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Unsupervised Myocardial Segmentation for Cardiac
BOLD

Ilkay Oksuz, Anirban Mukhopadhyay, Rohan Dharmakumar and Sotirios A. Tsaftaris, Member, IEEE

Abstract—A fully automated 2D+time myocardial segmen-
tation framework is proposed for Cardiac Magnetic Reso-
nance (CMR) Blood-Oxygen-Level-Dependent (BOLD) datasets.
Ischemia detection with CINE BOLD CMR relies on spatio-
temporal patterns in myocardial intensity but these patterns also
trouble supervised segmentation methods, the de-facto standard
for myocardial segmentation in cine MRI. Segmentation errors
severely undermine the accurate extraction of these patterns.
In this paper we build a joint motion and appearance method
that relies on dictionary learning to find a suitable subspace.
Our method is based on variational pre-processing and spatial
regularization using Markov Random Fields (MRF), to further
improve performance. The superiority of the proposed segmen-
tation technique is demonstrated on a dataset containing cardiac
phase-resolved BOLD (CP-BOLD) MR and standard CINE MR
image sequences acquired in baseline and ischemic condition
across 10 canine subjects. Our unsupervised approach outper-
forms even supervised state-of-the-art segmentation techniques
by at least 10% when using Dice to measure accuracy on BOLD
data and performs at-par for standard CINE MR. Furthermore, a
novel segmental analysis method attuned for BOLD time-series is
utilized to demonstrate the effectiveness of the proposed method
in preserving key BOLD patterns.

Index Terms—Unsupervised Segmentation, Optical Flow, Dic-
tionary Learning, BOLD, CINE, Cardiac MRI

I. INTRODUCTION

RECENT advances in Cardiac magnetic resonance (CMR)
methods such as Cardiac Phase-resolved Blood-Oxygen-

Level Dependent (CP-BOLD) MRI open up possibilities of
direct and rapid assessment of ischemia [1]. In a single
acquisition that can be seen together as a movie (i.e., similar
to Standard CINE MRI acquisition), CP-BOLD provides both
BOLD contrast and information of myocardial function [2].
Either at stress [3] or at rest (i.e., without any contraindicated
provocative stress) [2], [4], BOLD signal intensity patterns are
altered in a spatio-temporal manner. However, these patterns
are subtle and changes occurring due to disease cannot be

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This work was supported in part by the US National Institutes of Health
(2R01HL091989-05). Correspondence to S.A. Tsaftaris.

I. Oksuz is with IMT School for Advanced Studies Lucca, Italy e-mail:
(ilkay.oksuz@imtlucca.it) and also with Diagnostic Radiology Department of
Yale University, CT, USA.

A. Mukhopadhyay is with Interactive Graphics Systems
Group, Technische Universitat Darmstadt, Darmstadt, Germany, e-
mail:(anirban.mukhopadhyay@gris.tu-darmstadt.de)

R. Dharmakumar is with Cedars-Sinai Medical Center and University of
California Los Angeles, CA, USA e-mail: (Rohan.Dharmakumar@cshs.org).

S.A. Tsaftaris is currently with Institute for Digital Communications, School
of Engineering, University of Edinburgh, West Mains Rd, Edinburgh EH9
3FB, UK. e-mail: (S.Tsaftaris@ed.ac.uk).

directly visualized [2]. In fact, identifying them requires signif-
icant post-processing, including myocardial segmentation and
registration [5], prior to computer aided diagnosis via simple
[3] or sophisticated pattern recognition methods [4]. This paper
presents a segmentation method tailored to CP-BOLD MRI
data, which is unsupervised and fully automated.

Currently, CP-BOLD myocardial segmentation requires te-
dious manual annotation. Despite advancements in this task in
Standard CINE MRI (which is similar to CP-BOLD but with
little or no BOLD contrast discussed at length at the related
work section), most methods when used on CP-BOLD MR
images for the same task, produce unsatisfactory results. Fig.
1B illustrates this by overlaying ground truth and algorithmic
results for several state-of-the-art methods showing significant
segmentation errors. These errors have deleterious effects on
BOLD signals, as Fig. 1C shows. Instead of the expected be-
haviour across the cardiac cycle [2] which is seen when ground
truth manual segmentations are used, significant deviations due
to over- and under-segmentation are observed.

Although the BOLD contrast is visually subtle (as the top
row of images in Fig. 1A shows) it can significantly affect
segmentation performance. Locally these temporal variations
influence registration performance [5], which results in under
performance of Atlas-based techniques. Early on approaches
tailored for BOLD MRI myocardial segmentation were semi-
automated and relied on boundary tracking [8]. Later, fully
automated but supervised methods [9] alleviated the need for
interaction. However, there is an interest in methods that do not
need vast amounts of training data and can easily adapt to data
at hand and thus offer generalizability to unseen anatomical
and pathological variation.

This paper presents a fully automated and unsupervised
method for CP-BOLD MRI with the goal of faithfully pre-
serving the key patterns necessary for diagnosis. The bottom
of Fig. 1C illustrates the results of our method, which does
not require any form of manual intervention e.g., landmark
selection, ROI selection, spatio-temporal alignment to name
a few. It builds upon a dictionary approach introduced in
[9] using a joint appearance and motion model introduced in
[10]1. To increase robustness to the BOLD effect, we introduce
a pre-processing step, that aims to “smooth out” temporal
intensity variations. Subsequently, subject-specific dictionar-
ies of patches of appearance and motion are built from a
rudimentary definition of foreground (myocardium) and back-
ground (everything else). Projections on these discriminative

1The presented paper builds upon [9], [10] using components of each, but
extends the previous work through a completely different approach.
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Fig. 1. BOLD contrast challenges myocardial segmentation algorithms. A:
Raw BOLD images from different cardiac phases of the same healthy subject)
and color-coded myocardia overlaid on the raw images to demonstrate that
subtle, imperceptible to the eye, intensity changes occur. B: Results of various
algorithms (shown in red) for myocardial segmentation of the anterior region
together with ground truth (green) manual delineations. Algorithms used:
Atlas-based [6], Random Forests on Appearance and Texture features (a
baseline) and a Dictionary Learning method (DDLS) [7]. C: Corresponding
time series of the Anterior region from different methods compared to the one
obtained based on ground truth segmentation. Overall errors in segmentation
lead to deviations in the estimated time series, which will ultimately lead
to low accuracy in ischemia detection. Our proposed method achieves high
segmentation accuracy (last image in B); which leads to a better estimate of
the time series (bottom part of C). [In typical CP-BOLD acquisition settings,
with ECG-triggering, first and last points in the R-R interval correspond to
diastole, whereas systole tends to appear around 30%.]

dictionaries and spatial regularization with a Markov Random
Field (MRF) obtains the final result. Extensive experiments
show that, not only we obtain higher segmentation accuracy
globally and locally around the myocardium, but also that
this accuracy translates to better local preservation of BOLD
patterns. Our work demonstrates that it is possible to train
subject-specific dictionaries of background and foreground
(myocardium) that jointly represent appearance and motion
even when the training sets are drawn directly from the subject
on the basis of a soft allocation of training patches. Together
with atom pruning (which helps build an even more reliable
collection of linear subspaces that span the data) and MRF
overall leads to a robust automated and unsupervised algorithm
(lacking external supervision) for myocardial segmentation.

The main contributions of this paper are:

• An unsupervised myocardial segmentation algorithm that
uses dictionaries to jointly represent appearance and
motion, trained on subject-specific data.

• The ability to extract meaningful data representations
even when the data we learn from may not have the most
precise annotation.

• Use of a variational spatio-temporal smoothing of the
BOLD signal in a cardiac image sequence.

• Extensive segmentation performance analysis with both
local and global measures.

The remainder of the paper is organized as follows: Sec-
tion II offers a quick overview of approaches to myocardial
segmentation for Standard CINE MRI. Section III presents the
proposed method for myocardial segmentation in BOLD MRI.
Experimental results are described in Section III-C. The final
section offers discussion and conclusion.

II. RELATED WORK

The automated myocardial segmentation for standard CINE
MR is a well-studied problem [11], [12]. Most of the algo-
rithms used for CINE MRI can be broadly classified into two
categories based on whether the methodology is unsupervised
or supervised. For the sake of brevity, we focus on examples
most similar to our work.

Unsupervised methods: Although unsupervised segmen-
tation techniques were employed early-on for myocardial
segmentation of cardiac MR, almost all methods require min-
imal or advanced manual intervention [11]. Among the very
few unsupervised techniques which are fully automated, the
most similar to our proposed method are those that consider
motion as a way to propagate an initial segmentation result to
the whole cardiac cycle [13], [14], [15]. Grande et al. [16]
integrates smoothness, image intensity and gradient related
features in an optimal way under a MRF framework by
Maximum Likelihood parameter estimation. Their deformable
model estimates the walls based on the MRF along the short
axis radial direction. A recent work [17] uses synchronized
spectral networks for group-wise segmentation of cardiac
images from multiple modalities. In our previous work [10], a
fully automated joint motion and sparse representation based
technique was proposed, where motion not only guides a
rough estimate of the myocardium, but also leads to a smooth
solution based on the movement of the myocardium.

Supervised Methods: Supervised approaches, on the other
hand, have become the de-facto standard in recent years and
in particular, Atlas-based supervised segmentation techniques
have achieved significant success [11]. The myocardial seg-
mentation masks available from other subject(s) are generally
propagated to unseen data in Atlas-based techniques [18], [19]
using non-rigid registration algorithms such as diffeomorphic
demons (dDemons) [6], FFD-MI [20], and employ some
fusion approaches to combine intermediate results (proba-
bilistic label fusion or SVM) [19]. Segmentation techniques
that do not use registration (to propagate contours), mainly
rely on finding features that best represent the myocardium.
Texture information is generally considered as an effective
feature representation of the myocardium for standard CINE
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MR images [21]. Patch-based static discriminative dictionary
learning technique (DDLS) [7] and Multi-scale Appearance
Dictionary Learning technique [22] have achieved high ac-
curacy and are considered as state-of-the-art mechanisms
for supervised segmentation. Some methods utilize weak as-
sumptions, such as spatial or intensity-based relations and
anatomical assumptions, and include image-based techniques
(threshold, dynamic programming, etc.) [23], pixel classifi-
cation methods (clustering, Gaussian mixture model fitting,
etc.) [24], [25], [16]. Strong prior methods include shape prior
based deformable models [26], active shape and appearance
models and Atlas-based methods, which focus on higher-
level shape and intensity information and normally require
a training dataset with manual segmentations [27]. Another
idea is to exploit motion and temporal information within the
acquired data. In [28] a graph cut algorithm is utilized by
simultaneously exploiting motion and region cues. The method
uses terminal nodes as moving objects and static background
with the intention to extract a moving object surrounded by a
static background. Spottiswoode et al. [29] used the encoded
motion to project a manually-defined region of interest in the
context of DENSE MRI. Both of these methods are semi-
automated and need interaction to achieve high accuracy.
Earlier, we proposed a supervised multi-scale discriminative
dictionary learning (MSDDL) procedure [9]. However, unlike
the proposed method, only appearance and texture features are
considered for sparse representation in MSDDL. In general
we can identify, that supervised methods require lots of data
for training and a robust feature generation and matching
framework. Finally briefly for completeness we mention deep
learning methods that are fully supervised and aim to extract
a hierarchy of image features at multiple scales (e.g. see
[30], [31], [32], [33], [34], and a recent review [35]).

In this paper, we instead propose a fully unsupervised
method that incorporates motion information in a dictionary
learning framework.

III. METHODS

In the following we detail the proposed method for segment-
ing 2D(+time) Cardiac MRI data. The method does not rely
on manual intervention and its only assumption is that motion
patterns of the myocardium differ from those of surrounding
tissues and organs. Our proposed method consists of three
main blocks which are illustrated in Fig. 2 and described
briefly below and in detail in the next sections.

The pre-processing block (Fig. 2A) aims to reduce BOLD
effects by temporal smoothing using a Total Variation based
method and to localize the myocardium to initialize the
next step. The second block uses Dictionary Learning to
obtain residuals (Fig. 2B). Subject-specific foreground and
background dictionaries are trained from the two extracted
regions from the entire cardiac sequence. These dictionaries
are used to calculate the residuals of the cardiac image to be
segmented. The final block introduces spatial regularization
using Markov Random Field (MRF) approach, that is applied
on the residuals of the two dictionaries to achieve the final
segmentation of the myocardium (Fig. 2C). This block ensures
the local smoothness of the extracted region.

Data

A. Pre-processing

B. Dictionary Learning

C. MRF

FG ATOMS BG ATOMS
BG ResidualsFG Residuals

A. Pre-processing

Fig. 2. Description of the proposed method. Block A aims to find a rough
segmentation of the myocardium. In Block B two subject-specific dictionaries
are trained on foreground and background on appearance and motion. In
Block C a MRF-based segmentation algorithm on the residuals of the two
dictionaries is utilized to have smooth boundaries.

A. Pre-processing

The overriding goal is to reduce the BOLD effect and
obtain regions that patches can be drawn from for learning the
dictionaries. This happens in few steps that we detail below
and visually in Fig. 2A. First a Total Variation based filtering
technique is used to smooth images to reduce the BOLD effect.
Then, a process based on multi-level histogram thresholding
is used to find the center of the Left Ventricle (LV) (on the
mid-ventricular images we use here). We then segment the LV
blood pool with region growing. Finally, aided by the distance
transform we identify candidate foreground and background
regions to sample from.

Total Variation based smoothing: The BOLD effect poses
a significant problem to all state-of-the-art segmentation algo-
rithms as demonstrated in [9] and discussed in the introduc-
tion. One way to create robustness is to learn intensity invariant
features. However, [9] also demonstrated superior performance
when using standard CINE MR. Inspired by this observation,
we aim to identify a process that essentially converts the
difficult CP BOLD MRI’s appearance into a more manageable
standard CINE MR like appearance. Variational methods are
used extensively in image denoising problems, most famous
being the pioneering Rudin-Osher-Fatemi model [36]. Most
of the video denoising methods derived from [36] actually
work on a frame-by-frame basis. This approach is not suitable
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Fig. 3. Extracting candidate background and myocardium regions. LV blood
pool (left); Distance transform from the LV blood pool boundary (middle);
Rudimentary background and foreground classes (right). Only pixels within
the blue and red rings (right panel) are used to sample patches for dictionary
learning. The green ring acts as boundary in between these two regions to
reduce the chance of false positives.

in our case since the BOLD effect is spatio-temporal across
the cardiac cycle. In this work, we adopted the augmented
Lagrangian method [37] developed in [38] to solve the BOLD
inhomogeneity refinement problem in a space-time volume.
We have employed the `1-norm Total Variation (`1-TV) using
the augmented Lagrangian method introduced in [38] for
solving both the problems together. The energy functional we
have used for this particular minimization problem is:

minimize
f

µ

2
‖u− v‖1 + ‖ 5 u‖2,

where v is the input 2D+t image series and u is the processed
image series. The main reason behind choosing `1-norm over
`2-norm is the fact that appearances of different anatomies
are piece-wise constant functions [39]. They also demonstrate
quantized levels (i.e., a function can only take a given energy
level without any other level existing between two anatomies),
within a certain anatomy and sharp edges across anatomical
boundaries. These boundaries and anatomies can be better
preserved when using the `1-norm as shown in Fig. 4.

LV center point detection and blood pool extraction: To
extract the blood pool, first multiple thresholds are found using
Otsu’s histogram thresholding [40] for each image in the cycle
to obtain a four-class segmentation: loosely capturing blood
pool (brightest in both standard CINE and BOLD weighted
imaging), partial volume between myocardium and blood pool
(second brightest), myocardium (third brightest) and other
(most dark) adapting broadly ideas from [26]. The brightest
two classes are used to extract the blood pool region. Then,
the region that fits most closely a circle (of a roughly known
diameter) is found, which eventually is used to determine
the middle point of LV blood pool. Finally, a region-growing
approach is employed to delineate the LV blood pool.

Finding foreground and background regions to sample
from: The distance transform from the LV blood pool is
used to define two ring-like areas identifying foreground and
background regions to sample from as visualized in Fig. 3. In
this paper we use a ring thickness of R = 6mm at end systole
for all rings involved. In Section IV-C we actually vary this to

Fig. 4. Influence of Total Variation based smoothing on different cardiac
phases of a healthy subject. Four temporal phases of the same acquisition of
a subject before (top) and after pre-processing (bottom), where myocardial in-
tensities have been color-coded to aid visualization. Observe, how myocardial
intensities appear smoother and within the same (and shorter) range across
the cardiac cycle after TV-based smoothing (bottom row).

test robustness. The thicknesses are normalized according to
the cardiac phase to ensure that these regions do not include

false positives with the following function: R
f

f + |ft − fES |
;

where f represents the total number of cardiac phases, ft
represents the frame number of the current phase and fES is
the end systolic frame. End systolic frame is defined around
30% of the cardiac cycle in accordance with ECG triggering.
The regions for foreground MF (blue ring in Fig. 3) and
background MB (red ring in Fig. 3) will be utilized to draw
patch samples to learn the dictionaries.

The goal of the last two steps is to obtain a soft definition
of where to sample patches from for myocardium and back-
ground. Any similar methodology will suffice. Experiments
in Fig. 10 show the precision of the last two pre-processing
steps does not have a major influence on the performance of
the overall algorithm.

B. Dictionary Learning

Learning of per-class dictionaries for segmentation prob-
lems is a recent idea also developed in our earlier study [9].
The discriminative dictionary learning idea has been proposed
earlier in Atlas-based segmentation of brain MRI [41], [7]
and abdominal CT [42] but without the context of motion.
However, most methods assume that clear annotation to which
class a patch belongs to. Herein we train per-class dictionaries
that jointly model appearance and motion that are trained
from imprecise data. We expect that the different motion
patterns of the myocardium and background and their sparse
representation of motion guides the definition of appropriate
linear subspaces to capture the variability in the data.

Our method builds observations from the concatenation
(after raster-scanning) of square patches of appearance (pixel
intensities) and corresponding motion (found via optical flow).
Specifically, given (1) a series of pre-processed images It, {t =
1 . . . , T}, (2) the estimated optical flow between subsequent
images It and It+d and (3) the corresponding regions MF

t

and MB
t obtained as previously described, two matrices were

obtained, Y B and Y F , where these matrices contain the
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data from the background and foreground information from
the entire cine stack respectively. The j-th column of the
matrix Y F is obtained by concatenating the normalized patch
vector of pixel intensities and motion vectors calculated by the
method in [43] taken around the j-th pixel in the foreground
as shown in Fig. 5. Both horizontal and vertical components
are used for each pixel. The Dictionary Learning part of our
method takes as input these two matrices Y B and Y F , to learn
dictionaries DB , DF and a sparse feature matrix XB , XF .

In order to achieve discriminative initialization, highly cor-
related data are disregarded prior to learning in a step termed
as “intra-class Gram filtering”. In particular, we calculate for
a given class C (foreground or background), the intra-class
Gram matrix as:

GC = (Y C)TY C . (1)

We sort the training patches w.r.t. the sum of their related
coefficients in the Gram Matrix, and we prune the top 10% of
the patches.

Then, dictionaries consisting of K atoms and sparse features
with L non-zero elements are trained with K-SVD [44]:

argmin
DF ,XF

‖Y F −DFXF ‖ s. t. ∀i ∈MF , ‖xFi ‖0 ≤ L,

argmin
DB ,XB

‖Y B −DBXB‖ s. t. ∀i ∈MB , ‖xBi ‖0 ≤ L

To reduce correlation between the dictionaries which is
expected to reduce classification errors we perform a second
pruning step after K-SVD that removes similar atoms. We
define this pruning as “inter-class Gram filtering.” We compute
the inter-class Gram matrix as:

GIC = (DB)T (DF ), (2)

and the atoms of each dictionary are sorted according to their
cumulative coefficients in GIC . 10% of the atoms from both
dictionaries are discarded to promote particularities of the
two different classes. The most correlated atoms from both
dictionaries are eliminated with this process. The atoms for
foreground and background show strong discriminative power
as visualized in Fig. ??B.

To perform this classification, we use the dictionaries, DB

and DF , previously learnt. The Orthogonal Matching Pursuit
(OMP) algorithm [45] is used to compute, the two sparse
feature matrices X̂B and X̂F for a given sparsity level.

C. MRF based smoothing

In this study, we employ a frame-by-frame MRF strategy
[46] across all image pixels to enforce spatial regularization
on the final segmentation for each image It. The process
ensures local smoothness of the classification, which is refined
according to the labels. Given the residuals for background
RB and foreground RF the final segmentation is obtained by
minimizing the MRF-based energy functional:

EMRF(It) =
∑
p∈It

(Vp(Ip) + λVpq(Ip, Iq)) (3)

Intensity

Motion

Fig. 5. The feature vector generation as concatenation of intensities of square
patches and corresponding motion vectors inside that patch.

where Vp(·) corresponds to the unary potentials representing
the data term for node p and Vpq(·) corresponds to the pairwise
potentials representing the smoothness term for pixels at nodes
p and q in a neighborhood N in the image It. The data
term measures the disagreement between the prior and the
observed data, which is based on the residuals of dictionaries.
For a pixel p with initial label C: Label(p) = C, data
term is: Vp(Ip) = RC . The smoothness term is defined as
Vpq(Ip, Iq) =

∑
q∈N

RC′
on the nodes that have different class

Label(q) = C ′ in the neighborhood N . The parameter λ
controls the trade off between smoothness and data term that
govern the final segmentation. The smoothness term penalizes
discontinuities in a neighborhood N . In our implementation,
the total energy is calculated using the residuals for the
possible labels of foreground RF and background RB . More
precisely, if RF = ‖yBF

i − DF X̂F
i ‖2 is larger than RB =

‖yBF
i − DBX̂B

i ‖2, the patch is assigned to the background;
otherwise, it is considered belonging to the foreground region
for the initial segmentation.The label update occurs if the
total energy calculated adding the unary and pairwise terms
is smaller for the other label as detailed in Algorithm 1. The
method converges either when there is no change of labels or
the maximum number of iterations are reached.

IV. EXPERIMENTAL RESULTS

This section offers a qualitative and quantitative analysis
of the proposed method, as well as quantitative comparison
of our proposed method w.r.t. state-of-the-art methods, to
demonstrate its effectiveness for myocardial segmentation.

Our quantitative analysis consists of comparing our method
with others and also looking into regional effects and perfor-
mance. Unless otherwise noted we use 13 × 13 patch size, a
dictionary of K = 400 atoms, a sparsity level of L = 4, as
parameters. Their influence (and computational performance
of our method) are discussed in subsection IV-D.

Data Set: Our set consists of the same 10 canines im-
aged under four different settings. 2D short-axis images of
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TABLE I
DICE COEFFICIENT (MEAN ± STD) FOR MYOCARDIAL SEGMENTATION ACCURACY IN %.

Baseline Ischemia
Methods Standard CINE CP-BOLD Standard CINE CP-BOLD
Atlas-based methods
dDemons [6] 60 ± 8 55± 8 56± 6 49± 7
FFD-MI [20] 60± 3 54± 8 54± 8 45± 6
Supervised classifier-based methods
ACRF 57± 3 25± 2 52± 3 21± 2
TACRF 65± 2 29± 3 59± 1 24± 2
Dictionary-based methods
DDLS [7] 71± 2 32± 3 66± 3 23± 4
RDDL [47] 42± 15 50± 20 48± 13 61± 12
MSDDL* [9] 75± 3 75± 2 75± 2 71± 2
UMSS* [10] 62± 20 71± 10 65± 14 66± 11
Proposed unsupervised method
Proposed No TV 65± 6 59± 7 63± 8 57± 9
Proposed No Gram Filtering 62± 5 52± 4 53± 5 57± 7
Proposed No Motion 71± 6 69± 8 67± 9 68± 8
Proposed No MRF 74± 5 75± 6 73± 7 72± 6
Proposed 77± 10 77± 9 74± 7 74± 6
* denotes a method that has been designed to handle BOLD contrast.

Algorithm 1 Proposed Method
Require: Image sequence from single subject
Ensure: Predicted Myocardium masks across the sequence

1: Calculate Optical Flow fp at each pixel p between pairs
of frames (It, It+d)

2: Generate Y B and Y F concatenating image intensities and
motion information for each patch

3: for C={B,F} do
4: Intra-class Gram filtering using 1
5: Learn dictionary and sparse feature matrix with the

K-SVD algorithm

minimize
DC ,XC

‖Y C −DCXC‖22 s. t. ‖xCi ‖0 ≤ L

6: Inter-class Gram filtering using 2
7: end for
8: Learn residuals RB and RF given Y , DB and DF with

OMP algorithm
9: Test on all residuals RB and RF for first classification

10: Use MRF-based segmentation on the residuals RB and
RF using Equation 3

the whole cardiac cycle with in-plane spatial resolution of
1.25 mm × 1.25 mm were acquired at baseline and severe
ischemia (inflicted as controllable stenosis of the left-anterior
descending coronary artery (LAD)) on a 1.5T Espree (Siemens
Healthcare) along the mid ventricle using both standard CINE
and a flow and motion compensated CP-BOLD acquisition
within few minutes of each other [2]. In other words we have
the same subject matched for each condition and imaging
sequence. Thus, we can ascertain by keeping the anatomy
fixed the effects of BOLD contrast and presence of disease.
Ground truth of myocardial delineations was generated by an
expert. Image resolution for the datasets is 192 × 114 with
approximately 30 temporal frames (phases).

Methods of comparison and variants: All quantitative
analysis for supervised methods was performed using a strict
leave-one-subject-out cross validation. For our implementation

of Atlas-based segmentation methods, the registration algo-
rithms dDemons [6] and FFD-MI [20] are used to propagate
the segmentation mask of all other subjects to the image of
the test subject, followed by a majority voting to obtain the
final myocardial segmentation. For supervised classifier-based
methods, namely Appearance Classification using Random
Forest (ACRF) and Texture-Appearance Classification using
Random Forest (TACRF) random forests are used as classifiers
to get segmentation labels from different features. To provide
more context, we compared our approach with dictionary-
based methods, DDLS, RDDL, MSDDL and UMSS. DDLS
is an implementation of the method in [7], whereas the
discriminative dictionary learning of [47] was used for RDDL.
MSDDL [9] uses a multi-scale supervised dictionary learning
approach with majority voting classification. UMSS [10] is a
unsupervised method relying only on a motion-based coarse
segmentation of background. This method learns background
class only with a dictionary and performs classification with
one-class SVM. Finally, to showcase the strengths of our
design choices that contribute to performance of the proposed
method, we considered three additional variants of our method
(i.e. ablations), without Total Variation pre-processing (Pro-
posed No TV), without Gram filtering (Proposed No Gram
Filtering), without concatenating optical flow features with
intensity for Dictionary Learning (Proposed No Motion) and
without spatial regularization using MRF (Proposed No MRF).

Evaluation Metrics: To evaluate performance we used
three metrics, the first two are classically used when evaluating
segmentation [48]. We used the Dice overlap measure, which
is defined between two regions A and B defined as:

D(A,B) =
2‖A ∩B‖
‖A‖ ∪ ‖B‖

.

To evaluate the match of the ground truth annotation to an
algorithm’s result in terms of distance, we relied on the
Hausdorff distance between two contours CA and CB :

HD(CA, CB) = max{max
a∈CA

min
b∈CB

d(a, b), min
b∈CB

max
a∈CA

d(a, b)}

where d presents the distance of points a ∈ CA and b ∈ CB .
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Since part of our analysis is to evaluate how errors in
segmentation affect the BOLD response (and its patterns)
we use cosine similarity to evaluate the match between two
intensity signals SA, and SB (e.g. time series) as:

CS =
SA · SB

|SA||SB |
where | · | corresponds to `2 norm of the vector. (We multiply
with 100 to report in %.)

A. Comparison with other methods

The visual quality of myocardial segmentation by the pro-
posed method for both baseline and ischemia cases across
standard CINE and CP-BOLD MR is shown in Fig. 6. The
End-diastole (ED) and End-systole (ES) phases are picked as
exemplary images from the entire cardiac cycle. Note that our
method results in very smooth endo- and epi-cardium contours,
which closely follow ground truth contours generated by the
experts and can be attributed to the successful representation
of myocardial motion.

These observations also hold quantitatively when relying
on the Dice metric for evaluation. As Table I shows, overall,
for standard CINE, most algorithms perform adequately well
and the presence of ischemia slightly reduces performance.
However, when BOLD contrast is present, some of the ap-
proaches that have not been designed to handle the BOLD
contrast lose performance (i.e. those without a ‘*’ in the table).
Specifically, Atlas-based methods, ACRF and TACRF are all
shown to perform better in standard CINE compared to CP-
BOLD. Among dictionary-based methods, DDLS performs
well in standard CINE MR, but under-performs in CP-BOLD
MR. On the other hand our proposed method performs on
par with (and in some cases outperforms) methods that have
been designed to handle BOLD contrast (namely MSDDL and
UMSS). This is revealing since MSDDL is fully supervised
and uses multi-scale features but not motion whereas UMSS
albeit being unsupervised and relying on motion uses a single
dictionary. It appears that combining motion and using two
dictionaries even if they are trained on imprecisely annotated
data, is beneficial. Other design choices contribute as well,
as comparisons with the proposed method’s variants reveal. In
particular, TV-smoothing contributes mostly in extracting more
meaningful patterns from optical flow for both CP-BOLD and
standard Cine MR.

B. Segmental analysis

Here we analyze segmentation results by taking into account
the spatial distribution of the errors. For each myocardium
segmented both manual and automatically, we divide it in 6
radially concentric regions, following the six-segment AHA
model for the mid-ventricular slice [49]. Specifically, we take
the manually segmented masks and divide them to six radially
concentric regions 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦. As
a reference, a diagram of this process, known as bulls eye
view, is shown in Fig. 7 along with anatomical nomenclature.
Quantitative Analysis: In Fig. 8 boxplots of the Hausdorff

distance metric for the epicardium for CP-BOLD and standard

TABLE II
REGIONAL SEGMENTATION ACCURACY MEASURED VIA DICE (MEAN ±

STD) IN % FOR STANDARD CINE AND CP-BOLD.

Baseline Ischemia
Regions Std. CINE CP-BOLD Std. CINE CP-BOLD
Anterior 81±13 83±10 78±10 79±8
Anteroseptal 79±10 82±9 75±10 75±9
Inferoseptal 75±12 72±16 75±12 75±9
Inferior 72±11 70±12 69±11 71±8
Inferolateral 73±8 72±12 71±13 71±11
Anterolateral 82±7 81±9 76±11 74±9

TABLE III
COSINE SIMILARITY COMPARISON OF TIMESERIES OF 6-SEGMENTAL
REGIONS (MEAN ± STD, IN %) ACQUIRED FROM THE GROUND TRUTH

COMPARED WITH THE PROPOSED METHOD AND ATLAS-BASED METHOD
[6] FOR CP-BOLD SEQUENCES.

Proposed Atlas-based [6]
Regions Baseline Ischemia Baseline Ischemia
Anterior 93±2 89±3 89±4 86±5
Anteroseptal 92±5 83±6 89±5 81±8
Inferoseptal 82±5 83±9 80±8 80±11
Inferior 79±4 80±8 75±8 77±11
Inferolateral 81±3 80±9 81±3 80±9
Anterolateral 91±3 83±5 88±5 81±7

CINE MR are presented. Endocardium results show sub-
pixel accuracy on average, and are excluded for brevity. The
boxes represent the lower quartile, median and upper quartile
values; the whiskers represent the whole extension of the error
distribution whereas the crosses correspond to outliers. The
global error distribution shows the presence of two outliers,
whereas the remaining segmentations have mean errors lower
than ≈ 4 mm for images with 1.25 mm spatial resolution. Our
reported results of Hausdorff distance are at par with [26]. In
the case of Hausdorff distance errors, largest values are located
at the inferior region mainly due to the presence of liver.

A comparison is shown in Table II to indicate the stability
of the method when ischemia is present. The Dice overlap
measure is calculated for the 6 regions of the myocardium.
In general our algorithm is robust to regional complexities of
the myocardium. Ischemia appears to slightly influence the
performance especially in the regions that are under influence
of LAD stenosis (Anteroseptal, Anterior and Anterolateral).

Time series analysis for ischemia detection: It is important
to evaluate quantitatively the influence of segmentation errors
on preserving the BOLD effect to reduce errors of ischemia
detection methods [3], [2], [4]. As a benchmark, we used
the BOLD signal intensity as obtained via averaging (and
normalizing) pixel values in various regions with and without
disease obtained from myocardial definitions from ground
truth or algorithm results. Fig. 1C already alludes that our
proposed approach outperforms other segmentation methods,
and this performance also holds when disease is present (see
Fig.9). This also holds quantitatively when comparing with
an Atlas-based method [6] as an illustrative example, using
the cosine similarity metric (see Table III). Evidently, small
errors (even 5-10 pixels) in segmentation towards hyperintense
(blood pool) or hypointense (lung/liver interface) areas when
a myocardial region is as small as 100 pixels in systole have
severe effects in preserving the BOLD signal.
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Fig. 6. Segmentation result (red) of Proposed method for both CP-BOLD MR and standard CINE MR at baseline and ischemic condition for End-diastole
(ED) and End-systole (ES) superimposed with corresponding Manual Segmentation (green) contours delineated by experts.

Anterior
Anteroseptal
Inferoseptal
Inferior
Inferolateral
Anterolateral

Fig. 7. Six segments of mid-ventricular myocardial slice

C. Segmentation performance across cardiac phases

Since our approach uses motion patterns as input features,
it is interesting to evaluate if natural changes in cardiac
motion affect performance. We evaluated this by measuring
performance over different cardiac phases (early diastole to
late systole) of the cardiac cycle in Table IV. We partitioned
the cardiac cycle to four phases as early diastole, late diastole,
early systole and late systole according to ECG triggering.
First and last points in the R-R interval correspond to diastole,
whereas systole appear around 30%. Overall the performance
of the algorithm is consistent throughout the cardiac cycle
as anticipated given that dictionaries are learned by pooling
patches across the entire cardiac sequence.

TABLE IV
DICE COEFFICIENT (MEAN ± STD) FOR MYOCARDIAL SEGMENTATION

ACCURACY IN % OF DIFFERENT CARDIAC STAGES.

Baseline Ischemia
Stage Std. CINE CP-BOLD Std CINE CP-BOLD
Early diastole 76± 5 76± 6 73± 4 75± 4
Late diastole 75± 4 75± 4 74± 6 73± 7
Early systole 77± 5 77± 3 75± 7 74± 6
Late systole 78± 4 78± 6 75± 4 75± 5

D. Parameter analysis and computational performance

The purpose of this section is to analyze effects of different
parameters of the algorithm as well as discuss computational
performance. First we evaluate pre-processing; then patch size,
number of atoms K, and sparsity level L varying one of the
3 but keeping the other two fixed using the following values:
patch size of 13× 13, K = 400 and L = 4.

Influence of pre-processing: Pre-processing consists of
identifying both background and myocardium regions to sam-
ple from, which depend on the thickness of the rings that
define them. Here we vary this ring size (from the initial size
of 6mm) keeping all other parameters fixed. Fig. 10 illustrates
that the results remain consistent whether modifying more the
background (more false negatives) or the myocardium (more
false positives) class. This result demonstrates that we can
tolerate imprecision in defining the regions to sample from.
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Fig. 8. Segmental Hausdorff distance accuracy for CP-BOLD and standard CINE MR for epicardium.

Fig. 9. Normalized time series obtained by averaging pixel intensities in
the anterior region, as defined using ground truth (blue) and automatic
segmentation (red dotted line) in a subject at baseline (left) and after LAD
stenosis and during ischemia (right). Observe that the time series obtained
via the proposed segmentation is consistent with that of ground truth, which
eventually result in more accurate ischemia detection.

Influence of patch size: The patch size is related to
the local geometry whilst the neighborhood size reflects the
anatomical variability. The Dice coefficient distributions over
varying patch are presented in Fig. 11a for a dictionary size of
K = 400 atoms, and sparsity of L = 4 . As one can observe,
the best median Dice coefficient was obtained with a patch
size of 13× 13 albeit it performed similar to 15× 15. This is
to be expected as this comes close to the average size of the
myocardium given the image size of our dataset.

Influence of dictionary size and sparsity level: First,
experiments were carried out to study the influence of dic-
tionary size K (the number of atoms in each dictionary) on
segmentation accuracy with fixed values 13 × 13 patch size
and L = 4 sparsity threshold. As illustrated by Fig. 11b, 400
atoms provide a good balance of accuracy w.r.t. dictionary size.
Note that a larger dictionary does imply higher computational
complexity, albeit it also depends on sparsity level.

Thus, experiments were also carried out to study the
influence of the sparsity level L (the number of non-zero
components in sparse coefficients) on segmentation accuracy.
This governs the selection of atoms to be combined for the
purpose of representing classes with the dictionaries. Fig. 11c

(a)

(b)

Fig. 10. Effect of Pre-processing on segmentation accuracy. Rudimentary
class thickness is varied from the original size (6mm) for background (a) and
myocardium (b). The influence of changing the thickness from 3mm to 9mm
of both classes on segmentation accuracy is minimal.
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shows that sparsity 4 is the most suited level of sparsity for our
experiments and indicates the importance of this parameter. It
appears that lower sparsity has higher discriminative ability as
adding additional atoms it appears to add noisy information.

Computational Complexity: Execution time on a 2.4 GHz
processor with an average data set (192 × 114 × 30) is
approximately seven minutes. Most of this time is spent on
the dictionary learning stage (approx. 4 minutes).

V. DISCUSSION

Cardiac MRI is an emerging modality in the management of
cardiovascular disease. Its ability to obtain multiple contrasts
that can be used to ascertain various degrees and complexities
of pathology makes it a powerful diagnostic tool. For example,
the CP-BOLD sequence used in this study is such a sequence
that can obtain information on myocardial status (ischemia)
and function (motion). However, this flexibility comes at a cost
for the required post-processing. This study clearly showed
that algorithms developed to segment the myocardium in
Standard CINE MRI severely under-perform when applied to
images from CP-BOLD studies. It showed that new algorithms
are necessary for accurate segmentation, and the proposed
algorithm aims to segment the myocardium in CP-BOLD
without any supervision in a fully automated fashion.

The results show that the unsupervised automatic seg-
mentation resulting from the proposed method results in an
acceptable level of agreement with manual segmentations.
The main challenge of CP-BOLD data stems from spatio-
temporal variations of the myocardial signal. We address
this in several ways. First we reduce the BOLD effect by
variational temporal smoothing which has not been applied
as pre-processing before in the context of cardiac BOLD
data. We then use both appearance and motion for dictionary
learning. Different from others we train these dictionaries
from data that have uncertainty in their annotation and these
data are subject-specific. Finally, since classification based on
residuals may lead to non-smooth contours locally, we use
MRFs to obtain the final segmentation. As experiments on time
series comparisons showed, accurate segmentation translates
directly to the fidelity of the signal that we aim to preserve,
namely: BOLD contrast. This will have direct effects on fully
automated ischemia detection [4].

This study used 2D (+time) datasets at mid-ventricular
slice; however when 3D BOLD approaches become routinely
available it will be interesting to see how the presented method
extends to 3D. We envision that iterating the steps of training
the dictionaries and segmentation could be beneficial, as with
more accurate class definitions the discriminative power of
the dictionaries is increased. In addition, it is possible that
we can exploit data augmentation to perhaps learn better
features. Another avenue of improvement will be the thickness
normalization function of the preprocessing scheme, which
relies on a fixed estimate currently.

In conclusion, this study motivates us to rethink the standard
assumptions and verification metrics regarding the segmen-
tation of the myocardium in cardiac MRI. Development of
MR technologies bring new challenges and departing from

fully supervised techniques (the performance of which heavily
depends on the amount of training data) towards unsupervised
ones can provide multiple benefits. Finally, this work has
shown that global DICE score on its own is not a sufficient
performance metric and more analysis can bring about the suit-
ability of segmentation methods for particular MR techniques.
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