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Abstract. Optimisation methods were successfully used to
calibrate parameters in an atmospheric component of a cli-
mate model using two variants of the Gauss–Newton line-
search algorithm: (1) a standard Gauss–Newton algorithm
in which, in each iteration, all parameters were perturbed
and (2) a randomised block-coordinate variant in which, in
each iteration, a random sub-set of parameters was perturbed.
The cost function to be minimised used multiple large-scale
multi-annual average observations and was constrained to
produce net radiative fluxes close to those observed. These
algorithms were used to calibrate the HadAM3 (third Hadley
Centre Atmospheric Model) model at N48 resolution and the
HadAM3P model at N96 resolution.

For the HadAM3 model, cases with 7 and 14 parameters
were tried. All ten 7-parameter cases using HadAM3 con-
verged to cost function values similar to that of the standard
configuration. For the 14-parameter cases several failed to
converge, with the random variant in which 6 parameters
were perturbed being most successful. Multiple sets of pa-
rameter values were found that produced multiple models
very similar to the standard configuration. HadAM3 cases
that converged were coupled to an ocean model and run for
20 years starting from a pre-industrial HadCM3 (3rd Hadley
Centre Coupled model) state resulting in several models
whose global-average temperatures were consistent with pre-
industrial estimates. For the 7-parameter cases the Gauss–
Newton algorithm converged in about 70 evaluations. For
the 14-parameter algorithm, with 6 parameters being ran-

domly perturbed, about 80 evaluations were needed for con-
vergence. However, when 8 parameters were randomly per-
turbed, algorithm performance was poor. Our results sug-
gest the computational cost for the Gauss–Newton algorithm
scales between P and P 2, where P is the number of param-
eters being calibrated.

For the HadAM3P model three algorithms were tested.
Algorithms in which seven parameters were perturbed and
three out of seven parameters randomly perturbed produced
final configurations comparable to the standard hand-tuned
configuration. An algorithm in which 6 out of 13 parameters
were randomly perturbed failed to converge.

These results suggest that automatic parameter calibration
using atmospheric models is feasible and that the resulting
coupled models are stable. Thus, automatic calibration could
replace human-driven trial and error. However, convergence
and costs are likely sensitive to details of the algorithm.

1 Introduction

Weather and climate models need to parametrise unresolved
processes (Edwards, 2011), and representation of these pro-
cesses often contain parameters which have a broad range
of plausible values (Murphy et al., 2004; Stainforth et al.,
2005). Tuning or calibration of climate models by find-
ing parameter combinations or introducing new processes
is rarely well documented, often time-consuming, and the
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3568 S. F. B. Tett et al.: Calibrating climate models

metrics used opaque (Mauritsen et al., 2012; Hourdin et al.,
2013), with the main approach being trial and error. Con-
sequently, expensive person time is needed to calibrate or
tune climate models. Methods that could automatically cal-
ibrate model parameters would allow easier development of
parametrisations, objective discussion of the observed targets
and more rapid development of climate models. Such an ap-
proach would also facilitate uncertainty analysis and would
improve understanding of the contribution of parametrisation
compared to resolved dynamics in model properties, includ-
ing model error.

Tett et al. (2013b) (T13 from here on) outlined an approach
to model parameters calibration by considering it as an in-
verse optimisation problem for which the aim is to find the
parameter values which produce an atmospheric model with
the smallest error relative to a predetermined set of weighted
observations. T13 focused on only two observations, global
mean outgoing longwave and reflected shortwave radiation,
and modified only four parameters. They were able to cali-
brate the model parameters to several different observational
targets. In this paper we further develop the approach taken
by T13 to increase the number of observations and parame-
ters used. We then couple some of the resulting atmospheric
models to an ocean model to test if the resulting coupled
model is stable.

Various approaches have been taken to optimising model
parameter values. Golaz et al. (2013) hand-tuned the GFDL
CM3 model to radiation balance by adjusting several pa-
rameters in the cloud scheme, finding a significant impact
on aerosol forcing but not on greenhouse gas forcing or on
“Cess” climate sensitivity (Cess et al., 1990). They found
very large differences during the 20th century due to the per-
turbed impact of aerosols. Bellprat et al. (2012, 2015) gener-
ated a model emulator for three climate variables from a re-
gional model. From this emulator by Latin hypercube sam-
pling they found the parameter combinations that minimised
error. Their earlier work focused on five parameters while
their recent paper used eight parameters and considered
North American and European regions. They found the cal-
ibrated model improved the simulation of summers in both
regions. Williamson et al. (2013) use a combination of em-
ulation and ruling out implausible observations to construct
models. They used four observational constraints: global av-
erage surface air temperature (SAT), Northern Hemisphere
meridional temperature gradient, seasonal cycle of tempera-
ture in the Northern Hemisphere and global average precip-
itation. They found that SAT was the most important con-
straint. Later they included the strength of the Antarctic Cir-
cumpolar Current (ACC) in their analysis and found param-
eter combinations where the model had a good simulation of
both the ACC and SAT (Williamson et al., 2014).

Irvine et al. (2013) generated 200 variants of HadCM3 us-
ing a Latin hypercube experimental design and splitting each
parameter range into 200 bins. They then ran the resulting
coupled models and found that about 10 % were acceptable.

Tomassini et al. (2015), using a low-resolution version of
the MPI-ESM model, perturbed eight parameters randomly
across their plausible range and generated coupled models
with a broad range of global average temperatures. They then
examined the different feedbacks and mechanisms for those
feedbacks in their model, finding that four convective param-
eters related to convective mixing had strong impacts on both
the mean tropical circulation and on climate sensitivity. Such
brute force approaches become extremely expensive as the
dimensionality of the problem increases, though the use of
emulators may help.

Attempts have been made using data assimilation tech-
niques to calibrate parameters. Such systems simultaneously
estimate the atmospheric state and the parameter values.
Schirber et al. (2013) reported on a study in which they used
that approach but found no improvement in the model clima-
tology. Ruiz and Pulido (2015) used a similar algorithm and
found an improvement in medium-range forecast skill but did
not report on the impact on model climatology.

Another approach is to use forecast error. Ollinaho et al.
(2012) updated four parameter values and their covariances
iteratively using a set of 3-day forecasts of ECHAM5 and
found a modest reduction in forecast error. When they ran
the model with observed sea surface temperature and sea-
ice they found a reduction in top-of-atmosphere flux errors.
They followed up this study with one in which they min-
imised forecast errors in the total energy (Ollinaho et al.,
2014). They also applied the technique to the ECMWF fore-
casting system and found a modest change in parameter val-
ues and an increase in forecast skill in the tropics (Ollinaho
et al., 2013).

The approach we consider is optimisation via direct eval-
uation of the model, something attempted by Jones et al.
(2005) for a low-resolution version of HadCM3. Yang et al.
(2013), building on Jackson et al. (2004), applied the SSAA
algorithm to tune parameters in CAM5 to improve the simu-
lation of the partitioning between convective and large-scale
precipitation. Zou et al. (2014) applied a similar approach to
an East Asian regional model by modifying seven parameters
and optimising only mean precipitation. They found a sig-
nificant improvement in both the rainfall pattern and daily
rainfall distribution.

Here we update T13 to include a larger number of observa-
tions and parameters. The observations we use, such as T13
used, are multi-annual, large-spatial averages. As before we
continue to use a Gauss–Newton algorithm but include a ran-
domised block-coordinate variant where, on each iteration,
a random sub-set of the parameters are perturbed.

Our objectives are as follows:

1. test how well a Gauss–Newton algorithm does in min-
imising error in the HadAM3 N48 model (Pope et al.,
2000) with 7 and 14 parameters and multiple observa-
tions;
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2. test for equifinality in which models with different pa-
rameter values have similar observed values (Beven and
Freer, 2001);

3. see how coupled model variants of HadCM3 (Gordon
et al., 2000), with the parameters taken from the optimi-
sation, behave;

4. test these algorithms with the N96 HadAM3P
model (Massey et al., 2015).

The remainder of this paper first describes the models, the
optimisation method and the observational metrics used. We
next describe results of optimisation, the properties of the
atmospheric models and how the coupled models behave. We
discuss our results before concluding.

2 Methods

In this section we outline our methods. We first describe
two related atmospheric models we use. Next we out-
line the Gauss–Newton algorithm and a randomised block-
coordinate variant of it, deal with the need to regularise ma-
trices and describe how the algorithm terminates. We then
describe the choices we made in parameter selection and pa-
rameter perturbation as well as the observations and covari-
ance matrices we used. Finally we describe how we evaluate
the optimised configurations and estimate uncertainties in the
parameter values.

2.1 Models

We use the N48 (3.75◦× 2.5◦) resolution configuration of
HadAM3, which uses a 360-day calendar, driven with the
same package of forcings used by T13. Simulations were
run from 1 December 1998 to 1 March 2005 (6.25 years),
and the period 1 March 2000 to 30 February 2005 was
compared with observations. In addition we use the N96
(1.875◦× 1.25◦) configuration of HadAM3P (Massey et al.,
2015) with a similar package of forcings to that used in the
N48 configuration. This model was run from 1 December
1999 to 1 March 2005 (5.25 years) We use the standard land-
surface dataset rather the time-varying dataset used in the
N48 case, including both the direct and indirect effect of SO2
aerosols on clouds (Jones et al., 2001), and used, after inter-
polation, the same ozone dataset as we used in the N48 case.
Some results from the default configuration are described in
Tett et al. (2013a).

2.2 Gauss–Newton and line-search

We build on the approach used by T13 which minimised
an objective function which was the root mean square of
the global average outgoing longwave radiation and reflected
shortwave radiation. We extend this to a larger number of
observations, taking account of both observational error and

simulated internal variability. As we focus on large-scale,
multi-annual averages we assume that both terms can be rep-
resented by multivariate Gaussian distributions characterised
by covariance matrices CO (observational error) and Ci (in-
ternal variability), respectively. If the model was perfect
we would expect (S−O)∼N(0,C) where C= CO + 2Ci.
Therefore, the cost function (F(p)) depending on parameters
(p) we minimise is as follows:

F 2(p)=
(S−O)TC−1(S−O)

N
, (1)

where N is the number of observations, S is the simulated
observations, and O is the target observations. This requires
that C is invertible and, if necessary, we regularise it (see
below).

This way of defining F(p) allows for covariance between
observations to be taken account of. For example internal
variability might generate large correlation between total out-
going radiation and precipitation and so not weighting them
would give greater weight to configurations with small error
in outgoing radiation and precipitation than is justified. We
also want to reduce the importance of observations with high
uncertainty and, conversely, increase the weight of observa-
tions with small uncertainty. We follow Sexton and Murphy
(2011) and generally use a crude estimate of observational
error based on the difference between two different obser-
vational datasets. Our aim in this paper is the application of
inverse methods to parameter calibration, not the production
of good estimates of observational error. That is a matter for
the groups that produce the observational datasets and so is
beyond the scope of the work reported on here.

We estimate Ci from 100 simulations of the standard N48
HadAM3 model configuration. Estimating observational er-
ror is more difficult. For the radiation observations we use
the fractional error estimates from Loeb et al. (2009) and ap-
ply them to each regional value. For other datasets we define
them as the difference between the default values and the
equivalent from another observational dataset. We explored
applying a covariance structure to the observational error but
found this did not work well (see discussion), nor was there
very strong objective justification for any covariance struc-
ture.

The Gauss–Newton algorithm is an iterative two-step al-
gorithm. The first step is to compute the Jacobian J :

J ij =
∂Si(p)

∂pj
, (2)

where Si(p) is the ith simulated observation when the model
is run with the vector of parameters p and pj is the j th pa-
rameter. We approximate this using finite differences (No-
cedal and Wright, 2006):
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Jij =
Si(p+1pje

j )− Si(p)

1pj
, (3)

with 1pj being a suitably small perturbation to the j th
parameter and ej the j th coordinate vector with the j th
element being 1 and all other elements being 0 (e.g.
(0, . . .,0,1,0. . .,0)). In order to avoid using parameter val-
ues outside the expert range, we chose, at each iteration, the
sign of 1pj so as to perturb towards the middle of the al-
lowed range. Note that 1pj is ideally chosen such that the
Jacobian is above internal variability and not, as is common,
to machine precision. The choice of 1pj follows our noise
estimates, and we use ideas from implicit filtering techniques
for derivative free optimisation (Nocedal and Wright, 2006,
Sect. 9) Having computed the Jacobian, the algorithm pro-
ceeds by computing the line-search vector (s) to proceed
along to minimise the cost function, F , through solving the
linear problem:

Hs = JTC−1(O −S(p)), (4)

where H= JTC−1J is the finite-difference approximation to
the Hessian matrix (H=J TC−1J ).

Having computed the line-search vector, s, we then eval-
uate F 2(p) at several steps along it (“line-search”). The val-
ues, and number, of the line-search steps are defined when
we describe the algorithms we trial later in the paper. If any
of the chosen line-search parameter values are outside the
expert-defined plausible range, we project these to the ap-
propriate boundary. The minimum value of F 2 from the line
search is used as the starting point for the next iteration.

The Gauss–Newton algorithm can be modified to include
an additional constraint by modifying the cost function to the
following:

F 2(p)=

(
(S−O)TC−1(S−O)

)
+

1
2µ (Oc− Sc)

2

N + 1
, (5)

where Oc and Sc are the values we wish to constrain, and µ
is an user choice to be decided on after experimentation This
can be rewritten in the same form as Eq. (1):

Ō = (O,Oc), S̄ = (S,Sc) and C̄=
(

C 0
0 2µ

)
.

Building on ideas of Nesterov (2012) and Kim and Lee
(2008), we also tried a randomised block-coordinate version
of Gauss–Newton in which, in each iteration, Prand differ-
ent parameters were chosen at random and used in both the
Gauss–Newton and line-search steps. Non-perturbed param-
eters used the values from the previous iteration.

2.3 Scaling and regularisation

Our algorithm could suffer from using ill-conditioned matri-
ces in two places.

First, if the Hessian matrix is singular or ill-conditioned,
defined as having a condition number greater than 1010, we
use a Tihkonov regularisation (Nocedal and Wright, 2006) in
which we add a small multiple of an identity matrix to the
Hessian matrix. We iteratively increase the identity matrix
scaling by a factor of 10 starting with 10−7 until the regu-
larised Hessian is no longer ill-conditioned or the scaling is
10−2. In the latter case our algorithm terminates with an er-
ror. This regularisation introduces a scale dependence into
the algorithm. Each time we compute the Jacobian, we scale
all parameters whose magnitudes are less than 1 so they have
magnitude 1 and invert this scaling when computing the line-
search direction.

Secondly, we also regularise C. Rather than adding the
identity matrix, we scale the diagonal of the covariance ma-
trix by increasing factors of 2 until the condition number of
the entire matrix is less than 5 times the condition number of
the diagonal matrix. We apply this regularisation after scaling
all values and before computing the Jacobian. For the bulk of
our work C is well conditioned, so this regularisation is not
applied.

2.4 Algorithm termination

We need criteria to terminate the algorithm. Classical Gauss–
Newton terminates when sufficiently close to the station-
ary point of the cost function (F(p)), and so F stops re-
ducing (Nocedal and Wright, 2006). However, the climate
is a chaotic system which introduces noise into the model
evaluations. Therefore, the algorithm may continue to iterate
even when it is not making any significant progress or termi-
nate because of not improving due to this noise.

The algorithm terminates on iteration k when one, or more,
of the following occurs:

1. F(pk)−F(pk−1) < c, where pk are the parameter val-
ues at iteration k. That is, F(p) has not reduced by
a critical amount c.

2. 2(Sk−Sk−1)C−1
i (Sk−Sk−1)

T/N ≤ ci , where Sk is the
simulated observations at iteration k and ci is a critical
value from a χ2 distribution withN degrees of freedom.
This checks that the new and previous simulated obser-
vations (S) are statistically similar.

3. (Sk −O)C−1(Sk −O)T/N ≤ co, where co is a critical
value from a χ2 distribution withN degrees of freedom.
This checks that the current simulated observations are
in statistical agreement with the target observations.

In our implementation c, ci and co are all choices to be
made in the algorithm.

For the random variant of the algorithm, if the cost func-
tion did not reduce by c, then the algorithm was restarted
from the previous best parameter set by rerunning that case
and another set of random perturbations. If the error then

Geosci. Model Dev., 10, 3567–3589, 2017 www.geosci-model-dev.net/10/3567/2017/



S. F. B. Tett et al.: Calibrating climate models 3571

Table 1. Parameters, default values, and allowed ranges and perturbations. Shown for each parameter name are the component of HadAM3
they are from, the default value, allowed range, perturbations used in HadAM3–7 cases (11) and perturbations used in all HadAM3-14 cases
and HadAM3P cases (12). For more information on the parameters see Yamazaki et al. (2013). Where HadAM3P values or ranges differ
from HadAM3, these values are shown in brackets.

Parameter Component Default value Range 11 12

VF1 Cloud 1 (2) 0.5–2 0.5 0.1 ms−1

RHCRITb Cloud 0.7 0.6–0.9 0.05 0.01
ICE_SIZE Radiation 30 25–40 1.5 1.5 ×10−6 m
ENTCOEFF Convection 3 0.6–9 0.6 0.15
EACFb Cloud 0.5 0.5–0.7 0.02 0.02
CT Cloud 10 (60) 5–40 (5–100) 2 1 ×10−5 s−1

CW_LAND a Cloud 2 (10) 1–20 1 2 ×10−4 kg m−3

DYNDIFFd Dynamics 12e 6–24 – 2 h
KAY_GWAVEf Dynamics 20 (18) 10–20 – 4 ×103

ASYM_LAMBDA Boundary layer 0.15 0.05–0.5 – 0.15
CHARNOCK Boundary layer 12 (10) 12–20 (10–20) – 3 ×10−3

G0 Boundary layer 10 5–20 – 4
Z0FSEA Boundary layer 13 2–50 – 20 ×10−4 m
ALPHAMc Radiation 0.5 0.5–0.65 – 0.06

a Controls CW_SEA. b These parameters set values on all model vertical levels. c Also sets DTICE. d Sets diffusion values on all levels for
temperature and humidity. e For HadAM3P the default value is 3 (11) h for temperature (humidity) with ∇2 diffusion for temperature and
humidity throughout the atmosphere. e Also controls KAY_LEE_GWAVE.

failed to reduce by c the algorithm would terminate. This
means that the random variant will require at least two it-
erations before it terminates. This approach results in some
duplicate simulations, although because of model chaos the
simulated observations differ. Some inefficiency results from
this which could be reduced by keeping track of all cases that
have run and not rerunning those cases. For ease of imple-
mentation we did not do this. Future work could implement
such an optimisation.

2.5 Parameter selection and step size

We used up to 14 parameters from the analysis of Yamazaki
et al. (2013) but restricted our analysis to parameters that
varied continuously. Some of those parameters are “meta-
parameters” in that changes in one affected other parame-
ters. We used the same algorithms as Williamson et al. (2013)
did to modify parameters from the meta-parameters. Ranges
of allowed parameter values were taken from Murphy et al.
(2004).

We carried out three cases:

1. We adjusted seven parameters using HadAM3. Step
sizes for the Jacobian calculation were taken from T13
for ENTCOEFF, VF1, CT and RHCRIT. For the re-
maining three parameters we used 10 % of their range.

2. We adjusted 14 parameters, again, using HadAM3. To
compute the step size for the additional parameters
we set the value to the upper or lower range value
that was most different from the standard value. Then

for all 14 parameters, we computed di = (S(1pi)−

So)C−1
i (S(1pi)−So)

T. Where di was greater than
100 we reduced 1pi by approximately

√
di/100. And

where di was less than 100 we increased 1pi , limit-
ing the increase to 50 % of the allowed range, so that di
would, assuming linearity, be greater than 100.

3. We adjusted 7 and 13 parameters using HadAM3P us-
ing the same step sizes as in the 14-parameter HadAM3
cases.

Parameters, ranges, default values and step sizes for the
Jacobian computations are shown in Table 1.

2.6 Observations, covariance matrices and
optimisation choices

Here we describe the choices we made in our optimisation
study.

We focus on large-scale properties of the climate sys-
tem and so consider the northern hemispheric extra-tropical
(θ > 30◦N) and tropical (30◦ S≥ θ ≤ 30◦ N) means and the
southern hemispheric extra-tropical (θ < 30◦ S) means. We
do this for seven variables, all as an average over the 5-year
period March 2001 to February 2005 (inclusive), for the fol-
lowing:

Land air temperature (LAT) Land temperature has an im-
pact on simulated biology, evaporation, snow and other
important parts of the Earth system with changes in it
being a significant impact from climate change. We use
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the observed CRU TS Vn 3.21 dataset (Harris et al.,
2014) and the HadAM3 N48 land–sea mask to deter-
mine land, and restrict to data north of 60◦ S. For a sec-
ond estimate of LAT we use ERA-Interim data (Dee
et al., 2011).

Land precipitation (LP) This is a key measure of the hy-
drological cycle. We also use the CRU TS Vn 3.21
dataset, the HadAM3 N48 land–sea mask, and restrict
to data north of 60◦ S. For a second estimate we use the
vn6 GPCC dataset (Schneider et al., 2011). All simu-
lated and observed values were converted to millimetres
per day (mm day−1).

Mean sea level pressure (SLP) We use this as a measure
of the planetary scale circulation. To correct for model
mass loss we used sea-level pressure differences be-
tween the global-average value and the extra-tropical
Northern Hemisphere and tropics. We did not include
the southern extra-tropics as that provided no new in-
formation and consequently made the covariance matrix
uninvertable. We used values from ERA-Interim as ob-
servations and, for a second estimate used, the NCEP
reanalysis (Kalnay et al., 1996). All observations and
simulations were converted to hPa.

Reflected shortwave radiation (RSR) This measures the
reflectivity of the Earth and is driven by clouds, snow,
sea-ice and other surface properties. We compute val-
ues, and uncertainties, from the vn2.8 EBAF dataset
(updated from Loeb et al., 2009).

Outgoing longwave radiation (OLR) This is a measure of
the outgoing thermal radiation from the Earth and is
driven by atmospheric temperatures and clouds. We also
use the vn2.8 EBAF dataset.

Temperature at 500 hPa (T500) This gives an estimate of
the temperature lapse rate. We use ERA-Interim data as
observations and for a second estimate use the NCEP
reanalysis.

Relative humidity at 500 hPa (q500) This provides a mea-
sure of mid-troposphere water vapour, which is an im-
portant greenhouse gas. We also estimate values from
ERA-Interim and use the NCEP reanalysis as a second
estimate.

See Table 2 for target values used in all our studies.
We need to estimate a total covariance matrix (C) and a co-

variance matrix for internal variability (Ci). We estimated ob-
servational uncertainty for each regional OLR and RSR from
the fractional uncertainties in Loeb et al. (2009). For other
datasets we estimated the standard deviation (SD) as the dif-
ference between two different datasets. We assumed no cor-
relation in observational error, so CO is diagonal. The diag-
onal values of CO were significantly larger than the equiva-

lent values of Ci (internal variability), so observational error
is the dominant term in the total error-covariance matrix (C).

We also applied a constraint (see Sect. 2.6) in order to gen-
erate atmospheric models that had a net radiative flux close to
the observed value which double-counts the OLR and RSR
observations (or at least their sum). After some experimen-
tation we settled on a value for µ of 0.01, corresponding to
an observational error of 0.015 Wm−1, close to the observa-
tional error of about 0.2 Wm−1 that Tett et al. (2013c) esti-
mated from the difference of observational datasets.

When producing the datasets for the 7-parameter cases we
made two errors in the computation of C. First we computed
it as Ci+CO and secondly we mis-specified the three pre-
cipitation components. Given the focus of our work was on
optimisation rather then the exact definition of the cost func-
tion, we do not believe these errors are very significant.

2.7 Evaluation

We evaluate the inverse approach in several different ways.
For the algorithm we consider the expected number of it-
erations, evaluations and final error, following the approach
of T13 of using a strategy of repeatedly running the Gauss–
Newton algorithm after it failed until convergence. This gives
the expected number of model evaluations (E):

E = Ec+Ef
f

1− f
, (6)

where Ec, Ef and f are the mean number of evaluations (or
simulations) for studies that were comparable to, or better
than, the standard configurations, the mean number of eval-
uations for studies that failed and the fraction that failed, re-
spectively. The expected number of iterations is computed
similarly except that iterations rather than simulations are
used.

The line-search component of the algorithm has a selection
effect as it takes the parameter combination that produced
the smallest cost function. Due to chaos in the model which
leads to pseudo-random noise, this will lead to a selection ef-
fect as the smallest cost-function values may have arisen by
chance. To avoid this effect and to examine the properties of
the resulting models, we take the final optimised parameter
sets and for each one run an ensemble of two simulations
from December 1998 to April 2010. Each simulation was
started from the same initial state but with a different small
perturbation. We compare results of these independent sim-
ulations for 2000–2005 with the standard configuration and
each other and look for evidence of equifinality (Beven and
Freer, 2001), in which different parameter combinations pro-
duce models that appear similar. For greater out-of-sample
comparison we compare differences between the 2005–2010
and 2000–2005 periods from the observations we use and the
standard and independent optimised simulations.

For the HadAM3 cases we also carry out 20-year simula-
tions of HadCM3 (Gordon et al., 2000) using the converged
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Table 2. Target values for optimisation cases. Each row corresponds to a region. The target value for net flux into the Earth is 0.5 Wm−2.

OLR (Wm−2) RSR (Wm−2) LAT (K) LP (mm day−1) 1 SLP (hPa) T500 (K) q500 (%)

NHX 223.0 102.3 275.8 1.44 3.31 251.4 53.4
Tropics 259.9 94.2 297.6 3.12 1.79 266.7 33.9
SHX 216.1 108.1 287.4 1.93 – 248.9 52.7

Table 3. Normalised initial parameters for 7- and 14-parameter, HadAM3P, and trial cases. All parameters are normalised by their expert-
based ranges with 0 (1) being the minimum (maximum) values. Values not shown use the default HadAM3 (or HadAM3P) values. Parameter
names are shortened to their first three characters. Initial parameters from the two 14-parameter random Gauss–Newton algorithms are not
shown as they match the equivalent values from the standard Gauss–Newton algorithms. Similarly only the HadAM3P13r6 and trial7#diag
cases are shown, as other HadAM3P and trial7 cases use the same values.

VF1 RHC ICE ENT EAC CT CW DYN KAY ASY CHA G0 Z0F ALP

HadAM3–7#03 0 1 1 0 1 1 0 − − − − − − −

HadAM3–7#04 1 1 1 1 0 1 0 − − − − − − −

HadAM3–7#05 1 0 1 0 0 1 1 − − − − − − −

HadAM3–7#06 1 0 0 0 0 0 0 − − − − − − −

HadAM3–7#07 0 0 1 0 0 0 0 − − − − − − −

HadAM3–7#08 1 0 0 0 1 1 0 − − − − − − −

HadAM3–7#09 0 0 0 1 1 1 0 − − − − − − −

HadAM3–7#10 1 0 0 1 1 0 1 − − − − − − −

HadAM3–7#11 1 1 1 0 0 1 1 − − − − − − −

HadAM3–7#12 0 1 1 1 0 0 0 − − − − − − −

HadAM3-14#1 1 0 0 1 0 1 1 1 1 0 1 0 0 0
HadAM3-14#2 0 0 1 0 1 1 0 0 0 1 0 0 0 0
HadAM3-14#3 0 1 0 0 1 0 1 0 0 0 1 1 1 1
HadAM3-14#4 1 0 1 1 1 1 0 0 0 0 1 1 0 1
HadAM3-14#5 0 0 1 0 0 0 0 0 0 0 1 0 0 1
HadAM3P-13r6 0.33 0.33 0.33 0.29 0 0.05 0.05 − 1 0.22 0.20 0.33 0.23 0
trial7#diag 0 1 1 0 0 0.14 0.05 − − − − − − −

parameter sets. We compare results from the last 10 years
of the 20-year simulation with the standard control simula-
tion of HadCM3, all started from the same initial state corre-
sponding to about 5000 years of spinup.

2.8 Parameter covariance

Assuming that the parameter perturbations are small, we can
compute the covariance matrix for the parameter error (Cp).
We do this following Nocedal and Wright (2006) by a linear
transformation of the total observational covariance matrix:

Cp = PCPT, (7)

where P is a transformation matrix = (JTC−1J)−1JTC−1.
From these parameter error covariance matrices we can

compute a distance between two parameter sets (pi and pj )
as follows:

d2
ij = (pi −pj )(Cpi

+Cpj
)−1(pi −pj )

T, (8)

where Cpi
and Cpj

are the parameter error covariance ma-
trices for sets i and j , respectively; d2

ij is roughly χ2 dis-

tributed, though given the crudeness of our observational er-
ror estimates we err on the conservative side. So we claim
that if d2

ij > 100 then the parameter sets are different.

3 Results

In this section we present our results. We tried several dif-
ferent algorithms using the HadAM3 and HadAM3P atmo-
spheric models. We first present numerical results on the con-
vergence behaviour of those algorithms, then compare some
aspects of the climatologies of the modified models with the
standard mode. Finally, we report on results of variants of
the coupled atmosphere–ocean HadCM3 model that uses the
optimal parameter sets from the HadAM3 test cases.

3.1 Atmospheric model convergence

We carried out several case studies. The first was one in
which we perturbed seven parameters using the Gauss–
Newton algorithm. Using 14 parameters, we tested the
Gauss–Newton algorithm and two random parameter vari-
ants. Finally we tested three algorithms using the HadAM3P
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Figure 1. Minimum cost function for line-search component of
algorithm (y axis) vs. iteration number (x axis) for HadAM3 7-
parameter (a), HadAM3 14-parameter (b) and HadAM3P (c) op-
timisations. Iteration 0 is the cost function for the initial param-
eter values. The y axis uses a logarithmic scale. In each subplot
the dashed black line shows the cost function for the standard
model while the dotted lines show the ±20 % ranges on this, show-
ing perturbed models comparable with the standard configuration.
Coloured lines and symbols use the key shown in each subplot. For
plots (b, c) labels with rPrand had Prand random parameters per-
turbed on each iteration.

model configuration. In no case did the algorithm terminate
because the cost function was small. Given the crudeness of
the observational covariance used in our cost function, we do
not draw any inference from this. That would require a much
better estimate of observational error than we made. Instead
we take the pragmatic view that a perturbed model is com-
parable to (substantially better than) the standard configura-
tion, in the simulation of the observations we used, if the
cost function is less than 120 (80) % of standard models’

Table 4. Count of unique α in 7-parameter HadAM3 optimisations.

α 0.01 0.10 0.30 0.70 1.00

Count 11 12 9 9 17

cost function. We stress that this is a subjective choice that
we made.

3.1.1 HadAM3 7-parameter case

For the 7-parameter (HadAM3–7) trials, we generated
12 random initial parameter choices by selecting values from
their extreme limits (Table 3). For this algorithm we tried
out five line-search evaluations at scalings of 1.0, 0.7, 0.3,
0.1 and 0.01 of the search vector and required F(p) to re-
duce to keep iterating (i.e. c = 0). Two cases failed in the
first iteration with a model error, with the remaining 10 cases
terminated when they failed to make progress. All those
10 had cost values similar to the default model’s value of
5.0 (Fig. 1a). These cases took between 3 and 12 iterations,
requiring 37 to 145 model evaluations, to terminate. As in
our earlier study (T13) the cost function reduces rapidly over
the first one to two iterations with slow reduction after that
(Fig. 1a).

We carried out five line searches partially to test if any of
the scalings on the search vector were preferred. We found no
strongly preferred scaling value (Table 4). In the rest of the
paper we use scalings of 1, 0.7 and 0.3 on the search vector.

3.1.2 HadAM3 14-parameter cases

We trialled three related algorithms to perturb 14 param-
eters. The algorithms we tested were the standard Gauss–
Newton algorithm (HadAM3-14) and two variants with ran-
dom perturbations. In one we perturbed six random param-
eters (HadAM3-14r6) and the other eight (HadAM3-14r8).
For each algorithm we did five studies with each one be-
ing started from the same random extreme parameter choices
(Table 3). As described above we corrected the error in
the computation of C and adjusted the parameter perturba-
tions (Table 1). For the random variants we required that the
cost function reduce by 0.2 to continue iterating. Many of
the simulations failed due to being marginally unstable, in
which case we perturbed parameters by about 1 part in 1000
and reran that case. An operational system would restart the
model with a small perturbation to a previous state and run
past the failure point.

Unlike the HadAM3–7 cases the HadAM3-14 cases did
not all produce cost function values comparable to the default
model (Fig. 1b), with three cases failing and two succeeding.
The successful cases took between four (74) and six (108) it-
erations(evaluations), with the unsuccessful cases taking one
to four iterations. Neither of the successful cases are obvi-
ously better than the standard configuration.

Geosci. Model Dev., 10, 3567–3589, 2017 www.geosci-model-dev.net/10/3567/2017/



S. F. B. Tett et al.: Calibrating climate models 3575

Next we turn to the HadAM3-14r6 cases. This algorithm
performed well, with four out the five cases succeeding tak-
ing between 6 (60) and 9 (87) iterations (evaluations). Three
of the cases had cost functions less than the standard con-
figuration but not substantially so (Fig. 1b). In contrast the
HadAM3-14r8 algorithm performs poorly, with only one
case having a cost function comparable with the standard
configuration. This case took 5 (61) iterations (evaluations)
to terminate. The unsuccessful cases took four iterations to
terminate.

3.1.3 HadAM3P cases

The HadAM3P cases differ from the standard configuration
not only in increased resolution but in the addition of a cloud
anvil parametrisation and the indirect effects of aerosols on
cloud optical properties (Massey et al., 2015). One approach
to model development would be to take the parameters from
the previous model version and then re-calibrate the pa-
rameters using inverse methods with the new model. We
tested three algorithms with all cases starting from the de-
fault HadAM3 parameters. Our comparison case is the de-
fault HadAM3P configuration.

Unless stated otherwise all studies used the same choices
of covariance matrices, observations, parameter perturba-
tions and other choices as the HadAM3 14-parameter studies
(Table 1). So, for example, at each iteration the cost function
would need to reduce by 0.2 for the algorithm to continue.
The three algorithms were as follows:

HadAM3P-13r6 The diffusion parameter was kept at its de-
fault HadAM3P values but all remaining 13 parameters
were changed, with 6 being chosen, at random, in each
iteration.

HadAM3P-7 Here the same parameters as used in the
HadAM3 seven-parameter cases were perturbed and ter-
mination occurred immediately if the cost function did
not decrease by 0.2.

HadAM3P-7r3 As HadAM3P13r6 but with, at each itera-
tion, three parameters, of the seven used in the seven-
parameter HadAM3 case, perturbed at random.

The standard configuration of HadAM3P (Fig. 1c) is
substantially worse, using our metric, than the standard
HadAM3 configuration (Fig. 1b). Starting from the stan-
dard parameters the cost function reduces less than for
the HadAM3 cases which all started from extreme param-
eter choices. The HadAM3P-7 and HadAM3P-7r3 cases
produced configurations comparable with the standard
HadAM3P model. The HadAM3P-7r3 study took 5 iterations
with 31 evaluations. The HadAM3–7 case took 3 iterations
also needing 31 evaluations of the model. The HadAM3P-
13r6 case failed to converge and needed 3 iterations to fail.

3.1.4 Algorithm performance

For each algorithm we tested using HadAM3 we charac-
terised its performance using Eq. (6). For each of the three
HadAM3P algorithms we only carried out one case, so algo-
rithm performance is evaluated from that single case.

As discussed earlier there is a potential selection effect
in that from the line-search evaluations we chose the one
case with minimum error. To examine the effect of this we
compared the average cost from the optimised cases with
the independent runs and with the cost values for the stan-
dard cases. Note that the independent and optimised cases
have identical parameter sets but the 14- and 7-parameter
algorithms use slightly different cost functions. The mean
cost from the independent simulations is, except for the
HadAM3P-7r3 algorithm, larger than the mean cost for the
optimised simulations (Table 5). The mean difference be-
tween the independent and best optimisation depends on the
algorithm but ranges from 0.2 to 0.6 (5 to 15 %) of the cost
function for the standard configurations.

The expected number of iterations increases from the
HadAM3–7 to HadAM3-14 algorithms but does not dou-
ble. Our earlier work (T13) found that the median number of
iterations for optimisation using two observations and four
parameters required between three and five iterations. This
suggests that the cost of increasing the number of parame-
ters is not excessive, with the iteration count increasing less
than P (the number of parameters). As each iteration needs
P model evaluations then the total number of iterations likely
increases between P and P 2.

The six-random-parameter (HadAM3-14r6) algorithm
worked well with an average cost function slightly better than
the standard configuration (Table 5). Though requiring 60 %
more iterations than the seven-parameter case, it only has an
additional 20 % more expected evaluations for twice as many
parameters. Random selection of 6 parameters has many less
expected evaluations than perturbing all 14 parameters on
each iteration. However, perturbing 8 parameters at random
performs very much worse than perturbing 6 at random or
all 14 parameters. We will explore possible reasons for this
later. For the HadAM3P cases the HadAM3P-13r6 algorithm
failed while both the HadAM3P-7r3 and HadAM3P-7 algo-
rithms succeeded.

To summarise this subsection we find that a relatively sim-
ple Gauss–Newton algorithm works well to automatically
calibrate parameters in an atmospheric model. The algorithm
did not reduce the error to zero and so terminated when it
stopped improving. We found that the expected number of it-
erations increases, though less than linearly, as we increased
the number of parameters. Random selection of 6 out of 14
parameters worked well though random selection of 8 from
14 worked poorly. We were also able to reduce the cost func-
tion of the HadAM3P model relative to the standard config-
uration of that model.
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3.2 Atmospheric model evaluation

We now investigate the behaviour of the optimised HadAM3
and HadAM3P models by first focusing on the optimal pa-
rameters, then examining the simulation of the target obser-
vations in the independent simulations before comparing the
model fields of key variables with observations. We aim to
test for equifinality (Beven and Freer, 2001), where different
parameter sets can lead to very similar outputs. This could
arise from multiple minima or a single broad flat minima.

We normalise the parameter values by their expert-based
plausible ranges, with 0 being the minimum and 1 the max-
imum. We find for both the 7- and 14-parameter HadAM3
case studies that many of the parameters have a broad range
of optimal values (Fig. 2). For each parameter we test if
the distribution of optimal values is significantly differ-
ent from a 0–1 uniform distribution using a Kolmogorov–
Smirnov test. For 3 parameters (RHCRIT, ENTCOEFF and
CW_LAND), in the 7-parameter case, we can reject this null
hypothesis. For the 14-parameter cases we can reject the null
hypothesis of a uniform distribution for the same 3 param-
eters and, in addition, an additional 5 parameters have dis-
tributions inconsistent with a uniform distribution. These re-
sults suggest that minimising the cost function does provide
a weak constraint on some individual parameters.

Using Eqs. (7) and (8) we can test if the optimised 7-
parameter values are within parameter error of one another.
We compute, for each optimised parameter set, the Jacobian
from the final iteration and use this to compute squared dis-
tances between all 10 parameter sets. We find that the mini-
mum value of this is 1.7× 1010. It may be that the Jacobian
has significant noise contamination, so we repeat the calcu-
lations with the mean parameter error covariance and Jaco-
bian. We find minimum distances squared of 109 and 3×108,
respectively. This suggests that the 10 parameter sets found
through optimisation are all significantly different from one
another.

We now consider how the independent simulations be-
have for the successfully optimised HadAM3–7- and -14,
and HadAM3P parameter sets. These, to remind the reader,
are two simulations run with the same parameter set as the
successful optimised case. All model observation differences
are normalised by the diagonal elements of the covariance
matrix which is dominated by our crude estimate of observa-
tional error.

For the HadAM3 7- and 14-parameter cases the optimised
simulations are, for many target observations, similar to the
standard configuration (Fig. 3) with little scatter across the
best cases. The 14-parameter cases have larger scatter than
the 7-parameter cases, suggesting the additional parameters
lead to more ways to produce an optimised model. The me-
dians are generally, though not always, a small improvement
(closer to zero) on the standard cases. However, for the op-
timised and standard parameter sets several simulated obser-
vations are outside the ±2σ uncertainty range, suggesting

that further model improvement would need better represen-
tation of processes either through new parametrisations or
higher resolution. Reflected shortwave radiation biases show
the greatest variation across the optimised cases with North-
ern Hemisphere extra-tropical land air temperature and trop-
ical RH at 500 hPa, also showing large variation across the
optimised cases.

We now turn to the two optimised HadAM3P cases. These
configurations have, like the standard HadAM3P, smaller bi-
ases in land air temperature across the three large regions we
consider. This is particularly so in the northern hemispheric
extra-tropics, suggesting that enhanced resolution improves
this particular observation. However, this model has a much
worse simulation of precipitation in the tropics, even with
tuning, than does the HadAM3 case. Optimising the param-
eters does reduce biases in the HadAM3P model but not
enough to support the claim that is better than its lower-
resolution and computationally cheaper HadAM3 cousin.

Comparison of the optimised cases with the initial extreme
random parameter choices gives a sense of how important
variation in the parameters is for those observational biases.
One thing that stands out is that large-scale biases in the trop-
ics (Fig. 4) are sensitive to parameter values. In contrast bi-
ases in extra-tropical relative humidity at 500 hPa are insensi-
tive to changes in parameter values, suggesting this is driven
by the large-scale resolved dynamics rather than parameteri-
sation. In the extra-tropics biases in RSR and OLR are the
most sensitive to parameter variation, with temperature at
500 hPa, MSLP and northern hemispheric precipitation be-
ing least sensitive. That would suggest that the behaviour of
these latter variables are mainly driven by the large-scale re-
solved dynamics rather than the parametrisations.

We now examine how the bias changes when we consider
a period outside the period we used to calibrate the model.
Here we compare changes in bias between March 2005–
February 2010 and March 2000–February 2005. We nor-
malise by the expected internal variability. For most observa-
tions and optimised configurations the bias does not signifi-
cantly change between the two periods (Fig. 5), with the stan-
dard configurations and optimised cases behaving similarly.
However, the extra-tropical relative humidity shows signifi-
cant changes in bias between the two periods, with all simu-
lations showing a significant increase in bias. As all models
behave similarly this suggests either a lack of homogenisa-
tion in the ERA-Interim reanalysis or some systematic bias
in all models.

So far we have focused on large-scale biases. We use Tay-
lor diagrams (Taylor, 2001) to examine how fields from the
independent simulations compare with the observations. We
focus on the same fields and observational datasets as those
used to compute the biases described above. Taylor diagrams
summarise field similarity by computing field correlations
and centred field SDs. We use the normalised variant where
the centred field SDs are scaled by the equivalent values from
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Figure 2. Normalised parameter values (y axis) for default HadAM3 (black diamond), optimised 7-parameter (blue) and 14-parameter (red)
cases. The x axis shows the parameter. Shown are the 25–75 % values (boxes), the median values (black horizontal line) and the ranges
(vertical lines). Pale hatching shows where the null hypothesis that the optimised parameters are uniformly distributed in the range 0–1 is
not rejected at the 10 % value using a Kolmogorov–Smirnov test. Where this null hypothesis is rejected the inter-quartile boxes are edged in
black.

Table 5. Algorithm summary. For each algorithm is shown the expected number of iterations, evaluations, mean cost from final optimisation
simulations (F ), mean cost from independent atmospheric simulations (Fi), mean cost from standard configuration (Fs), number of cases
run (N ), number that converged (NAtmos) and number that were “good” coupled models (NControl). The algorithm name shows the model,
number of parameters varied, and, if the random block-coordinate variant is used, then rPrand denotes that Prand parameters, selected at
random on each iteration, were perturbed.

Iterations Evaluations F FI FS N NAtmos NControl

HadAM3–7 5.60 68.20 4.77 4.97 5 10 10 8
HadAM3-14 8 138.50 4.86 5.21 4.68 5 2 1
HadAM3-14r6 9 82.25 4.18 4.64 4.68 5 4 3
HadAM3-14r8 21 236 4.90 5.46 4.68 5 1 1
HadAM3P-13r6 – – – – 7.57 1 0 0
HadAM3P-7 3 31 7.52 7.64 7.57 1 1 0
HadAM3P-7r3 5 31 6.17 6.15 7.57 1 1 0

the observed field we use. This allows us to compare fields
with different units.

We find that for land air temperature, 500 hPa temperature
and outgoing long wave radiation there is little variation in
the location on the Taylor diagram (Fig. 6a and b). For SLP
patterns the scatter does not appear much greater than would
be expected by chance for both HadAM3 and HadAM3P.
Precipitation is generally slightly worse for the HadAM3 op-
timised cases than the standard configuration with spread
to smaller correlations and larger RMS differences. For the
HadAM3P configuration the optimisation slightly improves
the spatial patterns of precipitation (Fig. 6a). For RSR, pat-
tern correlations and centred RMS differences show the

largest spread across the variables we consider with some
of the seven-parameter optimised cases an improvement on
the standard configuration. For HadAM3P the centred RSR
patterns are worse than the standard HadAM3P case. The
optimised HadAM3 cases for Relative Humidity at 500 hPa
scatter around the standard cases with some better and some
worse, though as with other variables the differences are
small. Overall, the HadAM3 optimised and standard values
are very similar.

3.3 Coupled model results

To test if calibrating atmospheric parameters results in rea-
sonable coupled models, we took the calibrated parameters
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(a) NHX normalised difference from observations

(b) TROPICS normalised difference from observations

(c) SHX normalised difference from observations

Figure 3. Normalised simulated minus observed distributions
(y axis) for 7- (blue) and 14-parameter (red) cases. Top panel
(a) is Northern Hemisphere extra-tropics, middle (b) tropics and
lower Southern Hemisphere extra-tropics. Boxes and whiskers as in
Fig. 2, with observations on x axis. Also shown are the optimised
HadAM3P (light brown) cases and the standard HadAM3 (black di-
amonds) and HadAM3P (grey diamonds) values. All differences are
normalised by the square root of the diagonal elements of C. The
dashed lines show ±2. The scale is linear between 5 and −5 and
logarithmic outside that range.

from all successful 7- and 14-parameter cases in a set of con-
trol simulations of HadCM3. The surface temperature adjusts
in the first decade (Fig. 7a), though the deep ocean is still ad-
justing during the 20-year simulations (Fig. 7b). Williamson
et al. (2013) estimated that pre-industrial temperatures were
13.6 ◦C, with a robust error estimate of ±0.5 ◦C. We claim
that a coupled model is “good” if the global and time average
of its surface air temperature for years 10–19 is consistent
with that estimate. The standard configuration is, just, within
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(a) NHX normalised difference from observations

(b) TROPICS normalised difference from observations

(c) SHX normalised difference from observations

Figure 4. As in Fig. 3 except shown are initial extreme random
parameter choices for 7- (red) and 14-parameter (blue) cases.

this range and as noted by Gordon et al. (2000) HadCM3 is
somewhat too cool.

For the HadAM3–7 cases we find that eight of the pa-
rameter combinations produce temperatures within the target
range (Table 5). For the HadAM3-14 cases five out of seven
parameter combinations give temperatures within the target
range. For all four of the cases that failed to produce coupled
models, this was because they are too cold rather than too
warm. As we start from the standard configuration we may
be more able, in the 20-year simulations we did, to identify
cooling rather than warming biases. Though all atmospheric
models were constrained to be in rough energy balance, the
individual fluxes are less constrained. For three of the cases
that cooled, RSR rapidly increases over the first 5 years with
OLR decreasing over the same period. However, the RSR
increases by more than the OLR decreases, so the coupled
model is out of balance and cools (Fig. 7). This may be due
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(a) NHX normalised difference from observations
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Figure 5. As in Fig. 3 except shown are differences between sim-
ulated, from 2-member ensemble and observed change between
2005–2010 and 2000–2005. All values are standardised by 3σ
internal variability computed from the 100-member 2000–2005
HadAM3 ensemble.

to negative cloud feedbacks in these model configurations.
The remaining coupled models show a range of OLR and
RSR values but are generally stable.

We now examine if there is any relationship between prop-
erties in the atmospheric model simulation and the coupled
model simulation. Above we showed that RSR changes were
somewhat larger than OLR changes and, across the optimised
parameter sets, RSR variability was larger, relative to its un-
certainty, than OLR variability (Fig. 3). Thus, we focus on
relationships between global-average RSR and various prop-
erties of the coupled models. We examine the 10-year global
average for 2001–2010 from the independent atmospheric
simulations and years 10–19 from the control simulations.

For surface air temperature and volume average ocean
temperature, there is a relationship between atmospheric

model RSR and coupled model values, with an increase in
atmospheric RSR leading to cooling in the coupled model
(Fig. 8), though with some scatter around this general rela-
tionship. Uncertainties on the regression are small. We also
find an inverse relationship between the strength of the At-
lantic Meridional Overturning Circulation (AMOC) in the
control simulation and the atmospheric RSR, likely because
cold models have a stronger AMOC. Similar results hold true
for northern hemispheric snow area and sea ice area. For
land precipitation the scatter is too large to conclude there is
a strong linear relationship. We repeated this analysis using
OLR from the atmospheric simulations and found similar,
though opposite signed and weaker, results. This likely arises
from the constraint on the net flux, meaning that enhanced
RSR must be balanced by reduced OLR. Note that the range
of atmospheric RSR values is within the estimated uncer-
tainty estimate for RSR (See Fig. 1 of T13) and so all cases
(after running the atmospheric optimisation) are “good”.

4 Discussion

Our results suggest that calibrating the atmospheric compo-
nent of a coupled model to multiple observations is computa-
tionally feasible, with the resulting coupled models behaving
well much, but not all, of the time. However, we found that
calibration of 14 parameters was less successful than that of 7
parameters. We now investigate potential reasons for this by
looking at the Jacobian matrices from all 7- and non-random
14-parameter studies. We also examine the Jacobian of the
HadAM3P 7-parameter cases to see if changing resolution
affects the Jacobian, which might explain the failure of the
HadAM3P-13r6 case.

We computed Jacobians for each iteration with the pa-
rameters normalised by their range so that 0 (1) is the min-
imum (maximum) value and normalised each bias by its
simulated internal variability. To see which parameters have
the strongest effect on simulated observations, we compute
the mean, over all iterations, of the absolute Jacobian val-
ues. We compare this to internal variability by comparison
with a folded normal distribution (Leone et al., 1961) using
a 90 % critical value. To derive the parameters for this dis-
tribution, we assume that the underlying normal distribution
arises from the difference of two random distributions with
unit variance and zero mean (σ =

√
2,µ= 0).

We see that in the 7-parameter cases (Fig. 9a) that all
parameters, except ICE_SIZE, have an significant impact
on net flux and the cost function (F ). ICE_SIZE affects
both OLR and RSR outside the northern hemispheric extra-
tropics, but changes in OLR and RSR must offset one an-
other, leading to a small impact on net flux and on F . All
parameters affect RSR in the tropics and almost all affect
it in the extra-tropics. In contrast, tropical OLR is signifi-
cantly affected by only three parameters (ICE_SIZE, VF1
and ENTCOEFF) with the remaining four parameters having
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little impact on OLR. Northern hemispheric extra-tropical
land precipitation and SLP and tropical SLP are not signifi-
cantly affected by any of the parameter perturbations. In the
Southern Hemisphere, land temperature is only weakly af-
fected by changes in VF1, while precipitation is not signif-

icantly impacted. These likely reflect the small land area in
the Southern Hemisphere and the resulting increase in in-
ternal variability. In terms of relative importance we see that
changes in the ENTCOEFF parameter has the most impact on
the cost function with RSR being most affected by parame-
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Figure 8. Scatter plot (symbols as in Fig. 1; colours in key) of optimal minus standard configurations for 2000–2010 mean RSR from
atmospheric-only simulations against the coupled control mean for years 10–19 of 1.5 m temperature (a), volume average ocean tempera-
ture (b), coupled Atlantic Meridional Overturning Circulation (c), Northern Hemisphere area where snow mass is > 6 kgm2 (d), Northern
Hemisphere ice area (e) and land precipitation (f). Black lines and grey regions show best-fit regression line and 90 % confidence interval on
the regression lines. Vertical grey region in subplot (a) show the difference between pre-industrial global-average air temperatures and the
standard configuration; configurations in this region are “good”.

ter changes. In contrast we see that ICE_SIZE has the least
impact on the cost function and extra-tropical land precipi-
tation and pressure gradients, being unaffected by parameter
perturbations.

Examining the 14-parameter Jacobians (Fig. 9b), we see
that 4 of the additional 7 parameters have a significant im-
pact on the cost function. However, of these only DYNDIFF
has a more than small impact on the cost function. For these
six parameters, that generated small or insignificant perturba-
tions to the cost function, our preliminary tuning (see above)
had led to parameter perturbations that were large relative
to the range (Table 1). As with the seven-parameter cases,
ENTCOEFF has the largest impact, with RHCRIT the second
most important. However, from this larger set of parameters
all simulated observations, except Southern Hemisphere land
temperature and precipitation, are affected. The CHARNOCK,
ICE_SIZE and ALPHAM parameters have no significant im-
pact on the cost function. Further, the CHARNOCK parameter
was perturbed by about one-third of its range, meaning there
is little freedom to further perturb it.

The mean of the absolute Jacobians between the 14- and
7-parameter cases shows some differences in detail (compare
Fig. 9a with b) suggesting that the Jacobians are, as expected,
not constant. More detailed examination of this (not shown)
suggests that within an individual study, after the first itera-

tion, the Jacobians are fairly stable but within different parts
of parameter space the Jacobians differ even if the final states
appear quite similar.

Looking at the absolute Jacobians from the HadAM3–
7 computations (Fig. 9c) we see differences from the two
HadAM3 results, with VF1 and RHCRIT no longer having
a significant impact on the cost function. This likely arises
from the smaller impacts on the net flux than in HadAM3,
which has, in our constrained optimisation, a large effect on
the cost function. In contrast the effect of ENTCOEFF and
CT on the cost function is much larger in HadAM3P than it
is in HadAM3.

Regarding the poor performance of the HadAM3-14r8 al-
gorithm, it is unclear at this stage precisely what has caused
it, given that HadAM3-14r6 behaves very well. We specu-
late that this may be caused by noise contamination, and that
the fewer parameters we perturb in the algorithm, the smaller
the chance of seeing the effect of noise. Alternatively there
could be instability in the randomised algorithmic variant,
again due to noise. We note that if the cost function is smooth
and accurate derivatives were available, one can easily ob-
serve improving rates of convergence for randomised block
Gauss–Newton variants the more parameters one chooses in
the block (Eizenberg, 2015).
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As part of the development of our approach we carried out
four trial cases where we started from parameter sets (Ta-
ble 3) with the largest climate sensitivities. We present re-
sults from them to explore the sensitivity of our results to
changes in the algorithm and cost function. We also carried
out a case parallel to the HadAM3–7 cases where we started
the optimisation with the standard HadAM3 parameters and
used the correct cost function calculation (as done for the 14-
parameter cases). The five cases are as follows:

trial7#diag No differences except for starting parameter
values.

trial7#cons Reduce µ from 0.01 to 0.001.

trail7#17obs Use α values of 1, 0.7 and 0.3, increase µ
to 1, remove LAT from observations used, use a non-
diagonal covariance matrix for observational error, and
so have a very different cost function.

trial7#15m Run model for 15 months, compare model and
observations from March 2000 to February 2001 and
scale internal covariance matrix by 5.

stdopt Start optimisation with standard HadAM3 parame-
ters and use 14-parameter cost function.
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All trials (Fig. 10) converged to states with cost func-
tions similar, though slightly larger, than the reference model.
Independent simulations have cost functions slightly larger
than the cases from the optimisation, with the difference be-
ing largest for trial7#15m. However, all cases produced mod-
els that cooled and had temperatures outside the range of
acceptable coupled models. This suggests that the Gauss–
Newton algorithm converges for a range of cost functions
but not necessarily to a case that produces an acceptable cou-
pled model. Starting from the default parameter set, we found
that the algorithm produced a model with a slightly improved
cost function, taking four iterations before terminating. The
resulting coupled model is just outside the acceptable range.

Zhang et al. (2015) reported successful optimisation of
the IAP LASG version 2 atmospheric model. They focused
on only seven parameters and, unlike us, used a root-mean-
square error between simulation and observations normalised
by the SD of the standard simulation. They considered
a broader range of variables than we did, though they used the
older ERBE data rather than the recent CERES data. Unlike
us they screened out three of the parameters using the Morris
(1991) method. Starting from the default parameter set, they
improved their skill score by a small amount, although unlike
us they did not test if this was a selection effect. Their best
algorithm took about 60 iterations, broadly consistent with
our expected number of about 70 iterations.

Various other studies have attempted to produce stable
coupled models. Yamazaki et al. (2013) used emulation to
find parameter sets that would be expected to produce, in
HadCM3, RSR and OLR, values that, relative to the standard
configuration of HadCM3, are within the uncertainty limit
of Tett et al. (2013c). They found global average tempera-
tures of 289.9± 3.6 K, which is a range larger than that of
the CMIP3 and CMIP5 ensembles. The uncertainty estimate
used in their study includes several sources of uncertainty in
addition to observational error. Restricting their analysis to
model configurations that have RSR and OLR values within
20 % of that uncertainty range, which has a net TOA flux
range of ±1.1 Wm−2, they found those models had a broad
range of climate sensitivities and a global mean temperature
range of 286–291 K (Fig. 5 of Yamazaki et al., 2013).

Irvine et al. (2013) used a Latin hypercube design to
produce 200 versions of the coupled atmosphere–ocean
HadCM3 model, with 8 parameters being perturbed. They
ran each version for 20 years, estimated the final equilib-
rium temperature and discarded cases which were outside
the range 13.6± 2 ◦C. From their 200 initial versions they
found 20 cases that met that criteria. How does the compu-
tational cost of this compare with our approach of perturb-
ing the atmospheric model then coupling the perturbed at-
mosphere to the ocean model? The nearest cases we have
are the HadAM3–7 cases which need an expected 68 evalua-
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tions (Table 5), each of 6.25 years for a total of 425 years of
atmospheric simulation. As the atmospheric model is about
half the cost of the coupled model, this is equivalent to about
210 years of coupled simulation. We then need to carry out
10/8 coupled model simulations, each of 20 years, to get
one that is within observational uncertainty for a grand to-
tal of 225 coupled-model years. This is approximately the
same computational resource that Irvine et al. (2013) need
but produces coupled models in better agreement with the
pre-industrial temperature estimates.

5 Conclusions

Using multi-annual, large-spatial-scale observations, we
have automatically calibrated HadAM3 and HadAM3P.
Much of the time we ended up with models that have
similar cost functions to the standard configuration, or for
HadAM3P, better than the standard configuration. We used
two variants of the Gauss–Newton algorithm. One in which
all parameters were varied and a second random block-
coordinate variant in which a sub-set of the parameters, cho-
sen at random on each iteration, were varied. For the studies
in which we perturbed 7 parameters in HadAM3 we found
that all cases converged, taking an average number of 68
evaluations for a total of 425 simulated years.

For the 14-parameter cases we used both the standard
Gauss–Newton algorithm and a variant where a random
number of parameters were selected. We tried two random
cases. One in which 6 parameters were perturbed and an
another in which 8 were perturbed. For each algorithm five
studies starting from the same initial parameter choices were
carried out. We find large differences in the performance of
these algorithms, with the 6 random perturbation algorithm
performing best, the 8 random perturbation cases worst and
the standard Gauss–Newton algorithm performing interme-
diately. The 6-random case needs an expected number of 82
evaluations (or 512 simulated years) and, on average, pro-
duces models that are slightly better than the standard config-
uration. We found considerable sensitivity to the number of
random parameters in the total number of iterations needed to
produce acceptable models. This suggests that further work
is needed to determine how many parameters should be per-
turbed.

As discussed above, the poor performance on the 14-
parameter case seems to be due to some of the parameter
perturbations having only a small impact on the cost func-
tion, leading to noise contamination of the line-search vector
and causing the algorithm to head in random directions. The
poor performance of the random variant that perturbed 8 out
of the 14 parameters at random may also be due to noise con-
tamination arising again from unimportant parameters being
included, similarly to the full 14-parameter case, or causing
some kind of algorithm instability. We recall that Eizenberg
(2015) illustrated numerically that for smooth problems with

available derivatives, the randomised variants’ rates of con-
vergence improve continuously the more parameters are in-
cluded in the blocks being perturbed.

We also found that several different parameter combina-
tions led to models that were broadly comparable with the
standard configurations. This suggests that HadAM3 exhibits
equifinality (Beven and Freer, 2001), with different parame-
ter sets leading to models that appear similar. Further, many,
though not all, of the resulting coupled models are consistent
with pre-industrial temperatures, without any need for flux
correction. This is a significant advance on previous work
using perturbed physics models, which have generally had to
flux-correct the resulting models.

If these techniques could be successfully applied to state-
of-the-art models it would be practical to do the following:

– generate perturbed models to test if an observationally
constrained ensemble has a narrow range of climate
feedbacks;

– add new parametrisations of processes to a model then
recalibrate the model;

– explore the effect of changing resolution without large
changes in the simulation of large-scale climate.

Though our algorithm works reasonably well for a mod-
est number of parameters, it would benefit from a better un-
derstanding of the effect of noise on it. Both the line-search
through a selection effect and the computation of the Jaco-
bian/Hermitian matrices are affected by noise. A better algo-
rithm would identify parameters that did not appear to impact
the cost function and remove them from the analysis, as done
by Zhang et al. (2015). Another potential approach might be
to update the components of the Jacobian from the previous
iterations values depending on the relative amount of noise
contamination in them. We hope that our derivative-based ex-
perience with randomised block variants of Gauss–Newton –
where the rates improve the larger the size of the block of pa-
rameters being perturbed – would then be observed here as
well. This would further allow us to quantify the trade-offs
of the lower evaluation cost per iteration of the small-block
randomised variants against their respective global rates of
convergence.

Our work focused on optimisation rather than the cost
function. We used a cost function based on crude estimates
of observational uncertainty and a subjective choice of large-
scale observations. Future work would benefit from much
better estimates of observational uncertainty and an objec-
tive means of selecting observations. One approach might be
to choose observations of which we have good evidence mat-
ter for climate feedbacks or other properties of the model we
are concerned about.

Nevertheless, our results suggest that it is possible and
computationally feasible to automatically calibrate the atmo-
spheric component of a climate model and generate a plausi-
ble coupled model.
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Code availability. All data and software are avail-
able from CEDA at http://catalogue.ceda.ac.uk/uuid/
889fc3c877e8447bb7b2a100ef17a3f4.

We implemented and developed the algorithms described above
using bash shell scripts and ipython (Pérez and Granger, 2007)
with the numpy (Van Der Walt et al., 2011), pandas (http://
pandas.pydata.org/) and iris (http://scitools.org.uk/iris/docs/latest/
index.html) modules. Each iteration was managed using Grid En-
gine with runs of the climate models each being followed by a job
that computed the simulated observables. A final job in each iter-
ation tested for termination and, if required, set up the next itera-
tion. Visualisation was done using Matplotlib (Hunter, 2007) sup-
plemented with seaborn (http://seaborn.pydata.org/).
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Appendix: Glossary

p Vector of parameter values.
pk Vector of parameter values at iteration k.
O Vector of target observations.
N Number of observations.
P Number of perturbed parameters used in Gauss–Newton algorithm.
Prand Number of parameters, selected at random, that are perturbed, in each iteration, in

random block coordinate variant of Gauss–Newton algorithm.
S Vector of simulated observations.
Sk Vector of simulated observations at iteration k.
Ec Mean evaluation for cases that converged.
Ef Mean evaluation for cases that failed to converge.
f Fraction of studies that failed.
F(p) Cost function being minimised.
Ci Covariance matrix representing internal variability.
CO Covariance matrix representing observational error.
C Covariance matrix representing combined internal variability and observational error.
Cp Parameter error covariance matrix.
k Iteration number.
J Jacobian of matrix with Jij = ∂Si

∂pj
.

H Hessian (J TC−1J ).
J Finite-difference estimate of Jacobian.
H Finite-difference estimate of Hessian (JTC−1J).
µ Weight on constrained optimisation.
N Number of studies in case.
NAtmos Number of converged cases with cost function similar to standard model.
NControl Number of coupled control simulations consistent with pre-industrial tempera-

tures (Williamson et al., 2014).
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