were observed in height of the 356 

three most commonly surveyed species (ANOVA, F2,224 = 1.39, P = 0.25); however, patch sizes 357 

were larger for S. pulchra (ANOVA, F2,224 = 8.61, P < 0.01, Tukey's Test pair-wise comparisons).  358 
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 359 

Largest stem initiation pulses were correlated with winter temperatures (Fig. 5) and the variation in 360 

annual radial growth of willows was best explained by summer temperatures (Fig. 6, Fig. S6, Table 361 

S4). Climate sensitivity of willow annual radial growth was variable across the Kluane Region (Fig. 362 

6, Fig. S6, Table S4) and this variability was not explained by hill-slope, elevation or species 363 

composition (linear mixed models, P = ns). We observed shrub recruitment rates of ~20 ± 5 364 

individuals per hectare per decade (mean ± SE) and measured rates of increased shrub cover of ~5 ± 365 

1% per decade (mean ± SE) from seedling and patch expansion surveys at the Pika Camp site over 366 

the period 2009 to 2013. Using a simplified relationship between age and patch size constrained by 367 

the monitoring data, and based on the assumption that conditions will remain similarly favourable, 368 

we estimated that willow cover will increase by at least 20 percent at lower elevations and could 369 

increase as much as five-fold at the shrubline ecotone over the next 50 years (Fig. 7).  370 

 371 

Discussion 372 

This study provides compelling evidence for wide-spread recent advance of the shrubline across 373 

high-latitude alpine tundra of the Kluane Region. While it is commonly assumed that there is ample 374 

evidence for shrubline advance in tundra ecosystems eg. IPCC Working Group II (2014), studies 375 

documenting shrubline advance or increasing shrub recruitment are rare (Fig. 1, Table S1). In the 376 

Kluane Region, we found uniform patterns of increases in the initiation of the largest stems among 377 

species and sites with differing aspects and hill-slopes. This indicates that a regional driver such as 378 

climate warming is likely to be responsible for the observed changes. Annual radial growth of these 379 

willow species was best explained by interannual variation in summer temperatures, and pulses of 380 

initiation of the largest stems by winter temperatures. A previous literature review of recruitment 381 

rates of tundra shrubs did not identify a consistent timing of increased recruitment at sites around 382 

the tundra biome (Büntgen et al. 2015).  383 

 384 
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In the Kluane Region, the earliest pulse in the initiation of the largest stems of shrubs at shrubline 385 

occurred between 1989 and 1996, and began earlier, between 1980 – 1985, in the 50% shrub cover 386 

zone (Fig. 4). Summer temperatures have been warming gradually in the region since 1960 and 387 

general increase in winter temperatures have occurred since the early 1980s (Fig. S3). We observed 388 

almost no dead individuals, and saw little evidence of dieback or dead stems in the field surveys, 389 

indicating that adult willow mortality has been very low in recent years. In cold tundra 390 

environments, woody material decomposes slowly (Hobbie 1996) and should be preserved on the 391 

landscape for decades. The observed high recruitment rates and low mortality, climate sensitivity of 392 

initiation of largest stems and growth indicate that a rapid change in shrub cover is currently 393 

occurring in alpine tundra of the Kluane region. If conditions remain favourable for growth and 394 

recruitment over the next 50 years, tall willow cover could increase by 20% or more and shrubline 395 

could continue to advance in this region (Fig. 7). 396 

 397 

Shrubline advance 398 

We suggest that climate warming has improved growth and recruitment conditions, leading to the 399 

observed increased shrub abundance and cover in the Kluane Region. We found a uniform pattern 400 

of shrubline advance between the four dominant tall willow species and an increasing rate of largest 401 

stem initiation across the Kluane Region. The age of willow stems was surprisingly uniform among 402 

sites and between species, with a median shrubline age of 17 years at the shrubline ecotone, despite 403 

variation in shrubline elevation. Rapid advance of white spruce treeline (Picea glauca) on south-404 

facing hill-slopes and stable treelines on north-facing hill-slopes have been observed in this region 405 

(Danby & Hik 2007). However, we observed no variation in age, height or advance of shrubline 406 

with valley aspect. Our results indicate a contrasting importance of microclimate for treeline versus 407 

shrubline advance in this region, and that regional factors are more important than local factors as 408 

drivers of shrubline advance. 409 

 410 
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Climate warming 411 

Our results suggest that growth and initiation of largest stems are controlled by different climate 412 

variables in the Kluane Region. Annual radial growth of willows correlated best with summer 413 

temperatures, whereas pulses in the initiation of largest stems correlated best with winter 414 

temperatures. Climate has been identified as a significant factor influencing the growth (Forbes et 415 

al. 2010; Hallinger et al. 2010; Blok et al. 2011; Macias-Fauria et al. 2012; Tape et al. 2012; 416 

Elmendorf et al. 2012b; Weijers et al. 2012; Myers-Smith et al. 2015a p.) and establishment 417 

(Harsch et al. 2009; Van Bogaert et al. 2010; Harsch & Bader 2011; Mamet & Kershaw 2012) of 418 

woody species in northern alpine or tundra ecosystems. Summer temperatures could either 419 

negatively influence (Shevtsova et al. 2009) or promote (Graae, Alsos & Ejrnaes 2008; Milbau et 420 

al. 2009; Büntgen et al. 2015) seedling establishment, and winter temperatures and cold 421 

stratification can influence seed germination rates, seedling mortality and fungal infection (Graae et 422 

al. 2008; Wilmking et al. 2012; Hagedorn et al. 2014). In alpine ecosystems, where snow is 423 

redistributed by wind, seedlings may be exposed to atmospheric temperatures rather than being 424 

protected by an insulating snow pack and thus increasing winter mortality on exposed ridges (Wipf, 425 

Stoeckli & Bebi 2009; Myers-Smith & Hik 2013).  426 

 427 

Factors other than climate, such as cold-induced photoinhibition, permafrost disturbance, herbivory 428 

or plant–plant interactions, could also influence growth and recruitment at elevational treelines and 429 

shrublines (Harsch et al. 2009; Myers-Smith et al. 2011a; HilleRisLambers et al. 2013). In the 430 

Kluane Region, shallow alpine tundra soils are underlain by bedrock, and thus permafrost thaw will 431 

likely have less influence on surface conditions and shrub recruitment or productivity relative to 432 

other tundra environments (Natali, Schuur & Rubin 2012; Wilmking et al. 2012). Signs of 433 

herbivory on shrubs are low in the Kluane Region relative to other tundra ecosystems (Christie et 434 

al. 2015; Barrio et al. 2016).  The major herbivores on tundra shrubs include ptarmigan browsing 435 

new buds in spring, non-cyclic insect herbivores, stem herbivory by small mammals including 436 



18 
 
marmots and rare browsing by moose or other large herbivores. Although not the focus of this 437 

study, we believe that herbivory is unlikely to be a major limiting factor for shrub expansion 438 

currently in the Kluane Region. In summary, our results point to climate as a driver of shrub 439 

expansion and shrubline advance in the Kluane Region. 440 

 441 

Similar to our observations for shrublines, treeline advance has been documented in the Kluane 442 

Region and has been attributed to summer warming (Danby & Hik 2007). Summer temperatures 443 

have increased by approximately 1°C between 1980 and 2010 in the Kluane area (Fig. S3), and this 444 

warming is likely linked to the climate regime shifts observed in the North Western Pacific in 1977 445 

and 1989 (Hare & Mantua 2000). Sporadic pulses of recruitment are a common phenomenon at 446 

treeline (Körner 2012), however age distributions of tall willow species in this study indicate 447 

conditions for recruitment have gradually improved over the past half century. We found that pulses 448 

in largest stem initiation were best explained by variation in winter temperatures indicating that 449 

frost damage might be a driver of seedling mortality. We predict that if recruitment conditions 450 

continue to remain favourable, increased recruitment will continue to occur in this region. 451 

 452 

Disturbance 453 

Disturbance can influence recruitment rates in tundra ecosystems. Fire (Lantz et al. 2010a, 2013) 454 

and permafrost degradation (Lantz et al. 2009) have been positively associated with recruitment in 455 

alder in the Western Canadian Arctic (Alnus viridis subsp. fruticosa) and caribou trampling has 456 

been associated with increased recruitment of Betula glandulosa in Northern Quebec (Ropars & 457 

Boudreau 2012). In contrast, herbivory can limit the advance of woody species up hill-slopes in 458 

northern mountainous regions (Cairns & Moen 2004; Olofsson et al. 2009; Hofgaard et al. 2009; 459 

Van Bogaert et al. 2010; Speed et al. 2010, 2011b, 2012) and shrub encroachment in tundra 460 

ecosystems has been shown to be reduced or inhibited by herbivores (Post & Pedersen 2008; 461 

Olofsson et al. 2009; Tape et al. 2010; Christie et al. 2015). Various animal species feed on willow 462 
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shrubs ranging from large herbivores such as caribou and reindeer (Olofsson et al. 2009; Forbes et 463 

al. 2010; Zamin & Grogan 2013; Bernes et al. 2015), birds such as ptarmigan (Tape et al. 2010), 464 

small mammals such as voles and lemmings (Predavec & Danell 2001; Olofsson et al. 2009), and 465 

herbivorous insects (Olofsson & Strengbom 2000; Den Herder, Virtanen & Roininen 2004). 466 

Herbivory can influence both the establishment of new recruits and reduce the survival of adults. 467 

However, the impacts of herbivory on recruitment will likely have a larger influence on the 468 

population age structure (Speed et al. 2010).  469 

 470 

In the Kluane Region, herbivore damage causing shrub death was only observed once in surveys of 471 

hundreds of willow individuals. Because seedlings are small and difficult to observe, we likely 472 

under-sampled willows younger than ~10 years, and therefore we might not have entirely accounted 473 

for seedling and sapling mortality. Willow seeds have variable and often low germination rates 474 

(Shevtsova et al. 2009; Graae et al. 2010), and therefore studying the factors promoting recruitment 475 

in these species is logistically difficult. It is likely that in addition to winter temperatures, growing 476 

season conditions, disturbance regimes, nutrient availability, seed quality, seed production, other 477 

reproductive factors, and variable herbivory could all interact to determine the new recruitment of 478 

willow species. However, increasing recruitment in recent decades suggests that herbivory on 479 

seedlings or other sources of mortality are not currently a major limiting factor of shrubline advance 480 

in the Kluane Region. 481 

 482 

Limits to shrubline advance 483 

Our results indicate that the initiation of the largest stems of tall willows and shrub cover have 484 

increased and will likely continue to increase, if growing conditions remain the same or continue to 485 

improve as long as other factors do not become limiting. However, quantitatively projecting future 486 

shrubline advance in this region is more difficult. Shrub growth and patch expansion is limited by 487 

available resources (Tape et al. 2012), and shrubline advance is limited by factors such as substrate, 488 
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seed source and disturbance. Large-scale disturbances such as hill-slope erosion were observed at 489 

many of the sites that had low elevation shrublines. Hill-slopes with talus, scree or exposed rock are 490 

not sufficiently stable at higher elevations to support further willow range expansion. On many of 491 

the hill-slopes with high shrublines, tall willows are already growing close to the tops of ridges. 492 

Though these shrubline individuals were small in stature and did not make up a significant 493 

proportion of the overall shrub cover, they had successfully established and were persisting at these 494 

higher elevation sites.  495 

 496 

We observed low reproductive effort and potential pollen or resource limitation in these individuals 497 

(Myers-Smith, Saunders and Hik, unpublished data). Inadequate successful reproduction is one of 498 

the common demographic explanations for range limits (Gaston 2009). Willows growing at the 499 

highest elevations in Kluane might not be reproductive and many established seedlings at the 500 

shrubline ecotone could come from seed sources located further down the hill-slope. Reproduction 501 

could improve with age allowing greater recruitment of individuals from seeds produced at high 502 

elevations in the future. Although we predict further increase in cover of willow shrubs in this 503 

region, shrubline advance could be limited by active disturbance, available soil substrates, seed 504 

source and poor high-elevation reproduction. 505 

 506 

Conclusions 507 

Our findings add to the growing evidence of increases in shrub abundance in tundra ecosystems, 508 

and provide one of the few examples of both upslope advancement and increasing rate of initiation 509 

of largest stems of shrubs in relation to climate warming in tundra ecosystems (Fig. 1). We find that 510 

contrasting seasons influence growth (summer) and largest stem initiation (winter) in this system. A 511 

significant change in tall shrub canopy cover and elevational range extent will begin to alter a 512 

variety of factors from soil temperatures and nutrients (Blok et al. 2010; Buckeridge et al. 2010; 513 

Myers-Smith & Hik 2013) to habitat availability for tundra-dwelling animal species (Wheeler & 514 
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Hik 2013; Boelman et al. 2015), which could feedback to influence tundra ecosystem functions as a 515 

whole. If growing conditions remain the same or improve over the next 50 years, we predict that tall 516 

willow cover will increase by at least 20% and enhanced recruitment will continue to lead to further 517 

shrubline advance. However, our results highlight that with different climate drivers for growth and 518 

recruitment, variation in the rates of future climate change between summer and winter seasons 519 

could lead to different trajectories for vegetation dynamics in this high-latitude alpine tundra. 520 
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Figures 924 

 925 

Figure 1. Evidence of shrubline advance (red), increased recruitment (green) from the 60 studies of 926 

shrub change and 128 study locations at sites around the tundra biome identified in the literature. Six 927 

studies at five study sites investigated shrubline advance beyond current elevational limits of shrub 928 

species in addition to this study, and none investigated shrubline advance beyond latitudinal limits of 929 

the species. Ten studies investigated increased recruitment.   930 
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 931 

Figure 2. Elevational shrub densities from treeline to shrubline (the maximum elevational extent at 932 

which tall shrubs grow) in the Kluane Region of the Southwest Yukon.  At treeline willow shrubs can 933 

reach over 2m tall, at the 50% shrub zone canopy heights are around 50 cm, at shrubline canopy 934 

heights are often 30 cm or lower (Table S2). The hill-slopes and soil substrate vary across the region 935 

with more stable shrublines being found on steeper hill-slopes (such as the west-facing Decoeli hill-936 

slope pictured here with a shrubline of approx. 1600 m) and faster-advancing and higher shrublines 937 

being found on shallower hill-slopes (such as the north-facing Kluane Plateau pictured here with a 938 

shrubline of approx. 1900 m).  939 



35 
 

 940 

Figure 3. Evidence of shrubline advance (slope of the relationship between the number of shrubs per 941 

100 m as recruitment progresses and time in years, see Fig S5) at sites across the Kluane Region of the 942 

Southwest Yukon. Shrublines that are advancing faster (a greater increase in shrub density over time) 943 

are indicated by larger red circles (A). Shrubline advance was higher for sites with more shallow hill-944 

slopes across the 11 alpine valleys studied (B). Hill-slope was the only measured topographic or 945 

ecological variable that explained variation in shrubline advance among the 11 study sites.  946 



36 
 

 947 

Figure 4. Age distributions indicate that shrublines are advancing in the Kluane Region of the 948 

Southwest Yukon. Age distributions of willows at (A) and below (B) shrubline are pooled for all sites 949 

at the shrubline and 50% shrub ecotones. The distribution of willows at shrubline is right skewed 950 

indicating a higher proportion of younger individuals at the shrubine ecotone (Shapiro-Wilk normality 951 

test, W = 0.94, P < 0.01).  952 
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 953 

Figure 5. Variation in willow recruitment at the elevational shrubline plotted as a detrended index from 954 

the time series analysis (green) in the Kluane Region of the Southwest Yukon is best explained by 955 

winter temperatures the year after germination (B). The red lines in plots A and B indicate the June – 956 

July mean and October – February mean temperatures and the blue lines indicate precipitation over the 957 

same periods. Climate data are CRU TS3.21 gridded temperature and precipitation data (0.5˚ 958 

resolution). 959 
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 960 

 961 

Figure 6. Map of climate sensitivity of growth of willows across the Kluane Region of the Southwest 962 

Yukon. Summer temperatures best explained the variation in shrub growth at most sites. The size of the 963 

circle indicates the strength of the climate sensitivity (∆AIC value, see Figure S5 for other indices of 964 

climate sensitivity); colour indicates the type of climate model that best explained the variation in 965 

growth. Climate data are ClimateWNA v5.30 gridded temperature and precipitation data (4 x 4 km 966 

resolution).  967 
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Figure 6.  968 

 969 

Figure 7. Estimated current and future projected tall willow cover in alpine tundra of the Kluane 970 

Region of the Southwest Yukon. The solid line is the exponential regression between patch age and 971 

shrub cover indicating the average growth rate and the dashed line is the 95% exponential quantile 972 

regression indicating the estimated maximum growth rate (a). The error bars (b) indicate the standard 973 

error of the projections for the shrub patch cover increases from the survey data, but not the overall 974 

uncertainty of these simplified model estimates which would be much greater. These estimates suggest 975 

that shrub cover will double at lower elevations and increase 10-fold at the shrubline ecotone, if 976 

conditions remain unchanged and all the individuals surveyed continue to grow at the same rate over 977 

the next 50 years (b). New recruitment and continued improved growing conditions, which are not 978 
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incorporated into this simple projection, are likely to result in an even greater rate of increase if rates of 979 

mortality, stem dieback and herbivory remain low. However, lack of suitable substrates further upslope 980 

may limit shrub expansion.981 
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