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CORRESPONDENCE Open Access

Can learning health systems help
organisations deliver personalised care?
Bright I. Nwaru1,2,3, Charles Friedman4, John Halamka5 and Aziz Sheikh1,6,7*

Abstract

There is increasing international policy and clinical interest in developing learning health systems and delivering
precision medicine, which it is hoped will help reduce variation in the quality and safety of care, improve efficiency,
and lead to increasing the personalisation of healthcare. Although reliant on similar policies, informatics tools, and
data science and implementation research capabilities, these two major initiatives have thus far largely progressed
in parallel. In this opinion piece, we argue that they should be considered as complementary, synergistic initiatives
whereby the creation of learning health systems infrastructure can support and catalyse the delivery of precision
medicine that maximises the benefits and minimises the risks associated with treatments for individual patients.
We illustrate this synergy by considering the example of treatments for asthma, which is now recognised as an
umbrella term for a heterogeneous group of related conditions.

Keywords: Precision medicine, P4 medicine, Personalised medicine, Stratified medicine, Learning health system,
Asthma

Introduction
The Human Genome Project and the subsequent se-
quencing of the human genome dramatically redefined
our understanding of disease processes, diagnosis, thera-
peutics, and prevention [1–4]. These advances laid the
foundations for President Obama’s launch in 2015 of the
Precision Medicine Initiative, which aims to integrate
the vast and ever-increasing quantities of genomic,
biological, health, administrative, environmental, and be-
havioural data on individuals in order to achieve more
individually tailored decision making and personalised
healthcare [5]. This Initiative has generated considerable
enthusiasm, but it has also attracted some skepticism
[6, 7]. There have been high profile demonstrations of
the promise of precision medicine in, for example,
cystic fibrosis and cancer [8–12]. The discovery and
clearer understanding of the cystic fibrosis transmem-
brane conductance regular (CFTR) gene variants as the
cause of cystic fibrosis led to the development of ivacaf-
tor as a targeted drug for patients with cystic fibrosis
[8–10]. Similarly, the success of the ABL1 kinase

inhibitor imatinib for chronic myeloid leukaemia pro-
vided a clear platform for the field of oncology to move
towards application of molecular classification and a
focus on genetic strategies for cancer diagnosis and
therapeutics [8, 11, 12]. Progress is also now being
made in other disease areas—for instance, in the field
of cardiology [13] and ischaemic stroke [14].
Parallel to the progress made in precision medicine is the

rapid accumulation of administrative, healthcare, and public
health data, particularly through electronic health records
(EHRs) resulting from clinical encounters, health insurance
claims, and medication prescription databases. Beyond
traditional data capturing approaches, the rapid develop-
ments in technology are also making it possible for import-
ant health data to be captured through personal devices,
such as mobile phones, wearable devices, activity monitor
units, and other emerging technologies that can be used to
collect personal data in real time. These developments have
greatly enriched the healthcare data space, and this,
coupled with increasing capabilities in processing, linking,
and analysing these disparate data sources, is opening up
new possibilities to utilise data to improve human health
[15, 16]. Through advances in high throughput computing
and predictive algorithms, machine learning is providing a
platform to develop relevant computational algorithms (e.g.
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decision trees and nested analytic structures) that enable
drawing inferences from raw data, in real time, without the
need for human input [15, 16].
One of the key foci of precision medicine lies in redefin-

ing disease pathogenesis, particularly at the genomic and
genetic levels [8, 17, 18]. There has in contrast been far
less progress in translating these insights into routine
healthcare processes that optimise therapeutic and pre-
ventive strategies [8, 19]. Clearly, massive genomic data
with potential to improve healthcare decision making are
continuously being generated, but the usefulness of such
data cannot truly be appreciated until they are successfully
integrated into the healthcare system in order to improve
human health [8, 19, 20]. Scientific breakthroughs remain
incomplete until they are successfully, routinely imple-
mented in clinical settings [20]. Precision medicine has
thus far lacked the tools to close the loop from genomic
discovery to clinical application [20]. This missing link can
be filled by a thoughtful synergy of precision medicine
and the principles of learning health systems (LHSs) [20].
LHSs, as will be described in further detail below, invoke
as a fundamental precept cyclical processes that convert
data to knowledge, bring knowledge to practice, and re-
turn the results of implementation into new data and in-
sights, which feed subsequent iterations of the cycle.
In this opinion piece, we use asthma, which is now

recognised as being an umbrella term for a heterogeneous
group of related conditions, as an exemplar to illustrate
the potential synergistic relationship between precision
medicine and LHS in improving healthcare processes and
clinical decision making. We argue that by capitalising on
the underpinning ingredients of implementation science,
the approaches endemic to precision medicine and LHS
can be successfully integrated in order to improve health-
care and support tailored clinical decision making to the
individual patient. In addition, we discuss some of the
emerging underpinning issues that need to be harnessed
in achieving a synergistic integration of precision medicine
and LHSs. These include, but are not limited to, identify-
ing and accessing relevant data sets that need to be access-
ible for analysis; advancing current electronic data capture
systems to accommodate the full range of relevant out-
come data; achieving data standardisation and harmonisa-
tion; advancing computational capabilities to meaningfully
interrogate and analyse these disparate data sets; imple-
menting methods for systematic management and feed-
back of knowledge created from data analytics; and
creating governance mechanisms that allow for secure,
trustworthy use and repeated reuse of these data.

Definition of concepts and transformational goals
Learning health systems
The LHS focusses on approaches to capture data from
clinical encounters and other health-related events,

analyse the data to generate new knowledge, and then
apply this knowledge to continuously inform and im-
prove health decision making and practice [21–24]. This
in turn requires policies, infrastructure, and governance
mechanisms to support data-driven health learning and
improvement [20, 21]. The LHS capitalises on the ad-
vances made in computational science in order to de-
velop algorithms to interrogate health data, interpret
these data, and then feed back the gained knowledge to
the healthcare systems in order to improve the quality
and safety of care [21–24]. The LHS allows identification
of at-risk patients, enhances stratification of the popula-
tion according to different risk profiles, provides deci-
sion support tools for clinicians, and provides a platform
and infrastructure for facilitating the undertaking of clin-
ical trials [20–24]. More specifically, within the context of
clinical trials, the LHS infrastructures are now being used
to support efficient recruitment, assess eligibility consider-
ations, undertake point-of-care randomisation, assess out-
comes, and enhance long-term follow-up [25–28]. These
benefits are not confined to clinical trials; rather, the LHS
infrastructure can be used to address a broad array of
health problems, as is discussed in detail elsewhere [29].
As illustrated in Fig. 1, the LHS can be viewed as a cyclical

process undertaken by a multi-stakeholder community shar-
ing interest in solving a particular health-related problem.
Each cycle begins with conversion of data to knowledge
(D2K), followed by application of this acquired new know-
ledge to transform practice (K2P). The capture of practice
changes and the consequences of these changes generate
new data, complete the cycle, and initiate the next iteration.
Successive iterations of the cycle aim to continue to identify
best practices and improve outcomes. The LHS extends
principles of continuous quality improvement through the
inclusion of governance and infrastructure that enables
system improvement to occur with economies of scope and
scale [30, 31]. A socio-technical infrastructure also enables
the LHS to function with economies of scale and scope.

Fig. 1 Framework for a learning health system. Adapted from Friedman
et al. Yearb Med Inform. 2017;26:16–23 [57] with copyright permission
granted by the Publisher
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By supporting multiple learning cycles with services, in-
cluding policy and technology, the cost of executing N
learning cycles is far less than N times the cost of
executing one cycle [32]. Because the infrastructure pro-
vides services that transcend biomedical domains—that is,
the infrastructure supporting an asthma-oriented LHS pro-
vides the same services as a cancer-oriented LHS—learning
cycles can be directed at any health problem.
One real-life example of the LHS framework is the

PINCER (pharmacist-led information technology inter-
vention) trial, which aimed to prevent and correct medi-
cation errors in general practice [33]. General practice
clinical systems were searched using computerised pre-
scribing safety indicators to identify patients at risk of
medication errors on the basis of their prescriptions.
With pharmacist support, the identified errors were
acted upon and corrected. The system was implemented
by an expert team, who used structured activities, in the
form of e.g. education, feedback, and opportunities for
shared learning, to engage clinicians and pharmacy
teams to effect the targeted improvements. Improve-
ments were then measured using anonymised routinely
recorded data from general practices collected at three
monthly time points. Using appealing illustrative statis-
tics and graphs, feedback was then provided back to the
Clinical Commissioning Group and general practices on
a continuous basis to assess their performance and
enhance continuous improvement (https://sapc.ac.uk/
conference/2017/abstract/implementing-pincer-intervent
ion-east-midlands-reduce-prescribing-errors). A key fea-
ture of the LHS approach illustrated by this work is the
multi-stakeholder ’learning community’.
Additionally, within the context of asthma, we are cur-

rently implementing a prototype LHS in Scotland, which
has been developed with relevant stakeholders (i.e. pa-
tient representatives, clinicians, industry, charity, policy-
makers, and academics). We are interrogating the EHRs
of sampled general practices across Scotland in order to
evaluate each general practice’s performance against na-
tional care benchmarks for asthma [34]. We plan to cre-
ate a continuous infrastructure with a feedback (K2P)
mechanism that will allow stakeholders to undertake
real-time monitoring of the progress being made across
important indicators of asthma care at the general prac-
tice level. Through linkage of the anonymised clinical
data to other demographic, social, and environmental
data sets, patients at risk of asthma attacks (structured
by various population segments such as gender, age
groups, ethnicity, socio-economic status, etc.) will be
identified. Findings will then be fed back to clinicians
using novel visualisation tools that will allow tailored,
actionable decisions to improve asthma control and re-
duce exacerbations (https://clinicaltrials.gov/ct2/show/
NCT03000491).

Precision medicine
The report of the Precision Medicine Initiative Working
Group to the Advisory Committee of the National Institute
of Health (NIH) defined precision medicine as “an ap-
proach to disease treatment and prevention that seeks to
maximise effectiveness by taking into account individual
variability in genes, environment, and lifestyle” [17]. The
overarching goal has been described as providing a clearer
understanding of the development and expression of dis-
ease through a “precise delineation of the molecular, envir-
onmental, behavioural, and other factors that contribute to
health and disease” in order to enhance more targeted
diagnosis, treatment, and prevention strategies [8, 17, 18].
Whilst precision medicine has so far been centred around
the use of genomic data to achieve individualised clinical
decision making, the P4 (i.e. predictive, personalised, pre-
ventive, and participatory) paradigm, often linked to preci-
sion medicine, highlights the need to take a more holistic
systems approach in order to support personalised health-
care decision making [35–39]. This extended paradigm is
dependent on integration of genetic, phenotypic, adminis-
trative, and sociotypic data. Achieving integration of these
data types will require the creation of deeply characterised
national longitudinal cohorts that are continuously mined
to support delivery of personalised care and to improve
care processes [35–39]. Most conceptions of precision
medicine leave implicit the knowledge-to-practice pro-
cesses so clearly called out in the LHS.

Precision medicine initiatives using asthma as an
illustrative example
The concept of ‘one size does not fit all’, fundamental
to precision medicine, has been reinforced in the
context of asthma, indicating that the traditional under-
standing of asthma as a single disease element is out-
dated [40]. Rather, accumulated evidence now shows
that asthma is a heterogeneous disease characterised by
variability in its pathophysiologic mechanisms (endo-
types) and underlying patients’ characteristics (pheno-
types) [40–43]. The heterogeneity of asthma also
manifests in variability of clinical outcomes that influ-
ence treatment options [40–43]. Whilst asthma has
been described as a condition with both type 2 and
non-type 2 immune responses, it is the type 2 immune
response endotypes that have been best characterised
[40, 41]. Type 2 immune response endotypes underlie
the common atopic asthma phenotypes, characterised
by eosinophilic airway inflammation, increase in type 2
cytokine levels, and aspirin-exacerbated respiratory re-
sponses [40]. Subendotypes of type 2 immune response
endotype include the interleukin (IL)-5-high, IL-13-
high, and immunoglobulin E (IgE)-high endotypes [40].
From progress made in genomic profiling, it has been

demonstrated that subtypes of asthma are related to
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distinct molecular perturbations. Tailoring treatment to
different asthma subtypes/endotypes may improve clin-
ical outcomes of asthma and reduce the risk of adverse
events [40, 44, 45]. For example, patients with type 2 im-
mune response asthma endotypes appear to respond to
treatment targeting the IL-5, IL-13, and IgE-mediated
pathophysiological pathways [40]. Several asthma bio-
markers have also been identified and are currently be-
ing used to target treatment options in relation to type 2
immune-related inflammation. For example, blood eo-
sinophilia has been shown as a targeted biomarker
linked to corticosteroids, as well as anti-IL-4-, anti-IL-
13-, and anti-IL-5-targeted treatment; sputum eosinophil
levels are also used as biomarkers for predicting treatment
responses to inhaled steroids and anti-IL-13 and anti-IL-5
treatment; whilst serum periostin levels are linked to anti-
IL-13 therapy, periostin present in bronchial tissue has
been shown as a biomarker for eosinophilic airway inflam-
mation [40]. Several other biomarkers have also been
shown to predict treatment response for patients with
type 2 immune response-related asthma inflammation.
However, whilst most asthma biomarkers are being used
for research purposes, their clinical application remains
uncertain, as they are yet to be validated and qualified—i.e.
linking many available biomarkers with clear clinical end-
points is still at various stages of development [40].
In considering the application of precision medicine to

achieve personalised therapy for patients with asthma,
the PRACTALL collaboration (joint expert group of the
European Academy of Allergy and Clinical Immunology

[EAACI] and the American Academy of Allergy, Asthma
& Immunology [AAAAI]) outlined a three-step ap-
proach (Fig. 2) [40]. As a first step, there is a need to
correctly establish and verify the diagnosis of asthma, in-
cluding adequate treatment of any co-morbidity. This
should be followed by the establishment of the under-
lying asthma phenotype based on the physical character-
istics of the patients. Third, the underlying asthma
endotype needs to be ascertained, as a clear understand-
ing of the pathophysiological mechanism of a particular
endotype is crucial for delivering targeted personalised
treatment. Finally, there is a need to validate known
biomarkers that may be related to asthma severity and
clinical outcomes, as this will be essential for further de-
velopment of primary and secondary asthma prevention
strategies [36]. Overall, this model leaves the K2P frame-
work (see Fig. 1) implicit and, as such, this example does
not reflect the full potential of an integration of preci-
sion medicine and LHS.

Link between precision medicine and LHS:
theoretical framework
Whilst the primary focus of precision medicine has thus
far been on the discovery side of science, there is also a
need to pay attention to how to translate the discoveries
being made into clinical practice. This should be followed
by efforts to systematically evaluate outcomes at an indi-
vidual patient level and iterate the process, as needed, with
the overall goal of ensuring that the discoveries made at
the genomic level are used to improve clinical care for

Fig. 2 PRACTALL suggested steps for implementing precision medicine in asthma. AHR airway hyper-responsiveness, BM biomarkers. Reproduced
from Muraro et al. J Allergy Clin Immunol. 2016;137:1347–58 [40]
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individual patients (see Fig. 1). The National Academy of
Medicine, in its report based on the Roundtable on Trans-
lating Genomic-Based Research for Health, provided a
springboard for discussion on the strategies of translating
genomic breakthroughs into clinical practice, emphasising
the need to capitalise on the underpinning theoretical
frameworks in innovation sciences [46]. The pathways to
translating research findings to the clinical setting are
complex, often inhibited by known and unknown barriers.
It is insufficient to know whether a particular intervention
works in controlled environments. Health improvement
requires that the intervention works and can be cost-
effectively delivered in real-world settings [20].
The LHS can provide the conceptual framework and

infrastructure platform to ensure the real-time iterative
application of breakthroughs in precision medicine to a
real-world healthcare setting, but the pathway to achiev-
ing this may not be straightforward [20]. Chambers and
colleagues have suggested a theoretical framework
through which precision medicine and LHS can be syn-
ergistically integrated, emphasising that implementation
science may provide the missing link to this complex
convergence [20]. Implementation science has been de-
fined as “the scientific study of methods to promote the
systematic uptake of research findings and other
evidence-based practices into routine practice, and,
hence, to improve the quality and effectiveness of health
services and care” [37]. Healthcare delivery is complex,
with a number of barriers inhibiting the emergence of
high efficiency health systems. Implementation science

therefore focusses on identifying and modifying potential
factors, both individual and policy factors, that tend to
influence the uptake and application of research findings
into real-world clinical practice [44–50].
We have built on this framework to propose the model

depicted in Fig. 3 (illustrated for asthma). The proposed
framework indicates that the ultimate goal of a synergy
between precision medicine and LHS is to achieve a
continuously improved health system in which precision
medicine is considered a core ingredient of a learning
health cycle, which includes development of improved
and better targeted diagnosis and therapy, allowing for
better decision making for each patient presenting at the
clinical care level. Evidence developed using precision
medicine approaches, for example, the establishment of
treatment options targeting specific subendotypes or
phenotypes of asthma, therefore needs to be assessed on
whether such discoveries can be translated to improve
clinical outcomes of asthma and on whether it is feasible
to identify subgroups of asthma patients for whom such
a potential treatment option can be applied. Moving evi-
dence from precision medicine based on genetic targets
will require linking genomic data to clinical electronic
health data [51]. This process has ethical, policy, eco-
nomic, and technical dimensions that need to be ad-
dressed, and are illustrative of the range of challenges
that stand between the current state of health systems
and their potential to become learning systems capable
of realising the full potential of precision medicine. One
important solution is the establishment of Safe Havens

Fig. 3 A framework for a synergy between precision medicine and LHS: the role of implementation science as a catalyst of the link. Reproduced
with permission from Chambers et al. JAMA. 2016. 10;315(18):1941-2 [58] Copyright© (2016) American Medical Association. All rights reserved
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that provide a secure infrastructure for undertaking data-
intensive research and clinical care. Concerning privacy
and data safety, Taitsman and colleagues recently identi-
fied three levels of safeguards: physical, electronic, and hu-
man capital [52]. At the physical level, patient data should
be treated with the utmost level of confidentiality includ-
ing making patient-physician consultation as private as
possible and enabling a secure storage of all patient data.
At the electronic level, access to patient data should be
user-authenticated: systems should be protected with ap-
propriate firewalls, antivirus programs, and necessary en-
cryptions; and storage hardware should be made as secure
as possible. At the human capital level, hiring of database
personnel should follow careful vetting and background
checks; personnel should undertake appropriate training
on information governance, data security, and patient
privacy, and they should be equipped with necessary data
sharing and security protocols [52].
The framework embodied in Fig. 3 highlights the

strengths of implementation science, which can serve as a
catalyst of achieving a synergy between precision medicine
and LHS. Through implementation science, fundamental
elements of healthcare settings, the cultures that underpin
them, and the specifics of each context can be identified,
analysed, and appropriately managed. By involving and
partnering with all relevant stakeholders, implementation
science capitalises on core strategies (planning, education,
financing, restructuring, quality management, and aware-
ness of policy contexts) to achieve its goal and to support
a successful link between precision medicine and LHS, so
that promising findings generated from genomic data can
be successfully translated into real-world settings to im-
prove asthma care. This synthesis, if achieved, will realise
a paradigm shift resulting in, among other changes,
the perception of genomic data and information de-
rived from them as part of data supporting routine
care. Such a paradigm shift requires continuous edu-
cation of patients, healthcare providers, and the gen-
eral population on the emerging developments in our
understanding of disease and the impact they may
have on routine clinical practice [13, 19].

Underpinning infrastructure and strategies for
scaling up
Achieving the goal of precision medicine that has rele-
vance to day-to-day healthcare processes and decision
making, through the application of LHS principles and
with implementation science as a bridge, will require a
shared digital infrastructure to both promote personalisa-
tion and continuously improve the overall system [35, 53].
One of the first fundamental challenges is to identify data
assets (i.e. genomic, clinical, phenotypic, sociotypic, and
environmental data sets) that are relevant to the health
problems being addressed [35, 53]. From the healthcare

system perspective, there is a need to enhance current
electronic data systems in ways that enable them to cap-
ture and integrate multiple sources of outcome data, such
as administrative, social, and patient-reported outcomes/
experiences (PROMS/PREMS) data [35, 53]. The sources
and nature of these data sets are usually disparate; hence,
there is a need for establishment of frameworks for data
standardisation, harmonisation, transformation, and link-
age [53]. Such tools and analysis platforms will benefit
from being transferrable across contexts, adaptable to
multiple computational platforms, and open source in
order to allow for further developmental inputs from all
stakeholders, which will be essential in realising their full
potential in advancing the field [53]. These tools should
also support meaningful visualisation of data in ways that
will allow benchmarking and assessing personal risk.
Approaches to analysis of observational data need to be

robust, with case-mix adjustments and propensity score
techniques; whilst these have usually been achieved through
conventional frequentist statistical approaches, where pos-
sible, they should be complemented by artificial intelligence-
based approaches (e.g. machine learning) that provide
meaningful learning from non-dimensional complex data
sets. These data systems and the tools needed to con-
tinuously interrogate them must be complemented by
’knowledge to practice’ infrastructures (e.g. Apervita
[https://apervita.com/], Semedy [http://www.semedy.-
com/]) that engage organisations, healthcare profes-
sionals, and patients actively in health and healthcare
improvement [35, 53]. These strategies will thrive in a
relevant policy-enabling context: the issues of data
ownership, security, privacy and anonymity, and data
sharing need to be carefully outlined, with the contribu-
tion of all stakeholders [53, 54]. Our increasing under-
standing of disease process and health now clearly reveal
the complex inter-relationships between genetic, physio-
logical, social, behavioural, and health system determi-
nants. Although inherently challenging, particularly as the
volume and complexity of the available data increase,
there is a need to develop data processing and analytical
capabilities that will help bring together various relevant
data sets, interrogate these data sets to uncover the under-
lying interactions, and then integrate the findings into
routine clinical care [55, 56].

Conclusions
The potential of precision medicine in individualising
healthcare decision making will not be fully realised until
emerging breakthroughs are successfully integrated into
routine clinical care. We have proposed a framework of
integrating accumulating genomic data into the clinical
encounter in a way that allows for a continuous learning
health cycle and improvement of the quality of care. We
have emphasised the role of implementation science as
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an important catalyst in linking precision medicine to
the healthcare system. Through partnership with all
relevant stakeholders, implementation science needs to
support the translating of findings generated from preci-
sion medicine into real-world healthcare settings. Fur-
thermore, in order to enable scale-up of an integrated
system, the underlying digital infrastructure needs to
promote personalisation and continuously improve the
overall system need to be shared: this includes identifica-
tion of all relevant data; advancement of current elec-
tronic data capture systems to accommodate other
sources of outcome data (e.g. administrative and social
data); establishment of frameworks for data standardisa-
tion and harmonisation; creation of frameworks for ef-
fective linkage of the various data sets in a secure and
transferrable way; advancement of the computational
capabilities to meaningfully interrogate and analyse these
data; development of decision support systems that will
enhance active participation of organisations, healthcare
professionals, and patients in the healthcare processes;
and finally the need to create a policy-enabling context
that defines and sets necessary limits for data ownership,
security, privacy, and data sharing.
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