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Abstract: The retrotransposon LINE-1 (L1) is a transposable element that has extensively 

colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, 

causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism 

arising during ontogenesis is unclear. Here we discuss recent experimental data which, at a 

minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, 

including post-mitotic neurons. We also consider the possible biological impact of somatic L1 

insertions in neurons, the existence of donor L1s that are highly active (‘hot’) in specific 

spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism. 
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A mosaic of genomes 

Barbara McClintock discovered Ac/Ds transposition as the genetic basis for maize kernel 

variegation nearly 70 years ago [1,2]. In this remarkable work, McClintock simultaneously 

identified mobile DNA and its transposition in somatic cells, hence explaining the observed 

mosaic kernel phenotype. Various forms of somatic genome mosaicism have since been 

described [3] in normal and disease contexts, in developing and adult tissues, involving DNA 

changes ranging from a single nucleotide to entire chromosomes, and, in some cases, being 

central to critical biological processes [4]. The mobile DNA field founded by McClintock has 

gone on to identify numerous transposable element (TE) families, which are arguably the 

preeminent feature of most eukaryotic genomes sequenced to date [5] and are a major source of 

genetic diversity and regulatory innovation [6,7]. However, despite an ongoing emphasis on 

mammalian genomics, and the instructive effects of somatic transposition on plant biology 

revealed by McClintock and others, our understanding of TE mobilization in mammalian 

somatic cells remains in its infancy. In this Review, we focus on recent reports of Long 

INterspersed Element 1 (LINE-1, or L1) retrotransposition during murine and human 

embryogenesis and neurogenesis, discuss the potential biological significance of somatic L1 

insertions, and consider how L1 mosaicism may be subject to evolutionary selection. 

 

L1 retrotransposons 

Retrotransposition is a molecular “copy-and-paste” process where an RNA template is reverse 

transcribed and integrated into the host genome, hence duplicating the donor DNA sequence 

from which the RNA was transcribed [8]. In humans, more than 500,000 L1 copies occupy 

~17% of the genome [9]. An intact, full-length L1 is 6kb in length and initiates transcription 
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from a canonical 5' sense promoter (Figure 1a). The L1 mRNA encodes two proteins (ORF1p 

and ORF2p) that catalyze L1 retrotransposition in cis [10]. The reverse transcriptase and 

endonuclease activities of ORF2p are indispensable to efficient retrotransposition [11-13]. L1 

also encodes an antisense peptide, ORF0, which may assist L1 mobility [14]. Most new L1 

copies are rendered immobile by 5ˈ truncation or internal mutation, leaving only 80-100 

potentially mobile L1s per individual human genome [15,16]. Of these, fewer than 10 are 

expected to mobilize efficiently if tested in vitro and are therefore described as “hot” L1s [15,17-

19]. The vast majority of hot L1s belong to one subfamily (L1-Ta, for Transcribed-Active) 

[15,17]. Although L1 is the only remaining mobile, autonomous human TE, the non-autonomous 

retrotransposon families Alu (a Short INterspersed Element, or SINE) and SVA (a composite 

element incorporating SINE-R, a variable number of GC-rich tandem repeats, Alu, and a 5ˈ 

hexamer) can be retrotransposed in trans by the L1 protein machinery, as can be other 

polyadenylated mRNAs, generating processed pseudogenes [20-24]. In mice, ~3000 L1 copies 

representing three subfamilies (TF, GF, A) remain retrotransposition-competent (Figure 1b) as do 

multiple endogenous retroviruses (ERVs) and non-autonomous SINE families [25-29]. As 

opposed to an estimate of 1 new L1 insertion per 100 human births [30], at least 1 in 8 mice 

harbor a new L1 insertion [31], despite the similar percentages of identifiable L1 sequences in 

the mouse (~19% from 600,000 copies) and human genomes [9,32]. 

L1-mediated retrotransposition typically occurs via a mechanism called target-primed 

reverse transcription (TPRT) [33] (Box 1, Figure 1c). As a result of TPRT, new L1 insertions 

typically incorporate i) an L1 endonuclease motif, ii) target-site duplications (TSDs), and iii) a 

poly(A) tail [34]. Due to cis-preference [10], L1 insertions usually arise from a 

retrotransposition-competent donor L1, which in some cases can be identified by L1 flanking 
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transductions [35-37] or diagnostic internal mutations [38]. Crucially, the hallmarks of TPRT can 

be utilized to discriminate genuine L1 retrotransposition events from other genetic or molecular 

events involving L1 sequences [13,33,34,39-41]. A new L1 insertion can greatly impact gene 

structure and function, through insertional mutagenesis of exons [38,42,43] and regulatory 

elements [44], disruption of RNA polymerase II processivity [45], premature polyadenylation 

[46], provision of alternative promoters [14,47-51] (Figure 1a) and various other functional 

consequences [5,6]. L1 insertions are, likely as a result of evolutionary selection, not randomly 

distributed on the genome and are depleted from exons and introns [52]. This mutagenic 

potential also means the L1 5ˈ promoter, if present in a new insertion, is heavily repressed by the 

host genome in most spatiotemporal contexts [48,53-56] (Figure 1d). Even in situations where 

full-length L1 transcripts are detected, these are usually generated by a limited number of L1 

copies [38,50]. As a result, the L1 5ˈ promoter is a major battleground in what has often been 

described as an “arms race” pitting L1’s interest to replicate against the host genome’s interest to 

mitigate deleterious L1 mutations [57,58]. Beyond transcriptional repression, the host genome 

has developed multiple strategies to limit ongoing retrotransposition [for reviews, see [59-62]]. 

 

Methods to detect L1 retrotransposition 

Two core strategies are available to resolve the spatial and temporal extent of L1 

retrotransposition: L1 reporter assays and high-throughput sequencing. In 1996, an L1 reporter 

assay [13] was adapted from an existing but ingenious design [8,63], and tagged human donor 

L1s with an intron-containing neomycin antibiotic resistance cassette [64] that was made 

functional by retrotransposition. In this assay, neomycin resistant foci function as a readout of L1 

retrotransposition efficiency (Figure 2a, left). Remarkably, frequent L1 retrotransposition events 
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carrying TPRT hallmarks were observed in human and mouse cells (Box 1) [13]. As an 

alternative approach, an enhanced green fluorescent protein (EGFP) based cassette was then 

developed, yielding an L1-EGFP construct where EGFP was made functional by 

retrotransposition (Figure 2a, right) [65]. This approach facilitated the use of fluorescence-

based microscopy and flow cytometry to measure L1 retrotransposition efficiency, including for 

transgenic animals in vivo [66]. In all, these reporter L1s, and their derivatives (e.g. [67]), have 

underpinned numerous studies elucidating retrotransposon biology over the past two decades, 

and remain commonly used and effective tools [for a review, see [68]]. 

Alongside engineered L1 systems, high-throughput sequencing has massively increased 

our ability to characterize DNA variation in human populations [52] and cancer genomes [69]. 

L1 insertions are, in this regard, just one type of DNA structural variant and can be studied en 

masse, either as part of a whole-genome sequencing (WGS) approach, or via targeted sequencing 

of L1-genome junctions (Figure 2b). Either strategy requires careful computational analysis and 

experimental validation to confirm true L1 insertions [39,61,70] and typically leverage L1 

polymorphism catalogs [71-73] to discriminate known and unknown L1 insertions. The 

bioinformatic identification of new L1 insertions from WGS data [52,74-76] is advantageous in 

that it can reveal the 5' and 3' L1-genome junctions of an insertion, allowing substantial 

characterization of TPRT hallmarks a priori. As a result, WGS analyses tend to report fewer 

false positives and flexibly encompass more variations of TPRT (e.g. 3' transductions [35-37] 

and 5' inversions [42,77]) than can be discerned using targeted methods [30,69,78,79] analyzing 

only one (usually the 3') L1-genome junction. Some targeted methods do however attempt to 

analyze both L1-genome junctions simultaneously [50,80,81] and, importantly, WGS remains far 

more expensive than targeted approaches. Both general strategies can be applied to “bulk” DNA 
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extracted from tissue or pooled cells, and to DNA amplified from individual cells [82,83]. High-

throughput sequencing has greatly expanded our overall capacity to study endogenous L1s in 

vivo, as opposed to the considerable caveats of introducing a transgenic L1 into a new epigenetic 

landscape [53,56,66,84,85]. If, however, congruent experimental data are obtained from an L1 

reporter and high-throughput sequencing applied to a common biological system, such as 

cultured stem cells [86,87], the conclusions are likely to be robust. 

 

Heritable and somatic L1 retrotransposition during early development 

How has L1 colonized nearly one-fifth of the human and mouse genomes? Heritable L1 

insertions must, by definition, occur in a germ cell, or an embryonic cell contributing to the germ 

line. A landmark 1988 study reported L1 mutagenesis of the factor VIII gene of two hemophilia 

patients [42]. These results established that heritable de novo L1 insertions were still occurring in 

humans and that these mutations could cause disease. Nonetheless, the developmental origin of 

de novo L1 retrotransposition remained unclear [42]. Subsequent murine studies reported full-

length L1 mRNA and L1 ORF1p expression in blastocysts, male and female germ cells and, 

interestingly, placental syncytiotrophoblast cells [88-91]. Differential L1 expression was 

observed during germ cell specification; for example, L1 ORF1p was detected in primordial 

spermatogonia, as well as the leptotene and zygotene stages of spermatogenesis, but not in 

mature spermatids [88,91]. Together with later transgenic L1 mouse experiments [66,85,92-94], 

recovery of endogenous L1 insertions from human germ cells [95] and studies of human X-

linked disease-causing L1 mutations [42,96,97], these reports strongly suggested endogenous L1 

mobilization could occur in germ cells and the early embryo.  

Of highest relevance here is a study [97] that reported an L1 mutation associated with 
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choroideremia, a rare recessive X-linked condition, in an affected male proband. Notably, his 

mother was a somatic and germline mosaic for the L1 insertion. This example irrefutably 

demonstrated that endogenous L1 retrotransposition could occur early in human embryogenesis. 

In addition, the de novo L1 insertion carried a 3ˈ transduction, allowing the authors to trace a 

full-length donor L1 and prove it mobilized efficiently in vitro using the L1 reporter assay 

[65,97]. As corollary, human embryonic stem cells (hESCs) support strong full-length L1 mRNA 

and L1 ORF1p expression [49,86,87,98-100], as do human induced pluripotent stem cells 

(hiPSCs) [87,100,101], human embryonic carcinoma cells [49,84], mouse embryonic stem cells 

(mESCs) [102] and mouse induced pluripotent stem cells (miPSCs) [101]. Consistently, the L1-

EGFP reporters mobilize in hESCs, hiPSCs and embryonic carcinoma (PA-1) cells [87,100,101], 

indicating that embryonic cells are likely a natural habitat for L1 retrotransposition.  

In a recent analysis, targeted sequencing was performed on multiple cultured hESC and 

hiPSC lines, followed by PCR validation of candidate de novo insertions in multiple laboratories 

[87]. hiPSCs were reprogrammed from multiple parental cell types using a variety of approaches, 

again in several different laboratories. Eleven de novo L1, Alu and SVA insertions were PCR 

validated. These data confirmed that L1 was activated by reprogramming [100,103], a process 

known to involve wholesale epigenomic changes [104]. Interestingly, de novo L1 insertions 

identified in hiPSCs appeared unusually likely to be full-length, as found previously for L1-

EGFP insertions in hiPSCs [100] but not in hESCs [86]. The characteristics of L1 activity may 

therefore be different in hiPSCs and hESCs, although an as yet unrealized catalog of endogenous 

L1 insertions in cultured hESCs would be required to test this possibility.  

In comparing the rate of endogenous L1 mobilization in hiPSCs versus hESCs, we strongly 

urge consideration of how heterogeneous each cell population is. Methodological factors, such as 
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stem cell culture conditions, population bottlenecks in cultured cells, bioinformatic parameters, 

and how candidate L1 insertions are validated, if at all, can drastically influence results [39]. For 

example, a recent study [105] applied WGS to 9 hiPSC lines and did not identify any de novo 

retrotransposon insertions, and far fewer mutations overall when compared to earlier studies 

[106,107]. Another report found 7 possible de novo L1 insertions in 2 hiPSC lines using targeted 

L1 sequencing but could not PCR validate or fully characterize the genomic integration sites of 

these events [103]. A further study that analyzed 3 miPSC lines with medium coverage (10-12x 

depth) WGS detected no de novo L1 insertions, and concluded that retroelement stability was the 

rule in miPSCs [108]. Given the accumulated evidence for L1 expression and mobilization in 

pluripotent cells, including retrotransposition of a codon-optimized L1 TF element reporter [109-

111] in mESCs (Garcia-Canadas et al., unpublished data), the lack of de novo L1 insertions in 

miPSCs is perhaps surprising. There are, however, fundamental differences in how miPSCs and 

hiPSCs are generated and cultured and, as well, distinct retrotransposon families appear to be 

more active depending on which mouse strain is analyzed [26,29,31]. Overall, we conclude that 

reprogramming offers L1 a dynamic but consistent relaxation of repression, and that L1 also 

encounters relaxed host genome control in pluripotent cells obtained directly from embryonic 

material [60,101,102,112]. Embryogenesis therefore provides a favorable niche for L1 

retrotransposition [31].  

With this in mind, WGS and targeted sequencing was recently applied to 85 mouse 

genomes obtained from 3 multigenerational C57BL/6J mouse pedigrees [31]. The developmental 

timing of new L1 insertions identified in progeny was then traced in parental mice, via PCR and 

quantitative PCR (qPCR) targeting the 5' L1-genome junction of individual insertions. In total, 

11 de novo insertions were identified, with all of these being full-length (≥1 monomer) and 
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belonging to the TF subfamily, indicating a rate of at least 1 new L1 insertion per 8 births. Most 

heritable L1 insertions arose in the early embryo prior to germ cell specification, or in early 

primordial germ cells (PGCs). For L1 insertions traced to the early embryo and early PGCs, 

transmission to multiple offspring was routinely observed, suggesting that more than one allele 

of a given event may be produced in one generation due to DNA replication errors and poly(A) 

tail shortening post-integration [113]. TE diversity within inbred strains is therefore common and 

adds to inter-strain variation [26,29].  

Importantly, this study also identified major depletion of the 3ˈ L1-genome junction for the 

active mouse L1 families in Illumina sequencing data [31], which was attributed to obstruction 

by an extensive G-quadruplex region [114,115]. To our knowledge, this issue was not identified 

by previous genomic analyses of mouse L1 insertions using WGS [108,116] and is potentially 

problematic for TE discovery and sensitivity calculations. For this reason, we consider the 

abovementioned figure of 1/8 to be conservative [31]. As well, data obtained from transgenic 

animals suggest that most engineered L1 retrotransposition occurs in the soma and are not 

inherited [56,92,93,117]. Hence, heritable L1 insertions are likely far outnumbered by 

endogenous L1 insertions occurring in the embryo and later during ontogenesis and lineage 

specification.  

 

Do mature neurons support L1 retrotransposition? 

Over the last decade, the L1-EGFP reporter system, alongside other approaches, has been used to 

elucidate engineered L1 mobilization in neural progenitors arising during fetal and adult 

neurogenesis (Box 2), suggesting the brain may be a L1 mosaicism hotspot [53,56,84]. However, 

it remains unclear whether mature neurons, or other cell lineages, also accommodate L1 activity. 
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Recently, a human L1-EGFP reporter was introduced into hESC derived neuronal precursor cells 

(NPCs) and, as seen previously [53,56], observed efficient retrotransposition was observed [99]. 

The authors then exploited a hybrid L1 adenoviral vector [118] to transduce NPCs with a 

modified L1-EGFP reporter, overcoming limitations associated with plasmid transfection, and 

again found L1 retrotransposition. Finally, the authors differentiated NPCs for 31 days to force 

neuronal maturation, then introduced either the adenoviral or plasmid L1-EGFP reporter along 

with 5-Bromo-2′-deoxyuridine (BrdU), a marker of cycling cells, and found that EGFP+ neuronal 

cells were present and not stained with an anti-BrdU antibody. These results suggested that non-

dividing neuronal cells supported extensive engineered L1 mobilization [118]. The authors 

performed parallel experiments in isogenic hematopoietic and mesenchymal stem cells and, 

compared to NPCs, observed very low L1 expression and L1-EGFP activity. Through infection 

with the adenoviral L1-EGFP reporter, and the use of qPCR to measure integrated EGFP copies, 

it was determined that the rate of L1-EGFP insertions in mature neurons was at least as high as in 

NPCs. These conclusions relied heavily on PCR and qPCR detection of the spliced EGFP 

cassette, and normalization to a plasmid or adenovirus [53]. If taken together, this study and 

previous studies focused on L1 in NPCs [53,56,99], lead us to conclude that engineered L1 

activity, in the cell types and physiological conditions tested thus far, is largely restricted to the 

neuronal lineage, including post-mitotic neurons. 

 

Extent of endogenous L1 mobilization in the brain 

Despite ongoing debate regarding the various types of mosaic DNA variation found in the brain 

[70,81,119-121], an unequivocal consensus view, based on genomic analysis of bulk brain tissue 

[53,80], individual cells [41,81-83] and clonal cell lines derived from individual neurons [116] 
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has formed: endogenous L1 retrotransposition can occur in the neuronal lineage, in line with 

foundational data obtained from engineered L1 reporter systems [53,55,56,99]. Estimates of L1 

mobilization rate have nonetheless varied widely in each of the relevant studies, which have used 

various analytical approaches (Table 1). The earliest, and most approximate, calculations of per 

cell somatic L1 insertion count were based on a L1 copy number variation (CNV) assay [53], 

and retrotransposon capture sequencing (RC-seq) [39,80] applied to bulk hippocampal tissue, 

setting what appear now to be the extrema values of 80 and 0.04, respectively. In a 2012 

methodological tour de force [82], multiple displacement amplification (MDA) was coupled to 

an earlier targeted 3' L1-genome sequencing approach [30,78] to create L1Hs insertion profiling 

(L1-IP). Application of L1-IP to 300 individual pyramidal neurons from cortex and caudate 

nucleus revealed a single somatic L1 insertion, which carried a 5' transduction and could be PCR 

amplified and capillary sequenced in its entirety (an “empty/filled” assay, which we consider to 

be the highest validation standard). Another 4 events were detected by L1-IP but could be PCR 

amplified only at their 3' L1-genome junction. Subsequent WGS [83] applied to 16 of the MDA-

amplified cortical neurons analyzed by L1-IP, including the neuron where the archetypal 

neuronal L1 insertion [82] was found, re-identified that event as well as another somatic L1 

insertion flanked by a 614nt 3' transduction that was, for this reason, initially overlooked by L1-

IP [82]. Two additional single-cell studies of hippocampal and cortical neurons, via MDA 

followed by somatic L1-associated variant sequencing (SLAV-seq) [41], and through multiple 

annealing and looping-based amplification cycles (MALBAC) followed by RC-seq [81], also 

identified and PCR validated multiple somatic L1 variants. Hence, single-cell genomic analyses 

have consistently found strong evidence for endogenous L1 mobilization in the neuronal lineage 

(Table 1). 
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As a discipline still in its infancy, single-cell genomic analysis can lead to conclusions 

heavily influenced by technical considerations. For example, a major signature of somatic C>T 

mutations reported by one analysis of MDA amplified neurons [119] was suggested to be an 

artifact by another study employing a different genome-wide amplification approach [120]. In 

these circumstances, cooperation and consensus building are essential and, fortunately, the field 

is moving in this direction [70]. Nonetheless, discovery and characterization of somatic L1 

insertions found in a handful of cells, or even one cell, via single-cell genomics remains 

technically challenging [39] because whole-genome amplification and sequencing library 

preparation can each generate molecular artifacts, or chimeras, that obscure real L1 insertions. 

Sophisticated bioinformatic strategies tailored to the underlying single-cell genomic approach are 

hence required to distinguish signal and noise. For example, variant discovery with the three 

targeted L1 sequencing methods used thus far to analyze neuronal genomes has filtered 

candidate de novo L1 insertions primarily based on read count (L1-IP), L1 integration site 

sequence features (single-cell RC-seq), or using a combination of both read count and sequence 

features (SLAV-seq) [41,81,82]. If the analysis approach suitable to one technique is applied to 

another (e.g. applying lessons learned from single-cell RC-seq to L1-IP [81], or the reciprocal 

application of a read count filter suitable for L1-IP to single-cell RC-seq data already filtered 

based on sequence features [121]), the resulting L1 mobilization rate estimate can be very 

different, necessitating method standardization [39,70]. The common ground shared by all of 

these techniques is their high false positive rates, a need for rigorous and time-consuming PCR 

validation, and their assumption that heterozygous L1 variants in single-cell genomic analysis 

are equivalent to somatic L1 variants [41,81,82]. This latter consideration is central to the 

estimation of false negatives. In this regard, it should be noted that the poly(A) tails (91nt and 
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107nt in length, on average) of the two somatic L1 insertions validated to date by the 

empty/filled PCR assay and presenting clear TSDs [83] are significantly longer and more 

adenine pure than those carried by the vast majority of heterozygous L1 insertions [17], due to 

rapid intra-individual and intergenerational poly(A) tail shortening [83,113], and this 

phenomenon is even more evident for older L1 insertions [113]. Illumina sequencing is known to 

have issues with long homopolymer tracts [122] and it is unclear how very long poly(A) 

sequences fare during whole genome amplification. Moreover, it is interesting that engineered 

L1 insertions have been shown to accumulate mainly in post-mitotic neurons [99], whereas the 

two somatic L1 insertions referred to above were each detected in multiple neurons [83]. These 

considerations lead us to ask whether the false negative rate has been consistently 

underestimated when assessing the degree of L1 mosaicism in the brain with single-cell 

genomics, whilst acknowledging that accurate false positive rate calculations are essential 

[81,121]. Finally, it must be noted that single-cell genomic analyses of L1 mobilization have 

been performed on very few human brain samples thus far, and on broad neuronal types, leaving 

open the possibility that some individuals, brain regions and neuronal subtypes may support 

more endogenous L1 activity than others, and thus contribute to disparate somatic L1 

retrotransposition frequency estimates.  

To our knowledge, no single-cell analysis of endogenous L1 mobilization in the mouse 

brain has been reported to date. However, in an elegant study, somatic cell nuclear transfer 

(SCNT) was used to reprogram mESCs with neuronal nuclei obtained from the mouse olfactory 

bulb, followed by clonal expansion and bulk WGS to identify de novo TE insertions and other 

somatic variants [116]. This approach provided an excellent and robust alternative to whole-

genome amplification and eliminated errors associated with the latter technique, although also 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 
 

potentially selecting neuronal nuclei with a lower burden of DNA damage (including from L1) 

[116]. In 6 reprogrammed neuronal clones, 4 de novo L1 insertions were validated through 

junction-specific PCR and capillary sequencing, revealing in each case hallmark features of 

TPRT. Based on a false negative rate of approximately ~50%, the analyzed neurons likely each 

contained ~1.3 somatic L1 insertions, on average. Interestingly, this rate estimate differed quite 

dramatically from the extrema values of 0.04 [82] and 13.7 [81] obtained from single-cell 

genomic analysis of human neurons, although L1 appears to be more active in the mouse than in 

the human germline [30,31]. It is unclear how much, if at all, the 3' L1-genome junction 

depletion observed recently in WGS and RC-seq data [31] affected the false negative rate 

calculation of this study, given that the WGS analysis appeared to group all TE families together 

when calculating false negative rate, and the 3' depletion observed elsewhere was L1-specific 

[31]. More generally, it is unknown how much L1 activity varies in the brains of different 

species, or different inbred animal strains, or for that matter how much ageing and senescence 

impact TE mosaicism in species with very dissimilar lifespans [123-126]. It is nonetheless 

remarkable that L1 mosaicism may be very common in the mouse brain, and conserved in 

Mammalia, based on the conservative estimate that olfactory neurons contain at least one 

somatic L1 insertion, on average [116]. 

 

When does L1 jump in brain development? 

As noted above, engineered L1 insertions occur throughout fetal and adult neurogenesis, as well 

as in mature neurons [53,56,99]. With regards to endogenous L1 activity, one study detected two 

somatic L1 insertions, each in 2/16 neurons assayed by WGS [83]. By lineage tracing, the 

authors found that one of these events was timed to occur in the developing cortex and the other 
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likely arose early in central nervous system development, and perhaps even earlier [83]. The 

latter circumstance reconciles well with embryonic events elucidated in mouse [31,92]. By 

contrast, two other studies found that most of these events appeared to arise later in neurogenesis 

[41,81], agreeing with reports of engineered L1 mobilization in post-mitotic neurons [99]. 

Interestingly, studies of engineered and endogenous L1 retrotransposition in brain tissues and 

neural cells have recurrently found L1 insertions in neuronal genes [41,53,56,80,81] and 

enhancers active in NSCs [81], raising the prospect of integration patterns specific to the 

neuronal epigenetic landscape, or post-integration selection. Pyramidal and other neuronal 

subtypes have been shown to contain somatic L1 insertions [81-83], as have, in far fewer 

instances, glia [41,81]. It therefore remains unclear whether most somatic L1 insertions found in 

the brain arose in the embryo, during neurogenesis, in mature post-mitotic neurons, or, as is 

possible, in each of these scenarios, leading to complex neuronal mosaicism.  

 

A model for evolutionary selection of somatic L1 retrotransposition 

Is an L1 mosaic brain functionally distinct to an L1 homogenous brain? We note here only that i) 

neuronal circuitry is highly interconnected and exquisitely sensitive to perturbation [127], ii) 

intragenic L1 insertions can grossly impact gene function [42,45], iii) despite this, the potential 

roles of L1 mosaicism in learning and cognition remain almost entirely theoretical [39,128,129], 

and iv) abnormal somatic L1 activity in neurological disorders, including Rett syndrome (RTT) 

[55,130], schizophrenia [131] and ataxia telangiectasia [132], has also been considered 

extensively but, apart from RTT, the related etiological contribution of L1 to disease is very 

unclear. Even for RTT, where MeCP2, a major L1 transcriptional repressor [130], is mutated and 

L1 mRNA, L1 protein and L1-EGFP transgene activity are all elevated [55], MeCP2 conditional 
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rescue can restore apparently normal neurobiological function in mice [133], meaning L1 

mosaicism is unlikely to be a major component of RTT neuronal phenotype. Hence, although L1 

insertions can impact phenotype in the context of disease [38,42,43], it remains wholly unclear 

whether this applies to normal or abnormal neurobiology. 

Somatic mutations are, of course, not inherited. However, donor L1s causing de novo L1 

insertions in somatic cells are carried through the germline, and are therefore subject to selection 

because they can simultaneously cause germline and somatic mosaicism [31,38]. Moreover, if a 

particular donor L1 is very active in somatic cells it may affect the immediate evolutionary 

fitness of the carrier individual, through disease [38,43] or even positive developmental or 

neurological consequences, if they exist [129]. That some L1s are apparently more mobile in 

somatic cells than elsewhere is supported by the identification of donor L1s that are far more 

active in tumors than would be expected by their activity in the germline, such as an oft-

transduced donor L1 in the TTC28 gene of numerous cancer genomes [76]. Reciprocally, some 

donor L1s are sufficiently active to give rise to multiple donor L1 progeny in the human 

germline but have not been found to be particularly active in cancer [17,76,134]. Finally, some 

donor L1s are highly active in both the germline and tumors [17,38].  

Donor L1s can each have multiple alleles, which can in turn mobilize at very different 

rates, even in the same context [18,19]. As well, the same donor L1 may mobilize well in one 

context and not another [50]. For example, the donor L1 found previously to generate a 3' 

transduction-flanked neuronal L1 insertion [83] putatively mobilized during brain development 

but, when tested with an L1 reporter assay, did not retrotranspose in cultured osteosarcoma cells 

[15]. It follows that, as more active donor L1s generate longer new L1 insertions [135], they 

have a higher chance of generating retrotransposition-competent L1 insertions that can be easily 
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traced back to their donor L1s by 5' or 3' transduced sequences, as was the case for both of the 

neuronal L1 insertions referred to above [83]. For these reasons, we hypothesize that donor L1s 

that are “hot” for retrotransposition [15] in certain somatic contexts in vivo (Figure 3, Key 

Figure) exist in the human population. This possibility is further supported by context-specific 

donor L1 activity in cultured cell lines [50], and a recent colorectal cancer study [38] that found a 

tumorigenic L1 insertion in the APC gene and traced that mutation to a polymorphic donor L1 

that was demethylated in the tumor, but also the matched normal colon [17]. If other 

polymorphic donor L1s are highly active in the brain, and L1 mosaicism is ultimately found to 

impact neurobiology, we predict that donor L1s, the regulatory elements they carry (e.g. 

antisense promoters [14,48]) and the relevant host defense factors, may undergo genetic selection 

due to their activity in the soma. Despite somatic L1 insertions not being inherited, this model 

could lead to varying rates of L1 mosaicism amongst individuals, and subject the phenomenon to 

natural selection. 

 

Concluding remarks and future directions 

Endogenous L1 retrotransposition occurs in the embryo and during neurogenesis, and causes 

somatic genome mosaicism in neurons. The character of this mosaicism, in terms of complexity 

and impact, remains largely undefined. However, as the average human brain contains 80-100 

billion neurons [136], even the most conservatives estimates of neuronal L1 mosaicism 

extrapolate to a very extensive catalogue of L1-driven variation within any individual. We would 

also expect that some neuronal subtypes support more L1 activity than others, perhaps as a 

function of when during life those neurons arise, their spatial distribution in the brain, or their 

neurobiological function, and in those neurons the potential for L1 insertions to drive phenotypic 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

diversity is arguably higher than in cells that carry few or no somatic L1 insertions. TE 

mobilization in somatic cells is, of course, not restricted to mammals, with McClintock’s maize 

[1,2], silk worm [137] and fruit fly [125,138] each providing examples of mosaicism caused by 

mobile DNA. Major advances in single-cell genomic analysis and high-throughput sequencing 

therefore leave the field well placed to further define somatic genome mosaicism, and its 

potential functional consequences, in different species and biological contexts (see Outstanding 

Questions). 
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Text Boxes 

Box 1. Target-primed reverse transcription (TPRT).  

This seminal mechanistic model was proposed by the Eickbush laboratory [33], based on 

experimental data obtained from the silk moth R2 LINE-like retrotransposon, which provided a 

tractable system as it preferentially inserts into 28S rDNA genes [33,137]. Briefly, for murine 

and primate L1s, TPRT involves the transcription and translation of a full-length, capped and 

polyadenylated L1 mRNA [21,139] followed by the association in cis of the L1 mRNA, ORF1p 

and ORF2p to generate a cytoplasmic ribonucleoprotein particle (RNP) [10]. The L1 RNP can 

next access the nucleus [118], where the endonuclease activity of ORF2p [11] cleaves one 

genomic DNA strand at a degenerate 5ˈ-TTTT/AA site [34] and then the ORF2p reverse 

transcriptase [12] initiates reverse transcription from the exposed 3' hydroxyl group using the 

accompanying L1 mRNA as a template, generating a new L1 copy primed from the cleavage site 

[40]. After this process, the second DNA strand is also cleaved, presumably by the same ORF2p 

endonuclease activity, near to the first cleavage site which, after the nascent L1 insertion is 

resolved by DNA synthesis, usually leads to the formation of target-site duplications (TSDs) 

flanking the newly synthesized DNA. Retrotransposition can also occur through variations of the 

fundamental TPRT model [140-142] including occasional trans mobilization of mutant L1 

mRNAs that do not encode intact ORFs [10,143]. The TPRT mechanism is likely to be 

conserved in all vertebrates as, for example, eel and zebrafish LINEs retrotranspose in human 

cells [144,145]. 

 

Box 2. Engineered L1 mobilization in neural progenitor cells. 

A 2005 study [56] discovered in vivo L1-EGFP mobilization in transgenic mouse neurons, and in 
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cultured rat neural stem cells (NSCs) and neuronal precursor cells (NPCs), providing 

foundational evidence of an L1 mosaic mammalian brain. Amongst various key findings, the 

authors elucidated Sox2, a transcription factor required to maintain NSC identity [146], as a 

repressor of the L1 5'UTR that is downregulated to complete neuronal maturation, hence 

providing a scenario for L1 mobilization [56,147]. A significant caveat of this work was that it 

depended on a human L1 tagged with EGFP and integrated into the foreign epigenetic landscape 

of another species. As a follow on, a subsequent study [53] showed that the L1-EGFP reporter 

mobilized in human NPCs derived from fetal brain and hESCs in vitro, and that the CpG island 

at the core of the L1-Ta promoter [148] was partially demethylated in fetal brain when compared 

to non-neural tissues, further explaining L1 activation during neurogenesis. Through an L1 

qPCR-based copy number variation (CNV) assay, they determined that more L1 copies were 

found in brain tissues than non-brain tissues [53]. Interestingly, both studies observed that neural 

cells known to carry retrotransposed L1-EGFP copies could be negative for EGFP expression 

[53,56]. An epigenetic mechanism for transcriptional silencing of integrated L1-EGFP copies 

was discovered in a follow up paper [84], suggesting that the rates of in vitro and in vivo 

engineered L1 retrotransposition observed by the earlier works were likely conservative. 
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Figure Legends 

Figure 1. Mammalian retrotransposons. (a) Mobile human retrotransposon families. L1, Long 

INterspersed Element 1; Alu, a family of Short INterspersed Element (SINE); SVA, a composite 

of SINE-R, Variable number of tandem repeats (VNTR), Alu, and 5ˈ hexamer sequences; EN, 

endonuclease; RT, reverse transcriptase. Pol II and Pol III promoters are represented by solid and 

empty arrows, respectively. (b) As for a), except detailing mouse L1, SINE B1, SINE B2 and 

IAP (intracisternal A particle) endogenous retrovirus (ERV) families. LTR, long terminal repeat; 

GAG, group-specific antigen; POL, polymerase; ENV, envelope; IN, integrase; RH, RNase H. 

(c) Mechanism of target-primed reverse transcription (TPRT). First and second strand cleavage 

positions are depicted by red and green arrowheads, respectively. (d) Factors activating and 

repressing the human L1 CpG island-centric 5'UTR promoter. CpG dinucleotides, including 

those assayed by two studies [53,54], are represented with vertical orange strokes. Validated 

transcription factor binding sites are represented by horizontal red lines [55,56,130,149,150]. 

Activator and repressor TFs are represented above and below the diagram, respectively. HDAC, 

histone deacetylase. 

 

Figure 2. Methods to identify engineered and endogenous L1 insertions. (a) Schematic of an 

L1 reporter system. Retrotransposition from an exogenous construct carrying an L1 tagged with 

a spliced fluorescent reporter (e.g. EGFP [65]) or antibiotic resistance (e.g. neomycin [13]) 

activates the cassette, enabling downstream analysis of L1 retrotransposition efficiency. (b) 

Targeted sequencing approaches to map an endogenous L1 insertion. Genomic DNA can be 

enriched for L1-genome junctions via sequence capture [80], PCR or adaptor ligation [30,50,79], 

sequenced and computationally analyzed to reveal the de novo L1 variant.  
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Figure 3. Key Figure: Context-specific donor L1 activity. Schematic representation of donor 

L1s and their distinct impacts on germline and somatic mosaicism, in two individuals. Each 

donor L1 locus (numbered from 1 to 13) can be empty (black), or contain either a 

retrotransposition-competent (red color) or incompetent (grey) L1. Donor L1s can be 

heterozygous or homozygous. Locus-specific L1 activation can be restricted by tissue, 

developmental stage or cell type (E, embryo; O, oncological processes; Gl, germline; B, brain; 

Lv, liver; Co, colon), or can be unrestricted (asterisk). In the anatomic panels of the respective 

individuals, colors and numbers represent the potential contexts with somatic L1 variants and 

their matched donor L1s. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 
 

Tables 

 

Table 1. Summary of endogenous L1 mobilization rates in mammalian neurons. 

Study Species Tissues 
Purified 

neurons? 

Amplification 

strategya 

Core L1 

analysis 

methodb 

Estimated 

somatic L1 

insertions 

per neuron 

PCR 

validation 

detailsc 

Notes Reference 

Coufal et 

al. 

(2009) 

Human 
Hippocampus, 

cerebellum 
No None (bulk) L1 qPCR 80 N/A 

Rate normalized to 
plasmid spike in 

[53] 

Baillie et 
al. 

(2011) 

Human 
Hippocampus, 

caudate 

nucleus 

No None (bulk) RC-seq 0.04 
Junction 

specific 

Very approximate 
post hoc rate estimate 

[39] 

[80] 

Evrony 

et al. 

(2012) 

Human 

Cortex, 

caudate 

nucleus 

Yes MDA L1-IP 0.04 Empty/filled  

Validated 1 somatic 

L1 insertion carrying 

a 5' transduction with 

empty/filled PCR, and 

4 additional L1 
insertions via junction 

specific PCR 

[82] 

Evrony 

et al. 

(2015) 

Human Cortex Yes MDA WGS 0.32 Empty/filled  

Found somatic L1  

insertion flanked by a 

3' transduction  

[83] 

Upton et 

al. 
(2015) 

Human 
Hippocampus, 

cortex 
Yes MALBAC RC-seq 13.7 

Junction 

specific 

Amplification method 
unsuitable for 

empty/filled PCR 

validation 

[81] 

Hazen et 

al. 
(2016) 

Mouse Olfactory bulb Yes SCNT WGS 1.3 
Junction 

specific 

L1 insertion 

sequences and 
families not provided  

[116] 

Erwin et 

al. 

(2016) 

Human 
Hippocampus, 

cortex 
Yes MDA SLAV-seq 0.58-1 Empty/filled 

Also identified 

putative somatic L1-

associated deletions 

[41] 

aMDA, multiple displacement amplification; MALBAC, multiple annealing and looping-based amplification cycles; SCNT, somatic cell nuclear 

transfer.  
bRC-seq, retrotransposon capture sequencing; L1-IP, L1Hs insertion profiling; WGS, whole genome sequencing; SLAV-seq, somatic L1-
associated variant sequencing. 
cN/A, not applicable; junction specific, PCR targeting a 5' or 3' L1-genome junction; empty/filled, PCR targeting the complete L1 insertion via 

amplification using primers positioned on either flank of the L1 insertion, followed by capillary sequencing (the gold standard approach). 
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Trends Box 

• L1 retrotransposons can mobilize during embryogenesis, and in the neuronal lineage, 

causing somatic genome mosaicism.  

 

• Genomic analysis of endogenous L1 mobilization in mouse pedigrees, and transgenic L1 

rodents, has revealed the early embryo, prior to germ cell specification, as the primary niche 

for the accumulation of new, heritable L1 insertions. 

 

• Neuronal progenitor cells and post-mitotic neurons accommodate engineered L1 

retrotransposition, but other cell lineages support limited or no L1 activity, in the 

physiological conditions tested to date. 

 

• L1 retrotransposition clearly occurs in the brain, based on data obtained from engineered L1 

reporter systems and single-cell genomic analysis, but the relevant techniques and estimated 

L1 mobilization rates vary considerably. 

 

• Donor L1s can be differentially active in germline and somatic cells, potentially influencing 

evolutionary selection of donor L1s that are highly active in the brain. 
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Outstanding Questions Box 

• Human pluripotent stem cells obtained via reprogramming or from embryonic material 

consistently support L1 retrotransposition, as do mouse embryonic stem cells. However, it is 

unclear as to why de novo L1 insertions apparently do not occur in miPSCs. Is this a technical 

issue? Or a result of mouse L1s being less amenable to jumping during reprogramming than 

human L1s (despite seeming more active in the early embryo)? Moreover, although 

endogenous L1 retrotransposition is now well demonstrated in the mouse embryo, it is less 

defined in terms of spatial extent and frequency in early human embryogenesis. 

 

• What is the frequency of endogenous L1 mobilization in the brain? It is accepted that L1 

can jump in the brain, however the available rate estimates, and interpretations of the same 

data, vary widely. A focus on false positives should be complemented by a closer 

examination of false negatives, and standardization of techniques. L1 insertions are likely to 

occur in post-mitotic neurons, meaning even a low rate of neuronal L1 mobilization could 

generate a constellation of L1 variation amongst the ~1011 neurons found in the human brain. 

Is this mosaicism, however, variable among different neuronal subtypes?  

 

• What are the immediate and broader functional consequences of somatic L1 insertions in 

the brain? Transcriptomic and genomic analysis of the same individual neuron could, at least, 

answer the first question. The impact of L1 mosaicism on neurobiology is a much more 

challenging and large-scale issue, with little clear evidence produced to date of somatic L1 

insertions impacting neurological function, psychiatric disorders or neurodegenerative 

diseases. 

 

• If, however, L1 mosaicism impacts neurobiology, it is plausible that donor L1s highly 
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active in the neuronal lineage may undergo evolutionary selection despite their offspring 

somatic L1 insertions not being heritable. The available experimental data suggest that some 

donor L1s are unusually active in cancer genomes. The same may be true of donor L1s in 

normal somatic cells, including neurons. Hence, the donor L1 cohort of individuals, and their 

haplotypes, may define the level of L1 activity in the embryo and brain. 
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