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Most seasonal species rely on the annual change in day length as the primary cue to appropriately time
major spring events such as pre-nuptial molt and breeding. Thyroid hormones are thought to be involved
in the regulation of both of these spring life history stages. Here we investigated the effects of chemical
inhibition of thyroid hormone production using methimazole, subsequently coupled with either tri-
iodothyronine (T3) or thyroxine (T4) replacement, on the photostimulation of pre-nuptial molt and
breeding in Gambel’s white-crowned sparrows (Zonotrichia leuchophrys gambelii). Suppression of thyroid
hormones completely prevented pre-nuptial molt, while both T3 and T4 treatment restored normal pat-
terns of molt in thyroid hormone-suppressed birds. Testicular recrudescence was blocked by methima-
zole, and restored by T4 but not T3, in contrast to previous findings demonstrating central action of T3
in the photostimulation of breeding. Methimazole and replacement treatments elevated plasma luteiniz-
ing hormone levels compared to controls. These data are partially consistent with existing theories on the
role of thyroid hormones in the photostimulation of breeding, while highlighting the possibility of addi-
tional feedback pathways. Thus we suggest that regulation of the hypothalamic pituitary gonad axis that
controls breeding may be more complex than previously considered.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Since, Rowan (1925) first identified that gonadal development
in birds breeding at mid to high latitudes was triggered by increas-
ing day length, photoperiodic regulation of avian behavior and
breeding has been of continuing interest to researchers. Increasing
spring photoperiod has been shown to initiate both pre-nuptial
molt and to trigger gonadal development in birds (Dawson, 1999,
2002; Dawson et al., 2001; King, 1968; Lesher and Kendeigh,
1941; Pandey and Bhardwaj, 2015). As pre-nuptial (also termed
pre-alternate) molt is not observed in all species, control mecha-
nisms remain obscure and it is often overlooked in studies of molt
in favor of the more common and robust post-nuptial (also termed
pre-basic) molt. However, the pre-nuptial molt contributes to the
general vernal preparation for reproduction, as birds replace worn
or winter plumage with a breeding plumage and for most species
yearling birds molt into their adult plumage. As such, the pre-
nuptial molt may have been evolutionarily conserved due to
increased reproductive success as a result of plumage replacement,
enhancing sexual ornamentation or breeding plumage that acts as
an indicator of mate quality (Mulder and Magrath, 1994;
Thompson and Leu, 1994 and references cited therein).

The integration of photoperiodic cues that trigger the changes
in physiology, morphology, and behavior necessary to support
the pre-nuptial molt and breeding life history stages occur through
the neuroendocrine system. It has been suggested that photoin-
duction of vernal events (molt, migration, breeding) may utilize
independent neural pathways (Moore et al., 1982). Experiments
manipulating light intensity and wavelength have successfully
demonstrated the separation of the breeding and vernal migratory
photoinduction pathways (Wang et al., 2013), but there is no direct
evidence to support or negate the independence of the pre-nuptial
molt and breeding photoinduction pathways within the brain. To
date the pathway by which photoperiodic information triggers
the onset of pre-nuptial molt remains unknown (Wingfield and
Silverin, 2002).

In contrast, the mechanisms by which increasing photoperiod
leads to the expression of the breeding life history stage are now
well documented (Kang and Kuenzel, 2015; Nakane and
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Yoshimura, 2010). Historically the coordination of reproduction
has been attributed to regulation by the hypothalamic-pituitary-
gonadal axis, specifically gonadotropin releasing hormone
(GnRH-I), and the more recently discovered gonadotropin inhibi-
tory hormone (GnIH) (Tsutsui et al., 2000). GnRH promotes the
release of follicle stimulating (FSH) and luteinizing (LH) hormone
from the anterior pituitary gonadotroph cells. LH and FSH bind to
receptors in the gonads to promote primary sexual characteristics
such as gonadal recrudescence, gametogenesis, and sex hormone
production that in turn stimulate development of secondary char-
acteristics, reproductive behavior and ultimately reproduction
itself (Follett et al., 1974; King et al., 1966). GnIH has been shown
to act on the hypothalamus, pituitary, and gonads to inhibit breed-
ing in birds, probably by the inhibition of GnRH release and action
(Bentley et al., 2009).

Recent work in Japanese quail (Coturnix japonica) has extended
our understanding of these mechanisms linking the photoinduced
release of GnRH to several candidate deep brain photoreceptors
(DBP) within the avian brain. Neuropsin (Opn5) found in the par-
aventricular organ of birds (Nakane et al., 2010), vertebrate ancient
opsin (VA-Opsin), which has been described in multiple hypothala-
mic regions (Halford et al., 2009), and melanopsin (Opn4) are all
strong candidates for the DBP. Following photostimulation the
DBP neurons then signal thyrotroph cells lining the pars tuberalis
triggering the localized release of thyroid stimulating hormone
(TSH) into the mediobasal hypothalamus. TSH stimulates the
expression of deiodinase type 2 (DIO 2), responsible for the conver-
sion of thyroxine (T4) to triiodothyronine (T3) (Ikegami et al.,
2014; Nakao et al., 2008). The resulting increase in local T3 levels
is thought to act on nearby glial cells associated with GnRH
expressing neurons, leading to the exposure of GnRH nerve termi-
nals, thus promoting the release of GnRH (Yamamura et al., 2006;
Yoshimura, 2010).

Intriguingly, both the hypothalamic localization of DBP and the
integral involvement of thyroid hormone (TH) signaling in breed-
ing present strong parallels to the existing investigations of pre-
nuptial molt. Lesion studies of the ventromedial hypothalamus
(VMH) have been shown to successfully block the
photoperiodically-induced expression of pre-nuptial molt and
gonadal recrudescence in white-throated sparrows (Zonotrichia
albicollis) (Kuenzel, 1974). These findings suggest the possibility
of shared neural circuitry, by linking the perception of photoperi-
odic cues for both molt and breeding to the VMH. Similarly, TH
have long been associated with molt and in particular the post-
nuptial (Voitkevich, 1966). Studies of post-nuptial molt have
shown that administration of exogenous TH will induce molt while
thyroidectomy inhibits molt or replacement of artificially plucked
feathers (Hahn et al., 1992; Kuenzel, 2003; Voitkevich, 1966). Yet,
pre-nuptial molt remains understudied (Newton, 2009; Wingfield
and Silverin, 2009).

To unravel the putative role of TH in breeding and pre-nuptial
molt we used wild-caught wintering Gambel’s white-crowned
sparrows (Zonotrichia leucophrys gambelii) held under naturally
changing day length conditions. To date the majority of studies
have used either artificially prolonged photoperiods to rapidly
induce gonadal growth or have been conducted in predominately
domesticated species also under artificial photoperiod regimes.
Here we present our findings on the effects of chemical inhibition
of TH production by methimazole and a subsequent TH replace-
ment on pre-nuptial molt, LH secretion, and gonadal growth. Gon-
adal growth and circulating LH were included as measures of
reproductive development to allow the disentangling of central
effects within the hypothalamus from potential downstream
actions. Based on the existing literature we predicted that
inhibition of TH production would prevent both pre-nuptial molt,
plasma LH increase, and gonadal growth. Furthermore, we tested
the prediction that replacement therapy with either T3 or T4
would restore all three variables to control levels.
2. Materials and methods

2.1. Study species

The Gambel’s white-crowned sparrow is a photoperiodic, sea-
sonally breeding songbird (Chilton et al., 1995) that displays a
well-documented pattern of pre-nuptial molt and gonadal growth
in captivity, as well as migrations and post-nuptial molt (Agatsuma
and Ramenofsky, 2006; Farner et al., 1953; King et al., 1966). Expo-
sure to natural or artificially increased photoperiods in captivity
triggers the GnRH cascade with subsequent rapid elevation of LH
plasma levels, and gonadal recrudescence (Farner et al., 1980;
King et al., 1966; Wingfield and Farner, 1978). All animals reported
here were part of a larger study on the role of thyroid hormones in
vernal events including migratory behavior, which has been
reported previously (Pérez et al., 2016). Monitoring of circulating
thyroid hormones was conducted simultaneously throughout the
larger experiment and initially published in our first report on
the role of thyroid hormones in migratory behavior, but have been
reproduced here for clarity and context.

2.2. Experiment 1: Inhibition of thyroid hormone using methimazole

Eleven male white-crowned sparrows were caught by a combi-
nation of walk-in traps and Japanese mist nets in the vicinity of the
University of California Davis, Davis, CA, USA (N 38.554, W
121.738) in the late autumn of 2012. Sex determination was con-
ducted in the field using minimum wing length of �75 mm to
identify males (Fugle and Rothstein, 1985) and subsequently veri-
fied by laparotomy. Birds were housed in individual cages and
locomotor activity monitored continuously by an infrared pho-
todetection system Mini Mitter Acquisition System – Vital View
(Sun River, OR) as previously described (Pérez et al., 2016). Birds
were held on natural photoperiod (38� N) using light timers with
an Astro feature that mimics natural changes in day length and
given water and food (50:50 mixed seed and Mazuri Small Bird
Maintenance Mini-Diet; PMI Nutrition International, LLC St. Louis
MO) ad libitum. Birds were randomly assigned to control implant
(n = 4) or methimazole (M8506; Sigma Aldritch, St. Louis MI)
implant treatment groups (n = 7). Both control implant and treat-
ment birds received two pre-sterilized 14 mm silastic implants
(OD 1.96 mm, ID 1.477 mm), sealed with silicone sealant at both
ends, inserted subcutaneously on the flanks beginning on February
21, 2013. The treatment implants were packed with methimazole
powder, while control implants were empty. All methimazole
implants were replaced every two weeks, controls underwent
sham replacement surgery. Methimazole implanted birds also
had methimazole in their drinking water (500 mg/L) to ensure suf-
ficient dosage to achieve thyroid hormone suppression (Pérez
unpublished data).

2.3. Experiment 2: Thyroid replacement

Thirty-two adult white crowned sparrows were caught as above
in the vicinity of Davis, CA in January of 2014. Post mortem obser-
vations confirmed 29 males and 3 females were subjects in the
study. As sex did not affect the results of the analyses for all vari-
ables examined, except testis length, females were included in all
other analyses. Housing conditions were identical to those
described in Experiment 1 above.

Birds were randomly assigned to four treatment groups: control,
methimazole (M), methimazole + T3 (MT3), and methimazole + T4
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(MT4). All birds except for the control group received methimazole
via implants and orally, while controls received empty implants.
Methimazole implants were renewed every two weeks. The methi-
mazole + T3 (MT3) birds received a single 10 mm subcutaneous
silastic implant packed with T3 (t2877; Sigma-Aldrich) while the
methimazole + T4 birds (MT4) received a 12 mm silastic implant
packed with T4 (t2376; Sigma-Aldrich). TH implants were replaced
once over the course of the experiment to ensure continuous deliv-
ery of hormone.

All procedures for both experiments were conducted under UC
Davis IACUC approval #17235, USFWS Permit MB813248, Califor-
nia State Permit SC-186 000519 and the number of birds used
was minimized.

2.4. Molt

Body molt was scored every two weeks for three regions of the
body: abdomen, back, and crown on a scale of 0 to 3 for intensity,
adapted from Morton et al. (1969); flight feathers and most rectri-
ces are not molted during the pre-nuptial molt and were thus not
scored. A score of 0 was given when no molt was present, 1 given
when up to �10% of the region was undergoing molt, 2 given for
10–50% of feathers, and a score of 3 for over 50% of feathers molt-
ing. Molt scores for the three regions were summed to provide a
composite body molt score, referred to hereafter as molt score.
Molt was scored in all birds at all time points by a single observer,
blind to treatment group.

2.5. Laparotomies

Surgical laparotomy was used to determine testis size at the
end of experiment 1. Birds were sedated with isofluorane gas pro-
vided through a vaporizer (2–4% with oxygen). Laparotomies were
graciously performed by Professor Thomas Hahn (Univ. California,
Davis) and testis length was measured to the nearest 0.1 mm using
calipers.

2.6. Thyroxine assay

Thyroxine levels were measured via direct radioimmunoassay
as reported previously (Pérez et al., 2016). Briefly, a standard curve
was created by a nine fold serial dilution of a thyroxine standard
from 50 ng/mL. Samples were run in duplicate using 20 lL of
plasma for each duplicate. Water blanks, high and low standards
were run to internally validate the assay. 20 lL of stripped
white-crowned sparrow plasma was added to non-specific bind-
ing, total binding, standard curve and standard tubes. Rabbit poly-
clonal anti-thyroxine antibody diluted 1:500 was used as the
primary antibody (GWB-7B9782 Genwaybio, San Diego CA). Fol-
lowing primary antibody addition, 250 lL of barbital buffer with
bovine gamma globulins (15 mg/mL) and 8-Anilino-1-
naphthalenesulfonic acid (3 mg/mL) was added to all tubes. The
stock barbital buffer was prepared by dissolving 22.68 g of sodium
5,5-diethylbarbiturate (B0500; Sigma-Aldrich, St. Louis MO) and
0.65 mg sodium azide (8.22335 EMD Millipore; Sigma-Aldrich) in
1000 mL distilled water. Samples were then incubated for 90 min
in a 37 �C water bath prior to the addition of goat anti-rabbit anti-
body (1:4 dilution; Antibodies, Inc. Davis CA). Samples were then
incubated overnight at 4 �C and on the second day 250 lL of 5%
polyethylene glycol was added to enhance pellet formation. Sam-
ples were centrifuged at �1910g for 30 min at 0 �C and the super-
natant was aspirated from tubes and the radioactivity of pellets
counted using a Cobra II Auto-Gamma Counter (Packard, Meriden
CT). Average inter-assay variation was 13.6% and intra-assay vari-
ation was 6.98% with a detection limit of 8.44 pg of hormone per
assay tube.
2.7. Luteinizing hormone assay

To measure plasma LH, we used the LH radioimmunoassay
described previously (Sharp et al., 1987) with slight modifications.
Briefly, the assay reaction volume was 60 lL, comprised of 20 lL of
plasma sample or standard, 20 lL of primary rabbit LH antibody,
and 20 lL of I125-labelled LH. The primary antibody was precipi-
tated to separate free and bound I125 label using 20 lL of donkey
anti-rabbit precipitating serum and 20 lL of normal rabbit serum.
All samples were measured in duplicate in a single assay. The
intra-assay coefficient of variation was 5% and the minimum
detectable dose was set to 0.2 ng/mL. This radioimmunoassay has
been used extensively to quantify plasma LH in many avian species
(Ciccone et al., 2007; Fraley et al., 2013; Lal et al., 1990; Lea et al.,
1991; Schaper et al., 2012), including multiple species of Ember-
izidae sparrows (Deviche et al., 2012 a; Deviche et al., 2008;
Deviche et al., 2012 b; Meddle et al., 2002; Wingfield et al., 2012).

2.8. Statistical analyses

All statistical analyses were conducted in R (R Core
Development Team, 2014). Circulating levels of T4 and LH were
compared separately by linear mixed effects models in lme4
(Bates et al., 2014) and lmerTest (Kunznetsova et al., 2014) pack-
ages with fixed effects of Treatment, Day of Year, and the interac-
tion of Day of Year and Treatment; the effect of repeated sampling
was accounted for by the inclusion of bird id as a random effect.
Testicular length was analyzed by Welsh’s t-test for Experiment
1 and by ANOVA for Experiment 2; between treatment differences
were explored post hoc using Tukey’s HSD. Molt intensity was ana-
lyzed in the ordinal package using cumulative logistic mixed mod-
els with a logit link to account for the ordinal nature of the data
(Christensen, 2015). Separate models were run for each experi-
ment, but all models included fixed effects of treatment, day of
year, and their interaction, as well as bird ID as a random effect
to account for repeated sampling. Day of year was centered and
scaled against itself to improve model convergence. All data are
presented ± standard error of the mean (s.e.m.).
3. Results

3.1. Thyroxine levels

As previously reported (Fig. 1; Pérez et al., 2016), methimazole
treatment significantly reduced circulating levels of T4 in all birds.
In the thyroid replacement experiment MT3 birds displayed thy-
roxine patterns matching those of Methimazole treated birds,
while MT4 birds showed partial recovery of circulating thyroxine
levels as compared to controls.

3.2. Gonadal growth

Methimazole treatment effectively suppressed gonadal growth
in the inhibition experiment (Fig. 2; t10 = �21.09, p < 0.001). In
the thyroid replacement experiment we detected significant differ-
ences between treatment groups (Fig. 2; F3,25 = 159.50, p < 0.001).
Methimazole treatment suppressed gonadal growth (diff = �5.16,
p < 0.001) as seen in the first experiment. We found significant
gonadal growth in both MT4 (diff = 5.71, p < 0.001) and MT3
(diff = 1.34, p = 0.002) birds compared to the Methimazole group.
However, only MT4 treatment fully rescued gonadal growth, show-
ing no difference from controls (diff = 0.55, p = 0.32). MT3 treat-
ment did not restore gonadal growth to the level observed in
control birds (diff = �3.82, p < 0.001) nor MT4 levels (diff = �4.37,
p < 0.001).



Fig. 1. Plasma thyroxine levels as measured by radioimmunoassay in Gambel’s White-crowned sparrows following methimazole inhibition of thyroid hormone (A) and
thyroid replacement (B). Treatments included control (C; A: n = 4, B: n = 7), methimazole (M; A: n = 7, B: n = 7), methimazole + T3 (MT3; B: n = 7) and methimazole + T4
(MT4; B: n = 8). Values are shown as mean ± s.e.m. Reprinted from Pérez et al. (2016), with permission from Elsevier.

Fig. 2. Testicular length for male Gambel’s White-crowned sparrows following
methimazole inhibition of thyroid hormone (A) and thyroid replacement (B);
experiments as measured at the end of the experimental period. Treatments
included control (C; A: n = 4, B: n = 7), methimazole (M; A: n = 7, B: n = 7),
methimazole + T3 (MT3; B: n = 7) and methimazole + T4 (MT4; B: n = 8). Values are
shown as mean ± s.e.m. Letters indicate significant differences between treatments;
experiments were analyzed separately.

Fig. 3. Body molt score for Gambel’s White-crowned sparrows during methimazole inhib
include: control (C), Methimazole (M), Methimazole + T3 (MT3) and Methimazole + T4 (
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3.3. Molt

Inhibition of thyroid hormone production by methimazole
(Experiment 1) led to a suppression of pre-nuptial molt over the
course of the experiment (Fig. 3A; z = �2.59, p < 0.01). We also
detected a significant main effect of day of year (z = 2.11,
p = 0.035). In the thyroid replacement experiment (Experiment
2), methimazole treated birds again displayed suppressed molt
(Fig. 3B; z = �2.85, p = 0.004) compared to controls. MT3 birds
showed no significant difference in peak molt intensity compared
to control birds (z = �0.07, p = 0.948), while MT4 birds showed a
trend towards increased molt intensity (z = 1.73. p = 0.083). Day
of year (z = 1.46, p = 0.14) was not significant nor was the treat-
ment by day of year interaction.

3.4. Luteinizing hormone

LH was significantly higher in MT4 birds compared to controls
(Fig. 4; t113 = �2.45, p = 0.016). The interaction of MT4 and day of
year (t88 = 5.04, p < 0.001) as well as the methimazole and day of
year interaction (t87 = 3.10, p = 0.003) were significant, indicating
ition of thyroid hormone (A) and thyroid replacement experiments (B). Treatments
MT4). Experiments were analyzed separately. Values displayed as means ± s.e.m.



Fig. 4. Plasma Luteinizing Hormone (LH) levels by Day of Year for male Gambel’s
White-crowned sparrows during Experiment 2: Thyroid Replacement. Treatments
included control (C; circles), methimazole (Meth, squares), methimazole + T3 (MT3,
triangles) and methimazole + T4 (MT4, diamonds), n = 8 for all groups. Values
displayed as means ± sem. Significant group differences from the control group are
indicated by ‘‘*”.
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more rapid increases in LH in these groups compared to controls.
The interaction of MT3 treatment and day of year was not signifi-
cant (t88 = 1.94, p = 0.056), but showed a trend towards signifi-
cance. There was no significant difference between treatment
groups at the beginning of the experiment (F3,25 = 1.06, p = 0.383).
LH levels in the treatment groups became significantly different
at the day of year 106.5 (F3,28 = 4.562, p = 0.01) and persisted until
the end of the experiment (Day of year 125; F3,26 = 6.95, p = 0.001).
4. Discussion

Methimazole inhibition of TH production prevented both pre-
nuptial molt and gonadal recrudescence. These results are consis-
tent with previous findings demonstrating a central role for
hypothalamic thyroid signaling in controlling the HPG axis
(Nakane and Yoshimura, 2010; Perfito et al., 2014; Wilson and
Reinert, 1995; Wilson and Reinert, 1996). These findings also
demonstrate that TH (T3 or T4) are necessary for the expression
of pre-nuptial molt in white-crowned sparrows. This observation
is consistent with existing knowledge from feather replacement
experiments and investigations of post-nuptial molt, while extend-
ing the necessity of TH action for pre-nuptial molt as well.

Contrary to our predictions only T4 administration restored
gonadal growth. Previous work has shown that ICV administration
of T3 into the third ventricle of American tree sparrows (Spizella
arborea) triggers a robust LH surge and gonadal growth (Wilson
and Reinert, 2000). This discrepancy between the effects of ICV
and peripheral administration of T3 suggests an inability of T3 to
cross the blood brain barrier. Conversely, the efficacy of T4 replace-
ment treatment in restoring gonadal growth in chemically thy-
roidectomized birds supports the notion of T4 entry into the
hypothalamus where it is presumably converted to T3 for local sig-
naling (Yasuo et al., 2005; Yoshimura et al., 2003). The observed
differential action of T4 and T3 supports direct control of TH access
to the brain presumably via membrane transporters in the blood
brain barrier. The presence of TH membrane transporters, along
with the thyroid binding protein transthyretin, has been demon-
strated in the choroid plexus of chicks (Duan et al., 1991; Power
et al., 2000) and in the capillaries of the blood brain barrier itself
(Van Herck et al., 2015), further supporting this hypothesis. How-
ever, the identity, presence, and affinity for T4 versus T3 of TH
membrane transporters has yet to be confirmed in adult birds.
Studies of known membrane transporters including OATP2B1 and
OATP3_v1/v2 have demonstrated variable affinities for a number
of iodothyronine derivatives, in particular specificity for T4 over
other thyroid derivatives (reviewed in Visser et al., 2011). In mam-
malian models MCT8 is considered the primary membrane trans-
porter and has demonstrated a higher affinity for T4 (Müller and
Heuer, 2014). Selective transport of T4 into the hypothalamic
region would simultaneously explain our findings and the observa-
tion that direct infusion of T3 is able to induce a HPG response akin
to photostimulation, while peripheral administration of T3 fails to
do so. This is further supported by our finding that both T3 and T4
restore normal molt, which eliminates the possibility of exogenous
T3 being cleared by the liver prior to reaching target tissues. Such a
selective control mechanism of TH transport into the hypothala-
mus, if not the whole brain, is heuristically appealing, as it would
prevent the continuous activation of the HPG axis and other sys-
tems in response to T3 circulating at normal levels. Instead, under
such a model local deiodinase activity would determine which
brain regions experience TH signaling.

Though confounding and initially inconsistent with the above
interpretation of our gonadal data, the observed LH values must
be viewed with caution. The lack of a definitive peak of LH in con-
trol birds appears initially inconsistent with the numerous studies
that report a rapid rise in LH within 18 h of photostimulation (e.g.
Follett et al., 1974). However, these previous studies used immedi-
ate shifts in photoperiod, transferring birds to sustained day
lengths far longer than would be experienced under natural condi-
tions directly from short days, all within the span of a single day,
while the present study utilized natural photoperiod, making
direct comparisons questionable. Evidence to support this view
was published by Wingfield and Farner (1978) in which LH levels
of Gambel’s white-crowned sparrows measured in the field did
not peak until the period of territory establishment and egg laying.
Given our use of a naturally increasing photoperiod, the low LH
levels might then be expected, as the experimental period did
not extend past the early migratory period (May 5th) and wild
populations do not arrive on their breeding grounds till late in
May.

The significant increase in circulating LH in all three treatment
groups was also unexpected. However, the observed LH elevation
following methimazole treatment may be explained by cross reac-
tivity of TSH with the LH antibody employed in our radioim-
munoassay. While such cross reactivity has not proven
problematic in past reports of this assay, initial validations demon-
strated detectable cross reactivity with TSH at high levels, as might
be expected during thyroidectomy (Sharp et al., 1987). Chemical
inhibition of TH by methimazole inherently suppresses the normal
negative feedback of TH on the hypothalamic-pituitary-thyroid
axis, resulting in elevation of TSH in an attempt to restore homeo-
static balance. Thus high TSH levels might explain the observed LH
increase in the methimazole treated birds. Similarly the observed
increase in either MT3 or MT4 birds may also be due to suppres-
sion of negative feedback on TSH. If membrane transporters selec-
tively control exposure of thyrotroph cells to TH then we might
expect birds given the non-transported form of TH to experience
an increase in TSH and thus observed LH similar to methimazole
treated birds. However, this hypothesis still fails to explain the
observed increase in the remaining replacement group (either
MT3 or MT4).
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Alternatively there may be direct interference by methimazole.
Though TSH interference was suggested by Sharp et al. (1987),
avian TSH had not been purified at the time, thus in demonstrating
the supposed cross-reactivity of TSH with the LH assay, they relied
on methimazole to trigger increased TSH by inducing hypothy-
roidism. This raises the possibility that TSH effect Sharp et al.
(1987) observed was at least in part direct interference by methi-
mazole. However, this is countered by the observation that methi-
mazole treatment is able to suppress gonadal growth and LH in
both rats and Japanese quail, when measured using alternate LH
assays (Valle et al., 1985; Weng et al., 2007). Furthermore, Valle
et al. (1985) observed that methimazole treatment directly
impacted LH receptor density within the testis of immature rats,
and that LH receptor density remained decreased even in response
to replacement treatment with T3. However, the Leydig cells from
these animals produced testosterone normally in response to stim-
ulation with a hCG antagonist in culture. Thus the possibility of
direct action by methimazole on the testes through LH receptor
density or other pathways cannot be ruled out. However, the dif-
ferential response to T3 and T4 replacement therapies supports
alternative explanations. While the exact cause remains unclear,
it appears that chemical thyroidectomy with methimazole has
pleiotropic effects across a number of systems and tissues that
complicates interpretation of simple physiological and hormonal
responses to its use. Given the complex interrelationships of HPT
activity and gonadal function, the LH data remain unexplained.
Therefore, future work is urgently needed to disentangle the effects
of systemic TH suppression by methimazole on LH and more
broadly on the HPG axis. This work may be particularly fruitful
in revealing novel mechanisms of HPG and HPT cross talk and
regulation.

Lesioning studies of the ventral medial hypothalamus (VMH) in
white-throated sparrows have identified this as a site of central
control of pre-nuptial molt (Kuenzel, 1974). However, our data
suggest that TH control of pre-nuptial molt is peripheral, likely at
the level of the feather follicle, rather than by central action of
TH, because of the non-differential response of MT3 and MT4 treat-
ments. This view is further supported by our observation of differ-
ential response to T3 and T4 replacement treatments for testicular
growth. If the proposed mechanism of variable transport of T4 ver-
sus T3 across the blood brain barrier explains our observation of
the inhibition of testicular growth results, then the observation
of equivalent rescue by both T3 and T4 replacement for pre-
nuptial molt is most parsimoniously explained by peripheral rather
than central action.
5. Conclusions

Together these results further support the involvement of TH in
the regulation and control of both the breeding and pre-nuptial
molting life history stages. The conflicting effects of T3 versus T4
replacement with regards to testicular growth and LH levels high-
light the importance of multi-level regulation of the thyroid sys-
tem. Furthermore, THs are likely acting at the organizational
level during initial photostimulation influencing the development
and full expressions of molt and gonadal recrudescence and later
to trigger the onset of photorefractoriness (Dawson et al., 1985;
Follett and Nicholls, 1985, 1988) and future work should seek to
disentangle these two processes. Furthermore, these results
emphasize the complexity of the HPG and HPT axes, their regula-
tion and interplay that urgently require further study. A detailed
understanding of transporter, deiodinase, and receptor regulations
spatially and temporally within target tissues will be critical to
further explanations of the unique role of thyroid hormones in
regulation of seasonal transitions.
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