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Abstract

Humans are highly adept at categorizing visual stimuli, but studies of human categorization

are typically validated by verbal reports. This makes it difficult to perform comparative studies

of categorization using non-human animals. Interpretation of comparative studies is further

complicated by the possibility that animal performance may merely reflect reinforcement

learning, whereby discrete features act as discriminative cues for categorization. To assess

and compare how humans and monkeys classified visual stimuli, we trained 7 rhesus

macaques and 41 human volunteers to respond, in a specific order, to four simultaneously

presented stimuli at a time, each belonging to a different perceptual category. These exem-

plars were drawn at random from large banks of images, such that the stimuli presented

changed on every trial. Subjects nevertheless identified and ordered these changing stimuli

correctly. Three monkeys learned to order naturalistic photographs; four others, close-up

sections of paintings with distinctive styles. Humans learned to order both types of stimuli. All

subjects classified stimuli at levels substantially greater than that predicted by chance or by

feature-driven learning alone, even when stimuli changed on every trial. However, humans

more closely resembled monkeys when classifying the more abstract painting stimuli than

the photographic stimuli. This points to a common classification strategy in both species, one

that humans can rely on in the absence of linguistic labels for categories.

Introduction

When a human perceives a stimulus, it is likely that she will automatically identify that stimu-

lus as belonging to one or more categories. We can describe this process linguistically: when

we perceive something, we do not simply see the thing; we see it as a type of thing, part of a set

of things which can in some way be treated as equivalent [1]. Categorization of visual stimuli

occurs so rapidly in humans that it occurs almost instantaneously [2], and we interpret the

world through a diverse set of classifications [3].

Do non-human animals (hereafter, “animals”) possess the same categorization abilities as

humans? This question has motivated considerable research by comparative psychologists,
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who have sought to understand the evolutionary roots of categorization through the study of

many species. The resulting literature has demonstrated that animals have the ability to catego-

rize a bewildering range of stimuli, including organic forms, such as faces [4], plants, and ani-

mals [5–7], as well as man-made objects, such as cars, chairs [8], orthographic characters [9],

paintings [10], cartoons [11], and abstract forms [12]. Animals can also correctly categorize

never-before-seen exemplars, showing that this ability is not limited to previously-learned sti-

muli [13–14]. Perhaps most impressively, animals can categorize images based only on expo-

sures lasting less than 100ms [15], suggesting that animals can process some image features in

parallel, rather than performing a systematic visual search for feature cues. These sophisticated

abilities have been reviewed extensively elsewhere [16–19].

Researchers of human cognition distinguish categories from concepts: a category is most

often defined as a set of entities which exists in the real world and are grouped together,

whereas a concept has a more abstract character. It is generally agreed that a “concept” encodes

the mental representation used in human categorization [3]. Researchers take for granted that

humans possess countless internal concepts, but no such consensus exists for whether animals

make use of similarly abstract frameworks. Thus, although animals can clearly categorize sti-

muli, studying the underlying mechanisms is complicated by the difficulty in disentangling

the cognitive representations employed by animal minds from other unrelated features of

behavior.

Some authors have defined concepts as necessarily linguistic a priori, ruling out mecha-

nisms for non-linguistic concept formation [20], and thereby, all potential models for animal

concepts. Other authors have argued that animals learn to categorize using reinforcement

learning and associative conditioning alone [21]. This associative account of an animal’s classi-

fication of similar stimuli (as described by Herrnstein et al. [22]) relies on the associative

strength of discriminable features common across a category [23]. In the absence of verbal

communication with their subjects, comparative psychologists have largely limited their inqui-

ries to studies of rule-based concepts [24–25]. While an animal can demonstrate that it has

learned the rules imposed by researchers, it hasn’t proved possible to study unsupervised and

unrewarded assignment of stimuli into categorical groupings without using language to

instruct subjects.

The non-human aptitude for categorization thus falls into a middle ground between asso-

ciative learning at one extreme and linguistic abstraction at another. Many studies argue that

more flexible and sophisticated processes than associative learning are required to explain per-

formance [19]. However, non-human subjects do not possess language, and thus cannot rely

on it as a scaffold for categorical inference. The middle ground between these extremes is not

well-defined, and no consensus has emerged regarding the appropriate terminology for identi-

fying or describing these cognitive processes.

Herrnstein [26] attempted to build a bridge between the linguistic and associative accounts

by proposing that animals classify stimuli using open-ended categories. These stimulus clusters

would hypothetically rely on the similarities between many learned exemplars, but would fall

short of fully-fledged concepts. The criteria for this distinction are vague: a discrimination

could be attributed to a concept only if a characteristic other than similarity was used to clas-

sify novel exemplars. Skeptics retorted that, because stimuli must necessarily have some fea-

tures in common (without which they would be unrecognizable), those features must permit

categorization on the basis of their similarity [27]. Thus, Herrnstein’s proposal left the issue

unresolved, and the possibility of feature-driven learning remains a major confound for the

study of concept formation in animals.

Herrnstein’s terminology has defined the debate on animal categorization and concept for-

mation, but these are at odds with the most common definitions used among researchers of

Perceptual category learning of photographs and paintings by macaques and humans
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human cognition. For comparative psychologists, possessing an internal representation that

allows an animal to reliably classify stimuli does not immediately indicate that the animal has

formed a concept. It is intuitive and well documented that adult humans can flexibly and

abstractly manipulate their internal concepts [28], and can use these concepts to mediate their

perceptual categorization [24]. The majority of studies of adult human cognition rely on lan-

guage, but without either language or the ability to directly inquire into the nature of an ani-

mal’s mental representation, inference is restricted. Additionally, the explanatory power of

associative learning in animals is considered to be very strong by many in the literature [29].

Due to the absence of language and the strong possibility of associative learning, comparative

psychologists demand a high level of evidentiary rigor to conclude that animals can form a

concept.

By contrast, it is uncontroversial to assert that animals possess percepts, here defined as inte-

grated sensory representations constructed from both primary sensory data and top-down

information processing [30–32]. Because percepts involve the hierarchical integration of infor-

mation from different levels of processing, they constitute a form of representation that is

implicit and statistical instead of being explicit and propositional, even in humans [33]. Both

humans and rhesus macaques are adept at learning to categorize percepts by integrating infor-

mation, even in cases where discrete features are not available [34]. Macaques can also assign

percepts to appropriate experimenter-defined categories [35]. An important property of per-

cepts is that they are more than a list of isolated features. Sensory integration allows organisms

to evaluate percepts as gestalt-like wholes.

We are therefore interested in the question of how subjects judge the percept of a stimulus

to belong to a particular category. Borrowing a term from the computer vision literature, any

algorithm responsible for categorizing a percept is called a classifier [36–37]. The definition is

functional, in that any algorithm used for categorization may be called a classifier. Ordinarily,

the term is used to denote the broad family of strategies used by computer models with varying

degrees of success. The methods used by brains to process gestalt sensory information remain

an open research topic [38], but these biological processes may also be labeled as classifiers. A

rigorous understanding of a subject’s classifier is equivalent to a robust theory of the cognitive

processing that underlies categorization. Thus, another way to frame our research question is

to ask, “How do the classifiers used by organisms work, and how do those used by monkeys

relate to those used by humans?”

The challenge in answering this question empirically is that there are a variety of classifier

to choose from. Many of the tasks used to study classification in animals could potentially be

solved in several ways. For example, “binary categorization” tasks (e.g. [13, 39]) present sub-

jects with stimuli that belong to one of two categories (e.g. “Is it a house or a face?”). These

tasks can be “solved” if some cue exists that identifies one of the categories. Should such a cue

exist (e.g. the presence of shapes with 90-degree angles), a simple associative classifier would

be sufficient to choose correctly. In order to rule out trivial classification strategies, a study

must have a sufficient level of task complexity [40]. Requiring that a subject chose between

more than two simultaneously presented categories is one way to increase task complexity.

An improvement on this approach is a “pairwise categorization” task. In this scenario, sub-

jects are trained to classify images into more than two categories, but are ultimately tested on

pairs of stimuli. For example, Wasserman et al. [29] trained pigeons to classify images accord-

ing to different 16 categories, a substantial improvement over binary categorization tasks.

However, subjects were still only tested on two categories at a time, such that a subject that

responded at random would still make correct responses 50% of the time. Pairwise categoriza-

tions can be accomplished by a low-reliability classifier, even when over a hundred categories

are trained simultaneously (as demonstrated in simulation by Jensen & Altschul [40]).

Perceptual category learning of photographs and paintings by macaques and humans
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Consequently, training many categories is an improvement, but pairwise categorization

remains a relatively uninformative test of the resulting classifier.

The strongest test of a subject’s classifier is “simultaneous classification,” which requires

that subjects classify all stimuli, not just two at a time. To date, only one study reports such a

design: Bhatt and colleagues [8] trained pigeons to discriminate between four varieties of stim-

ulus (e.g. photographs of cats, flowers, cars, and chairs). Because these four categories were

trained and tested in parallel, simple binary discriminations would be insufficient to explain

performance. With a chance error rate of 25% rather than 50%, high-level performance could

more easily be attributed to a robust classifier.

Nevertheless, while this study raised the difficulty of stimulus categorization considerably,

the issue remains that an associative account could still be built based on discrete features. If,

for example, subjects relied on an “eye detector,” that would allow them to distinguish most

cats from the remaining three categories, even if no other features of cats were considered.

When all stimuli in a category share a common set of discrete features, these features could

potentially be associated with reward, without a need for more complex cognitive mechanisms.

Consequently, a task design that makes use of categories that lack consistent discrete features

would strengthen the argument in favor of a sophisticated cognitive classifier.

We designed our test procedure to be much more difficult than those used in past studies of

animal categorization. To achieve simultaneous classification, we modified the simultaneous

chaining paradigm (or “SimChain,” [41]). In classical SimChain, subjects are presented with a

set of stimuli, and are required to touch each stimulus in a prescribed order to receive a reward

(see Terrace [42] for review). Our adapted procedure, the Category Chain, also requires that

subjects touch all four categories in a prescribed order, with different category exemplars used

for each trial. This dramatically reduces the rate at which chance responding yields rewards:

Touching the stimuli in a random order would earn a reward less than 5% of the time. To com-

plete a trial successfully, subjects must simultaneously represent all four stimuli and classify

them into their respective categories, making it much more difficult to solve the task using a

simple shortcut. For monkeys to achieve the consistent, high-levels of performance that are

described in the literature, they must represent the task cognitively, and not as a simple

sequence of associations [41–43].

We also sought to increase the difficulty by trying to improve stimulus set complexity. A

complex stimulus set must have three characteristics: (1) The set should consist of hundreds of

stimuli per category to limit the efficacy of memorization; (2) Stimuli within each category

must differ from one another in a variety of ways; and (3) Stimuli across categories must also

share similarities. Many studies have pushed one of these boundaries, but few have pressed

multiple limits.

Shrier and Brady [13] raised the bar on stimulus set size by testing monkeys using 2,248

images, but only trained a single “human-present” vs. “human-absent” discrimination.

Expanding set size augmented both learning speed and peak performance, effects which could

not previously be observed with a small number of unique stimuli, and hence a small number

of trials. Furthermore, Fagot et al. [44] tested baboons on an “upright” category, and their sub-

jects were only able to successfully transfer to novel stimuli after viewing more than 350 unique

stimuli. Apart from these exceptions, few studies have employed large stimulus sets. For exam-

ple, Wasserman et al. [29] trained only 8 images for each of their 16 categories, and added 4

exemplars per category at a later stage of the study. These numbers are certainly small enough

to enable a memorization strategy.

The primary method for ensuring that stimuli are both similar and different has been to use

natural categories, such as birds, cats, and flowers. All exemplars will be different, but necessar-

ily similar, and these similarities are believed to be driven by distinct features. The degree of

Perceptual category learning of photographs and paintings by macaques and humans
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similarity is a crucial factor for experimental manipulation, and feature identification and

image manipulation has recently become relatively easy and commonplace thanks to modern

computing power.

Researchers have manipulated a wide range of image characteristics, from the easily identi-

fiable and concrete, to the mathematically abstract. In natural photographs of primates, Marsh

& MacDonald [4] removed and enlarged eyes, inserted other species’ features, and even

removed entire faces. A more abstract study [11] took non-natural cartoon drawings of people

and, at differing levels of granularity, scrambled, fragmented, or selectively deleted features of

the stimuli, in order to assess the contributions of global and local processing to categorization.

At the far end of the spectrum, Smith et al. [45] used only procedurally-generated abstract

shapes with quantifiable similarity between stimuli, and manipulated the level of similarity.

These studies have produced conflicting results, and it appears that the type of stimuli, be they

natural or some form of artificial, may determine the importance of global and local cues for

categorization [11]. Moreover, by using artificial stimuli generated entirely from statistical reg-

ularities, Smith et al. [45] eliminate any global aspect of the image that might be more than a

composition of features, that is, gestalt.

To address limitations in the literature, we used two specific varieties of image categories in

this study. In the “photographic” condition, subjects were presented with photographs drawn

from four traditional categories of natural images: birds, cats, flowers, and people. These, like

the photographic stimuli used in most prior studies, could potentially be classified on the basis

of a small number of consistent features, though the stimuli in each category were deliberately

numerous and diverse. For example, our “people” category consisted of both color and black-

and-white photographs, taken both close-up and at long distances, of both individuals and

groups, shot from all angles (including from the back).

In the “painting” condition, subjects were presented with small sections (between 1% and

2%) of paintings by four artists: Salvador Dalı́, Jean-Léon Gérôme, Claude Monet, and Vincent

Van Gogh. The paintings represent a more abstract problem: stimuli were too small to clearly

identify the topic of the painting, and all four painters employed the full color spectrum. Thus,

correctly classifying the paintings hinged on more global image properties, such as painterly

style.

The relative difficulty of the Category Chain we used stems from two factors: the number of

items (four) and the very large number of exemplars on which each category was based. Exper-

iment 1 used thousands of different photographs for each of the four categories. In Experiment

2, each painter’s body of work was represented by hundreds of different samples. Because the

exemplars of each item were virtually trial unique in both experiments, subjects would have to

compare an indefinitely large number of features of four simultaneously presented stimuli on

each trial to represent its ordinal position. Perforce, subjects would have to rely on some sort

of abstract representation of each item. The ability to form such abstract representations cannot

be explained by any current form of association theory.

By using small portions of paintings as stimuli, we sought to challenge feature-based

accounts of categorization (e.g. [4, 12]). Individual stimuli within each painting category var-

ied dramatically in terms of their primary image statistics (see the supporting material for

more information). As such, category membership could not be defined in terms of discrete

features. Successful categorization of the painting stimuli must instead rely on a gestalt appre-

ciation of the image properties. Although such classification could be described in terms of

sophisticated statistical learning, it cannot be explained using models of associative strength.

We trained seven monkeys in the Category Chain task. Three learned to classify photo-

graphic stimuli, and four learned to classify painting stimuli. We also tested 41 naïve humans,

without instruction or any prior experience, on the same Category Chain task, first with

Perceptual category learning of photographs and paintings by macaques and humans
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photographic stimuli, and subsequently with paintings. The combination of the Category

Chain task with our large stimulus sets satisfied both the task complexity and stimulus set com-

plexity requirements needed to rule out the viability of trivially simple or associative classifiers.

Materials & methods

Ethics statement

Animal subjects. This study was carried out in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health (NIH). The work was conducted at the Nonhuman Primate Facility of the New York

State Psychiatric Institute with permission from its Department of Comparative Medicine’s

(DCM) Institutional Animal Care and Use Committee (IACUC), protocol number 200,

approved on 09/08/11, and with permission from the Columbia University IACUC, protocol

number AC-AAAB1238, approved on 08/10/11.

Subjects were individually housed in rectangular Primate Products Enhanced Environment

Housing, each with a nine-square-foot floorspace. Subjects had been previously housed

socially, as was standard in the colony, but due to frequent conflict events veterinary staff

deemed it unsafe for these monkeys to be socially housed. Regular attempts were made to find

new, compatible social partners for these monkeys. Cages were maintained in colony rooms

under 12-hour dark and light cycles, and the animals were given access to water ad libitum. Set

amounts of Purina Monkey Chow (between 6 and 12 biscuits) and fruit were given after

behavioral testing every day. The amounts of food dispensed were determined by the animals’

weight histories; weights were monitored on a weekly basis by research and veterinary staff to

ensure subjects stayed at healthy weights. Subjects were given a variety of psychologically

enriching tasks to complete at their discretion, beyond those required by behavioral testing.

Primate Products enrichment mirrors, puzzle feeders, puzzles tosses, and kong toys were all

provided to each individual in their cage; at least once a week, every subject was given sole

access to an activity module containing additional kong toys and a prima-swing. No subject

was physically harmed or knowingly exposed to potential infection. In accordance with the

DCM’s health and safety guidelines, no humans were ever exposed to the monkeys without

wearing protective equipment, and as such, the monkeys would not have seen any unmasked

human faces. Monkeys were all between 13 and 17 years old during the study. At the conclu-

sion of these studies, the monkeys were assigned to other behavioral studies.

Human participants. Human subject protocols were overseen and approved by the

Columbia University Institutional Review Board under protocol IRB-AAAA7861, “Cognitive

Mechanisms of Serially Organized Behavior”. 41 students enrolled at Columbia University

participated in the study to fulfil an introductory psychology class requirement. Students gave

written informed consent. No identifying information was collected.

Experimental task: Category chain

Monkeys. As in traditional SimChain [42], Category Chain presents four stimuli on

screen at the beginning of each trial, in positions that are randomly assigned. Each trial

included one stimulus from each of four categories (e.g., a bird, a cat, a flower, and a human).

Monkey subjects had to touch each of these items in a particular order in order to receive a

food reward in the form of a banana flavored pellet. Subjects could continue responding as

long as they made no errors. However, the first incorrect touch ended the trial, leading to a

time-out period and a random rearrangement of the on-screen stimulus positions on the next

trial.

Perceptual category learning of photographs and paintings by macaques and humans
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What distinguishes the Category Chain from prior SimChain variants is that the specific sti-

muli for that trial were selected at random from a large image bank. Thus, the cat presented on

trial 2 differed from the cat presented on trial 1, and did not appear again for the remainder of

the session. In this respect, the specific stimuli are trial unique, and subjects must learn to clas-

sify each stimulus according to its respective category before then selecting the stimuli in the

correct order.

Fig 1A gives an example of how Category Chain appears over successive trials. Although

four stimuli were always presented, each trial used different images. Three example trials are

shown in Fig 1. In the correct trial (Fig 1B), each stimulus is touched once, in the order bird-

s!cats!flowers!people. On one incorrect trial (Fig 1C), the initial touch is an error, ending

the trial immediately. On another (Fig 1D), a later touch is an error, also ending the trial. Fig

1E and 1F present example stimuli from each of the categories used in the study. Further

details about the stimulus sets, including distributions of their primary image statistics, are

provided in the supporting information.

Seven rhesus macaques (Macaca mulatta) performed the Category Chain task. Three sub-

jects learned to touch stimuli from the photographic categories in a particular order that dif-

fered for each subject (Augustus: Flowers! Cats! People! Birds; Coltrane: Birds!

Flowers! Cats! People; Lashley: Cats! Birds! People! Flowers). Four subjects learned

to put stimuli from the painting categories in order (Benedict: Dalı́! Gérôme!Monet!

van Gogh; Horatio: van Gogh!Monet! Gérôme! Dalı́; Macduff: Monet!Dalı́! van

Gogh! Gérôme; Prospero: Gérôme! van Gogh!Dalı́!Monet). For both photographs

and paintings, subjects received extensive training on category membership prior to

experiencing the final version of the Category Chain task.

To learn the stimulus categories, subjects were trained using a variant of the Category

Chain task. Rather than vary every image during every trial, only a subset of images initially

varied. Trials otherwise resembled SimChain: Subjects were rewarded if they touched each

image in the correct order. For example, during the first stage of training, the first three stimuli

in the chain remained fixed for the duration of the session, but the fourth stimulus varied. For

brevity, we will denote each stage of training with a code that indicates which stimuli remained

fixed during a session and which varied. “F” denotes a fixed stimulus, and “V” denotes a vary-

ing stimulus. Thus, a four-item list in which the first three images are fixed but the fourth var-

ies would be denoted by 1F-2F-3F-4V. All Category Chain sessions lasted 40 trials, and each

subject always maintained the prescribed order of categories indicated above.

Training consisted of 15 stages in total. The first four stages varied only one image category

at a time (Stage 1: 1F-2F-3F-4V; Stage 2: 1F-2F-3V-4F; Stage 3: 1F-2V-3F-4F; Stage 4: 1V-2F-

3F-4F). The next six stages varied two categories at a time (Stage 5: 1F-2F-3V-4V; Stage 6: 1F-

2V-3F-4V; Stage 7: 1V-2F-3F-4V; Stage 8: 1F-2V-3V-4F; Stage 9: 1V-2F-3V-4F; Stage 10: 1V-

2V-3F-4F). The next four stages varied three categories at a time (Stage 11: 1F-2V-3V-4V;

Stage 12: 1V-2F-3V-4V; Stage 13: 1V-2V-3F-4V; Stage 14: 1V-2V-3V-4F). Finally, during the

last stage of training, all categories varied, making it a full-blown Category Chain (Stage 15:

1V-2V-3V-4V). Subjects advanced from one stage to the next according to a performance cri-

terion (described below). Once the criterion was met for the final stage, an additional 25 ses-

sions of data were collected, which exhibited subjects’ plateau performance. The results

reported in section 4 are based on those 25 sessions.

Subjects learning the photographic categories advanced to the next stage of training when

an 80% criterion was met. Subjects learning the painting categories displayed considerably

more difficulty with the initial training, which necessitated two changes. First, criterions for

advancing to the next stage was lowered to 70% throughout the training. Secondly, the first

four stages of training (when only one category varied) were further subdivided into substages
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that had differing degrees of variation. Rather than varying across the entire image bank, the

varying category initially only varied among two items. Once the criterion was met, the num-

ber of stimuli used in the varying category was increased to five. This proceeded over succes-

sive stages (5, then 10, then 25, then 50, then 100). Once subjects reached the fifth stage of

training, these substages were no longer employed.

The housing, operant chambers, and software employed to collect data from monkeys in

this study was, unless otherwise specified, identical to that described by Jensen and colleagues

[43].

Humans. Human participants were given minimal verbal instruction. They were told

only (1) that they were to use a mouse to click on images, (2) that feedback would consist

green check marks (indicating a correct response) or red crosses (indicating an incorrect

Fig 1. The category chain procedure. (A). Four consecutive trials of the Category Chain task. Each trial presents one stimulus from each of the four

categories, but the specific photographs change and the stimulus positions change randomly from one trial to the next. (B). An example of a correct trial. The

dashed lines indicate initial touch, and the arrows indicate subsequent touch (neither dashed lines or arrows were visible to subjects). (C-D). Two examples of

incorrect trials. In the first case, the initial touch was to the wrong stimulus, so the trial ended immediately. In the second case, the first two responses were

correct but the third was incorrect. (E). Two examples each of the four photographic stimulus categories. (F). Two examples each of the four painting stimulus

categories.

https://doi.org/10.1371/journal.pone.0185576.g001
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responses), and (3) that they should try to get as many correct responses as possible. No men-

tion of either “serial” or “categorical” cognition was made until participants were debriefed.

Participants first completed 120 trials of the Category Chain task using the four photo-

graphic categories (using the order Birds! Cats! Flowers!Humans). They then com-

pleted 200 trials in which stimuli were derived from works by four painters (Dali! Gérôme

!Money! Van Gogh). Unlike the monkeys, participants were given no prior training or

instruction regarding the task structure of the category memberships. They had to learn how

to categorize the stimuli at the same time as they learned the task demands. Consequently, par-

ticipants generally began by responding at chance and gradually learned what the correct

responses were over successive trials.

Calculation

In traditional models of choice, each trial consists of a single choice and choice is modeled as

the probability of selecting a particular stimulus. The analysis of SimChain (and, by extension,

Category Chain), is complicated, however, by the varying number of individual responses dur-

ing each trial. For example, when presented with a 4 item list, a subject might make one, two,

three, or four responses, depending on whether any erroneous responses were made. Conse-

quently, the analysis of Category Chain performance requires the simultaneous estimation of a

different conditional probability for each response in the sequence.

Let p1 correspond to the probability of a correct first response, p2 to the probability of a cor-

rect second response, and so forth. The probability of reward in any single trial of the Category

Chain depended on four probabilities:

pðrewardÞ ¼ p1 � p2 � p3 � p4:

For any intermediate degree of progress, the chain of probabilities is cut off following an error

(whose probability is (1−pi) for choice i). For example, if only the first two responses are cor-

rect and the third response is an error, then:

pðprogress ¼ 2Þ ¼ p1 � p2 � ð1 � p3Þ:

In order to characterize performance in the Category Chain task, we developed a formal

model of subjects’ individual responses. This chain of conditional probabilities is fully depicted

in Fig 2A. Performance can be precisely described if each of these probability parameters can

be estimated. Because the monkeys received extensive training prior to test, their performance

had already achieved a stable ceiling. Consequently, the probability of a correct choice to stim-

ulus i was estimated using the logit link:

pi ¼
1

1þ expð� miÞ
ðEq 1Þ

Here, mi corresponds to the intercept term of a logistic regression, and as such governs the

probability of a correct response pi for subject i.
The human data presented a more complicated analysis problem, however, because they

learned to classify the stimuli over the duration of their participation. Thus, each probability

was expected to begin at chance, then grow toward 1.0 over time. To characterize learning, we

used a variant of the generalized logistic function [46], which we call the asymmetric bounded

logistic:

pi tð Þ ¼ f þ
1 � fi

ð1þ expð� ½si � t þmi�ÞÞ
vi ðEq 2Þ
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Here, pi(t) refers to the probability of a correct response to stimulus i at time t. The function

then accepts four parameters. The slope (s) influences the speed at which learning unfolds, and

the peak (m) influences when learning begins to differ from chance. The level of chance perfor-

mance for each stimulus is in turn governed by a floor parameter (f). Finally, a twist parameter

(v) is included because past empirical work on SimChain suggests that once learning begins, it

improves very rapidly at the outset, with diminishing returns as performance reaches asymp-

tote [43]. A depiction of the asymmetric bounded logistic is presented in Fig 2B, along with a

description of the contributions of each parameter.

Fig 2C shows hypothetical learning curves for each response over the course of 120 trials.

The logistic functions for p1, p2, and p3 all have the same parameters for slope (s = 0.1) and

twist (v = e6), but differ in their values for the floor f and the peak m. The floors differ because,

when a participant uses process-of-elimination search, chance performance given n stimuli is 1

n

for the first item (because there is a 1 in n chance of chosing the correct alternative), 1

n� 1
for the

second item, and so forth. The intercepts differ because progress cannot be made on discover-

ing the identity of Item 2 until some learning regarding Item 1 has begun. Finally, the last

probability p4 is a constant close to 1.0 because subjects almost never make mistakes on the

final choice, again thanks to process-of-elimination search.

The need for asymmetry in the learning rate (with a long period at some floor value, fol-

lowed by a sharp acceleration and then gradual diminishing returns) stems from SimChain’s

Fig 2. Formal model for describing simultaneous chaining behavior. (A). The decision tree that govern an animal’s “progress” through the list in a

single trial. Each choice made by the subject has a probability of being correct p1, p2, etc., such that the probability of completing a 4-item list (and thus

earning a reward) is (p1 � p2 � p3 � p4). Since specifying each pi permits the likelihood to be calculated, posterior distributions for these probabilities can be

estimated. (B). The asymmetric bounded logistic function, used to model each choice probability pi in humans (who lacked prior experience, and so had to

learn the categories while doing the task). This function is defined in terms of peak learning rate (governed by m), a slope (governed by s), a floor term

denoting starting performance (governed by f), and a twist parameter that influenced the asymmetry in learning speeds early vs. late during learning

(governed by v). (C). Examples of the conditional probabilities pi for each of the four choices. Note that p3 begins higher than p1 because, should a subject

get to the third choice, only two items will remain, making it a 50/50 chance. p4 is modelled as a constant value near 1.0. (D). Joint probabilities associated

with reaching different choice points, using the four probability function in panel C. (E). Average expected progress in the list, computed by taking the sums

of the joint probabilities in panel D. Thus, given a function for each choice probability pi, one can also model the progress made by participants.

https://doi.org/10.1371/journal.pone.0185576.g002
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process of sequential discovery. Prior to discovering the identity of the first stimulus, subjects

cannot gain information about the remaining stimuli. It is only after the first stimulus was

selected with some consistency that any information about later list items can be discovered.

This is why the conditional probability for p3 remains flat for 50 trials in Fig 2C. It is only after

the first two stimuli have been acquired that the subject has an opportunity to perform above

chance with respect to the third stimulus.

Fig 2D depicts the joint probability of the same participant making progress through the

list. The red line is the same as in Fig 2C, depicting how often the first choice is correctly

made. The blue line, however depicts how often the participant got at least two choices correct

(determined by multiplying p1 and p2), the green line at least three correct, and so forth. Fig 2E

depicts the mean expected progress in the list, and is determined by taking the sum of the joint

probabilities in Fig 2D. In this case, the participant begins at chance levels (progress = 0.4167),

but is earning a reward for almost every trial by trial 120.

Parameter estimates were obtained using the Stan language [47]. The analysis script is

included as supporting information.

Results

Our results provided compelling evidence of category learning of photographic and painterly

stimuli by monkeys that could not be explained by association theory. Similar results were

obtained from human subjects trained to respond to the same stimuli.

We analyzed the behavior of monkeys and humans performing the Category Chain task

with respect to four photographic categories and four painting categories. In particular, our

analysis focused on making estimates of the conditional probabilities of the responses to each

stimulus, and their corresponding reaction times.

Monkeys

Fig 3A depicts the conditional probabilities for the three monkeys who learned to classify

photographic stimuli. Fig 3B depicts their overall probability of obtaining a reward and Fig

3C depicts their mean progress in the list. The violin plots correspond to the posterior dis-

tribution of each estimate. Despite the presentation of different stimuli during every trial,

accuracy was reliably high. Subjects responded correctly to at least 75% of the first-position

stimuli (as compared to chance accuracy of 25%); at least 83% of the second-position stimuli

(chance accuracy = 33%); and at least 85% of third-position stimuli (chance accuracy = 50%).

Jointly across trials, this led to rewards being earned on roughly half the trials. Fig 3D shows

mean SimChain performance for each participants’ last 16 sessions, demonstrating the sta-

bility of their performance.

Fig 4 depicts the log reaction times of the photographic monkeys, displaying both the over-

all variability of reaction times (gray violins) and the credible interval for the mean (white vio-

lins). Subjects were consistently accelerated their responding over the course of a trial, as

would be expected using of a process-of-elimination strategy.

Fig 5A depicts the conditional probabilities, Fig 5B depicts overall probability, and Fig 5C

depicts mean performance for the four monkeys who classified painterly stimuli. Although all

four animals displayed conditional probabilities above chance, the overall accuracy was consis-

tently lower than that observed for photographic classification. As a result, only about one trial

in three ended with reward. This corresponded with consistently lower performance on a ses-

sion-by-session basis than subjects who classified natural photographs, as can be seen in Fig

5D.
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Fig 6 tells a similar story about the log reaction times: Subjects responded more rapidly to

later list items than to earlier ones, but tended to respond more slowly overall. One animal in

particular, Prospero, tended to respond at only about 1/3 as rapidly as did the photographic

group (cf. Fig 4). This suggests that the painterly stimuli were more difficult to classify, relative

to the comparatively automatic classification of the photographic stimuli.

Overall, these results resemble patterns of learning observed in classical SimChains present-

ing fixed arbitrary photographs [41, 43], and in SimChains for which the list order was deter-

mined by some psychophysical dimension [48]. This demonstrates both that subjects were

able to classify the categorical stimuli, and that the serial learning of categories was consistent

with other previously reported forms of serial learning. What distinguishes the current task

from previous studies of serial learning (e.g. using classical SimChain) is that every stimulus

changed on every trial. This meant that subjects had to classify the stimuli before they could

determine their serial order. Additional details, including distributions of estimated parame-

ters, are provided in the supporting information.

Fig 3. Monkey Category Chain performance for photographic stimuli. In all cases, violin plots represent the posterior density for the parameter

estimate. (A). Conditional response probabilities for each subject with respect to each list item. (B). Overall probability that any given trial will result in reward

delivery (equal to the product of the conditional probabilities) for each subject. (C). Mean progress in the list on each trial for each subject, averaged across

sessions. (D). Observed mean progress in the list on each trial for each subject, for each of the last 16 sessions.

https://doi.org/10.1371/journal.pone.0185576.g003
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Humans

Fig 7 (top) depicts the best-fitting learning curves, using Eq 2, of individual human partici-

pants during the photographic phase (semitransparent lines), as well as their group mean

(solid black line). Additionally, the empirical trial means are plotted as white points. These

learning curves indicate that most participants reached near-perfect performance (classifying

all four stimuli correctly on nearly every trial) within the first 40 trials of 120. The steep learn-

ing curves displayed by most participants suggests that once the task demands were under-

stood, discovering the order unfolded very rapidly.

Fig 7 (bottom) confirms this suspicion, plotting the population density function for the

conditional probabilities (gray violins) as well as the posterior distributions for mean perfor-

mance. Performance at the start of training (t = 0) looks just as one would expect for chance

performance, but by the session’s midpoint (t = 60), a bimodal distribution had emerged of

predominantly successful participants with a handful still responding at chance levels. By the

end of the session, the bimodal data continue to drag the overall mean down somewhat, but

the mode is so close to 1.0, as the participants who are making close to zero errors dominate

the distribution. The rapid acquisition by humans is consistent with an account whereby they

identify the categories using familiar linguistic labels.

Fig 8 tells a similar story with regards to the reaction times. Fig 8 (left) depicts the empirical

means of the log reaction times as points for first responses (white points), as well as the sec-

ond (light gray), third (dark gray), and fourth (black) responses. With the exception of very

early trials, these were approximately linear, so a hierarchical linear regression was performed

(black lines). These results suggest that, at the outset of training, responses displayed the char-

acteristic acceleration seen in monkeys, in which each response was made more quickly than

the last (compare to Figs 4 and 6). This pattern is consistent with a visual search strategy, work-

ing by process of elimination one response at a time. However, by the end of the session, a dif-

ferent pattern had emerged: A long interval for the first responses, followed by rapid selection

of the second through fourth items. This pattern is more characteristic of a plan-then-execute

approach. This pattern is also evident in Fig 8 (right), which shows the posterior population

estimates (gray violins) and credible intervals for the line of best fit (white violins) at both the

start (t = 0) and the end (t = 120) of training. Estimates showed a consistent downward trend

Fig 4. Monkey reaction times to photographic stimuli on a log scale. Violin plots show the distribution of log reaction times (in gray) and the credible

interval for the mean reaction time (in white) for each monkey.

https://doi.org/10.1371/journal.pone.0185576.g004
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at the start of training. Reaction times at the end of training were very similar after the first

response.

Fig 9 (top) depicts the performance of the same participants, in terms of Eq 2, to the paint-

ing phase of the experiment. Unlike Fig 7, participants did not show rapid acquisition, instead

improving only gradually as the session unfolded. Similarly, Fig 9 (bottom) shows that the

population distributions of conditional probabilities do not converge rapidly toward ceiling as

they did in the photographic condition. Although participants did tend to improve to varying

degrees (including a few who were able to classify all four stimuli), many improved so slowly

as to be indistinguishable from chance.

Fig 10 (left) depicts reaction times over the course of the painting phase. A plan-then-exe-

cute approach is no longer evident, with reaction times for the second and third items remain-

ing consistently long and similar to one another. The third response (in which participants

must distinguish Monet from van Gogh) appeared especially difficult, emerging as slower than

the second response by the end of the session.

Overall, these results provide a dramatic contrast. In the photographic phase, despite receiv-

ing no verbal instruction, participants were able to determine (1) that stimuli belonged to

Fig 5. Monkey Category Chain performance for painting stimuli. In all cases, violin plots represent the posterior density for the parameter estimate. (A).

Conditional response probabilities for each subject with respect to each list item. (B). Overall probability that any given trial will result in reward delivery

(equal to the product of the conditional probabilities) for each subject. (C). Mean progress in the list on each trial for each subject, averaged across sessions.

(D). Observed mean progress in the list on each trial for each subject, for each of the last 16 sessions.

https://doi.org/10.1371/journal.pone.0185576.g005
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regular categories, (2) that rewards depended on selecting categories in a particular order, and

(3) to classify stimuli consistently. Within 60 trials, most previously-naïve participants were

classifying stimuli with near-perfect accuracy (Fig 7), whereas highly trained monkeys per-

forming the same task and evaluating the same stimuli only managed to earn rewards on

about 50% of trials (Fig 3). In the painting phase, however, humans demonstrated much

greater difficulty identifying the categories and thus classifying the stimuli, despite being famil-

iar with the task. By the end of 200 trials, humans (Fig 9) still resembled monkeys (Fig 5), clas-

sifying the first three items with approximately 70% accuracy.

Discussion

Our results compare performance on two primate species, macaques and humans, across two

types of visual categories: naturalistic photographs and famous artists’ paintings. Category

exemplars were selected from large and highly disparate sets of images. Accuracy during the

painting phase was lower for both monkeys and humans, indicating that the paintings were

more difficult to categorize. Nevertheless, both species were able to successfully learn and

simultaneously classify stimuli from both sets of categories.

This categorization is noteworthy for two reasons. First, our task (the Category Chain) was

unusually demanding, requiring that subjects simultaneously classify four stimuli by respond-

ing to four different response locations on each trial. Second, both the number of photographic

and painting stimuli were large and diverse. The paintings, in particular, could not be catego-

rized by attending of a handful of discrete features. These two factors (task complexity and

stimulus set complexity) jointly provide compelling evidence that subjects processed stimuli as

gestalt percepts rather than resorting to a simple feature-based strategy. These percepts permit-

ted subjects to classify stimuli even when category membership depended on high-level stimu-

lus properties rather than low-level image statistics or specific feature discriminations. Stimuli

in the painting categories lack clearly definable features, and this is a problem for associative

models (which require features with which rewards can be associated to explain behavior).

The photographs are representative of ecological stimuli; humans are familiar with these

categories, and we possess unambiguous linguistic scaffolds for each. Although captive mon-

keys have little exposure to wildlife and do not possess language, primates nevertheless evolved

in the presence of birds, flowers, cats, and other primates, and past experiments have

Fig 6. Monkey reaction times to painting stimuli on a log scale. Violin plots show the distribution of log reaction times (in gray) and the credible interval

for the mean reaction time (in white) for each monkey.

https://doi.org/10.1371/journal.pone.0185576.g006
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demonstrated a greater aptitude at classifying naturalistic photographs than those of man-

made objects [49].

While our monkeys performed well above chance with photographic stimuli, they made

consistent, systematic errors, even after thousands of trials of training. By comparison, most

human participants were able to perform the task with close to zero errors after fewer than 100

trials. Many studies have reported that monkeys tend to make errors, even when the discrimi-

nations are simple and the animals experienced. One hypothesis for this persistent error rate is

that while both monkeys and humans face a speed-accuracy tradeoff, monkeys tend to favor

speed while humans tend to favor accuracy [15, 50]. This does not seem like a satisfactory

account of the present data, however, because monkeys and humans had similar reaction

times by the end of training (Fig 4 vs. Fig 8, Fig 6 vs. Fig 10). Another possible reason for differ-

ences in response accuracy may stem from species differences in executive control. Monkeys

tend in general to behave under the influence of stimuli, whereas humans tend to behave

Fig 7. Human performance estimate for photographic stimuli. (Top). Estimated time course of Category Chain performance for individual participants

(gray curves) and the overall mean (black curve). White points correspond to the empirical mean of performance across subjects on each trial. Chance is

indicated by the dashed line. (Bottom). Estimated conditional response probability for each list item at session onset (t = 0), midway through the session

(t = 60), and after the last trial (t = 120). Violin plots show the distribution of individual probability estimates (in gray) and the credible interval for the mean

probability across participants (in white). Note that mean probabilities are usually much lower than the population mode (which is near 1.0), due to a subset

of participants who remain at chance throughout training.

https://doi.org/10.1371/journal.pone.0185576.g007
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under the influence of more abstract task demands [51–52]. Because the photographic stimu-

lus categories were familiar to human participants, recognition appeared fairly automatic and

was unperturbed by changes in the stimuli from trial to trial. If the monkeys, however, deliber-

ately assessed categorical membership of the stimuli on every trial, it would help explain persis-

tent errors.

The paintings are not representative of any stimuli that are frequently encountered in the

wild and were more difficult to classify. When classifying the paintings, monkeys were less

accurate and their systematic errors were more frequent. Humans also found the paintings

phase more difficult, making more errors and learning more slowly (Fig 7 vs. Fig 9). Neverthe-

less, the monkeys again received thousands of trials of training, yet by the end of 200 trials,

human performance plateaued, and participants were about as accurate as the monkeys.

Apart from Augustus, the monkeys did not display markedly different reaction times to

paintings than they did to photographs. This suggests that most monkeys used a similar classi-

fication strategy with the paintings stimuli as with the photographic stimuli. Unlike the mon-

keys, humans displayed two patterns of response. The photographic stimuli elicited a “single

slow response, followed by three quick responses” pattern (consistent with planning an entire

sequence before executing the plan), whereas the painting stimuli forced participants to pause

at each decision. In this respect, humans differed from monkeys when classifying photographs,

but resembled them when classifying paintings. The differing patterns of reaction times and

the very slow improvement in performance suggest that human participants had no existing

linguistic representations to link to these percepts. Participants may have seen full images of

some of the paintings before, but by zooming in on the details and brushwork of the paintings,

we attenuated whatever benefits would have come with familiarity with the artists’ works.

When faced with sufficiently abstracted categories, humans seem to rely on a different, pre-lin-

guistic classifier, which we evidently share with other primates.

One of the chief difficulties in determining how features are used by classifiers is that it is

unclear what constitutes a “feature” in objective terms. For example, the plausibility of the

hypothesis that photographs are classified based on discrete features (such as eyes and beaks)

depends on the ease with which we are able to identify such features. Traditionally, features

were either defined in terms of “bottom-up” or “top-down” information [53]. A bottom-up

classifier identifies a feature through the assemblage of low-level sensory features (such as on-

Fig 8. Human reaction times to photographic stimuli on a log scale. (Left). Regression model of estimate first touch (white), second touch (light gray),

third touch (dark gray), and final touch (black). (Right). Estimated reaction time at session onset (t = 0) and after the last trial (t = 120) for touches to each

list item. Violin plots show the distribution of log reaction times (in gray) and the credible interval for the mean reaction time (in white).

https://doi.org/10.1371/journal.pone.0185576.g008
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center receptive fields and edges). Such systems are thus strictly driven by primary sensory

information, without any influence of prior expectation. Top-down classifiers, on the other

hand, are heavily influenced by prior knowledge, and act on sensory representations that have

already undergone several rounds of synthesis and integration. It is very difficult to provide

direct evidence of top-down processing in animals [54], and as a result the study of animal

classifiers has focused almost exclusively on bottom-up processing [4, 12, 55]. Although bot-

tom-up processing is clearly involved in how the brain classifies images, it is far from clear that

it is sufficient to explain the abilities of non-human animals.

Machine learning comparison

In order to compare our empirical data to a purely bottom-up approach, we simulated task

performance using two classifier algorithms. First, the “bag-of-features” (BoF) image classifier.

This sophisticated algorithm makes discriminations only on the patterns of low-level statistical

regularities. The algorithm collects salient features without incorporating order, structure, or

Fig 9. Human performance estimate for painting stimuli. (Top). Estimated time course of Category Chain performance for individual participants (gray

curves) and the overall mean (black curve). White points correspond to the empirical mean of performance across subjects on each trial. Chance is

indicated by the dashed line. (Bottom). Estimated conditional response probability for each list item at session onset (t = 0), midway through the session

(t = 100), and after the last trial (t = 200). Violin plots show the distribution of individual probability estimates (in gray) and the credible interval for the mean

probability across participants (in white).

https://doi.org/10.1371/journal.pone.0185576.g009
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spatial information, yet despite this simplicity, the BoF classifier achieves high performance in

a variety of imaging applications [56]. Insofar as subjects outperformed the algorithms, we

take this as evidence that subjects’ strategy was more than merely bottom-up, instead involving

at least some hierarchical processing.

Second, we used AlexNet, a well-known convolutional deep learning network (DLN) that

has prior training with photographic classification. In contrast to bag-of-features, a convolu-

tional DLN is explicitly inspired by cortical processes. Its lowest level of image processing com-

pares the image to a series of linear filters (such as “light on the left, dark on the right”), similar

to orientation and edge detection in primary visual processing. These low-level filters make

weighted contributions to the firing of nodes at a higher level, with convolutional connectivity

between layers. As a result, the second layer can resolve somewhat more complex forms than

the first layer. With each additional convolutional layer, more and more complex stimulus fea-

tures can be identified. We made use of the five convolutional layers in AlexNet, as well as two

subsequent fully-connected layers, which is sufficient for arbitrary photograph identification

[57]. Because AlexNet comes pre-trained to classify images in general, its off-the-shelf image

classification capabilities are very strong, and appear similar to the capabilities of higher order

areas of the monkey visual system [58].

In both the case of the BoF algorithm and the DLN algorithm, training on our stimulus cat-

egories followed the traditional practice of splitting each stimulus set into a training set and a

validation set, using the training set to educate the algorithms, and then producing a classifica-

tion matrix of conditional probabilities (e.g. “odds of identifying stimuli from each image cate-

gory as a cat”). This was particularly fast using AlexNet, because its network comes pre-trained

on a vast array of photographic images. Consequently, rather than having to retrain AlexNet

from scratch, we needed only to identify which nodes in a particular layer of processing were

predictive of our stimulus categories using a support vector machine (SVM).

To accomplish this, multiple iterations of training and validation were performed. For each

iteration, 30% of the stimuli in each category were designated as a training set, and the remain-

ing 70% were later used as a validation set. Additionally, rather than basing categorization on

AlexNet’s output layer, categorization was inferred by extracting a predictive signal from lower

layers of the network. Using MATLAB’s Statistics & Machine Learning Toolbox (Mathworks,

version 2017a), a SVM identified patterns of activation among networks nodes that were

Fig 10. Human reaction times to painting stimuli on a log scale. (Left). Regression model of estimate first touch (white), second touch (light gray), third

touch (dark gray), and final touch (black). (Right). Estimated reaction time at session onset (t = 0) and after the last trial (t = 200) for touches to each list

item. Violin plots show the distribution of log reaction times (in gray) and the credible interval for the mean reaction time (in white).

https://doi.org/10.1371/journal.pone.0185576.g010
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predictive of the categories specified for the training set. Then, this SVM categorized each

stimulus in the validation set. This approach has the advantage that it allows us to specify cate-

gories of our own, rather than relying on the categories AlexNet was originally trained with.

Since categorization accuracy varies as a function of which stimuli are used for training and

validation, we repeated the process (with random assignments of stimuli as training vs. valida-

tion) 500 times. We report that average performance across those many iterations. The sup-

porting materials include a MATLAB script that performs both of these analyses.

Fig 11 shows the mean probability of a correct response for monkeys (in white circles),

humans at the end of one session (in black circles), the BoF algorithm (in gray squares), and

the DLN algorithm (in dark grey diamonds) when presented with both photographs and

paintings. The algorithm probabilities assume a process-of-elimination search with no back-

wards errors. Of particular importance was the probability p1 of selecting the first item cor-

rectly (where chance performance would be 0.25), since this was the case in which the target

had to be distinguished from three distractors. For the photographic stimuli, humans clearly

outperformed monkeys, but monkeys also outperformed the BoF algorithm. The paintings,

however, yielded lower performance for all cases, confirming the intuition that the paintings

ought to be more difficult to differentiate. In addition, although humans and monkeys outper-

formed the bag-of-features algorithm on the first painting discrimination, neither species

clearly outperformed the other. On both photographs and paintings, the DLN algorithm out-

performed monkeys, humans, and the BoF algorithm.

Fig 11. Correct response probabilities for monkeys, humans, and a computer vision algorithm. Estimated response probabilities for monkeys (white

points) and humans (black points) for each of conditional probabilities p1 to p4 include error bars for the 95% credible interval of the estimate. Accuracy is

also included for the bag-of-features (BoF) classification algorithm (gray squares) and AlexNet deep learning network (DLN) (dark gray diamonds). (Left).

Performance in classifying stimuli from the four photographic categories. Humans systematically outperformed monkeys, who in turn outperformed the BoF

algorithm, but neither group outperformed the DLN algorithm. (Right). Performance in classifying stimuli from the four painting categories. Neither humans

nor monkeys were consistently superior, although while both outperformed the algorithm on the difficult initial discrimination, again, neither outperformed the

DLN algorithm.

https://doi.org/10.1371/journal.pone.0185576.g011
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To investigate differences how AlexNet processed these stimuli, we performed image classi-

fications using SVMs at each of AlexNet’s five convolutional layers, and both of its fully con-

nected layers. The result of this analysis, presented in Fig 12, suggests that although high-level

structures emerged with each additional layer when categorizing the photographs, the same

cannot be said of the paintings.

Classification was initially attempted using only the first convolutional layer, which could

only complete the Category Chain on 3% of trials for the photographs and only 1% of the trials

for the paintings. When classification was based on the second convolutional layer, however,

overall performance rose to 34% for photographic chains and 16% for painterly chains; perfor-

mance using the third layer rose further to 54% for photographs and 33% for paintings. With

each additional layer, photographs continued to improve, until 84% of Category Chains were

successfully completed using the second fully connected layer (thus also depending on the five

preceding convolutional layers). However, the categorization of painterly stimuli showed no

improvement past the third layer: Despite five convolutional layers and two fully connected

layers acting as classifiers, only 35% of lists were completed successfully. Because AlexNet is

designed to build up identifiable features constructively, with discrete features becoming

increasingly distinct at higher levels of the network, this demonstrates that the photographs

have more “features” (defined as statistical regularities that can be identified using convolu-

tional networks) than do the painterly stimuli. Furthermore, because only the low levels of the

network allow classification to improve, it follows that the consistent traits that distinguish

painterly categories are low-level and gestalt in nature (for more details, see Tanner et al. [58]).

While DLNs are a compelling hypothetical model of neurophysiological systems [59], the

fact remains that AlexNet was able to classify both types of images much better than either

humans or monkeys. This suggests that DLNs may not be ideally suited for modeling behavior.

Experimental performance may have differed from DLN performance for any number of

Fig 12. Category Chain performance by AlexNet, divided by layer. Proportion of Category Chain trials

completed (with all four stimuli categorized successfully), based on the categorizations of separate layers of

AlexNet, whether these layers be convolutional (1 through 5) or fully connected (6 & 7). The dashed line

indicates chance performance.

https://doi.org/10.1371/journal.pone.0185576.g012
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reasons. Although the monkeys displayed stable performance over time, human participants

had only a single session in which to learn. As such, they may have performed better had they

received more extensive training. On the other hand, DLN performance was not studied

dynamically (with AlexNet trying to refine its classifier using task feedback). It, too, might

have performed better had it been responsive to feedback.

At a minimum, AlexNet’s performance suggests that no associative model (such as the BoF

algorithm) could account for these results. AlexNet’s convolutional layers collectively contain

thousands of “nodes” (analogous to neurons), which are connected to one another by tens of

millions of weighted connections (analogous to synapses). A network of this complexity is nec-
essarily representational, in that acts as a predictive model based on past experience that can

both discern and generate relevant images upon request [60]. Because DLN algorithms are a

computational implementation of a representational system, these algorithms can be seen as

properly cognitive, and are not recognizable as associative models.

Modern computational models force theorists to consider the distinction between the

information a neuron can encode vs. the information a network can encode. The individual

nodes of AlexNet may, in some sense, be considered “associative” (since they update via simple

learning rules) but this does not make AlexNet collectively an associative model, any more

than a spatial map encoded in the hippocampus is “associative” because its computations are

performed by neurons. Given that robust representation is possible using feed-forward DLNs

like AlexNet, both traditional cognitive theories (with their vague box-and-arrow diagrams)

and traditional associative theories (with their simple stimulus-response relationships) will

need to adapt, and to be more specific about the level of analysis at which they describe mental

and behavioral phenomena.

The similarity between monkey and human performance in the case of the paintings distin-

guishes our stimuli from sets of man-made stimuli used in other primate studies [14, 61]

which incorporated consistent features, like wheels or windows. Although paintings have been

used as discriminative stimuli in animals studies by Watanabe and colleagues (e.g. [10, 62,

63]), ours is the first study to use painting stimuli with non-human primates. This study also

presented subjects with a much more difficult task than previous studies. Subjects had to clas-

sify stimuli from four different categories simultaneously. In the painting condition, these

exemplars used only small segments of the full canvas. The difficulty of the task and the ambi-

guity of the stimuli both helped to ensure that categorization performance could not be

ascribed to simple associative mechanisms. Most studies of animal categorization require that

subjects discriminate between only two categories, and such tasks can be solved using short-

cuts that would fail if more than two categories were presented simultaneously [40].

Implications and conclusions

The ability to categorize percepts has been found in multiple species of primate [4, 6, 9], as

well as pigeons [5, 8, 63]. Accordingly, our results are consistent with our finding that non-

human primates can flexibly classify stimuli according to abstract stimulus properties. Addi-

tionally, both humans and macaques have previously been shown to attend to the overall fam-

ily resemblance of sets of stimuli, even in cases when doing so impairs performance because

the task requires selecting on the basis of only a single feature [34].

Our study suggests other avenues for future work that could further develop this result. We

explicitly provided as little information as possible to our human participants in advance of

the experimental task. For example, if human participants were trained in art history, then

having a formal framework should permit linguistic classification, with a corresponding

improvement in performance. None of our participants were art majors, so it might also be
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revealing to compare trained artists or art historians to amateurs, to see if formal training

would yield performance more in line with the rapid learning displayed with the photographic

stimuli.

More research is needed to understand the specific operations of the classifiers that monkey

use to categorize stimuli. Future investigations will benefit from more demanding experimen-

tal designs that use larger stimulus sets, more categories, and harder tasks. The present result

suggests that serial lists of abstract categories can be manipulated in the same fashion as fixed

stimuli. A way to corroborate this aptitude would be to use categories with changing stimuli to

train a transitive inference task, which appears to tap into the same representational mecha-

nisms as SimChain [43].

Understanding complex learning in animals has always been difficult because animals can-

not learn human languages. Our results suggest that language makes internal percepts signifi-

cantly easier to classify, but we have also shown that stimuli can be integrated into percepts

without the benefit of language. An animal’s lack of human language is most often seen as an

obstacle to complex learning, but out results show that non-linguistic animals can teach us

much about the structure of cognition.
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