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Abstract  

Combining computational modelling with experimental measurements has revealed the self-assembly of nano-

aggregate structures in the transfer of HCl and PtCl6
2 from an aqueous phase into toluene by the common 

industrial extractant tri-butyl phosphate (TBP). Molecular dynamics simulations have been coupled to analytical 

measurements to provide an atomistic interpretation of the mode of action of TBP under 6 M and 10 M HCl 

conditions. The structures conform to reverse micelles, where the Cl or PtCl6
2 core is encapsulated by a 

hydration shell that acts as a mediating bridge to the electronegative oxygen atom in the TBP phosphate groups. 

For the 6 M HCl extraction model, the data support stable aggregates forming from 2-3 TBP molecules around 

one chloride anion if the number of water molecules encapsulating the chloride anion is no more than five; 

increasing the water content to ten molecules allows a fourth TBP molecule to coordinate. For the 10 M HCl 

extraction model, stable structures are obtained that conform to the empirical formula (TBP.HCl.H2O)3-5. At 6 

M HCl, extraction of PtCl6
2 is achieved by encapsulation by four TBP molecules; the data for extraction at 10 

M HCl indicate larger aggregates containing multiple PtCl6
2 anions are likely to be forming. In all cases, the 

hydrated core regions of the reverse micelles are considerably exposed. The diameters of the self-assembled 
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structures around chloride ions agree well with available literature data from small angle neutron scattering 

experiments. 

 

Introduction 

Tri-n-butyl phosphate (TBP, Figure 1) is a well-known compound employed in the recovery of inorganic 

acids (notably HCl, HClO4 and HNO3) and metals by solvent extraction from acidic media.1-4 It is used 

extensively in the nuclear industry for the reprocessing of uranium, plutonium and thorium in the PUREX 

process,5 and finds application as a modifier and solvent in many processes.6-7 

This paper concerns the mode of action of TBP in the recovery of PtCl6
2- from aqueous HCl solutions of the 

type obtained by oxidative leaching of platinum group metal (PGM) concentrates.8 In such a process PtCl6
2- is 

present in an acidic solution which contains other chloridometalate anions and a large excess of Cl-.9 In many 

cases the extraction of chloridometalates from acidic solutions can be represented by a simple ion pairing, to 

create charge-neutral assemblies which contain little or no water.10-16 TBP can function as a ‘solvating 

extractant’,17 bonding in either the inner or outer coordination sphere (or both) of a neutral metal complex, as 

in extraction of uranyl nitrate.18 However, it can also operate by a different mechanism that involves formation 

of reverse micelle aggregates in which TBP behaves in a similar manner to a surfactant.19 The reverse micelle 

structure is achieved by the polar head group of TBP associating with a water pool of the extracted anion(s) 

which is subsequently encapsulated by the aliphatic hydrophobic chains. These chains protrude into the 

organic solvent, essentially providing a layer between the water and the hydrophobic solvent. The formation 

of reverse micelles and, more generally third phases, by TBP has been studied extensively for nitrate-

containing systems because of its importance in the separation and recovery of radionuclides.20,21-22 The 

concept of a reverse micelle mode of action to transfer metal ions through water-oil interfaces by a range of 

surfactant ligands is now well established.17, 23-28   

Given that the extraction of any chloridometalate anion will compete with a massive excess of chloride, it is 

important that the extraction behaviour of TBP with respect to hydrochloric acid is understood. Early work on 

the uptake of water and HCl by TBP (neat and in hydrocarbon solvents) is the subject of an excellent review 
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by Osseo-Asare.7 Chiarizia et al.21, 29 report small angle neutron scattering (SANS) data on HCl extractions by 

TBP into n-octane that provides a mechanistic explanation for third phase formation. Their data suggest the 

presence of reverse micelles which exist in solution as simple dimers that grow from aggregates containing 

two TBP molecules (when no HCl is present) to ({HCl}3{H2O}3·7TBP)org, until the organic layer splits at 7.6 

M HCl. This picture is somewhat at odds, however, with thermodynamic modelling of the TBP/HCl/water 

system by Lum et al.,30 which predicted that the trisolvate species (HCl{H2O}7
.3TBP)org will dominate at low 

acid concentrations, while the di- and mono-solvates (HCl{H2O}6
.2TBP)org and (HCl{H2O}3

.TBP)org become 

more prevalent as the acid concentration is increased. At HCl concentrations greater than 8 M  water is lost 

from the organic phase and only a slight excess of water over HCl is observed, with a typical stoichiometry 

being ({HCl}1.6{H2O}1.8
.TBP)org.  

While the extraction of metals by TBP has been the subject of many papers, there are gaps in knowledge 

which require attention. Its behaviour as an extractant in toluene appears not to have been reported and an in-

depth investigation beyond the stoichiometries of components postulated to aggregate in the organic phase is 

missing. Information on the molecular structure, bonding, and the fundamental factors guiding the formation 

of the postulated macromolecular reverse micelles can be provided through molecular dynamics simulations, 

where the impact on the self-assembly of structures arising through systematic variation of the different 

components involved can be studied in depth. The focus of this paper is therefore to probe more deeply the 

behaviour of TBP for the extraction of HCl and PtCl6
2- into toluene. This study began with an analytical 

investigation to determine, as far as possible, the relative proportions of TBP, H2O, HCl and PtCl6
2- that 

comprise the reverse micelles as a function of HCl concentration. These results were then used to guide 

computational modelling work, where self-assembly of reverse micelle structures were observed from 

components placed randomly in a toluene solvent box. Two HCl concentrations formed the basis for the 

computational investigation: 6 M HCl, since this is the acid concentration typically used for the commercial 

extraction of platinum group metals (PGMs) from HCl leach streams,9 and 10 M HCl because the analytical 

measurements indicated a significant change in extractant behaviour at very high acid concentration.  

 

Experimental and Computational Methods  
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Extraction set up. All solvents and reagents were used as received from Sigma-Aldrich, Fisher Scientific 

UK, Alfa Aesar, Acros Organics or VWR International. Deionised water was obtained from a Milli-Q 

purification system. Tri-n-butyl phosphate (TBP) was dissolved in toluene to create stock solutions of 0.5 and 

1 M. The HCl concentration was varied from 2 M to 12 M. As HCl is known to promote hydrolysis of TBP,31 

contact and mixing of the equi-volume organic and aqueous phases was kept to a minimum (15 minutes, 

stirrer plate) before being physically separated. Any entrained water in the organic phase was subsequently 

removed either by phase separation paper (Whatman 1PS), centrifuge or sonicator.  

Water and acid content analysis. Due to the high excess of chloride (2-12 M HCl) present in the (0.01 M) 

PtCl6
2 extractions, and as TBP will co-extract both these species, it was not possible to determine the levels of 

H2O and H+ associated with transport of just PtCl6
2 into the organic phase because the values are swamped by 

those involved in the extraction of HCl. Consequently, water and acid content analysis are only reported in the 

main text for the HCl extractions; data obtained in the presence of 0.01 M Na2PtCl6 can be found in the electronic 

supplement S1.2.  

Water content of the organic phase pre- and post-extraction was measured by Karl Fischer titration, using a 

Metrohm 831 KF Coulometer charged with HYDRANAL® Coulomat AG reagent. Background levels of H2O 

present in toluene following contact with 2-12 M HCl were also obtained to apply as a correction to the data 

when TBP was present.  

The concentration of H+ in the organic phase post-extraction was determined by making up 1 ml aliquots to 

5ml in propanol, ensuring availability of sufficient volume to cover the Radiometer red rod REF201 universal 

electrode and Radiometer pHG 201/8 glass pH electrodes, against either standardised 0.1 M or 1 M NaOH 

solutions. The pH titrations were carried out using a Metrohm Titrando equipped with 800 Dosino dispensers.  

Metal-content analysis. The concentration of Pt in the organic phase was determined using a Perkin Elmer 

Optima 5300DV inductively coupled plasma optical emission spectrometer. Sample solutions in 1-methoxy-2-

propanol were taken up into a Gem Tip cross flow nebuliser and a Glass Cyclonic spray chamber at a rate of 

2.0 mL min-1 and analysed using a RF forward power of 1500 W with argon gas flows of 20, 1.4 and 0.45 L 

min-1 for plasma, auxiliary and nebuliser flows, respectively. Resulting data were processed using WinLab32 



5 
 

for ICP-OES, version 3.0.0.0103. ICP-OES calibration standards for platinum in 10% hydrochloric acid were 

obtained from VWR International Ltd (UK). 

Classical molecular dynamics simulations. All MD simulations were performed using the software package 

LAMMPS,32 with the OPLS-AA force field33 for all atom types with the exceptions of water (for which the 

TIP3P parameters were employed)34 and PtCl6
2- (for which custom parameters were derived for the partial 

charge (q), Van der Waals well depth () and collision diameter (), see electronic supplement S2.4). Partial 

charges (Mulliken) for TBP, TBPH+ and H3O+ were calculated at the B3LYP/6-31G(d) level of theory using 

Gaussian09,35 in a similar fashion to that reported by Cui36 and Wipff.37 Initial models were constructed using 

Packmol38 to fit specific numbers of desired molecules randomly inside a cubic box of length 40 Å. Models 

comprised 3 to 6 TBP molecules, 0 to 10 H2O molecules, 1 to 5 Cl anions, along with the appropriate number 

of charge balancing protons located on either TBP or H2O molecules, and a sufficient number of toluene 

molecules to match the experimental solvent density at 298 K. Note the apparent low concentrations of 

components in the simulation box prevents multiple aggregates forming in the simulation, which would 

require a substantially larger periodic boundary unit cell. The xyz file was then converted into a LAMMPS 

data file using the VMD Topo tools.39
  Initial minimisation was carried out on all models by iteratively 

adjusting the atomic coordinates to reach a local potential energy minimum. Simulations were then run under 

NVT ensemble conditions to achieve equilibrium for approximately 0.05 ns (in integration time steps of 0.1 fs 

using the standard Velocity-Verlet algorithm), followed by simulations using the NPT ensemble for a 

minimum of 9 ns (integration time steps of either 0.5 or 1 fs), thermostated at room temperature and pressure 

using the Nosé-Hoover thermonstat/barostat system.40-41 Further details can be found in the electronic 

supplement. 

Results and Discussion 

1. Extraction of HCl by TBP into toluene 

Water content. As observed for other organic solvents,31, 42 varying the HCl concentration in an aqueous 

phase in contact with toluene affects the amount of water which is transferred into the organic phase. For the 

system shown in Figure 2, which uses a 1 M solution of TBP in toluene, no third phase was formed. Below 6 
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M HCl only small amounts of water are extracted [see Figure 2(a)], but between 6 M and 12 M HCl the 

amount of water extracted increases to a maximum at ca. 10 M [HCl] and then decreases. Data points above 

10 M HCl in Figure 2 were adjusted to account for changes in the relative volumes of the two phases by using 

a metal tracer in the aqueous phase and the amount of water transferred to the organic phase was corrected for 

background levels present in toluene (Electronic Supplement S1.1). Similarly shaped curves were obtained by 

Kertes43 and Hardy44 using 100% TBP although the absolute values differ (2M HCl extracted ca. 1.0 M H2O 

and 9.0 M HCl extracted ca. 3.2 M H2O). A study by Bach on 30% (v/v) TBP in xylene gives quantitative 

agreement with the data plotted in Fig 2(a).42 

Acid content. Results for H+ extraction are displayed in Figure 2(a), where minimal H+ was detected in the 

organic phase upon contact with HCl below 6 M. Above 6 M HCl, [H+] rises in a linear fashion. Similar 

behaviour has been reported in other solvents.31, 42-43,44  

Water:acid ratios in loaded organic phase. The ratio of H2O to HCl measured upon extraction with varying 

initial HCl concentration in the aqueous phase is shown in Figure 2(b). The ratio falls rapidly, to levels of 

around 1:1 at 9–10 M HCl, dropping further thereafter. Two key concentrations of HCl are the focus of 

discussion below: 6 M HCl, which is the acid concentration typically used in the extraction of PGMs from 

HCl-leach streams,9 where our analysis suggests HCl{H2O}2.5 [Figure 2(b) red point], and 10 M HCl, where 

the concentration of H2O detected in the organic phase reached a maximum, and our analysis suggests 

HCl{H2O}. Our data match very closely the report by Lum et al for high acid extraction30 but our lower acid 

extraction model suggests a notably less hydrated core, which may arise due to the different solvents used. 

2. Extraction of PtCl6
2- by TBP into toluene 

PtCl6
2-extraction. The ability of TBP solutions in toluene to extract PtCl6

2- as a function of TBP and HCl 

concentration is summarised in Figure 3(a). Extractant performance of TBP is highly dependent on HCl 

concentration. Data reported here are comparable with those reported by Sun et al.45 For extractant solutions 

containing more than 1 M TBP the platinum-loading decreases significantly as the initial concentration of HCl 

in the aqueous feed solution is increased. This behaviour is typical for extraction of chloridometalates which 

are competitively extracted alongside chloride anions.9 
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Slope analysis. TBP:PtCl6
2- ratios pertaining to the extractions at 6 M and 10 M HCl were obtained from 

analysis of the distribution coefficient, D, where D = [Pt]org/[Pt]aq, and the gradient of a plot of log D against log 

[TBP] gives the ratio of the two components in the extracted species. The results of these analyses are given in 

Figure 3(b,c). At 10 M HCl the straight line fit (R2 = 0.992) suggests that two TBP molecules are associated 

with each PtCl6
2- ion in the organic phase. The curved form of the plot at 6M HCl indicates that the extraction 

process involves the formation more than one type of assembly in the organic phase. The curved form is not 

associated with experimental errors as the Pt content of each phase was estimated to be subject to ≤ 3% error 

and no third phase was detected. Whilst, as might be expected for a complex system in which aggregation of 

species in the organic phase is possible, the log D plots did not provide evidence for the formation of a single 

species under all conditions, they proved useful in providing guidelines for the range of stoichiometries (i.e. 2-

5 TBP to PtCl6
2-) which should be considered in modelling the formation of reverse micelle type assemblies.  

3. Molecular dynamics simulations  

3.1 Models for extraction of Cl from 6 M HCl. MD simulations were performed to establish the maximum 

number of TBP molecules that can assemble around one Cl anion in the presence of a small amount of water. 

The number of water molecules was varied (0, 5 or 10) in order to directly assess the impact of water in the 

assemblies thus formed. Note that care needs to be taken not to over interpret the observations from the 

modelling work as, unlike the solvent extraction experiment, the periodic boundary condition model used does 

not have an interface to an aqueous layer. As such, any water molecules present in the simulation cell will 

naturally gravitate to the anion, whereas in the real extraction the polar environment of the aqueous phase may 

act as a stronger attractant than the organic phase. To establish charge neutrality, an H+ counter ion must be 

present, which can be attached to either a TBP molecule or a H2O molecule. Whilst it is more likely that the 

proton resides on a water molecule (and in all likelihood hops between water molecules)46 we pursued both 

options in this work, as geometry optimisation calculations [M06/6-31G(d)] on the system TBP….H3O+ 

resulted in the proton ‘hopping’ to the  TBP, leaving a hydrogen bound water molecule, indicating that, in the 

gas phase at any rate, TBPH+ is a stable species. Also, within a small reverse micelle containing only a few 

“structured” water molecules H-bonded to an anion which will reduce their basicity, the option of a proton 

residing on a TBP molecule might be more favourable than in a bulk phase.  
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In all simulations, a single aggregate was observed to form spontaneously, where the Cl anion was 

surrounded by a water shell, which in turn was surrounded by a TBP shell (see Figures 4 and 5). The structure 

therefore conforms to what could be regarded as a reverse micelle. Regardless of whether the counter cation is 

H3O+ or TBPH+, it quickly became apparent that whilst the maximum number of TBP molecules that could 

assemble around the chloride anion was four, assemblies containing two or three TBP molecules were far 

more common [see electronic supplement S2.1]. This finding is in line with the thermodynamic modelling, 

which suggested a ratio of HCl: 3TBP at low acid concentration.30 The simulations also appear to support the 

levels of micelle hydration identified by the Karl-Fischer titrations: in the complete absence of water, the 

number of associated TBP molecules most often found was just two, while increasing the number of water 

molecules (to ten) usually permitted four TBP molecules to aggregate. This suggests that one function of the 

water molecules is to provide a larger volume around the chloride anion with which extractant molecules can 

interact.  

For the MD simulations comprising TBPH+ as the counter ion, simple electrostatics would predict this ion to 

lie closer to the Cl anion than neutral TBP molecules, and this indeed was always found to be the case 

[Figure 4(b) and electronic supplement S2.1]. The Cl…O(TBPH+) distance, 3.05 Å, is recorded as a sharp 

peak on the g(r) plot, which indicates that this is a strong interaction that varies little throughout the 

simulation. In contrast, the Cl…O(TBP) distances form a broader continuum, centred around 3.6 Å. 

Optimisation of the aggregate (M06/6-31G(d) level, gas phase model) gave similar distances: Cl…O(TBPH+) 

= 2.8 Å, Cl…O (TBP) = 3.0 Å, which lends credence to the force field parameters used. The water molecules 

are most commonly located between the chloride ion and the TBP molecules, but never disrupt the 

Cl…O(TBPH+) ion pair. The model that emerges is thus one where the water molecules act as mediating 

bridges between the negatively charged chloride ion and electronegative oxygen atoms in the P=O group of 

the TBP molecules, whilst the positively charged (BuO)3P=OH+ unit forms the ion pair contact, as 

summarised in Figure 4(c).  

Information on the size of the reverse micelle formed can be obtained from atomic density plots [Figure 4(d)], 

where the coordinates of all atoms bar the toluene solvent molecules from each frame of the MD simulation 
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are shifted to ensure that the centre of mass lies at the centre of the box, and the positions of atom types are 

binned to generate probability distribution plots. The chloride anion does not sit at the centre of mass, 

implying mobility of the anion within the aggregate towards the TBPH+ cation and/or a shifting centre of mass 

due to flexibility of the hydrocarbon chains on the TBP molecules. The probability density plots allow the 

sizes of each of the approximately Gaussian concentric shells making up the aggregate to be determined. This 

gives a maximum radius of 5 Å for the chloride core, which rises to 8-10 Å when the water and TBP layers 

are included. This closely matches the diameter (ca. 18 Å) reported by small angle neutron and X-ray 

scattering (SANS and SAXS) for aggregates formed on extraction of HCl by TBP into n-dodecane20 and n-

octane.47  

Switching the counter cation to H3O+ has a marked effect on the structures obtained. While the most 

commonly observed aggregates again contain two or three TBP molecules (Electronic Supplement S2.1), the 

shape of the aggregate changes from an approximately spherical arrangement to a more prolate structure 

[Figure 5(a)]. Sharp peaks on the g(r) Cl…O(H2O/H3O+) plot [Figure 5(b)] show the formation of a water 

shell around the chloride ion, with two distinct features at 2.95 and 3.25 Å which are consistently present, 

regardless of the number of TBP molecules included in the simulation box. The schematic diagram in Figure 

5(c) shows that the short contact distance relates to binding of the charged hydronium ion, which in turn ‘pins’ 

two TBP molecules to the hydrated core, while the longer distance relates to the neutral H2O molecules which 

also surround the chloride anion. The atomic density plot [Figure 5(d)] appears to suggest a lack of coherent 

structure, with each component equally dispersed within the aggregate, in marked contrast to that described 

from the simulation where the counter ion is TBPH+. However, as this analysis is essentially a histogram of 

atomic positions as a function of distance from the centre of mass, averaged over many trajectory snapshots, it 

will not perform well for randomly orientated structures that deviate substantially from a sphere.  

To establish how well TBP molecules encapsulate a hydrated chloride anion, 50 random frames were selected 

from the production run trajectories that contained three TBP molecules, five H2O molecules and one Cl- ion, 

for both the TBPH+ and H3O+ counter ion simulations. The amount of core region exposed to the surrounding 

solvent (the percentage core exposure) can be calculated via a Monte Carlo script that shoots a probe point 

from 10,000 random positions on the surface of a sphere (which is centred on the chloride ion and which 
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completely encapsulates the aggregate) towards the chloride ion and counts what atom type it hits first on its 

path; the number of times the probe hits an atom in a water molecule or a Cl- anion (represented as spheres of 

appropriate van der Waal radii) is then recorded as a percentage of the total probe runs. Low core exposure 

values therefore indicate that the water molecules are less exposed. The analysis was repeated for each of the 

50 random frames, which allows an average and standard deviation to be reported (see Table 1) and reveals 

core exposure values of 53(2) % when the counter ion in the simulation was TBPH+, compared to 57(5) % for 

counter ion H3O+. In both cases the core is therefore relatively exposed.  

The picture that emerges from the computational modelling work is one where stable assemblies readily form 

that comprise three TBP molecules to one chloride anion if the number of water molecules included in the 

aggregate is below ten, which finds good agreement with the conclusions reached by Lum et al.30 The size 

distribution obtained for the more spherical aggregates formed when the counter ion is TBPH+ is also in 

excellent agreement with SANS and SAXS measurements.20, 47 Turning to the details that the atomistic 

simulations can provide, the new insight gained relates to direct observation of water molecules acting as a 

mediating shell between (nBuO)3P+=O and Cl, which would otherwise be a repulsive interaction. The 

observed structures also have relatively exposed core regions, indicating that rather ‘leaky’ reverse micelles 

have formed. If the TBP carries the proton the structure formed is essentially a reasonably spherical hydrated 

ion-pair, with a well-defined water shell; if the proton shifts to a water molecule the structure becomes 

markedly more prolate.  

3.2 Models for extraction of Cl from 10 M HCl. The analytical measurements reported in Figure 2 suggest 

a substantial change in mode of action for extraction of HCl with increasing acid concentration, with likely 

ratios of core components fitting the empirical formula (H2O.HCl)y at 10 M HCl, in line with the 

thermodynamic modelling work of Lum et al.30 

MD simulations were explored with equimolar quantities (3, 4 and 5 molecules) of TBP, H2O and Cl, with 

counter ions of either TBPH+ or H3O+, as before. In all simulations, a single aggregate was observed to form 

spontaneously, containing all of the TBP present (Electronic Supplement S2.2). The nature of the counter ion 

was again observed to have a marked effect on the structures formed, as demonstrated by the atom probability 
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plots in Figure 6, which show a noticeably more diffuse water structure when protonated. The simulations 

with TBPH+ counter ions return aggregates of very similar size for structures containing 3-5 Cl ions, with 

encapsulated hydrated chloride core diameters of about 15 Å, which rises to around 20 Å including the TBP 

shell. Aggregates appear to be larger (diameters ca. 25 Å) when the counter ion is H3O+, and the atom 

probability plots show evidence of layered structures for cores comprising 4 or 5 Cl ions, which suggests a 

return to a more spherical structure. Chiarizia et al., have performed SANS measurements for TBP extraction 

of HCl into n-octane, and concluded that upon increasing acid concentration the aggregates swell by about 4.5 

Å, and have polar core diameters of around 1015 Å.48 This compares favourably with the results obtained in 

our study. 

Analysis of individual g(r) plots for the (TBP.HCl)4 system (Figures 7 and 8) show in more detail the 

architecture of the core region: when the counter ion is TBPH+ the maximum probability Cl…Cl distance is 

greater (ca. 4.25 Å) than when the counter ion is H3O+ (ca. 4.05 Å). The H2O molecules in the former 

simulation are more closely packed than the H3O+ ions in the latter (O…O distances ca. 3.0 Å vs. 4.5 Å), an 

observation also noted from the atom probability plots in Figure 6. In essence this suggests a model 

comprising a hydrated chloride core where the Cl ions protrude when surrounded by a charged TBPH+ shell, 

or the H3O+ cations protrude when attracted by the P=O group from a shell of charge-neutral TBP 

molecules. These structural characteristics are displayed schematically alongside the corresponding g(r) plots 

in Figures 7 and 8.  Other noteworthy features of the g(r) plots are that Cl binds tightly to both H3O+ and 

TBPH+ (sharp peaks), but whilst H3O+ also binds tightly to TBP (2.55 Å), H2O appears to cluster more loosely 

around TBPH+ ions. The tight-binding of H3O+ is mirrored in RMSD plots, which suggest that the (H3O+.Cl-)3-

5 core is always more rigid than a (H2O.Cl-)3-5 core (Electronic supplement, S2.2). Interestingly, a super-

concentrated HCl water pool has been reported in the extraction of PtCl6
2- by a tertiary amine ligand in a 

reverse micelle mechanism.49 

The core exposure measurements (Table 1), averaged over 50 snapshots selected at random from each MD 

production run trajectory, suggest the hydrated chloride core is shielded more effectively as the number of 

bound TBP surfactant molecules rises. It is tempting to attribute the relatively exposed hydrated cores to the 
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cause of third phase formation reported for TBP in solvent extraction processes under high acid or high metal 

loading conditions,29 as aggregates may merge to combine exposed water pools, which would lead to larger 

assemblies carrying increasing amounts of water into the organic phase, resulting in the solvent interface 

breaking down. SANS measurements for extractant aggregation have typically been interpreted using the 

Baxter model of sticky hard spheres,50 suggesting the existence of a short-range attractive potential between 

aggregates. Recent measurements by diffusion NMR spectroscopy on the extraction of Zr(NO3)4 by TBP,22 

have suggested that long-range repulsive interactions can also arise if the negatively charged core region is 

exposed; the modelling work performed here clearly supports a fluxional aggregate with significantly exposed 

core region.    

Finally, we explored the effect of increasing the number of TBP molecules (up to eight) available to aggregate 

around a core of four Cl ions and four water molecules. Regardless of the nature of the counter cation, results 

indicate that it is unusual for more than four TBP molecules to interact with the core (electronic supplement 

S2.3), which is at odds with Chiarizia’s high acid concentrations model (which has seven TBP molecules 

around a (H3O+.Cl-)3 core),29 but does support the thermodynamically-postulated structures by Lum et al, 

which propose a lower chloride to TBP ratio at high acid concentration.30 

 

3.3 Models for extraction of PtCl6
2 from 6 M HCl. Given that the Karl Fischer titrations could not be used 

to ascertain the quantity of water involved in the extraction species (due to the simultaneous extraction of Cl, 

which pulls substantial quantities of water into the organic phase, and is present in vast excess compared to 

PtCl6
2, see electronic supplement S1.2), in this work the impact of any water associated with the aggregates 

has instead been probed via computational modelling. The number of TBP molecules present in the toluene 

simulation box was varied from four to six, and the number of water molecules present was either 0, 2, 5 or 10. 

With the anion acting as the nucleation point now carrying a 2 charge, two cations are now need to ensure 

neutrality. In this study, the impact of assigning the counter ions as TBPH+ or H3O+ was assessed as these mark 

the two extreme cases. Note also that a reverse micelle could contain both PtCl6
2 and Cl, but we have not 

explored this possibility here.  
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With the counter ions set to TBPH+, modelling indicates that four TBP molecules can be comfortably 

accommodated around a single PtCl6
2- anion in the absence of any water molecules (see electronic supplement 

S2.5), which is in line with the slope analysis measurements reported above. Increasing the number of TBP 

molecules to six indicated that a fifth molecule can be incorporated into an aggregate, but only transiently. 

Introducing five H2O molecules into the simulation box gives a similar result: the most common number of 

coordinating TBP molecules is still four. Increasing still further (to ten H2O) increases the frequency of a fifth 

interacting TBP molecule, but this is still in a transient fashion. In contrast, if both counter ions are set to H3O+ 

it is only when a total of ten water molecules are present that association of four neutral TBP molecules can be 

maintained (electronic supplement S2.5). Core exposure analysis indicates that around 20% of the water pool 

is exposed in these reverse micelles (Table 1).   

As expected on the basis of electrostatics, Pt…O(TBPH+) distances are shorter than Pt…O (TBP) distances [ca. 

ca. 4.0 and 5.3 Å in the absence of any water (see electronic supplement S2.5), rising to ca. 4.35 and 5.85 Å, 

respectively when ten water molecules are present; the most probable Pt...O(H2O) distance is centred around 

4.45 Å, indicating that if any water molecules are present they reside in the same coordination shell as the head-

group of the TBPH+ [see Figure 9(a) and 9(b)]. The atomic density plots [Figure 9(c)] show that in the presence 

of water a spherical structure is seen comprising distinct shells with the PtCl6
2- unit found close to the centre of 

mass of the aggregate. The diameter of the aggregate including the TBP shell is approximately 25 Å [Figure 

9(c)], which decreases slightly on removal of the water molecules (electronic supplement S2.5). Thus, it is clear 

that these assemblies are notably larger than those formed on extraction of single chloride ions. As with the 

chloride extraction models discussed earlier, if water molecules are present they effectively negate repulsive 

interactions between the negatively charged anion and the negative dipoles on the oxygen atoms of the surfactant 

TBP molecules through hydrogen bonding. One notable difference compared to the chloride reverse micelle 

model is that water molecules are more likely to disrupt the TBPH+…PtCl6
2- ‘ion-pair’ interactions, which 

presumably relates to the more diffuse nature of the larger anion. The loose-binding of the water molecules to 

the anion is neatly captured in the g(r) plots [contrast PtCl6
2-…H2O in Figure 9(a) against the corresponding 

more tightly bound Cl-…H2O in Figure 5(b)].  
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The analogous data obtained for the PtCl6
2- extraction model when the counter ions were set to H3O+ are 

presented in Figure 10. Both H3O+ counter ions coordinate firmly to opposing octahedral faces of the PtCl6
2- 

anion and act to ‘pin’ two TBP molecules in place, with the remaining eight water molecules forming a 

hydrogen-bonded cluster close to the PtCl6
2- anion [see Figure 10(b)]. This assembly forms early in the 

production run trajectory, with the only variant being the migration of one TBP molecule along one or two 

positions of the water cluster. The atom probability distribution plot shown in Figure 10(c) indicates a highly 

structured reverse micelle structure has formed, which is a little larger than the structure formed by the TBPH+ 

counter ions.  

4.2 Models for extraction of PtCl6
2- from 10 M HCl.  Evidence from the slope analysis measurements 

suggest a change in the mode of action behaviour from (PtCl6{H3O}2{H2O}x
.TBP4)org at 6 M HCl to 

(PtCl6{H3O}2{H2O}x
.TBP2)org at 10 M HCl. From the modelling work reported in the previous section it is 

apparent that four TBP molecules can be readily accommodated around a solvated PtCl6
2- core, thus the only 

way to drop the PtCl6
2-:TBP ratio is to explore higher order aggregates containing multiple PtCl6

2- anions, or 

that the mode of action is changed to a simple ion pairing. This latter option seems unlikely from the 

modelling work as in the presence of excess TBP it is rare for the coordination number to drop below four 

(electronic supplement, S2.5). For the former option, the models quickly become large, however, and in the 

absence of any further experimental data to establish the size of aggregates formed, a preliminary calculation 

was performed on a simulation box containing two PtCl6
2- anions only with four TBPH+ and two TBP 

molecules (i.e. two TBP molecules potentially in excess) and six water molecules (arbitrary choice). Whilst an 

aggregate quickly formed, it did not conform to the sought-after PtCl6
2-:2TBP ratio, as two of the TBPH+ 

ligands were observed to straddle the two PtCl6
2- anions, which in turn were each bound by one TBPH+ and 

one TBP unit. Thus the number of interacting TBP ligands per PtCl6
2- remained four. This suggesting that 

higher order aggregates, containing three or more PtCl6
2- anions need to be explored. The possibility that two 

PtCl6
2- anions can be extracted by two TBP with two H3O+ counter ions cannot be ruled out, nor the possibility 

that PtCl6
2- and Cl- are co-extracted in the same assembly. It is therefore apparent that further experimental 

investigation is required to guide the computational study any further. 
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Conclusions 

This paper has probed TBP mode of action in the extraction of Cl and PtCl6
2 from acidic chloride solutions. 

To the best of our knowledge the experimental results presented are the first report of TBP performance in 

toluene, and suggest the absence of any third phase formation, which has hampered studies in other hydrocarbon 

solvents. Classical molecular dynamics simulations performed on models constructed from experimentally 

derived ratios of HCl and H2O resulted in the spontaneous formation of assemblies that can be described as 

reverse micelles. The diameter of chloride-containing micelles (16-18 Å for the 6 M HCl extraction model, 

rising to ca. 20-22 Å for the models explored for the 10 M HCl extraction model) match well with data reported 

from SANS experiments, giving validity to the structures described. Modelling suggests that the experimental 

component ratios expressed at 6 M HCl can be best accommodated by a structure derived from two to three 

TBP molecules interacting with one chloride anion, which is surrounded by no more than ten water molecules. 

For the 10 M HCl extraction data, modelling indicates that reverse micelles containing multiple chloride anions 

(we explored up to five), with a matching ratios of TBP and water molecules, all gave stable assemblies. For 

PtCl6
2extraction, slope analysis indicated that more than one type of assembly can form in the organic phase 

and that four or more TBP molecules can be associated with each PtCl6
2 at 6 M HCl, which was matched by 

the computational modelling. At 10 M HCl the experimental data indicated that the number of coordinating 

TBP molecules to each PtCl6
2  falls to two, suggesting the formation of a larger aggregate which the modelling 

work suggests will contain more than two PtCl6
2  ions. The role of water in the extraction of PtCl6

2 is unclear, 

but it appears to be less important than for the extraction of Cl, with a simulations devoid of any water 

molecules still capable of attracting the expected four TBP molecules as observed experimentally under 6M 

HCl extraction conditions. The chloridoplatinate-containing micelles are significantly larger than the chloride-

containing structures.  

The MD simulations applied in this work prevent the spontaneous ‘hopping’ of H+ ions between molecular 

units, and so by pursuing both H3O+ or TBPH+ as counter ions the two extremes of behaviour have been 

explored. Results indicate that whilst both options result in stable assembly formation, those constructed from 

H3O+ counter ions give more rigid hydration core structures. This supports the concept of a highly 

concentrated acidic core, as suggested by earlier literature reports.49 The modelling work also reveals that the 
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observed levels of TBP aggregation result in structures with relatively exposed hydrated core regions, which 

provides insight into why third phase formation occurs in solvent extraction processes.   
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Table 1 Percentage core exposure for aggregates formed in the MD simulations 

Aggregate Counter ion 

 TBPH+ H3O+ 

3TBP, Cl, 5H2O 53(2) 57(5) 

4TBP, 4Cl, 4H2O 51(2) 45(1) 

4TBP, PtCl62, 10 H2O 19(1) 22(1) 
 

 

 

Figure 1 Tri-n-butyl phosphate (TBP) 
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Figure 2 Measured concentrations of (a) H2O (open circles) and HCl (filled squares) in a 1 M solution of TBP in 
toluene after contacting with an equal volume of an aqueous solution of HCl, as a function of [HCl]initial. 
Background levels of water present in toluene in absence of TBP have been subtracted. (b) Molar ratio of 
H2O:HCl in a 1 M TBP toluene solution after contacting with an equal volume of aqueous HCl, as a function of 
[HCl]initial. 
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Figure 3 (a) %Pt extracted into toluene as a function of [TBP]org and [HCl]initial; Log DPt plots for extraction by 

toluene solutions of varying [TBP] from  0.01 M PtCl6
2- aqueous solutions containing (b) 6 M HCl or (c) 10 M 

HCl.  
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Figure 4 (a) VDW representation of aggregate formed with 3 TBP molecules (two are bound, the protonated 
molecule is shown in purple and water molecules in dark blue) around a core of (H2O)5Cl-, (b) g(r) distance 
plots detailing the probability distribution of distances for the underlined atoms over the production run 
dynamics, (c) schematic diagram showing the main structural features of the aggregate, and (d) atom 
probability plots showing the concentric shell structure with respect to the aggregate centre of mass.  
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Figure 5 (a) VDW representation of aggregate formed by 3 TBP molecules around a core of (H2O)4(H3O)+Cl-, (b) 
g(r) distance plots for the underlined atoms obtained over the production run dynamics, (c) schematic diagram 
showing the main structural features of the aggregate, and (d) atom probability plots showing the structure 
with respect to the aggregate centre of mass.  
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Figure 6 Atom probability plots for (TBP.H2O.HCl)3-5 with respect to the aggregate centres of mass with counter 
ions TBPH+ or H3O+.  
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Figure 7 g(r) plots for (TBP.H2O.HCl)4 aggregates, with counter ions TBPH+, obtained over the production run 
trajectories, with general schematic diagram highlighting the main structural details shown alongside. 
Integrating the g(r) plots (red lines) permit the number of interactions, as a function of distance between the 
denoted atom pair, to be counted.  
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Figure 8 g(r) plots for (TBP.H2O.HCl)4 aggregates, with counter ions H3O+, obtained over the production run 
trajectories, with general schematic diagram highlighting the main structural details shown alongside. 
Integrating the g(r) plots (red lines) permit the number of interactions, as a function of distance between the 
denoted atom pair, to be counted.  
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Figure 9 (a) G(r) plots for the aggregate formed by 4 TBP molecules around a core of (H2O)10(PtCl62-), obtained 
from the production run trajectory, (b) representative structure (water molecules are contained within blue 
shell), and (c) atom probability plot, where the counter-ions are TBPH+. Integrating the g(r) plots (red lines) 
permit the number of interactions, as a function of distance between the denoted atom pair, to be counted.  
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Figure 10 (a) G(r) plots for the aggregate formed by 4 TBP molecules around a core of (H2O)10(PtCl62-), obtained 
from the production run trajectory, (b) general schematic structure (water molecules are contained within 
blue shell), and (c) atom probability plot. Counter-ions are H3O+. Integrating the g(r) plots (red lines) permit 
the number of interactions, as a function of distance between the denoted atom pair, to be counted.  
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