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Abstract

Continuous-time Markov decision processes provide a very powerful mathemat-
ical framework to solve policy-making problems in a wide range of applications,
ranging from the control of populations to cyber-physical systems. The key
problem to solve for these models is to efficiently compute an optimal policy
to control the system in order to maximise the probability of satisfying a set
of temporal logic specifications. Here we introduce a novel method based on
statistical model checking and an unbiased estimation of a functional gradient
in the space of possible policies. Our approach presents several advantages over
the classical methods based on discretisation techniques, as it does not assume
the a-priori knowledge of a model that can be replaced by a black-box, and does
not suffer from state-space explosion. The use of a stochastic moment-based
gradient ascent algorithm to guide our search considerably improves the effi-
ciency of learning policies and accelerates the convergence using the momentum
term. We demonstrate the strong performance of our approach on two exam-
ples of non-linear population models: an epidemiology model with no permanent
recovery and a queuing system with non-deterministic choice.
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1. Introduction

Continuous-time Markov Decision Processes (CTMDPs) [1] are a very pow-
erful modelling tool employed in many decision-making problems that arise in
systems featuring both probabilistic and nondeterministic behaviours.

CTMDPs are generally used to solve control and dependability problems5

in a wide range of applications, including the control of populations (i.e., epi-
demics [2, 3] and bird flocking [4]), power management [5], queueing systems [6],
and cyber-physical systems [7].

A CTMDP [1] extends memoryless, state-based, continuous-time Markov
chains (CTMC) with nondeterministic input transitions associated with the10

actions that a decision maker (also called scheduler or policy) can perform in
each state. Each action has usually an associated cost or reward. Once an action
is chosen in each state, the modelled system behaves as a CTMC.

CTMDPs provide a valuable mathematical and algorithmic framework to
address two important problems such as model checking [8] (also called verifi-15

cation) and policy-making (also called scheduling or planning).
The model checking [9] problem consists in computing the min/max prob-

ability for a CTMDP to satisfy a temporal requirement of interest for a given
class or for all possible schedulers. In model checking the requirement is gen-
erally formally expressed as a temporal logic formula [8]. The main target of20

the current quantitative model checking technology for CTMDPs is the time-
bounded reachability [9, 10, 11, 12, 13], a property that requires a CTMDP to
reach a particular set of states within a prescribed time bound.

A problem related to model checking is policy-making. In this case the
goal is to devise the optimal sequence of actions (or policy) to control the sys-25

tem in order to maximise/minimise the expected cumulative reward/cost or the
probability to satisfy a temporal logic specification such as the aforementioned
time-bounded reachability property.

The optimal scheduling for CTMDP can be either timed or untimed depend-
ing on whether or not the scheduler is aware of the passing of time. Timed op-30

timal scheduling can be further classified in late or early depending on whether
the decision of choosing an action can change while the time passes in a state
or it remains unchanged.

Here we consider randomised time-dependent early schedulers, and we focus
on population models, where the state-space of the CTMDP is represented by35

a set of integer-valued variables counting how many entities of each kind are in
the system. Examples of this class of models include queueing and performance
models [13], epidemic scenarios [2, 3], biological systems. Despite their popular-
ity, these models suffer severely from state-space explosion, with the number of
states growing exponentially with the number of variables. This reflects on the40

size of the schedulers: in principle, we would need to store a function of time
for each state of the CTMDP, which is unfeasible.

This paper is an extended version of [14]. There we introduced a novel sta-
tistical method to compute the lower bounds on the maximum probability for
a CTMDP to satisfy a time-bounded reachability property. Our approach uses45
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basis-function regression to compactly encode schedulers and effectively search
for an optimal one. First, we leverage the structure of the state space, which
can be embedded as a discrete grid in real space, to obtain a continuous relax-
ation of the problem and consider schedulers defined on such a continuous space.
The advantage now is that we can treat time and space uniformly, representing50

schedulers as continuous functions. This opens up the use of machine learning
methods to represent continuous functions as combinations of basis functions,
and allows us to define the optimisation problem as a search in such a continuous
function space. The second main contribution of [14] was to set up an efficient
stochastic gradient ascent search algorithm, which considerably speeds up the55

search in the space of functions. This is based on a novel algorithm using Gaus-
sian Processes (GPs) and statistical model checking to sample in an unbiased
manner the gradient of the functional associating a reachability probability with
a randomised scheduler. This method allowed us to effectively learn schedulers
that maximise (locally) the reachability probability. In this paper we extend60

our preliminary work [14] by the following results:

• we have improved the gradient ascent algorithm by including a momentum
term in the update of the algorithm to accelerate its convergence;

• we have validated and tested the new approach both on the epidemiol-
ogy model with no permanent recovery presented in previous paper [14]65

and on a new case study on queuing system with non-deterministic choice
from [15] and not considered in our previous paper;

• we provide extensive proofs of the main theoretical results of the paper.

Organisation of the paper. In Section 2 we present the related work and in
Section 3 we provide the necessary formal background on CTMDPs. In Section 470

we present our algorithm to learn optimal policies using stochastic functional
gradient ascent techniques. In Section 5 we demonstrate our algorithm on the
two case studies. Finally, we draw our conclusion in Section 6.

2. Related work

Probabilistic model checking algorithms for discrete-time MDPs [16, 17] have75

been extensively investigated and applied in several case studies. Popular tools
such as PRISM [18] provide a user-friendly front-end where the user needs to
focus only on the modelling aspects (through the support of very expressive for-
mal specification languages) and a back-end implementing very efficient model
checking algorithms enabling the user to perform the automatic analysis of these80

models by just pressing a button.
However, these tools do not yet support the analysis of CTMDPs, largely

because algorithms for CTMDPs are still in their infancy and suffer badly from
high computational complexity. CTMDPs are a very popular framework in
the control theory and operation research communities [19, 20, 3, 21, 7]. Here85

the research focuses on finding optimal policies that would maximise rewards
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or minimise costs in order to reach a certain goal. Theoretical analyses of
CTMDPs have a long history in the control community, started by the seminal
paper of Miller [20] nearly fifty years ago. However, such analyses were not
in general constructive, i.e. they did not provide explicit algorithms to solve90

computationally the problem.
More recently computer scientists have introduced more practical approaches

to handle the analysis for this class of models. In the last decade, there has been
considerable effort [22, 9, 10, 11, 12, 13] to provide novel algorithmic techniques
for optimal control and model checking of CTMDPs with respect to a time-95

bounded reachability requirement.
Baier et al. in [9] first introduce a model checking algorithm for time-

bounded reachability properties in uniform CTMDPs, a special class of CT-
MDPs where the delay time distribution per state visit is the same for all states.
The approach in [9] considers only time-abstract schedulers a very restricted100

class of schedulers that have access to the sequence of the visited states but
not to the time in which these states have been visited. Later in [23, 24, 12]
other authors have also studied the existence of optimal time-abstract sched-
ulers in arbitrary CTMDPs. In our work we consider the more powerful class
of time-dependent schedulers studied in [25, 26].105

This class of schedulers can be further classified in early and late time-
dependent schedulers depending on whether the decision of performing an action
is taken upon entering in a state or while the time passes in a state. The
standard analysis techniques developed for time-dependent schedulers rely on
efficient approximation algorithms [27, 21] that discretise the time bound in110

small intervals. The number of the intervals is generally quadratic with respect
to the time bound divided by the required precision; as such, it can grow very
rapidly to an intractable size. All the aforementioned techniques assume the a-
priori knowledge of the CTMDP model under investigation and they suffer the
state-explosion problem commonly encountered in model checking problems.115

Statistical model checking techniques are particularly attractive when the
CTMDP model is not a-priori available, even though they may suffer when the
property to be verified is a rare-event. A statistical model checking algorithm for
discrete-time MDP is presented in [28]. Their approach was based on random
search combined with a greedy selection criterion, which is difficult to analyse in120

terms of convergence properties, and may be practically difficult to tune. While
the work of Henriques and colleagues [28] indubitably represents a considerable
step forward, random search algorithms become impractical even in spaces of
moderate dimension, and their usefulness in an intrinsically infinite-dimensional
problem is questionable. Our earlier paper [14] provided a principled solution125

to this problem by defining a strategy to compute an optimal search direction
through an unbiased approximation to the (infinite-dimensional) gradient of the
objective function. The availability of an unbiased estimate of the (functional)
gradient allows us to improve on the efficiency, and to leverage a rich theory on
the convergence of stochastic gradient ascent algorithms. Our approach relies130

on using Gaussian Processes (GPs), a probability distribution over the space
of functions which universally approximates continuous functions. This ability
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of GPs to provide efficient approximations to intractable functions has been
recently exploited in a formal modelling context in a number of publications [29,
30, 31, 32, 33].135

Our work is closely related to research in the area of machine learning,
where much research has gone on defining good local search methods to learn
effective randomised schedulers, for different criteria like time bounded reward
and time unbounded discounted reward. These approaches combine simulation
with efficient exploration schemes, like gradient ascent [34, 35], path integral140

policy improvement [36], or the cross entropy method [37], see [38] for a survey.
In a more recent work, statistical model checking and learning-based methods
were used to verify unbounded properties [39]. Our approach differs in two
main directions: firstly, we are interested in complex rewards associated with
trajectories of the system, i.e., reachability probabilities. Secondly, we work145

directly in continuous time, which prevents the use of simple finite-dimensional
gradient ascent methods. In particular, the GP-based method of defining a
stochastic gradient ascent algorithm is novel, to the best of our knowledge.

3. Preliminaries

In this section we present continuous-time Markov decision processes (CT-150

MDPs) . We will start by introducing the general CTMDPs, and the reachabil-
ity probability problem we tackle in this paper. Then, we introduce Population
CTMDPs (PCTMDPs), a dialect of CTMDPs which describe systems of inter-
acting populations of agents. Focussing on PCTMDPs in the paper permits us
to introduce compact representations for schedulers and leverage them in the155

search algorithms.

Definition 1. A CTMDP is a tuple M = (S,A, R, s0), where S is a finite set
of states, A is a finite set of actions, R : S ×A× S → R≥0 is the rate function,
and s0 ∈ S is the initial state.

An action a ∈ A is enabled in a state s ∈ S if there is a state s′ ∈ S such that160

R(s, a, s′) > 0. We call A(s) the set of enabled actions in s. A continuous-time
Markov chain (CTMC) is a CTMDP where every A(s) is a singleton.

We define E(s, a) =
∑
s′ R(s, a, s′) the exit rate from a state s when an action

a is chosen. We also let P (s, a, s′) = R(s, a, s′)/E(s, a) be the probability of
jumping from s to s′ if a is selected.165

Intuitively, a run of CTMDP starts in a state s0 and proceeds as follows:
Assume that the CTMDP is currently in a state si. First, an action ai is
selected, then the CTMDP waits for a delay ti randomly chosen according to
an exponential distribution with the exit rate E(si, ai), and then a next state
si+1 is chosen randomly with the probability P (si, ai, si+1). This produces a170

run s0a0t0s1a1t1 · · · .
In order to obtain a complete semantics, we need to specify how the actions

are selected at every step. Obviously, in CTMC, only a single action is enabled
in each state. In CTMDP, actions need to be chosen by a scheduler defined
as follows.175
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Definition 2. An scheduler is a function σ : R≥0 × S × A → [0, 1] which to
every t ∈ R≥0, s ∈ S and a ∈ A(s) assigns a probability σ(t, s, a) that the action
a is chosen in s at time t. We demand that

• σ(t, s, a) is measurable as a function of t over R≥0 for all s ∈ S and
a ∈ A(s),180

•
∑
a∈A(s) σ(t, s, a) = 1 for all t ∈ R≥0 and s ∈ S.

A scheduler σ is deterministic if for every t ∈ R≥0, s ∈ S and a ∈ A we have
that σ(t, s, a) ∈ {0, 1}. We denote by Σ and ΣD the sets of all schedulers and
all deterministic schedulers, respectively.

Remark 1. Notice that the intuitive CTMDP semantics define above corre-185

spond to a restricted class of schedulers known as early schedulers. An early
scheduler has the following property: whenever an execution of the CTMDP
enters into a state s at time t, the scheduler chooses an action and commits to
it. It cannot be changed while the system remains in state s, in contrast with
late schedulers, that can change action while in a state.190

Once a scheduler σ and an initial state s are fixed, we obtain the unique prob-
ability measure PM,s

σ over the space of all runs initiated in s using standard
definitions [40].

Time-Bounded Reachability. Let us first introduce some notation. Given a run
w = s0a0t0s1a1t1 . . . and t ∈ R≥0, we denote by w↓t the current state of w at195

the time instant t, that is w↓t = sk for some k ≥ 0 satisfying
∑k−1
i=0 ti ≤ t and∑k

i=0 ti ≥ t.
Let G ⊂ S be a set of goal states and let I = [b1, b2] ⊆ [0,∞) be a closed

interval. Denote by �IG the set of all runs w = s0a0t0s1a1t1 . . . that visit G
within the time interval I, i.e. there is t ∈ I satisfying w↓t ∈ G. Denote by200

PM,s
σ (�IG) the corresponding probability. Our goal is to maximize PM,s

σ (�IG),
i.e. compute a scheduler σ∗ satisfying

PM,s
σ∗ (�IG) = sup

σ∈Σ
PM,s
σ (�IG)

We say that such a scheduler σ∗ is optimal.

Proposition 1 ([40]). There always exists an optimal scheduler. The follow-
ing proposition has been proved in [40]; we include a sketch of the argument for205

completeness.

Proof (Sketch). In general, a history-dependent randomized (HR) scheduler
π is a (measurable) function which takes a path (a history) h = s0a0t0s1a1t1 · · · sn
and returns a probability distribution on actions of A(sn). We write π(h, a) to
denote the probability that a is taken after the history h. Our schedulers,210

as defined in Defintion 2, are called total time-positional randomized (TTPR)
schedulers. If the scheduler always assigns the probability one to exactly one
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action, we say that it is deterministic, which gives us the classes of history-
dependent deterministic (HD) and total time-positional deterministic (TTPD)
schedulers.215

The argument can be (roughly) summarized as follows: Let us add a counter
to the state-space, i.e., states are now of the form (s, k) where s is a state of the
original CTMDP M and k is the number of steps the process made from the
beginning. The CTMDPM is simulated in the first component and the number
of steps counted in the other one, up to the moment when a threshold n + 1220

is reached and from this moment on the counter stays at value n + 1 forever.
The new goal states are the pairs (s, k) where s is a goal state inM and k ≤ n.
This gives us a new CTMDP Mn. Note that every HR scheduler in Mn can
be easily transformed into a HR scheduler in M by taking a projection on the
first component.225

Denote by V n((s, k), t) the maximum probability of reaching a goal state in
Mn from (s, k) within the time interval I − t = [max(0, b1 − t),max(0, b2 − t)]
where I = [b1, b2]. Values V n((s, k), t) in the CTMDP Mn can be computed
using backward induction (on k) as follows: Clearly, V n((s, n+1), t) is 0 for all t.
We now use this condition as the starting step of a backward recursion. Assume230

that we already have V n((s, k+ 1), t). Now V n((s, k), t) is the supremum of the
following expression over all probability distributions d over the set of actions
A: ∑

a

d(a) ·
∑
s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V n((s′, k + 1), t+ t′)dt′

(Intuitively, first a is chosen with probability d(a), then time delay t′ is chosen
from the exponential distribution together with the next state (s′, k+1), finally235

we proceed optimally from (s′, k + 1) after time t + t′, which means that we
reach a goal state with probability V n((s′, k + 1), t+ t′).) Clearly,

V n((s, k), t) = max
a∈A(s)

∑
s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V n((s′, k + 1), t+ t′)dt′

(The maximum exists because A(s) is a finite set.) Denote by πn a TTPD
scheduler in Mn which in every state (s, k) and time t chooses an action a
maximizing240 ∑

s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V n((s′, k + 1), t+ t′)dt′

Such πn is optimal in Mn.
Observe that for every k and every t we have limn→∞ V n(s, k, t) = V (s, t)

where V (s, t) = supσ∈Σ PM,s
σ (�I−tG).

Now let m be large enough so that the probability of making more than m
steps in at most b2 time units is less than ε.245

It follows that for every m′ > 2m, the scheduler πm
′
, which is optimal in

Mm′ , is ε-optimal in M (which means that it satisfies �IG with probability
ε-close to the maximum value).
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Let m′ > 2m be large enough so that for all k ≤ 2m and all t ≤ b2 we have
that

argmaxa
∑
s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V m
′
((s′, k + 1), t+ t′)dt′ =

argmaxa
∑
s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V (s′, t+ t′)dt′

It follows that a scheduler which always chooses an action from

argmaxa
∑
s′

∫ ∞
0

R(s, a, s′)e−R(s,a,s′)t′V (s′, t+ t′)dt′

behaves similarly to πm
′

and hence is ε-optimal. As ε > 0 was chosen arbitrarily250

and the above choice depends only on s and t, we obtain the desired optimal
TTPD scheduler. �

Remark 2. In this paper we concentrate on the problem of maximizing PM,s
σ (�IG),

i.e., computing a scheduler σ∗ satisfying

PM,s
σ∗ (�IG) = sup

σ∈Σ
PM,s
σ (�IG)

All our results and methods can be easily extended (by substituting suprema255

with infima) to minimization of PM,s
σ (�IG). This is because we will adopt a

gradient-based approach to the optimisation which is clearly symmetric (see
below).

An equivalent problem to the minimization of PM,s
σ (�IG) is to maximise

a time-bounded safety property �IG, requiring the CTMDP to remain in a260

region G during the time-interval I. In this case, we have that PM,s
σ∗ (�IG) =

PM,s
σ∗ (¬ �I (S \G)) = infσ∈Σ PM,s

σ (�I(S \G)).

3.1. Population CTMDPs

In this work, we will consider CTMDPs modelled in a special way, reminis-
cent of population processes which are very common in performance modelling,265

epidemiology, systems biology. The basic idea is that we will have popula-
tions of agents, belonging to one or more classes, that can interact together
and thus evolve in time. Individual agents are typically indistinguishable, hence
the state of the system can be described by a set of variables counting the
amount of agents of each kind in the system. A non-deterministic action in this270

context typically represents an action of a global controller, enforcing a policy
controlling the system, or effects on the environment. Examples of population
processes are presented in Section 5. In particular, we discuss an epidemic sce-
nario in which agents can get infected and spread the contagion, and where the
global action represents public health policy to treat infected people, speeding275

up their recovery though introducing a small risk of death. We also discuss a
resource sharing scenario, in which a server chooses non-deterministically jobs
from different queues.
In this paper, we focus on population CTMDPs for two reasons:
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• they are an expressive modelling framework encompassing many practical280

interesting scenarios;

• they allow us to naturally approximate in a continuous way the state
space, leading to efficient policy representation and an efficient algorithm
to search in the policy space.

More formally, we will describe a Population CTMDP (PCTMDP), extending285

population processes [41, 42], as a tuple ( ~X, T ,A, ~s0), where:

• ~X = X1, . . . , Xn is a vector of population variables, Xi ∈ N, which we
assume take values on S = Nn ∩K, where K is a compact subset of Rn
(hence S is finite);

• ~s0 ∈ S is the initial state;290

• τ ∈ T is the set of transitions, of the form (a,~vτ , fτ ( ~X)), where a is an
action from the set A, ~vτ is an update vector, specifying that the state
after the execution of a transition in state ~s is ~s + ~vτ , and fτ (~s) is the
state-dependent rate function, assigning a rate with each state ~s ∈ S.

The idea of this model is that in each state an action a is chosen, and then the295

model evolves by a race condition between transitions guarded by the action a.
If a transition is enabled by all possible actions, we can either specify a copy
of it guarded by each model action a, or use the notation (∗, ~v, f( ~X)). The

CTMDP M = (S,A, R) associated with a PCTMDP ( ~X, T ,A, ~x0) is defined
by specifying the state space S = Nn ∩K and the rate function R as300

R(~s, a, ~s′) =
∑
{fτ (~s) | τ = (a,~vτ , fτ (~s)) ∧ ~s′ = ~s+ ~v}.

It is easy to observe, modulo the introduction of enough variables and actions,
that the expressive power of PCTMDPs is the same as that of CTMDPs intro-
duced earlier: just introduce one variable per state and use a boolean one-hot
encoding of states of a CTMDP into a PCTMDP. However, population processes
become interesting when there are populations (like in queues or epidemic mod-305

els), as in these cases the dimensionality of the population process (number of
variables) is much smaller than the size of the state space.

4. Learning optimal policies via stochastic functional gradient ascent

In this section we give a variational formulation of the control problem of
determining the optimal scheduler for time-bounded reachability in a CTMDP.310

We show how to approximate statistically in an unbiased way the functional
gradient of the time-bounded reachability probability, and give a convergent
algorithm to achieve this.
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4.1. Reachability probability as a functional

As defined in Section 3, a scheduler is a way of resolving non-determinism315

by associating a (time-dependent) probability to each action/ state pair. We
will realise a scheduler as a vector f of functions fa : K × [0, T ] → R, one for
each action a ∈ A, where K is the compact subset of Rn used to define S for
the PCTMDP formalism. The corresponding probability of an enabled action
a ∈ A( ~X) at state ~X can be retrieved using the soft-max (logistic) transform320

as follows:

σ(t, ~X, a) =
exp(fa( ~X, t))∑

a′∈A( ~X) exp(fa′( ~X, t))
, ~X ∈ S, t ∈ [0, T ] (1)

Notice that if some actions are not enabled in some states these are automat-
ically excluded from the soft-max formula above, due to the restriction to the
set A( ~X) of actions enabled in ~X. Given a scheduler σ, a CTMDP is reduced to
a CTMC Mσ, and the problem of estimating the probability of a reachability325

property φ = �IG can be reduced to the computation of a transient probability
forMσ by standard techniques [8]. The satisfaction probability can be therefore
viewed as a functional

Q : F → R

where F is the set of all possible scheduler functions.
The functional is defined explicitly as follows: consider a sample run w of330

the form s0a0t0s1a1t1 . . . from the CTMC Mσ (obtained from the CTMDP by
selecting a scheduler σ). Recall that �IG, I = [b1, b2], is the set of all runs that
visit G within the time bound specified by the interval I. We can encode it in
the following indicator function:

I�IG(w) =

{
1, w ∈ �IG
0, otherwise.

(2)

Then the expected reachability value associated with the scheduler σ, repre-335

sented by the vector of functions f = {fa}a∈A, is defined as follows:

Q
[
f( ~X, t)

]
= EMσ

[I�IG] , (3)

where expectation is taken with respect to the distribution on runs of Mσ.
Notice that in general it is computationally very hard to analytically compute
the r.h.s. in the above equation, as it amounts to transient analysis for a time-
inhomogeneous CTMC; we therefore need to resort to statistical model checking340

methods [43, 44] to obtain a Monte Carlo estimate of the expectation in (3).
To formulate the continuous time control problem of determining the optimal

scheduler, we need to define the concept of functional derivative.

Definition 3. Let Q : F → R be a functional defined on a space of functions
F . The functional derivative of Q at f ∈ F along a function g ∈ F , denoted by345
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δQ
δf , is defined by∫

δQ

δf
( ~X, t) g( ~X, t) d ~Xdt = lim

ε→0

Q[f + εg]−Q[f ]

ε
(4)

whenever the limit on the r.h.s. exists.

Notice that if we restrict ourselves to piecewise constant functions on a grid,
the definition above returns the standard definition of gradient of a finite-
dimensional function. We can now give a variational definition of optimal sched-350

uler.

Lemma 2. An optimal scheduler σ is associated with a function f such that

maxg∈F

∥∥∥∥∫ δQ

δf
( ~X, t) g( ~X, t) d ~Xdt

∥∥∥∥
2

= 0 (5)

where ‖ · ‖2 denotes the L2 norm on functions.

The variational formulation above allows us to attack the problem via direct
optimisation through a gradient ascent algorithm, as we will see below.355

4.2. Stochastic Estimation of the Functional Gradient

It is well-known that a gradient ascent approach is guaranteed to find the
global optimum of a convex objective function. Gradient ascent starts from an
initial solution which is updated iteratively towards the direction that induces
the steepest change in the objective function; that direction is given by the gra-360

dient of the function. For a functional Q[f ] the concept of gradient is captured

by the functional derivative δQ
δf , which is a function of ~X, t that dictates the rate

of change of the functional Q when f is perturbed at the point ( ~X, t). In the
case of functional optimisation, the gradient ascent update will have the form:

f ′ = f + γ
δQ

δf
(6)

where γ is the learning rate which controls the effect of each update, and δQ
δf365

is the functional derivative of Q. Unfortunately, an analytic expression for the
functional derivative of the functional defined in (3) is usually not available.

We can however obtain an unbiased estimate of the functional derivative.
We demonstrate that by first considering the simple case of a finite dimensional
vector space; for its gradient we have the following lemma:370

Lemma 3. Let q : Rn → R be a smooth function, and let ∇q(v) be its gradient
at a point v. Let w be a random vector from an isotropic, zero mean distribution
p(w). For ε� 1, define

ŵ =

{
w, if q(v + εw)− q(v) > 0

−w, otherwise.
(7)

Then
Ep [εŵ] ∝ ∇q(v) +O(ε2).
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Proof. The tangent space of Rn at the point v is naturally decomposed in the375

orthogonal direct sum of a subspace of dimension 1 parallel to the gradient, and
a subspace of dimension n − 1 tangent to the level surfaces of the function q.
For small ε, any change in the value of the function q will be due to movement
in the gradient direction. As the distribution p is isotropic, every direction is
equally likely in w; however, the flipping operation in the definition of ŵ in (7)380

ensures that the component of ŵ along the gradient ∇q(v) is always positive,
while it does not affect the orthogonal components. Therefore, in expectation,
ŵ returns the direction of the functional gradient.

In the section that follows we consider the infinite-dimensional generalisation of
Lemma 3.385

4.3. Scheduler representation in terms of basis functions

In order to obtain an unbiased estimate of a functional gradient, we need to
define a zero-mean isotropic distribution on a suitable space of functions. To
do so, we introduce the concept of Gaussian Process, a generalisation of the
multivariate Gaussian distribution to infinite-dimensional spaces of functions390

(see, e.g. [45]).

Definition 4. A Gaussian Process (GP) over an input space X is an infinite-
dimensional family of real-valued random variables indexed by x ∈ X such that,
for every finite subset X ⊂ X , the finite dimensional marginal obtained by
restricting the GP to X follows a multi-variate normal distribution.395

Thus, a GP can be thought as a distribution over functions f : X → R such that,
whenever the function is evaluated at a finite number of points, the resulting
random vector is normally distributed. In the following, we will only consider
X = Rd for some integer d.

Just as the Gaussian distribution is characterised by two parameters, a GP400

is characterised by two functions, the mean and covariance function. The mean
function plays a relatively minor role, as one can always add a deterministic
mean function, without loss of generality; in our case, since we are interested in
obtaining small perturbations, we will set it to zero. The covariance function,
which captures the correlations between function values at different inputs, in-405

stead plays a vital role, as it defines the type of functions which can be sampled
from a GP. We will use the Radial Basis Function (RBF) covariance, defined as
follows:

cov(f(x1), f(x2)) = k(x1, x2) = α2 exp

[
−‖x1 − x2‖2

λ2

]
. (8)

where α and λ are the amplitude and length-scale parameters of the covariance
function. RBF covariance function enjoys the universality property [46], mean-410

ing that the set of functions which are linear combinations of RBF kernels is
dense on the set of continuous functions over any compact subspace of Rn. This
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means that the samples of the GP with RBF covariance function can approx-
imate any smooth function arbitrarily well. To gain insight into the geometry
of the space of functions associated with a GP with RBF covariance, we report415

without proof the following lemma (see e.g. Rasmussen & Williams, Ch 4.2.1
[45]).

Lemma 4. Let FN be the space of random functions f =
∑N
j=1 wjφj(x) gener-

ated by taking linear combinations of basis functions φj(x) = exp
[
−‖x−µj‖

2

λ2

]
,

with µj ∈ R and independent Gaussian coefficients wj ∼ N (0, α2/N). The420

sample space of a GP with RBF covariance defined by (8) is the infinite union
of the the spaces FN .

We refer to the basis functions entering in the constructive definition of GPs
given in Lemma 4 as kernel functions. Two immediate consequences of the
previous Lemma are important for us:425

• A GP with RBF covariance defines an isotropic distribution in its sample
space (this follows immediately from the i.i.d. definition of the weights in
Lemma 4);

• The sample space of a GP with RBF covariance is a dense subset of the
space of all continuous functions (see also [29] and references therein).430

GPs therefore provide us with a convenient way of extending the procedure
described in Lemma 3 to the infinite-dimensional setting. In particular, Lemma
4 implies that any scheduler function f ∈ F that is a sample from a GP (with
RBF covariance) can be approximated to arbitrary accuracy in terms of basis
functions as follows:435

f( ~X, t) =

N∑
j=1

wj exp
[
−0.5([ ~X, t]> − µj)>Λ−1([ ~X, t]> − µj)

]
(9)

where µj ∈ Rn × [0, T ] is the centre of a Gaussian kernel function, Λ is a diag-
onal matrix that contains n + 1 squared length-scale parameters of the kernel
functions, and n is the dimensionality of the state-space. This formulation al-
lows describing functions (aka points in an infinitely-dimensional Hilbert space)
as points in the finite vector space spanned by the weights w. Note that the440

proposed basis function representation implies relaxation of the population vari-
ables to the continuous domain, though in practice we are only interested in
evaluating f( ~X, t) for integer-valued ~X. We can now extend Lemma 3 to the
infinite-dimensional case:

Lemma 5. Let Q : F → R be a smooth functional, and let ∇Q[f ] be its gradient445

at f . Let g be a random function from a zero mean Gaussian process p(g) with
RBF covariance function. For ε� 1, define

ĝ =

{
g, if Q[f + εg]−Q[f ] > 0

−g, otherwise.
(10)
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Then
Ep

[
εĝ( ~X, t)

]
∝ ∇Q[f ]( ~X, t) +O(ε2). (11)

Proof. We can simply mirror the proof of Lemma 3, since the space of func-
tions F is an infinitely-dimensional Hilbert space. That means that F is equipped450

with an inner product operation, implying that the concept of projection along
a direction is well defined. As in the finite-dimensional case, every direction of
F is equally probable when sampling a function g, and the flipping operation
in (10) ensures that the component of ĝ parallel to the gradient ∇Q[f ] is al-
ways positive (i.e. the projection along the gradient ∇Q[f ] is always positive).455

Moreover, the expectation of ĝ is well-defined, as it is a sample from a Gaus-
sian process. Finally, the use of RBF covariance guarantees that ĝ is always
integrable, since ĝ will be (with probability 1) a finite sum of Gaussian basis
functions, which permits to prove equation (11). Note that the equation holds

pointwise, at each point ( ~X, t).460

The advantage of the kernel representation is that we do not need to account
for all states ~X ∈ S, but only for N Gaussian kernels with centres µj for

1 ≤ j ≤ N . Therefore, the value of the scheduler at a particular state ~X will
be determined as a linear combination of the kernel functions, with proximal
kernels contributing more due to the exponential decay of the kernel functions.465

This method offers a compact representation of the scheduler, and essentially
does not suffer from state-space explosion, as we treat states as continuous.
Moreover, we do not lose accuracy, as every function on S can be extended to
a continuous function on E by interpolation. On the practical side, we consider
that the kernel functions are spread evenly across the joint space (state space &470

time), and the length-scale for each dimension is considered to be equal to the
distance of two successive kernels.1

4.4. A Stochastic Gradient Ascent Algorithm

Given a scheduler σ, we first evaluate the reachability probability via sta-
tistical model checking. We then perturb the corresponding functions fα by475

adding a draw from a zero-mean GP with marginal variance scaled by ε � 1,
and evaluate again by statistical model checking the probability of the perturbed
scheduler. If this is increased, we take a step in the perturbed direction, oth-
erwise we take a step in the opposite direction. Notice that this procedure can
be repeated for multiple independent perturbation functions to obtain a more480

robust estimate. The whole procedure is described in Algorithm 1, which pro-
duces an estimate for the gradient of the functional Q at a vector f of functions
fα by considering the average of k random directions. We are now ready to
state our main result:

1Kernel functions typically also have an amplitude parameter, which we consider to be
equal to 1.
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Algorithm 1 Estimate the functional gradient of Q[f ]

Require: Vector f of functions fα, scaling factor ε, batch size k
Ensure: An estimate of the functional derivative (gradient) ∇Q ≡ δQ

δf
Set gradient ∇Q = 0
Evaluate Q[f ] via statistical model checking
for i = 1 to k do

Consider random direction g such that ∀α ∈ A, we have:

ga ∼ N (0, 1)

Evaluate Q[f + εg]
Estimate the directional derivative:

∇gQ =
Q[f + εg]−Q[f ]

ε

if ∇gQ > 0 then
∇Q← ∇Q+ 1

kg
else
∇Q← ∇Q− 1

kg
end if

end for

Theorem 6. Algorithm 1 gives an unbiased estimate of the functional gradient485

of the functional Q[fα].

Proof. Since both the statistical model checking estimation and the gradient
estimation are unbiased and independent of each other, this follows.

Algorithm 2 Stochastic gradient ascent for Q[f ]

Require: Initial function vector f0, learning rate γ0, nmax iterations
Ensure: A function vector f that approximates a local optimum of Q

for n← 1 to nmax do
Estimate the functional gradient ∇Q by using Algorithm 1
Update: fn ← fn−1 + γn−1∇Q

end for

Therefore, we can use this stochastic estimate of the functional gradient
to devise a stochastic gradient ascent algorithm which directly solves the vari-490

ational problem in equation (5). This is summarised in Algorithm 2, which
requires as input an initial vector of functions f0, and a learning rate γ0. The
effects of the learning rate on the convergence properties of the method have
been extensively studied in the literature. In particular, for a decreasing learning
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rate convergence is guaranteed in the strictly convex scenario, if the following495

conditions are satisfied:
∑
n γn = ∞ and

∑
n γ

2
n < ∞ [47, 48], suggesting a

Θ(n−1) decrease for the learning rate. In non-convex problems, such as the
ones considered in this work, the Θ(n−1) decrease is generally too aggressive,
leading to vulnerability to local optima. Following the recommendations of [49],
we adopt a more conservative strategy:500

γn = γ0 n
−1/2 (12)

where γ0 is an initial value for the learning rate, which is problem dependent.

4.4.1. Momentum-based Gradient Ascent

A usual practice to accelerate the convergence of gradient ascent is to include
a momentum term in the update of the algorithm [50, 51]. Regarding Algorithm
2, the introduction of momentum requires that the update step is replaced by
the following assignments:

∆n ← η∆n−1 + γn−1∇Q (13)

fn ← fn−1 + ∆n (14)

where the momentum parameter η determines how much the current difference
∆n will be affected by the previous update. The fact that the change in direc-
tion at each step is also affected by the history makes the search more robust505

to sudden changes of the gradient. This behaviour is reported to speed up con-
vergence in cases when there is a long and narrow ridge in the surface of the
objective function [51]. Normally, the standard ascent approach tends to oscil-
late in the direction of the short axis of the hill, while the actual maximum is
approached very slowly. The inclusion effectively averages out such oscillations,510

resulting a faster convergence [50, 51].
In the literature the momentum parameter η is often chosen to be close to 1,

typically 0.9 [51]. Of course, the original gradient ascent algorithm is retrieved
for η = 0. In the examples of section 5, we experiment with a range of possible
values for η.515

5. Examples

5.1. Epidemiology model with no permanent recovery

As a first case study, we demonstrate the stochastic gradient ascent algo-
rithm on a simple epidemiological model of disease spread that features no per-
manent recovery, also known as the SIS model (susceptible-infected-susceptible).520

We start by describing the results of the algorithm proposed in [14], and then
demonstrate the practical effects of the algorithmic improvements proposed in
this paper. The system is modelled as a PCTMDP, in which the state is de-
scribed by two variables denoting the population of susceptible (XS) and in-
fected individuals (XI). We assume that no immunity to the infection is gained525

upon recovery. The objective is to monitor how infection progresses over time,
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given that there is a non-deterministic choice at each step among actions in
A = {no treatment , treatment}, indicating whether an external action is taken
to deal with the infection.

This non-deterministic choice will affect the dynamics of the system, which530

are represented by a list of transitions together with their rate functions, in the
biochemical notation style (see e.g. [52]):

infection (*): S+I
ki−→ I+I, with rate function kiXS XI ;

slow recovery (no treatment): I
kr−→ S, with rate function krXI ;

self-infection (no treatment): S
ki−→ I, with rate function kiXS/2;535

fast recovery (treatment): I
kr−→ S, with rate function αkrXI ;

death (treatment): I
kr−→ ∅, with rate function kdXI ;

death (treatment): S
kr−→ ∅, with rate function kdXS ;

Among the transitions above, only infection has the same rate regardless of
any non-deterministic choice. If the no treatment action is chosen, infected540

individuals recover slowly as prescribed by the slow recovery transition, while
there is a small chance of self-infection. If treatment is applied, the recovery
rate is increased by a factor α > 1, and the chance of spontaneous infection
is eliminated. We assume however that the treatment is associated with some
very negative side-effects that result in a small probability of death, either for545

healthy or infected individuals.
In this example, we seek to construct a scheduler that maximises the prob-

ability of having no deaths and no infected individuals during the time interval
[b1, b2], i.e., maximising the safety property

�[b1,b2]G G = {S = N} (15)

The application of treatment contributes in accelerating the extinction of the550

infected population, but it also introduces a possibility of death. Therefore a
policy of constantly applying treatment cannot be optimal with respect to the
satisfiability of the property considered. Moreover, maximising the satisfaction
probability requires a time-dependent scheduler, as the treatment application
has to be appropriately timed so that it has effect in the time-interval [b1, b2].555

In the experiments that follow, we illustrate how the stochastic gradient
ascent algorithm converges to solutions that maximise this probability. We
consider a system with total population N = 100, and initial populations XS0 =
90 and XI0 = 10. The rate constants are ki = 0.0012 for infection, kr = 0.1
for recovery, kd = 0.0002 for the death event, while the increase in the recovery560

rate due to treatment is fixed to α = 10. The time bounds for the safety
property considered are b1 = 50 and b2 = 60. Regarding the stochastic gradient
ascent parameters, the learning rate at the n-th step is γn = γ0/

√
n, where
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γ0 = 5. For the numerical estimation of the directional derivatives, we consider
ε = 0.1 and the batch size for the gradient estimation was fixed to k = 5. For565

each estimation of the Q function, we have used 1000 simulation runs. In all
cases, the algorithm was run for 100 iterations, meaning that a total of 600000
simulation runs were used for each experiment. This translated into roughly 3
hours of computing time on a single thread on an regular PC running Linux.
The computing time is drastically decreased by using more threads, since the570

generation of stochastic simulation trajectories can be trivially parallelised.
We first present an example that illustrates the importance of time in the

satisfaction of the time-bounded property in (15). Figure 1 reports a scheduler
which is given as a solution by the stochastic gradient ascent approach. The
scheduler is presented as a multivariate function that takes values in [0, 1], in-575

dicating the probability of selecting the no treatment action for different values
of state and time. In particular, we have a series of surface plots, each of which
summarises the probability of no treatment as function of the 2-dimensional
state-space for a different time-point. The white colour denotes that no treat-
ment is selected with probability 1, while the black colour implies that treatment580

is used instead. We can see that treatment is only preferable for a particular
time window and for certain parts of the state-space, that is XS > 80 and
XI < 20. This makes sense, as the probability of achieving full recovery from
a state with more than 20 infected is too small to justify the risks connected
with treatment. More specifically, treatment is selected with high probability585

for t ∈ [33.75, 52.5], which precedes with a very small overlap the time interval if
interest, which is [50, 60]. Intuitively, to maximise the probability that all of the
population is recovered over the course of a particular interval, the treatment
action should be engaged just before. In a different case, there is an increased
risk of death, as a consequence of the negative effects of prolonged treatment.590

We next investigate how the algorithm responds to different initial sched-
ulers. In Figure 2, we monitor how the value of the functional Q as function of
the scheduler evolves during the course of the algorithm, starting from different
initial solutions. More specifically, Figure 2(a) depicts the evolution of Q values
starting from a scheduler where no treatment is globally selected as an action.595

The initial satisfaction probability is very small, but after a number of iterations
it converges to values above 0.6. Figure 2(b) summarises the results where the
initial solution selects treatment everywhere; apparently this initial solution has
been closer to the local optimum and the convergence rate had been significantly
faster in this case. Convergence is even faster in Figure 2(c), where a uniform600

initial solution was used, i.e., each of the two possible actions had equal initial
probability ∀s ∈ S and ∀t ∈ T . Finally, in Figure 2(d) we report the Q values for
a run starting from a randomly initialised scheduler. In the last two instances,
the starting point has had Q values at around 0.4, which is closer to the max-
imum; therefore the algorithm naturally required fewer iterations to converge605

to a good solution. Although the convergence rate is apparently dependent on
the initial solution, the experiments considered resulted in solutions of similar
value, which obtain satisfaction probabilities at around 0.65. It is important
to note however that there is no guarantee that the algorithm will converge to
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Figure 1: Example of scheduler that (locally) maximises the probability of G[b1,b2]S = N .
The white area indicates high probability of choosing the no treatment action; the dark area
indicates high probability of choosing treatment.

the global maximum, since the problem considered in not convex in the general610

case.
We finally investigate the effect that the use of momentum has on gradient

ascend. Figure 3 demonstrates the evolution of Q values for three different
momentum parameters: η = 0.2, η = 0.5 and η = 0.9. In all three cases the
initial solution has been a scheduler that globally select no treatment, similar615

to Figure 2(a). We have chosen this initial solution since that has been the
slowest converging among the examples of Figure 2. We see that increasing
the momentum parameter significantly accelerates convergence; this observation
is in agreement with the empirical results reported in the relevant literature
[50, 51].620

5.2. Queuing system with non-deterministic choice

In this section, we illustrate the effect of our approach on the trajectories of
a queuing system. More specifically, we consider a queuing model consisting of a
server and two stations, which has been adapted from Figure 2 of [15]. The two
stations have incoming job requests, which are stored in their local queues. The625

server fetches and processes jobs from any station that has non-empty queue;
if both station queues are non-empty, then the sever makes a non-deterministic
choice among actions in A = {prefer 1 , prefer 2}, which indicate the preferred
station. The model us summarised in the diagram of Figure 4.

In our adaptation, the system state is described by three variables denoting630

the queue size in the server (Xserver ) and in the two stations (XS1
and XS2

).
The changes of state are represented by a list of transitions in the biochemical
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(b) treatment only initial scheduler
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(c) Uniform initial scheduler
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(d) Random initial scheduler

Figure 2: Stochastic gradient ascent starting from different initial schedulers

notation style. We first present the following transitions that are not affected
by the non-deterministic choice:

processing (*): Server
µ−→ ∅, with rate µH[Xsever ];635

arrival 1 (*): ∅ λ1−→ S1, with rate λ1;

arrival 2 (*): ∅ λ2−→ S2, with rate λ2;

where H is the Heavyside function: H[x] = 0 if x = 0 and H[x] = 1 if x > 0.
The first transition describes the processing of a job that is already in the
server queue. The transitions arrival 1 and arrival 2 describe the arrival of new640

jobs that populate the station queues. We consider constant rates for the job
processing by the server µ = 5, and the incoming requests λ1 = 2 and λ2 = 2
for stations 1 and 2 correspondingly.

Regarding the non-deterministic choice, the prefer 1 action implies that a
job will be fetched from station 1 if the latter has a non-empty queue; in a645

different case station 2 will be served instead:

fetch 1 (prefer 1): S1
r−→ Server , with rate r(1− τ)H[XS1 ];
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(c) η = 0.9

Figure 3: Evolution of Q values for stochastic gradient ascent with different momentum
parameter η. The initial scheduler selects no treatment only, as in Figure 2(a).

λ1

λ2

Station 1

Station 2

r

r

τ

τ

µ

Server1 - τ

1 - τ

Figure 4: Queuing system with non-deterministic choice. Stations 1 and 2 accept job requests
at rates λ1 and λ2 correspondingly. The server fetches requests from the stations by making
a non-deterministic choice among actions in A = {prefer 1 , prefer 2} indicating preference
for a particular station. The requests are fetched at a total rate r and with a probability of
failure τ . The jobs are eventually processed by the server at rate µ.

fetch 2 (prefer 1): S2
r−→ Server , with rate r(1− τ)H[XS2 ](1−H[XS1 ]);

Similarly, for the prefer 2 action we have the following version for the fetch
transitions:650

fetch 1 (prefer 2): S1
r−→ Server , with rate r(1− τ)H[XS1 ](1−H[XS2 ]);

fetch 2 (prefer 2): S2
r−→ Server , with rate r(1− τ)H[XS2

];

For the rate of fetching a request from a station to the server we consider r = 4.
It is also assumed that fetching a request may fail with probability τ = 0.1.

We now demonstrate that our approach is able to synthesise such a scheduler655

so that the system trajectories conform with a desired reachability property. We
aim to synthesise a scheduler that maximises the probability of the following
time-bounded reachability property:

�[b1,b2]G G = {XS1
< c1 ∧XS2

< c2} (16)
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The property dictates that during the time-interval [b1, b2] the system eventually
reaches a state where both queues S1 and S2 are below thresholds c1 and c2660

correspondingly. For the experiments of this section, the threshold parameters
of the reachability property in (16) are c1 = 100 and c2 = 200, while the time
bounds considered are b1 = 100 and b2 = 120. For the stochastic gradient ascent
parameters, including the leaning rate γn, the gradient estimation batch size k,
and the scaling factor ε, we have used the same values as in the example of665

section 5.1. The initial populations for the station and the server queues are
XS1

= 200, XS2
= 0 and Xserver = 0.

Figure 5 illustrates the effect of different schedulers on the trajectories of
the queuing system. In the case of a uniform probabilistic scheduler as in Fig-
ure 5(a), both queues are slowly increasing, indicating that the server is not670

able to service the existing workload at a sufficient rate so that both queues
are decreased. If station 2 is preferred, as in Figure 5(b), the total number of
jobs waiting in the stations might be lower, but the desired property in (16)
is very unlikely to be satisfied. Figure 5(c) shows a trajectory where station 1
is preferred; in this case it is very likely that the station 2 queue exceeds the675

desired threshold before the specified time window. Finally, in Figure 5(d) we
see a sample trajectory for an optimised scheduler, for which there is an ap-
parent change of policy at around t = 100. The prefer 1 action is chosen for
the most part so that the station 1 queue drops below c1; however, the policy
change maximises the probability that the station 2 queue also remains under680

the corresponding threshold c2. The satisfaction probability of the property in
(16) approaches 1 for the optimised scheduler.

6. Conclusions

Continuous time Markov Decision processes are a powerful mathematical
tool to address control and dependability problems in many real-time applica-685

tions. However, the development of practical approaches to solve policy-making
problems on these models is still in its infancy and suffers badly from high
computational complexity. This is particularly problematic in the case of time-
dependent schedulers, which are notoriously difficult to characterise effectively.

Recent analysis techniques developed in [13, 22] for time-dependent sched-690

ulers rely on approximation techniques discretising the time bound in small
intervals. Although these methods are able to compute (up to numerical pre-
cision) the reachability probability, they do not scale well to large systems due
to the state-space explosion problem. In addition they require to know a-priori
the mathematical description of the system of interest, and are therefore not695

applicable to control black-box systems where a reliable model is not available.
On the contrary our method is suitable in the case the model of the system

to control is not available a-priori. Our approach is based on GPs, a probability
distribution over the space of functions which universally approximates contin-
uous functions. Since we effectively work with functions over continuous spaces,700

this allows us to largely circumvent the problem of state space explosion.
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Figure 5: Example trajectories of the queuing system with different schedulers.

Our approach is vulnerable to locally optimal choices, a common problem in
optimisation, where global convergence in the non-convex case is well known to
be hard. From a theoretic perspective this implies that our approach can only
compute a lower-bound on the reachability probability; nevertheless this can705

still provide a very useful result in many practical scenarios. Furthermore, we
observed empirically that the algorithm had excellent performance in challeng-
ing test sets; its computational efficiency also means that practical strategies to
avoid local optima, such as multiple restarts, can be feasibly employed.
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[10] M. R. Neuhäußer, L. Zhang, Time-bounded reachability probabilities in
continuous-time Markov decision processes, in: Proc. of QEST: the Seventh
International Conference on the Quantitative Evaluation of Systems, IEEE,
2010, pp. 209–218. doi:10.1109/QEST.2010.47.

24

http://dx.doi.org/10.1287/opre.29.5.971
http://dx.doi.org/10.1007/BF02837562
http://dx.doi.org/10.1007/BF02837562
http://dx.doi.org/10.1007/BF02837562
http://dx.doi.org/10.1007/978-3-662-54580-5
http://dx.doi.org/10.1007/978-3-662-54580-5
http://dx.doi.org/10.1007/978-3-662-54580-5
http://dx.doi.org/10.1145/313817.313923
http://dx.doi.org/10.1109/ICRA.2012.6224963
http://dx.doi.org/10.1109/ICRA.2012.6224963
http://dx.doi.org/10.1109/ICRA.2012.6224963
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1016/j.tcs.2005.07.022
http://dx.doi.org/10.1109/QEST.2010.47


[11] M. N. Rabe, S. Schewe, Finite optimal control for time-bounded reacha-755

bility in CTMDPs and continuous-time Markov games, Acta Inform. 48
(2011) 291–315. doi:10.1007/s00236-011-0140-0.

[12] M. N. Rabe, S. Schewe, Optimal time-abstract schedulers for CTMDPs
and continuous-time Markov games, Theor. Comput. Sci. 467 (2013) 53–
67. doi:10.1016/j.tcs.2012.10.001.760

[13] Y. Butkova, H. Hatefi, H. Hermanns, J. Krcal, Optimal continuous time
Markov decisions, in: Proc. of ATVA 2015: the 13th International Sympo-
sium on Automated Technology for Verification and Analysis, Vol. 9364 of
LNCS, Springer, 2015, pp. 166–182. doi:10.1007/978-3-319-24953-7_

12.765

[14] E. Bartocci, L. Bortolussi, T. Brázdil, D. Milios, G. Sanguinetti, Policy
learning for time-bounded reachability in continuous-time markov deci-
sion processes via doubly-stochastic gradient ascent, in: Proc. of QEST
2016: the 13th International Conference on Quantitative Evaluation of
Systems, Vol. 9826 of LNCS, Springer, 2016, pp. 244–259. doi:10.1007/770

978-3-319-43425-4_17.

[15] D. Guck, H. Hatefi, H. Hermanns, J. Katoen, M. Timmer, Modelling, re-
duction and analysis of Markov automata, in: Proc. of QEST 2013: the
10th International Conference on Quantitative Evaluation of Systems, Vol.
8054, Springer, 2013, pp. 55–71. doi:10.1007/978-3-642-40196-1_5.775

[16] C. Baier, M. Z. Kwiatkowska, Model checking for a probabilistic branching
time logic with fairness, Distributed Computing 11 (1998) 125–155. doi:

10.1007/s004460050046.

[17] A. Bianco, L. de Alfaro, Model checking of probabilistic and nondetermin-
istic systems, in: Proc. of FSTTCS: the 15th Conference on Foundations780

of Software Technology and Theoretical Computer Science, Vol. 1026 of
LNCS, Springer, 1995, pp. 499–513. doi:10.1007/3-540-60692-0.

[18] M. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of prob-
abilistic real-time systems, in: Proc. of CAV 2011: the 23rd International
Conference on Computer Aided Verification, Vol. 6806 of LNCS, 2011, pp.785

585–591. doi:10.1007/978-3-642-22110-1.
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