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ABSTRACT 

 

Background:  

Aseptic loosening, osteolysis, and infection are the most commonly reported reasons for revision 

total knee arthroplasty (TKA). This study examined the role of implant design features (e.g. 

condylar box, pegs) and stems in resisting loosening, and also explored the implants sensitivity 

to a loose surgical fit due to sawblade oscillation.   

 

Methods: 

Finite element models of the distal femur implanted with four different implant types; a cruciate 

retaining (CR), a posterior stabilising (PS), a total stabilising (TS) with short stem (12mm x 

50mm), and a total stabilising (TS) with long stem (19mm x 150mm), were developed and 

analysed in this study. Two different fit conditions were considered; a normal fit, where the 

resections on the bone match the internal profile of the implant exactly, and a loose fit due to 

sawblade oscillation, characterised by removal of 1mm of bone from the anterior and posterior 

surfaces of the distal femur. Frictional interfaces were employed at the bone-implant interfaces to 

allow relative motions to be recorded.  

 

Results: 

Our results showed that interface motions increased with increasing flexion angle, and with loose 

fit. Implant design features were found to greatly influence the surface area under increased 

motion, while only slightly influencing the values of peak motion. Short uncemented stems 

behaved similar to PS implants, while long canal filling stems exhibited the least amount of 

motion at the interface under any fit condition.  

 

Conclusion: 

In conclusion, long stemmed prostheses appear less susceptible to surgical cut errors than short 

stemmed and stemless implants.  

 

KEYWORDS: Implant design features; Surgical resections; Sawblade error; Primary knee 

arthroplasty; Revision knee arthroplasty; Finite element analysis. 
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1. INTRODUCTION 

Micromotion of the tibial bearing component and failure of the tibial tray have been 

examined extensively using in vitro and in silico techniques [1-5]. However, currently there is a 

lack of corresponding studies which deal with micromotion of the femoral component, despite 

the fact that the difference between the number of revised tibial and femoral components as a 

result of aseptic loosening is less than a 3%  [6]. While it is possible that a small percentage of 

femoral component revisions may occur in parallel to revision of a loose tibial component (to 

ensure conformity), it is unlikely that this factor alone would account for the majority of femoral 

components revised due to aseptic loosening. The reported trends with respect to loosening [6, 7] 

and the increasing number of revision TKAs performed each year [8] suggests that aseptic 

loosening of the femoral component has the potential to become a more serious clinical issue. 

For ethical reasons, little information exists on the acceptable level of interfacial motion 

which leads to bone ingrowth vs. fibrous tissue formation and eventual loosening following TKA 

in humans. However, prior studies have attempted to extrapolate the upper and lower bounds of 

motion based on canine models [9, 10]. Pilliar et al. [9] reported that motions in excess of 150μm 

were disruptive to osseointegration at the prosthesis bone interface and led to the formation of 

fibrous tissue. A subsequent more comprehensive in vivo study, again using a canine model, 

placed the lower bound of motion for this fibrous tissue phase at 40μm [10]. On the other hand 

low levels of motion at the bone implant interface (< 40μm) may be beneficial in promoting bone 

ingrowth into the prosthesis and increase stability through a strong bond between prosthesis and 

bone [11, 12].  

Early indications of loosening and implant failure in humans are observed clinically by 

tracking changes in the position and orientation of the implant over time through examination of 
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X-rays or through more specialised techniques such as radio stereo photogrammetric analysis 

(RSA) [13-16]. However, such techniques are typically limited to tracking values of inducible 

motion or permanent migration which exceed 100μm [16-19], and are unable to resolve the 

relatively small interfacial motions (40 – 100μm) which play a key role in particle induced 

osteolysis [14] and aseptic loosening of the implant.  

It is recognised that fixation method (cemented or uncemented) and implant 

configuration (e.g. stemmed or stemless) can exert a large influence on the global motions 

between bone and implant [20-23]. Recent studies have suggested that implant design features 

such as size and placement of distal femoral pegs [24], anterioposterior slope of the femoral 

component [25], and angle of fit of the implant [26], may also play a role in the long term 

survival of the prosthesis.  

Another factor which may influence clinical outcomes is sawblade oscillation. Undesirable 

motion of the saw blade during operation can lead to errors in femoral cuts [27-29], where 

displacement of the free end of the saw blade is a function of blade thickness, e.g. increasing 

blade thickness reduces displacement [29]. Out of plane motion of the saw blade in combination 

with displacement of pinned cutting blocks during surgery has been found to result in surgical 

cut errors of the range of 0.8 – 1.2mm [27, 28, 30], leading to a less than optimal positioning of 

the prosthesis and potentially compromising the long term survival of the implant.  

As a result the aims of the current study were: 

 To determine the influence of implant features such as; pegs, condylar box sections, and 

stems, on motion at the bone-implant surface for an uncemented femoral component.  

 To examine which of these implant configurations were more resistant to a loose fit 

scenario. 
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We hypothesised that implant design features play a key role in determining the magnitude and 

distribution of motion at the bone-implant interface and that motions for all implants would 

increase in the presence of a loose fit.  

 

2. MATERIALS AND METHODS 

 

2.1 Geometry: 

This study used a virtual representation [31] of the large left fourth generation composite 

femur (Sawbones; Pacific Research Laboratories, Vashon, Washington) implanted with four 

different implant types as shown in Fig. 1: (a) a cruciate retaining implant (CR), (b) a posterior 

stabilising implant (PS),  (c) a total stabilising implant with short stem (TSSS) (12mm x 50mm), 

and (d) a total stabilising implant with long stem (TSLS) (19mm x 150mm) from the Triathlon® 

series product line (Stryker®, Newbury, United Kingdom). Computer aided design software 

(Autodesk InventorTM 2010, Autodesk Inc., San Rafael, CA), in conjunction with surgical 

template measurements were used to develop 3D models of each femoral implant investigated, 

and to carry out surgical resections on the femur for virtual implantation.  

 

2.2 Implant fit conditions: 

Two different fit conditions were developed, as shown in Fig. 2: (a) a perfect fit between 

the internal geometry of the implant and the femoral bone cuts and (b) a simulated loose fit 

between bone and implant, where the loose fit was characterised by excessive removal of 

material to a depth of 1mm from both the anterior and posterior surfaces of the femur due to saw 

blade oscillation. These two conditions of fit were then applied to all stemless and stemmed 

implant scenarios investigated in this study. 
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2.3 Interface properties: 

In this study, all FE analyses were conducted in Abaqus (Abaqus 6.10-1, Dassault 

Systemes, Simulia, Providence, RI, USA). Frictional interfaces were required to fully 

characterise the non-bonded femoral component interactions typically encountered following 

aseptic loosening. Coulomb friction was implemented at all bone-implant interfaces, with a 

frictional coefficient of µ = 0.3 representing an average of the reported values in literature [32-

35]. In Abaqus, an allowable elastic slip of yi = 0.005 (or 5µm) was specified directly thus 

ensuring numerically predicted motions were independent of mesh density, and that numerical 

errors due to elastic slip would be of a relatively small magnitude compared to the motions being 

measured. In addition to these settings, several other software specific parameters were required 

for contact analyses conducted in Abaqus, details of these parameters, and their respective values 

as applied in the current analyses, can be found in the supplementary text (Supplement A). 

 

2.4 Material properties, loading and boundary conditions: 

All materials were assumed to be linear elastic and isotropic, as has been done in many 

previous studies [21, 36, 37]. Elastic constants used for each structure are presented in Table 1. 

In this study, three functional flexion angles (0°, 22°, 48°) during the stance phase of gait for 

ascending stairs were investigated. Each flexion angle was modelled as a static load step. The 

loads acting on the femur in each instance were comprised of six separate components: the 

patella-femoral force (PF); the medial and lateral components of the joint normal force (Fm and 

Fl); the medial and lateral components of the joint shear force (APm and APl); and the 

internal/external moment (IE). The exact magnitudes applied for each component of force are 

indicated in Table 2. All forces were applied as distributed pressure loads over realistic contact 
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areas [37], with a 60-40% (medial/lateral) load distribution acting across the condyles assumed 

for the axial components of force [24, 38].  

To ease the computational cost associated with frictional interfaces, each femur model 

was truncated at the mid-diaphysis and all its translations/rotations fixed. Based on initial 

investigations, an optimum distance of 242mm from the distal most point on the condyles was 

selected. This manner of fixation is consistent with numerous previous FE [21, 23, 37, 39-42] 

and experimental investigations [20, 36, 40, 43]. In addition by reducing the overall geometrical 

size of the model by half, a higher resolution mesh could then be applied without significant 

increase in computational run time. Final FE meshes typically comprised of approximately 

290,000 to 390,000 linear tetrahedral elements (C3D4) depending on implant type, with a 

maximum allowable edge length of 2mm for all models (note: element edge lengths were further 

refined around key regions of interest, e.g. the femoral pegs of the CR implant). All simulations 

were performed on a dual core Intel i5 laptop with 8GB of RAM. Simulation runtime varied 

from 2hrs to 2.5hrs depending on model complexity (i.e. stemless vs. stemmed models). 

 

2.5 Characterisation of motion at the interface: 

The relative motion of each implant to the bone was described using three built in 

parameters in Abaqus. The first (Copen) describes the relative separation of two surfaces in the 

normal direction (i.e. normal to the femoral cuts), the second (Cslip 1) and third (Cslip 2) 

represent micromotions tangential to the contact surfaces in two orthogonal directions.  

  

3. RESULTS 

 

3.1 Stemless and stemmed prostheses under normal fit conditions: 
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At 48° flexion (Fig. 3) the CR implanted femur experienced the majority of motion on the 

anterior chamfer, whereas for the PS implanted femur the largest area of motion was located on 

the distal aspect of the medial femoral condyle. Separation of the bone and implant surfaces as 

defined by Copen was found to be largest on the anterior surface in the CR implanted femur and 

on the medial aspect of the intercondylar box in the PS implanted femur. The variation of these 

parameters with increasing flexion angle can be seen in the supplementary text (Supplement B, 

Fig. B.1 – B.2). At lower flexion angles, all components of motion for both CR and PS implanted 

femurs were found to be well below 40µm, and in some cases below 25µm. At higher flexion 

angles, however, the differences due to implant design features became more noticeable. In 

general, the majority of motions for both implant types were found to be well below the limit for 

osseointegration. However, small portions of the anterior chamfer in the CR implanted femur 

and the distal surface in the PS implanted femur were found to experience levels of motion 

within the fibrous tissue formation region, e.g. motions in the range of 40 – 80µm, at 48° flexion. 

Though peak values were of a similar magnitude for both implant types (Fig. 4), the implant 

design features are found to result in distinct differences in the surface areas that experienced 

relative motions (Table 3 – Table 5). In particular, at 48° flexion the PS implanted femur was 

subjected to increased motion (40 – 80µm) over a surface area almost 50% larger than that 

experienced by the CR implanted femur (Table 5). However, it must be noted that in the Cslip 2 

direction, the surface area associated with motion for the CR implant was greater than that 

associated with the PS implant (though much lower levels of motion were observed in this 

direction).  

Contour plots for the different components of interface motion (Copen, Cslip 1 and Cslip 

2) at 48° flexion were also generated (Fig. 5) for the stemmed implants. The figure compares 
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motion at the interface for both the TSSS (12mm x 50mm) and the TSLS (19mm x150mm) 

implanted femurs. By comparing Fig. 5 and Fig. 3, it can be seen that the TSSS implanted femur 

exhibited a similar distribution of motion to the PS implanted femur, though it should be noted 

that the addition of a fully frictional short stem led to a slight reduction of motion on both the 

distal surface of the femur and the distal aspect of the intercondylar box when compared with a 

stemless PS implanted femur. The addition of a long stemmed femoral component (TSLS), on 

the other hand, was found to result in peak motions below all other implants, typically less than 

38µm in peak areas and less than 20µm over the majority of the distal surface. The long stemmed 

femoral component also consistently exhibited the lowest surface area associated with increased 

motion for each of the flexion angles tested (Table 4 and Table 5). Additional contour plots at 0° 

and 22° flexion can be seen in the supplementary text (Supplement B, Fig. B.5 – B.6). 

 

 

3.2 Stemless and stemmed prostheses under loose fit conditions: 

From the graphs of peak motion (Fig.4) and the 3D contour plots of interface relative 

motion (Fig. 6), it can be seen that in general poor implant fit caused an increase in motion. From 

Fig. 3 and Fig.6, it can also be seen that the loose fit condition had a more significant impact on 

the PS implanted femur than the CR implanted femur. In the CR implanted femur, there was a 

slight increase in the surface area associated with peak motions on the anterior chamfer (Cslip 1). 

In comparison, the PS implanted femur showed an increase in all three components of interfacial 

motion (Copen, Cslip 1 and Cslip 2), a large proportion of which was in the band for fibrous 

tissue formation (40 – 80µm) (Table 5). Furthermore, a portion of the medial aspect of the 

intercondylar box and the anterior chamfer experienced motions in excess of 80µm under loose 

fit conditions. Additional contour plots at 0° and 22° flexion can be seen in the supplementary 
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text (Supplement B, Fig. B.3 – B.4).  

Interestingly, the femur implanted with a short stemmed femoral component (TSSS) was 

found to exhibit increased motion in the upper limit of the fibrous tissue formation range, e.g. 

>80µm. However, it can be observed by comparing Fig.7 and Fig.6 that the stem, much like the 

femoral pegs in the CR implanted femur, served to resist translational motion thereby reducing 

the level of relative motion in the direction of Cslip 2, this was particularly noticeable on the 

distal surface of the intercondylar box. The TSLS implanted femur, on the other hand, showed 

the greatest reduction in motion under both normal and loose fit conditions. Under loose fit 

conditions, it was observed that the addition of a long stem lead to motions comparable to that of 

a PS implant under normal fit conditions (with minor regional variations). Peak motions for the 

TSLS implanted femur under loose fit conditions were approximately 70µm at 48° flexion (Fig. 

4), however, the majority of motions on the anterior chamfer and distal femoral surface remained 

below 55µm. Additional contour plots at 0° and 22° flexion can be seen in the supplementary 

text (Supplement B, Fig. B.7 – B.8).                                                                                                                                                                                                                                                              

 

4. DISCUSSION 

In this study, computational models of the distal femur following stemless (CR and PS) 

and stemmed (TS with short and long stems) TKA were developed. The influence of their 

different implant design features on micromotion at the bone-implant interface was then tested. 

Subsequently, the impact on motion at the interface due to a loose fit scenario (due to sawblade 

oscillation during surgery) was also considered. 

The stemless implants investigated in this study represent two common industry 

standards in terms of implant design features (i.e. pegs or box). As in many previous studies, 
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micromotions at the interfaces of both implants were found to increase with increasing flexion 

angle [20, 44, 45]. The average interface motions for each implant remained well below the 

recommended limits for osseointegration at 0° and 22°. However, at 48° flexion small regions of 

motion at the interface were observed to enter the range for fibrous tissue formation (40 – 

150µm). Interestingly, while peak motions were of a similar magnitude for both the CR and PS 

implants (78µm vs. 79µm) the locations of peak motions were found to vary considerably 

between implants; on the anterior chamfer for the CR implanted femur and the distal surface for 

the PS implanted femur. These regional differences between implants may have important 

implications for optimising implant designs to improve fixation. However, it is important to note 

that the similarity in peak motions between implant types suggests that implant design features 

may not be a dominant factor in determining the overall magnitude of motion an implant 

experiences. On the other hand, implant design features are found to play an important role in 

how interfacial motions are distributed across the interface, as evidenced by the increased surface 

area of motion associated with the PS implant which may indicate a higher risk of loosening in 

comparison to the CR implanted femur. Loosening over a greater surface area may expose the 

underlying bone to wear debris from the joint, thereby reducing the likelihood of bone ingrowth. 

Moreover, due to the presence of the femoral box section in the PS implant, the effects of 

loosening may not be readily apparent from standard two-plane radiographs [46], particularly 

when largely confined to a single condyle as reported in the present study. This may lead to an 

increased risk of osteolysis induced bone loss and eventual failure of the component if untreated. 

The influence of stemmed femoral components was also investigated in this study. It was 

observed that slight differences occur in the location of peak motions when comparing the PS 

implanted femur with the short stemmed TS implanted femur, however, in general the short stem 
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was found to reduce the levels of motion at the interface by approximately 9.78% (Cslip 1 max). 

An in vitro study by Conlisk et al. [20] reported a similar reduction (9.77%) in relative motion 

when comparing a PS implanted femur and a TSSS implanted femur under uncemented 

conditions. In the present study, the addition of a long stem was found to significantly reduce 

distal motions, by approximately 40% (Cslip 1 max), in comparison to the other two implant 

types (PS and TSSS). An FE study by Completo et al. [21] reported similar trend in reduction of 

motions (up to 41%) when comparing contact separation at the interface for a prosthesis with 

press-fit stem, and no stem. 

This study also investigated variations in fit through introduction of a loose fit at the 

bone-implant interface characterised by excessive removal of material due to saw blade motion. 

By comparing interface motions at 48° flexion for both normal and loose fit conditions it was 

observed that the PS implant was more sensitive to changes in fit conditions than the CR 

implant. It is expected that this difference would again become more dramatic as flexion angle 

increases in more strenuous activities such as deep knee bend, squatting and sitting down into a 

chair, e.g. activities where the defect gap would become compressed. By comparing the 

relatively small change in interfacial motion for a TS implant with long stem under normal 

(Fig.5) and loose fit conditions (Fig.7), the present study lends qualitative support to the 

argument that adding a stem helps to reduce interfacial motion [47], particularly in the presence 

of imperfect surgical cuts. In the present study for example it was observed that the short fully 

frictional stem led to motions comparable to that of the PS implanted femur, whereas, the long 

stemmed implant, on the other hand, resulted in the smallest interfacial motions which only 

marginally increased with imperfect surgical cuts (overall motions remained well below the 

normal fit PS implanted femur). It is important to note that alterations to stem length and fixation 
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method could impact upon this conclusion. Had the short or long stem models been cemented 

(e.g. fixed along the stem) it is expected that much lower interfacial motions would have been 

observed [20].  

Only interfacial motions were examined in this study. However, the stress distribution in 

the femur following stemless and stemmed implantation also plays a role in the long term 

stability of the implant. Prosthesis induced stress-shielding is commonly observed following 

implantation [23, 42, 48-51], with the pattern and severity of bone loss differing with different 

implant types and fixation [23, 24, 39, 42]. While the long stemmed implant investigated here 

exhibited the lowest levels of motion and was found to be least sensitive to surgical cut errors, 

the presence of a long diaphyseal engaging stem may lead to greater bone loss over time in 

comparison to a stemless implant [21, 23]. Should sufficient loosening of the implant occur 

distally due to prosthesis induced bone loss at the interface, then the majority of the joint reaction 

force would be transmitted solely through the prosthesis [37]. In stemmed implants this can lead 

to a particularly devastating fatigue failure of the prosthesis at modular junctions and fracturing 

of the distal femur [52-54]. This reinforces the importance of achieving optimal fixation distally 

so as to avoid undesirable levels of motion and potentially long term fatigue failure of the 

prosthesis. 

This study has some limitations. One limitation of the current models was with respect to 

the low flexion angles tested. In short, these flexion angles were not extreme enough to fully 

compress the defect. Had higher flexion angles been considered, it is likely that a more dramatic 

difference would have been observed between implants, such as where defects to the surgical 

cuts on the posterior condyles have been reported clinically to shift the femoral component into 

flexion during high flexion activities [47]. For simplicity only two stem configurations were 



 14 

considered in the present study. These two stems were selected on the basis of representing 

opposite ends of the available product range in terms of both stem diameter and length. It is 

therefore expected that all other stems in the range would lie somewhere between the 

performance of these two, though future studies should be conducted to verify the performance 

of other configurations. Another consideration is that synthetic bone properties were used, while 

these are within the range of normal bone properties, they tend toward the lower end of the scale. 

To assess the significance of their impact on the conclusions drawn here, a sensitivity analysis 

was conducted where the cancellous bone properties were varied in 50MPa increments from 

55MPa to 505MPa (in an attempt to cover the range of physiological values commonly 

reported). The outcomes of these analyses are presented in supplement C. These findings 

highlight that while the overall magnitude and distribution of motions is sensitive to large 

changes in cancellous material properties, the observed trends with respect to implant type and 

fit condition remain valid due to the comparative nature of this study. The time-independent 

linear elastic results presented here can be considered to represent the immediate post-operative 

period following implantation. For a more realistic evaluation of long-term outcomes (e.g. 

loosening to failure), it would be necessary to include more complex factors such as; an envelope 

of loading to account for all the activities of daily life over an extended period [55], an advanced 

remodelling framework to capture bone adaptation and ingrowth [56], and the 

viscoelastic/viscoplastic properties of bone [57] to adequately capture its time-dependent 

behaviour in response to implantation. One final consideration is that the majority of current 

TKA cases in both the US and UK currently employ cemented stems [7, 8]. As mentioned 

previously, only the effect of uncemented (frictional) stems were investigated in this study, as 

such it must be considered that the stemmed models presented here represent a scenario where 
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fixation of the prosthesis is not fully achieved, and are therefore a somewhat extreme case.  

Despite these limitations, the findings of this study may aid surgeons in achieve better 

post-implantation outcomes, through an enhanced understanding of what role geometric features 

of the implants play in preventing loosening, combined with the knowledge of which implant 

types are more susceptible to sawblade induced errors in fit. For example, if a good metaphyseal 

fit is not achieved then the use of a long stem is recommended to promote implant stability and 

reduce the risk of loosening. Similarly the finding that pegs may be a more desirable design 

feature than an intercondylar box, in terms of resisting interfacial motions, holds relevance for 

implant designers and might inform future femoral component designs.  

 

 

5. CONCLUSION 

In conclusion, while this study has shown that implant design features only marginally 

influence peak motions in stemless implants, it has also shown that they exert a large influence 

on the surface area under increased motion. This finding may have serious implications for 

osseointegration and long term implant stability following stemless TKA. Additionally, stemmed 

prostheses have been found to be less sensitive to surgical cut errors than stemless implants, with 

the long stem providing the most resistance to cut errors, as evidenced by the greatest reduction 

in motion (under both fit conditions). This significant reduction in motions compared to other 

implant types is likely due to the large diameter canal filling stem aiding in alignment of the 

prosthesis and component stability in instances of loose fit. However, it is worth noting that if the 

prosthesis becomes reliant on the stem to maintain position in the absence of adequate bone 

support distally, this may increase the likelihood of prosthesis failure.  
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LEGEND TO FIGURES: 

Fig. 1: Computer aided design model of a) a CR implant, b) a PS implant, c) a TS implant with 

12mm x 50mm stem and d) a TS implant with 19mm x 150mm stem. 

 

Fig. 2: Two-dimensional illustration of the two interface conditions considered, where a) 

represents a normal or “perfect” fit and b) a loose fit due to excessive removal of bone from the 

anterior and posterior surfaces. 

 

Fig. 3: Femoral component relative motion expressed as contact separation and tangential motion 

in two orthogonal directions for a CR implanted femur (first column) and a PS implanted femur 

(second column) at 48° flexion under normal fit conditions. 

 

Fig. 4: Graphs highlighting the global peak motions for all implant and fit conditions 

investigated, a) and b) represent maximum and minimum peak motions in the first tangential 

direction (Cslip 1), whereas c) and d) represent maximum and minimum peak motions in the 

second tangential direction (Cslip 2). It is important to note that in the context of motion at the 

interface, maximum and minimum merely represent peak motions in opposite directions on the 

same surface. 

 

Fig. 5: Femoral component relative motion expressed as contact separation and tangential motion 

in two orthogonal directions for a TS implanted femur with short stem (first column) and a TS 

implanted femur with long stem (second column) at 48° flexion under normal fit conditions. 

 

Fig. 6: Femoral component relative motion expressed as contact separation and tangential motion 

in two orthogonal directions for a CR implanted femur (first column) and a PS implanted femur 

(second column) at 48° flexion under loose fit conditions. 

 

Fig. 7: Femoral component relative motion expressed as contact separation and tangential motion 

in two orthogonal directions for a TS implanted femur with short stem (first column) and a TS 

implanted femur with long stem (second column) at 48° flexion under loose fit conditions. 
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Table 1: Material properties applied to finite element model. Cancellous and cortical bone 

properties were based on the manufacturer’s specifications for the fourth generation composite 

femur, obtained from the Sawbones website: 

http://www.sawbones.com/UserFiles/Docs/biomechanical_catalog.pdf 

Component Young’s modulus E (N/mm2) Poisson’s ratio (ν) 

Cortical bone 16700 0.3 

Cancellous bone 155 0.3 

Femoral component (Co-Cr) 210000 0.3 

Femoral stem (ti-6al-4v) 110000 0.3 

 

 

 

 

 

 

 

 

 

 

 



 25 

Table 2:  Forces used in the FE analyses for the three flexion angles. Values were obtained from 

previous in-vivo telemetric implant studies [58, 59], normalised in terms of body weight and then 

applied to the FE model for an assumed average body weight of  775N. 

  

 

 

 

 

 

 

 

 

 

 

 0o 22o 48o 

Medial Force Fm  (N) 436 1159 1160 

Lateral Force FL (N) 291 772 773 

Medial Anterior-Posterior force APm (N) -57 130 -3 

Lateral Anterior-Posterior force APl (N) -57 130 -3 

Patella-Femoral Force PF  (N) 45 327 567 

Internal-External moment IE  (Nmm) -829 3292 -7029 
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Table 3:  Summary of the surface area calculated for each implant type at 0o flexion angle for 

four different bands of interface motion (0 – 20µm, 20 – 40µm, 40 – 80µm and 80 – 150µm). 

The value in brackets represents the percentage of the total surface area. 

 

 

 

 

 

 

0o flexion  0 – 20µm 

(mm2) 

20 – 40µm 

(mm2) 

40 – 80µm 

(mm2) 

80 – 150µm  

(mm2) 

CR Cslip 1 6728.54 (100) 0 0 0 

Cslip 2 6728.54 (100) 0 0 0 

PS Cslip 1 7467.70 (100) 0 0 0 

Cslip 2 7467.70 (100) 0 0 0 

TSSS Cslip 1 9908.77 (100) 0 0 0 

Cslip 2 9908.77 (100) 0 0 0 

TSLS Cslip 1 21870.12 (100) 0 0 0 

Cslip 2 21870.12 (100) 0 0 0 

CR loose fit Cslip 1 6924.06 (100) 0 0 0 

Cslip 2 6924.06 (100) 0 0 0 

PS loose fit Cslip 1 7632.53 (100) 0 0 0 

Cslip 2 7632.53 (100) 0 0 0 

TSSS loose fit Cslip 1 10073.04 (100) 0 0 0 

Cslip 2 10073.04 (100) 0 0 0 

TSLS loose fit Cslip 1 22038.98 (100) 0 0 0 

Cslip 2 22038.98 (100) 0 0 0 



 27 

Table 4:  Summary of the surface area calculated for each implant type at 22o flexion angle for 

four different bands of interface motion (0 – 20µm, 20 – 40µm, 40 – 80µm and 80 – 150µm). 

The value in brackets represents the percentage of the total surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

22o flexion  0 – 20µm 

(mm2) 

20 – 40µm 

(mm2) 

40 – 80µm 

(mm2) 

80 – 150µm  

(mm2) 

CR 

 

Cslip 1 6721.85 (99.90) 6.69 (0.10) 0 0 

Cslip 2 6564.37 (97.56) 164.16 (2.44) 0 0 

PS 

 

Cslip 1 7421.47 (99.38) 46.23 (0.62) 0 0 

Cslip 2 7443.68 (99.68) 24.02 (0.32) 0 0 

TSSS 

 

Cslip 1 9857.43 (99.48) 51.34 (0.52) 0 0 

Cslip 2 9760.70 (98.51) 120.76 (1.22) 27.31 (0.28) 0 

TSLS 

 

Cslip 1 21867.95 (99.99) 2.17 (0.01) 0 0 

Cslip 2 21861.33 (99.96) 8.79 (0.04) 0 0 

CR loose fit 

 

Cslip 1 6917.32 (99.90) 6.74 (0.1) 0 0 

Cslip 2 6789.63 (98.06) 134.43 (1.94) 0 0 

PS loose fit 

 

Cslip 1 7507.67 (98.36) 124.86 (1.64) 0 0 

Cslip 2 7612.08 (99.73) 20.45 (0.24) 0 0 

TSSS loose fit 

 

Cslip 1 9943.26 (98.71) 129.78 (1.29) 0 0 

Cslip 2 10049.35 (99.76) 23.69 (0.24) 0 0 

TSLS loose fit Cslip 1 22031.60 (99.97) 7.37 (0.03) 0 0 

Cslip 2 22008.10 (99.86) 30.88 (0.14) 0 0 
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Table 5:  Summary of the surface area calculated for each implant type at 48o flexion angle for 

four different bands of interface motion (0 – 20µm, 20 – 40µm, 40 – 80µm and 80 – 150µm). 

The value in brackets represents the percentage of the total surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

48o flexion  0 – 20µm 

(mm2) 

20 – 40µm 

(mm2) 

40 – 80µm 

(mm2) 

80 – 150µm  

(mm2) 

CR 

 

Cslip 1 6395.00 (95.04) 254.44 (3.78) 79.10 (1.18) 0 

Cslip 2 6381.43 (94.84) 338.82 (5.04) 8.28 (0.12) 0 

PS 

 

Cslip 1 7001.12 (93.75) 297.80 (3.99) 168.78 (2.26) 0 

Cslip 2 7412.94 (99.27) 54.76 (0.73) 0.00 0 

TSSS 

 

Cslip 1 9448.09 (95.35) 316.62 (3.20) 144.06 (1.45) 0 

Cslip 2 9672.21 (97.61) 164.84 (1.66) 70.27 (0.71) 1.45 (0.01) 

TSLS 

 

Cslip 1 21603.84 (98.78) 266.28 (1.22) 0.00 0 

Cslip 2 21823.22 (99.79) 46.91 (0.21) 0.00 0 

CR loose fit 

 

Cslip 1 6589.96 (95.17) 223.31 (3.23) 110.79 (1.60) 0 

Cslip 2 6582.37 (95.07) 341.69 (4.93) 0.00 0 

PS loose fit 

 

Cslip 1 7046.10 (92.32) 361.38 (4.73) 221.74 (2.91) 3.31 (0.04) 

Cslip 2 7074.69 (92.69) 557.84 (7.31) 0.00 0 

TSSS loose fit 

 

Cslip 1 9569.00 (95.00) 325.60 (3.23) 173.18 (1.72) 5.26 (0.05) 

Cslip 2 9990.01 (99.18) 71.30 (0.71) 11.73 (0.12) 0 

TSLS loose fit Cslip 1 21663.88 (98.30) 280.40 (1.27) 94.70 (0.43) 0 

Cslip 2 21970.29 (99.69) 66.48 (0.30) 2.20 (0.01) 0 
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